
Inferring Specifications to Detect Errors in Code

Mana Taghdiri
Computer Science and AI Lab

Massachusetts Institute of Technology
Cambridge, MA 02139

taghdiri@mit.edu

Abstract

A new static program analysis method for check-
ing structural properties of code is proposed. The user
need only provide a property to check; no further anno-
tations are required. An initial abstraction of the code
is computed that over-approximates the effect of func-
tion calls. This abstraction is then iteratively refined
in response to spurious counterexamples. The refine-
ment involves inferring a context-dependent specification
for each function call, so that only as much informa-
tion about a function is used as is necessary to analyze its
caller. When the algorithm terminates, the remaining coun-
terexample is guaranteed not to be spurious, but because
the program and its heap are finitized, absence of a coun-
terexample does not constitute proof.

1. Introduction

Software model checkers typically work by extracting a
state machine from the code. Procedure calls are treated as
control constructs; the abstraction boundaries that they rep-
resent are not usually exploited in the subsequent analysis.
This is odd, since the modularization of the code into pro-
cedures was presumably chosen in order to make reasoning
easier.

More traditional program verification approaches,
in contrast, made extensive use of the program struc-
ture in structuring the analysis. Each procedure would
be checked against its specification, using specifica-
tions of the called procedures as surrogates for their code.
If these approaches could be automated, we might have
the best of both worlds: a fully automatic analysis that ex-
ploits the modularity of the code.

This goal has motivated several tools. ESC/Java[9], for
example, extracts verification conditions from a procedure,
and presents them for proof (or refutation) to a specially

tailored theorem prover. The tool has been applied success-
fully to substantial programs, but it suffers from an obsta-
cle that limits its applicability. It turns out that the burden
of writing specifications for the called procedures is consid-
erable. To analyze a procedure at the root of a large tree,
every procedure in the tree must be annotated. Jalloy[20],
a counterexample detector for Java programs, suffers from
the same problem, and although it can inline called proce-
dures, such inlining does not scale.

This paper proposes a strategy to overcome this obsta-
cle. A procedure-based analysis is performed that requires
specifications of called procedures, but the specifications
are inferred from the code rather than being provided by
the user. Of course, extracting a specification that summa-
rizes in full the observable behaviour of a procedure is not
feasible. For this application, however, it is sufficient to cap-
ture only those aspects of the behaviour that are relevant in
the context of the calling procedure. Our inference scheme
exploits this. In fact, the inferred specifications are sensitive
not only to the calling context, but also to the property be-
ing checked. As a result, a very partial specification is some-
times sufficient, because even though it barely captures the
behaviour of the called procedure, it nevertheless captures
enough to verify the caller. By starting with the roughest
specification first, and refining it as needed, our scheme en-
sures that no more inference work is done than is necessary.

The fundamental idea underlying the strategy is a fa-
miliar one: counterexample-guided refinement of an
abstraction[3]. The general scheme is as follows: (1) the
analysis is applied to an abstraction of the code; (2) if no
counterexample is found, the analysis terminates and has
successfully verified the code (against the given property);
(3) if a counterexample is found, it is checked for valid-
ity; (4) if the counterexample is valid, a fault has been dis-
covered and the analysis terminates; otherwise (5) a more
refined abstraction is computed, and the process is re-
peated.

This scheme has been applied in a number of different
contexts[1, 12, 8, 7]. Our approach differs from all of these

negated
propertyprogram Abstraction

abstract
program

counter-
example

constraints

no
counter-
example

invalidity
witness

abstract
trace

Translation

valid?

Validity Check Solving

unsat?

sat?invalid?
Spec InferenceSpec

in that the abstraction and its subsequent refinements follow
the abstraction boundaries of the code itself. To our knowl-
edge, all previous applications of this idea to software anal-
ysis involve refinement of predicate abstractions[10]. Our
approach, in contrast, refines the specifications used to rep-
resent the behaviour of called procedures.

This paper therefore describes a framework for
counterexample-guided refinement of procedure specifi-
cations. It assumes an underlying analysis in which coun-
terexamples are found by solving constraints extracted from
the code and specification. The framework itself is not de-
pendent on any particular properties of the logic used, al-
though we use the Alloy modelling language as the
logic, and a SAT solver as the constraint solver. In or-
der to handle undecidable properties of data structures, the
program is finitized (by bounding the number of loop un-
rollings, as in ESC/Java and Jalloy), and the space of pos-
sible heaps is finitized too (by limiting the heap’s size).
Consequently, although counterexamples are guaran-
teed not to be spurious, their absence does not constitute
proof of correctness. The framework, however, does not de-
pend on these compromises, and seems to hold promise
for application in other contexts, such as the method re-
cently proposed by Flanagan[7].

