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Abstract. A new technique is presented to statically check a given procedure
against a user-provided property. The method requires