2. Overview

Our analysis is focused on checking finite code against
a property. Original code is finitized by unrolling loops and
recursion some small number of times. A property is given
as a (partial) specification of a procedure selected by the
user. We particularly target structural properties, i.e., prop-
erties that constrain the configuration of the heap after the
execution of a procedure. The property can be expressed in
any language that can be converted to a set of logical con-
straints.

The above figure shows our framework. It consists of the
following phases:

Abstraction: We construct an initial abstract program
from the given program by replacing all procedure calls in
the analyzed procedure with some approximate specifica-
tions. This abstraction is an over-approximation of the orig-
inal code: all feasible executions of the original code are
feasible in the abstract program, but not vice versa.

Translation: The abstract program is translated to a set
of constraints, preserving the semantics of the code: any ex-
ecution in the abstract code corresponds to a solution of the
constraints and vice versa. Our method is independent of ex-
actly how this translation is done, as long as it is semantics-
preserving.

Solving: The constraints generated in the previous phase
and the negation of the user-provided assertion are handed
to a constraint solver. If no solution is found, the property
holds in the abstract program, and thus in the original (fini-
tized) program. If a solution is found, it is called an abstract
trace, and denotes an execution of the abstract program that
violates the assertion.

Validity Check: An abstract trace suggests a behavior
for each eliminated procedure by assigning values to its in-
puts and outputs. The validity of each behavior is checked
in the original program, again using a constraint solver. If
a behavior is valid, the solution found in this phase is used
to concretize the abstract trace. If the behaviors of all pro-
cedure calls are valid, the trace is a feasible counterexam-
ple and is returned, and the analysis terminates. However, if
the inputs and outputs assigned to a procedure denote an in-
valid behavior, they represent an invalidity witness.

Specification Inference: A more precise specification is
inferred for the procedure corresponding to the found inva-
lidity witness. We use a constraint solver capable of generat-
ing proofs to construct a proof of invalidity for the witness.
A specification that rules out the given invalid behavior is

class List {
int val;
List next;

List(int v) {
val = v;
next = null;

}
/** assert:
(l1 = null) || (l2 = null) => $return = null
*/
static List intersect(List l1, List l2) {

0: List res = null;
1: while (l1 != null) {
2: boolean found = contains(l2, l1.val);
3: if (found)
4: if (res == null)
5: res = new List(l1.val);
6: else
7: res.add(l1.val);
8: l1 = l1.next;
9: }
10: return res;
}
void add(int v) {

List c = new List(v);
List l = this;
while (l.next != null)
l = l.next;

l.next = c;
}
static boolean contains(List l, int v) {

while (l != null) {
if (l.val == v) return true;
l = l.next;

} return false;
}}

Figure 1. Example

then extracted from the proof and is conjoined with the old
specification of the procedure. The process then starts over
at the solving phase.

Each iteration of the algorithm monotonically extends
the specification of some procedure. The specification is an
abstraction of the code, so in the limit, the specification is
equivalent to the code, and termination is therefore guaran-
teed.

2.1. Motivating Example

The example given in Figure 1 illustrates our method.
The intersect function is selected for analysis. It takes
two lists of integers and returns a list of the elements that
appear in both of them. The given property asserts that if ei-

List.List(v):[$return != null &&
$return.val <- ? && $return.next <- ?]

List.add(v):[?.val <- ? && ?.next <- ?]
List.contains(l, v):[$return <- ?]

(a)
class List {
int val;
List next;

static List intersect(List l1, List l2) {
0: List res = null;
1: if (l1 != null) {
2: [boolean found <-?] //contains(l2,l1.val)
3: if (found)
4: if (res == null)

//res = List(l1.val)
5: [res!=null && res.val<-? && res.next<-?]
6: else
7: [?.val<-? && ?.next<-?]//res.add(l1.val)
8: l1 = l1.next;
9: } <assert l1 == null>
10:return res;
}}

(b)

Figure 2. (a) Initial specifications of called
functions. (b) Initial abstract program

ther one of the input lists is empty, the returned list is also
empty.

For simplicity, assume that we finitize the code by un-
winding each loop once. Figure 2.a shows the initial speci-
fications computed for each called function. Question marks
denote arbitrary values chosen non-deterministically; the ar-
row indicates a substitution.

The initial abstract program is presented in Figure 2.b.
The line numbers shown in this figure correspond to the line
numbers given in Figure 1. The specifications shown in Fig-
ure 2.a are inlined at the call points of their corresponding
functions.

This abstract program and the negation of the given prop-
erty are then translated to a set of constraints. The abstract
trace shown in Figure 3 is found by a constraint solver as
a counterexample. Each line in this figure consists of a line
number, a program state and a statement from the abstract
program that is executed. The line numbers correspond to
the line numbers in Figure 2 and show the control flow
of the execution. The program state at each line shows the
symbolic values bound to the variables before the execution
of the statement in that line. To save space, the unchanged
values are not repeated.

In this trace, the contains function and the List con-
structor are called. Initially, the value of l1.val is the

0: [l1.val = int0, l1.next = null,
l2 = null] res = null;

2: [res = null, ...] found <- ?
5: [found = true, ...] res != null &&

res.val <- ? && res.next <- ?
8: [res.val = int1, res.next = null,..]

l1=l1.next;
10: [l1 = null, ...] $return = res;

Figure 3. Abstract Trace for the Example

symbolic integer int0, and l1.next and l2 are both
null. Despite this, the call to contains returns true,
and the call to the constructor assigns int1, rather than
int0 to res.val. Although acceptable in the abstract
program, these behaviours are not feasible in the concrete
program.

To determine this, the behavior assigned to the con-
tains function is analyzed first, by checking the original
code of this function against the values given to its inputs
and outputs. Since the behavior is invalid, it is marked as an
invalidity witness and no further validity checking is per-
formed at this stage.

A constraint solver is then used to generate a proof for
the invalidity of the inputs and outputs assigned to the con-
tains function. The following specification is then ex-
tracted from the proof:

List.contains(l, v): [l <- l2 && v <- l1.val
&& (l = null => $return <- false) &&
(l != null => ($return <- ? && l <- ?))]

In the first line of this specification, formal parameters
of the contains function get the actual parameters used
at the call site corresponding to the invalidity witness. (In
our implementation, names are actually prefixed by unique
scope identifiers to avoid name clashes.)

The generated specification only refines those parts of
the contains function that are relevant to the found coun-
terexample; the rest of the function is still abstracted, as
shown by the third line of the specification. This new spec-
ification is inlined at the call point of the contains func-
tion and the process starts over. In this example, the analy-
sis of the new abstract program generates no counterexam-
ples. Thus, the process terminates and the property has been
validated.

3. Basic Structures

3.1. Abstract Program

Syntax. An abstract program is constructed to check the
correctness of a procedure selected by the user, called the
initial procedure. Our framework can be applied to any pro-
gramming language that supports procedure declaration and

program ::= classDcl*
classDcl::= class class{fieldDcl* procDcl*}
fieldDcl ::= class field;
procDcl ::= class proc(paramDcl*){stmt;}
paramDcl ::= class var,
stmt ::= class var | var = new class()

| var = expr | expr.field = expr
| if (pred) stmt else stmt
| return expr | OpaqueProcCall
| transparentProcCall | stmt; stmt

opaqueProcCall ::= <spec>
transparentProcCall ::= proc(expr*)

Figure 4. Syntax for Abstract Program

can be translated to logical constraints. We use a subset of
Java to illustrate our approach.

As shown in Figure 4, an abstract program consists of a
set of classes containing field and procedure declarations. A
procedure body is a sequence of statements that can be lo-
cal variable definitions, assignments, branches, return state-
ments, or procedure calls. We assume that expressions are
free of side effects. Since the analysis is done on a finitized
program, there are no loops in our language.

A procedure call in an abstract program is either trans-
parent or opaque. A transparent call is treated by inlining
the procedure in the calling context during the analysis. An
opaque call, on the other hand, is treated by replacing the
call by a specification.

Semantics. We use program points to denote the con-
trol points in a program. A program point corresponding
to a procedure call is called a call point. The set of pro-
gram points and call points of a program are represented by
Π and Ψ respectively (Ψ ⊆ Π). Furthermore, we define sπ
to denote the statement from the original program that cor-
responds to a program point π. Thus, for a call point ψ, sψ
denotes the procedure call corresponding to ψ.

A program state σ is defined at each program point π
as a mapping from variables accessible at π to some val-
ues. The set of all possible states of a program is denoted
by Σ.

Each program statement s is viewed as a transition in
the state of the program and thus, is represented by a set of
pairs of program states, i.e. �s� ⊆ Σ × Σ. A pair (σ, σ ′) is
included in the set defining a statement s if and only if exe-
cuting s in the state σ can result in the state σ ′.

Transformations. Two transformations are defined on
abstract programs: close and open. Given an abstract pro-
gram, the close transformation makes all procedure calls
opaque (i.e., abstracts procedure calls to their specifica-
tions). The open transformation, in contrast, takes an ab-
stract program and a call point and makes that call point

spec ::= var <- expr | expr.field <- expr |
var <- ? | expr.field <- ? | ?.field <- ? |
var = expr | expr.field = expr | !spec |
spec && spec | spec || spec | spec => spec

Figure 5. Syntax for Specification

transparent (i.e., inlines one procedure call).

3.2. Specification

A specification describes the behavior of a procedure in
a calling context either exactly or over-approximately. As
shown in Figure 5, a specification is a logical formula. The
equals sign stands for equality predicate. The ← sign de-
notes substitution. A question mark in a substitution de-
notes an arbitrary value, which can be replaced with any
value of the appropriate type non-deterministically. Thus,
var ← ? allows the value of var to change arbitrarily
whereas ?.field ← ? allows an arbitrary change in the
value of the given field in any object of the appropriate type.
The logical operators !, &&, ||, and => represent negation,
conjunction, disjunction, and implication respectively. Any
variable or field not mentioned as the left hand side of any
assignment in the specification of a procedure is assumed to
have the same value before and after the procedure call.

3.3. Abstract Trace

An abstract trace denotes an execution of an abstract
program represented by a sequence of pairs of program
points and program states, i.e.

−−−−→
Π× Σ. Two consecutive

pairs (π, σ) and (π′, σ′) in a trace t mean that sπ′ is exe-
cuted immediately after sπ, and that σ and σ′ are the pro-
gram states before the execution of sπ and sπ′ respectively.
It should be noted that the program state of the first pair de-
notes the initial state of the program which defines an initial
heap configuration. The program state of the last pair rep-
resents the final state of the program. The program point of
the last pair is a dummy point indicating the end of the pro-
gram.

In an abstract trace t, the state of the program at a point
π is denoted by statet(π). Furthermore, for a program state
σ, succt(σ) gives the program state immediately following
σ in t. (The final program state does not have a successor.)

A trace t is valid if and only if at each program point π
included in t, the transition of the program state is consis-
tent with the semantics of the statement corresponding to π
as expressed in the original program. That is,
t is valid ⇐⇒ ∀(π, σ) ∈ t, (σ, succt(σ)) ∈ �sπ�

δ[var = new class] = var← ? (if var ∈ G)
δ[var = expr] = var← ? (if var ∈ G)
δ[expr.field = expr] = ?.field← ?
δ[if (pred) s else s’] = δ[s] && δ[s’]
δ[return expr] = $return← ?
δ[proc(expr*)] =δ[stmt]

(where proc(var*){stmt;})
δ[s; s] = δ[s] && δ[s’]

Figure 6. Abstraction Rules

3.4. Invalidity Witness

An invalidity witness is a triple of a program point and
two program states (π, σ, σ′) where the state transition from
σ to σ′ is not consistent with the semantics of the original
statement corresponding to π, (i.e. (σ, σ ′) /∈ �sπ�).

4. Basic Computations

4.1. Abstraction

During the abstraction phase, initial specifications are
computed for all procedure calls. Initial specifications could
allow any arbitrary behavior for the procedures. However,
starting with more precise specifications can result in fewer
refinements.

The initial specification that we compute for a proce-
dure aims at preserving its frame conditions, i.e. any vari-
able or field not mutated by the procedure is not mu-
tated in the specification. However, not all frame condi-
tions can be computed statically. For example, if a program
uses dynamic dispatching so that different procedure bod-
ies are bound to a single procedure call in different execu-
tions, computing exact frame conditions statically is impos-
sible. Therefore, we compute conservative specifications:
any memory location that may be changed by a procedure
call is allowed to change.

In order to determine what memory locations may be
mutated by a procedure p, all of its callees should be ab-
stracted first. Thus, procedures should be abstracted in a cer-
tain order. We compute the order by first constructing the
call graph g of the initial procedure. Since the program is
finitized, g is a directed acyclic graph (DAG). we then com-
pute a topological sort[5] for g that is an ordering l over all
procedures so that all callees of a procedure p precede p in
l. Therefore, procedures can be abstracted in the order they
appear in l.

Figure 6 gives our abstraction rules. For a procedure p
called at a program point ψ, the global set Gψ denotes the
set of all objects accessible both in p (the callee) and at ψ
(the caller). Any change made by p to an object in Gψ is
visible to its caller.

procedure validityCheck(t:AbsTrace):
Witness {

callpoints = cpSet(t);
forall ψ ∈ callpoints {
p = sψ;
pre = statet(ψ);
post = succt(pre);
D̂ = toConstraint(pre) ∪

toConstraint(post);
P̂ = toConstraint(p);
solution = solve(P̂ ∪ D̂);
if (solution) {
t = concretizedOf(t, ψ, solution);
callpoints = callpoints∪ cpSet(solution)
} else return (ψ, pre, post);
} return null;
}

Figure 7. Validity Check Routine

The abstraction function δ constructs a conserva-
tive specification for a procedure call based on its global
set. In order to take care of possible aliasings in the orig-
inal program, whenever a field f of an object of type
T is modified, the specification allows a change in the
field f of all objects of type T . The δ function is not ap-
plied to expressions since they are assumed to have no side
effects.

After computing initial specifications, an abstract pro-
gram is generated from the original program by annotating
all procedure calls with their computed specifications. The
close transformation is then performed to make all proce-
dure calls abstracted.

4.2. Validity Check

A counterexample found in an abstract program is an ab-
stract trace that should be checked for validity in the orig-
inal program. Since the only abstracted statements are pro-
cedure calls, the only state transitions that may be invalid
are those corresponding to call points. As our abstraction is
based on the procedure call hierarchy of the code, the check
for validity is also done hierarchically. A procedure q called
within a procedure p is checked for validity only after the
validity of the state transition corresponding to p has been
validated.

Figure 7 shows how the validity of an abstract trace t is
checked. The cpSet function takes an abstract trace and
returns all of its call points as a set. For each call point ψ
in t, the open transformation is applied to the abstract pro-
gram to get the body of the procedure p called at ψ. All
procedures called within p are still abstracted due to the se-
mantics of the open transformation.

procedure SpecInference(ψ: CallPoint,
σ, σ′:ProgState): Spec {

p = sψ;
D̂ = toConstraint(σ) ∪ toConstraint(σ′);
P̂ = toConstraint(p);
Ĉ = invalidityProof(P̂ ∪ D̂);
return (conj(Ĉ − D̂));
}

Figure 8. Spec Inference Routine

Variables pre and post denote the states of the program
before and after the procedure p is called in the trace t.
These states are translated to sets of constraints using the
toConstraint function. The union of these constraints
is denoted by D̂. The body of the procedure p is also
translated to logical constraints denoted by P̂ . This trans-
lation is semantics-preserving. However, since the callees
of p are over-approximated, the generated constraints over-
approximate the behavior of p.

A constraint solver is then used to find a solution satis-
fying P̂ ∪ D̂. A solution denotes a trace t′ in p validating
the assigned state transition. If a solution is found, the ab-
stract trace t is concretized at the call point ψ by inlining t ′.
However, t′ may introduce new call points corresponding
to the procedures called in p. Since these call points are ab-
stract, the validity of their corresponding state transitions in
t′ will be checked in the next iterations of the loop in the va-
lidity check routine. Although the exact order in which call
points are checked may affect the performance of the analy-
sis, it does not affect its correctness as long as all call points
are eventually checked. If the state transitions correspond-
ing to all call points are valid, no invalidity witness is re-
turned and the trace t is a feasible counterexample.

However, if no solution exists for the constraints P̂ ∪ D̂
at some call pointψ, it means that executing the correspond-
ing procedure in the given pre-state can not result in the
given post-state. Therefore, the triple (ψ, pre, post) is re-
turned by the routine as an invalidity witness.

4.3. Specification Inference

Given an invalidity witness (ψ, σ, σ ′), a more precise
specification is generated for the procedure p called at ψ
that rules out the invalid state transition from σ to σ ′. Figure
8 shows the specification inference routine. The pre-state
σ and the post-state σ′ are translated to sets of constraints
whose union is denoted by D̂. The body of p is also trans-
lated to a set of semantics-preserving constraints P̂ .

Since the constraints P̂ ∪ D̂ is unsatisfiable, a con-
straint solver capable of generating proofs is used to find
a proof of invalidity. The proof of invalidity for a set of con-
straints F highlights some constraints in F that are incon-

sistent. The set Ĉ denotes such inconsistent constraints ex-
tracted from P̂ ∪ D̂. Thus, Ĉ encodes the reason that the
given state transition is not valid. However, Ĉ can not be
used as a specification because it is unsatisfiable; using it in
the analysis causes any assertion to be vacuously true. In or-
der to get the specification, we need to extract a valid tau-
tology from Ĉ.

By definition, Ĉ ⊆ P̂ ∪ D̂ and Ĉ is unsatisfiable. How-
ever, P̂ is satisfiable because any execution of the procedure
p is a solution to P̂ . Furthermore, D̂ is also satisfiable be-
cause its constraints are all disjoint, i.e. each one defines the
value of one variable. Therefore, Ĉ must include some con-
straints from both P̂ and D̂. That is, Ĉ = Q̂ ∪ R̂ where
Q̂ ⊆ P̂ and R̂ ⊆ D̂.

The set Q̂ denotes the statements in p that show the val-
ues defined in R̂ do not indicate a valid state transition. Fur-
thermore, Q̂ is satisfiable because Q̂ ⊆ P̂ . It can be ex-
tracted from Ĉ by comparing Ĉ against D̂, i.e.
Q̂ = (Q̂ ∪ R̂)− D̂ = Ĉ − D̂
The conjuction of the constraints in Q̂ is returned as the

new specification to be conjoined with the old specifica-
tion of p. The specification generated in this way is context-
dependent, i.e. it only encodes those parts of p that are rele-
vant to the found counterexample. The rest of the procedure
is still abstracted.

5. Implementation

In this section we explain our particular instantiation of
the proposed framework.

Inputs: We assume that the specification is written in the
Alloy[14] language which is a first order relational logic
that provides transitive closure operators, making it well
suited for expressing structural properties. Furthermore, it
is assumed that the input program is in Java.

Abstraction: In this phase, an Alloy specification is in-
ferred for each procedure call. Since Alloy is a declara-
tive language with no mutations, variables and fields are re-
named whenever their values are updated. This technique
was previously used in Jalloy[20].

Translation: The Java parts of an abstract program are
translated to Alloy as explained in detail elsewhere[20]. In
this translation, each control point in the Java program is en-
coded as a boolean Alloy variable. Java objects are encoded
as Alloy variables and class fields of Java are encoded as
Alloy relations. The generated Alloy formula is then con-
joined with the initial procedure specifications.

Solving: The Alloy assertion provided by the user is
negated and conjoined with the formula encoding the ab-
stract program. The Alloy Analyzer[13] solves this formula
by converting it to a boolean formula. This translation is
sound. However, since first order logic is undecidable, the
translation is done in a finite scope– a user-provided finite

bound on the number of objects of each type. The transla-
tion is complete within the given scope.

We tailor the Alloy Analyzer to use ZChaff[16] as the
back-end SAT solver. Any solution found by the SAT solver
is an assignment of truth values to all boolean variables in
the formula so that the whole formula becomes true. An ab-
stract trace is inferred from a solution based on the truth val-
ues of the control flow variables in that solution.

Validity Check: In order to check the validity of an ab-
stract trace, again we use ZChaff since it is capable of gen-
erating a proof of unsatisfiability called an unsat core[21].
Validity check is done as explained in the previous section.

Spec Inference: If no solution is found during the validity
check of a procedure, ZChaff generates an unsat core. The
input of ZChaff is a boolean formula in conjunctive nor-
mal form (CNF). A CNF formula is a conjunction of a set
of clauses that are disjunctions of some literals. An unsat
core is also in CNF format. It gives an unsatisfiable subset
of the clauses in the input formula. Those clauses that en-
code program statements are extracted from the unsat core
as explained before. They are then translated back to Alloy
using a technique described in a previous paper[18]. The re-
sulting Alloy formula is the inferred specification.

6. Experiments

We applied our method to check some properties of the
code given in Figure 9. The code is inspired by our own im-
plementation of the framework and has extensive structural
manipulations.

The NodeList and EdgeList types are two linked
lists defined as subclasses of List . The function re-
moveAll removes all the elements of the given list from
the receiver object. The type Graph defines a directed
graph by its lists of nodes and edges. The sets of incom-
ing and outgoing edges of each node are represented by
inEdges and outEdges fields in NodeListElem. The
remove function deletes the given list of nodes from the
graph by first removing it from the nodes list and then re-
moving all of the edges adjacent to any of those nodes from
the edges list.

Figure 10 shows some of the properties checked in this
code expressed in Alloy. In these properties, a primed field
gives the value of the field after the function is executed
whereas an unprimed one gives the value before the func-
tion execution. The * sign in Alloy denotes the reflexive
transitive closure, i.e. it gives all the values reachable by
traversing its following field zero or more times. Further-
more, this stands for the receiver object of a function.

The subset property is a specification for the
List.RemoveAll function. The property asserts that
the elements of a list after the execution of this func-
tion are a subset of its elements before the execution. In

class ListElem {
int id;
ListElem next; }

class List {
ListElem first;

void removeAll(List l) {
ListElem e1 = first;
ListElem prev = null;
while (e1 != null) {
int id = e1.id;
if (l != null && l.contains(id)) {

if (prev != null)
prev.next = e1.next;

else
first = e1.next;

} else
prev = e1;

e1 = e1.next;
}}

boolean contains(int id) {
ListElem e = first;
while (e != null) {
if (e.id == id)

return true;
e = e.next;

} return false;
}}

class EdgeListElem extends ListElem {
EdgeListElem next; }

class NodeListElem extends ListElem {
EdgeList outEdges;
EdgeList inEdges;
NodeListElem next; }

class EdgeList extends List {
EdgeListElem first; }

class NodeList extends List {
NodeListElem first; }

public class Graph {
EdgeList edges;
NodeList nodes;

void remove(NodeList nl) {
NodeList nds = nodes;
nds.removeAll(nl);
NodeListElem n = nl.first;
EdgeList el = edges;
while (n != null) {
EdgeList e = n.outEdges;
el.removeAll(e);
e = n.inEdges;
el.removeAll(e);
n = n.next;

}
}}

Figure 9. Graph Manipulation Code

/** subset: List.RemoveAll */
this.first’.*next’ in this.first.*next
/** sameEdges: Graph.remove */
no nl.first =>
edges.first’.*next’ = edges.first.*next

/** sameNodes: Graph.remove */
no nl.first =>
nodes.first’.*next’ = nodes.first.*next

Figure 10. Graph Manipulation Properties

other words, the removeAll function does not add new
objects to the receiver list. The sameEdges and sameN-
odes properties are assertions for the Graph.remove
function. They claim that if the input list of nodes is empty,
the graph’s lists of edges and nodes do not change by exe-
cuting this function. These properties are valid in the given
code and thus, no counterexample is found for any of them
during the analysis.

We compare our analysis method with a static bug de-
tector, Jalloy[20], since it is also based on SAT solvers and
targets structural properties of Java code. The translation
method used in Jalloy is identical to ours. Furthermore,
we tailored Jalloy to use the same SAT solver as we do,
i.e. ZChaff. However, Jalloy inlines all procedure calls to
avoid user-provided specifications. This comparison there-
fore, shows the improvements gained by the procedure ab-
straction idea.

Table 1 gives the results of the experiments. LoopUnroll
and Scope respectively show the number of times the loops
are unwound and the number of objects of each type consid-
ered in the analyses. The number of variables and clauses
given for Jalloy denote the size of the generated boolean
formula in CNF format; the time column gives the analysis
time. The number of variables and clauses for our method
correspond to the largest boolean formula checked, i.e. the
formula constructed after the last refinement. The time col-
umn gives the total analysis time including all refinements.
The number of iterations shows how many refinements are
needed to check each property.

The results show that to check the first two assertions, the
initial specifications that only preserve the frame conditions
are sufficient; no further refinements are needed. However,
Jalloy spends considerable time on translating the whole
code into a boolean formula although only a small portion
of code is involved in verifying each of these properties.
Consequently, the formula generated by Jalloy is too large
to be handled by the SAT solver. Although more experi-
ments should be done to see the performance of our method
on large programs, current experiments show that it con-
siderably improves the analysis time, even when some re-
finements are needed. This is intuitive because in real ap-
plications usually only a small number of procedures are

Table 1: Experiment Results
Jalloy Our Method

Assertion LoopUnroll Scope Variables Clauses Time (sec) Variables Clauses Time (sec) #iter
subset 4 4 8216 18124 15 4928 10260 9 0

5 5 14555 34704 162 8611 19002 98
6 4 13554 30555 40 6702 14013 12
6 5 18137 43760 234 9857 21776 83

sameEdges 3 3 27112 56241 61 3284 6589 5 0
4 4 66566 151323 164 6187 13507 8
4 5 87710 214959 206 9524 23383 27
5 4 − − > 900 6807 14794 8
5 5 − − > 900 10346 25263 36
6 4 − − > 900 7499 16207 9

sameNodes 3 3 27147 56298 44 5927 11652 7 3
4 4 66661 151489 123 11057 23450 13
4 5 87803 215129 224 15682 36890 107
5 4 108016 246914 359 13075 27446 17
5 5 141087 347466 586 18549 42948 191

needed to check each property and our method only trans-
lates those parts of the code that are necessary for the anal-
ysis. In this way both the translation time is reduced and
a smaller boolean formula is generated that can be solved
faster.

7. Related Work

Our method is inspired by previous work [20] and [19]
that translate a program to a boolean formula and use a SAT
solver to check a property in a finite scope. However, they
inline all called procedures that are not annotated with user-
provided specifications. This severely limits their scalabil-
ity as our experiments indicate.

The software model checkers SLAM[1] and BLAST[12]
over-approximate the code using predicate abstraction[10].
An abstraction is refined by automatically inferring new
predicates. They target temporal safety properties, and in
general are not capable of checking the kind of struc-
tural properties that we do. MAGIC[2] is also based on
predicate abstraction, but it uses a SAT solver to verify a
user-provided specification in C code. However, if the user
does not provide specifications for the called procedures,
MAGIC will inline all procedure calls.

ESC/Java[9] uses a theorem prover to check properties
of code relying on user-provided function specifications. An
extension of ESC is proposed by Flanagan[7]. His method
checks code properties via translation to a constraint logic
(CLP)[15] and checking the satisfiability of the generated
formula. It differs from our method in that it first trans-
lates the whole code into CLP and then checks for satis-
fiability iteratively based on predicate abstraction. We be-
lieve that our analysis framework can be used with CLP and

a proof-generating decision procedure or a theorem prover
like Verifun[8].

Bandera[4] analyzes Java code by extracting a finite state
model of code, using slicing, which can be mapped into
several model checkers and theorem provers. Unlike our
method, it supports user-provided data abstractions that may
also yield false alarms.

Shape analysis algorithms[17] can check proper-
ties about the structure of the heap. Parametric shape
analysis[17] uses a 3-valued logic to represent shape graphs
and can prove properties without bounds, but it may gen-
erate false alarms. It also requires the user to specify
how each statement affects each predicate of interest. Our
method, in contrast, does not require any user-provided an-
notations and does not give spurious counterexamples.
However, the absence of a counterexample does not consti-
tute proof.

Dynamic slicing (e.g. [22]) extracts the statements con-
tributing to the value of a variable at some point in a given
execution of a program. Our specification inference method
is similar in that it extracts the statements relevant to the in-
put and output values assigned to a procedure. However,
since the execution path is not known, dynamic slicing can
not be applied here.

Some specification extraction tools are developed be-
fore. Daikon[6] and DIDUCE[11], for example, detect in-
variants about programs. Unlike our static specification in-
ference method, both of these tools detect invariants dynam-
ically, i.e. by running the code. However, we do not gen-
erate general specifications. Our specifications are context-
dependent, i.e. based on the property to be checked and on
the context in which procedures are called. Furthermore,
our specifications are only as precise as they need to be for
the verification of their callers.

8. Conclusions

In this paper we proposed a framework to statically
check a user-provided property in code. We specifically tar-
get the properties that constrain the structure of the objects
in the heap. The framework exploits the modular structure
of the program and is based on constraint solving. We start
with a rough over-approximate specification for each proce-
dure and refine it on-demand. While our method is capable
of automatically inferring context-dependent specifications
for procedure calls, it can still benefit from user-provided
specifications, if available, to reduce the analysis time.

We also explained our implementation of the framework.
We target Java programs and use Alloy as an intermediate
language to translate Java to boolean constraints. Specifica-
tion inference is based on the unsat core generated by the
SAT solver ZChaff. Our experiments show that procedure
abstraction can considerably reduce the analysis time by an-
alyzing only the parts of the code that are actually needed
to check a property. More experiments has yet to be done to
evaluate the number of refinements needed in larger code.

Our initial abstraction currently infers initial specifica-
tions that only preserve the frame conditions of the proce-
dures. A more precise initial specification can reduce the
number of refinements needed and thus, improve the scal-
ability of our method. Techniques to obtain such specifica-
tions will be studied in future.

9. Acknowledgments

We are grateful to Mandana Vaziri for the use of her
code, and for her advice, and to Sharad Malik and Zhao-
hui Fu for their help using ZChaff. This material is based
upon work supported by the National Science Foundation
under Grant No. 0086154 and Grant No. 0325283.

References

[1] T. Ball and S. K. Rajamani. The SLAM project: Debugging
system software via static analysis. Proc. POPL 2002, Jan-
uary 2002.

[2] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modu-
lar verification of software components in C. International
Conference on Software Engineering, May 2003.

[3] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. Proc. Com-
puter Aided Verification, pages 154–169, 2000.

[4] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng. Bandera: Extracting finite-
state models from java source code. Proc. International Con-
ference on Software Engineering, June 2000.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to algorithms. MIT Press, 1990.

[6] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. IEEE Trans. on Software Engineer-
ing, 27(2), February 2001.

[7] C. Flanagan. Software model checking via iterative abstrac-
tion refinement of constraint logic queries. Workshop on
Constraint Programming and Constraints for Verification,
March 2004.

[8] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem prov-
ing using lazy proff explication. Internation Conference on
Computer Aided Verification, 2003.

[9] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe,
and R. Stata. Extended static checking for java. Proc. Con-
ference on Programming Language Design and Implementa-
tion, pages 234–245, June 2002.

[10] S. Graf and H. Saidi. Construction of abstract state graphs
via PVS. International Conference on Computer Aided Ver-
ification, pages 72–83, 1997.

[11] S. Hangal and M. S. Lam. Tracking down software bugs us-
ing automatic anomaly detection. Proc. International Con-
ference on Software Engineering, pages 291–301, May 2002.

[12] T. A. Henzinger, R. Jhala, R. Majumdar, G. Necula, G. Sutre,
and W. Weimer. Temporal-safety proofs for systems code.
Proc. International Conference on Computer-Aided Verifica-
tion, pages 526–538, 2002.

[13] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: The al-
loy constraint analyzer. Proc. International Conference on
Software Engineering, June 2000.

[14] D. Jackson, I. Shlyakhter, and M. Sridharan. A micromod-
ularity mechanism. Proc. ACM SIGSOFT Conference on
Foundations of Software Engineering, 2001.

[15] J. Jaffar and M. J. Maher. Constraint logic programing: A
survey. Journal of Logic Programming, 19(20):503–581,
1994.

[16] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. Design Au-
tomation Conference, June 2001.

[17] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape anal-
ysis via 3-valued logic. ACM Trans. on Programming Lan-
guages and Systems, 24(3):217–298, 2002.

[18] I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and
M. Taghdiri. Debugging declarative models using unsatis-
fiable core. Automated Software Engineering, October 2003.

[19] M. Sitaraman, D. P. Gandi, W. Kuchlin, C. Sinz, and B. W.
Weide. The humane bugfinder: Modular static analysis using
a sat solver. Technical Report RSRG-03-05, Dept. of Com-
puter Science, Clemson Univ., June 2003.

[20] M. Vaziri. Finding bugs in software with a constraint solver.
Ph.D Thesis, MIT, February 2004.

[21] L. Zhang and S. Malik. Validating SAT solvers using an in-
dependent resolution-based checker: Practical implementa-
tions and other applications. Design, Automation and Test in
Europe(DATE), 2003.

[22] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slic-
ing algorithms. Proc. International Conference on Software
Engineering, pages 319–329, 2003.

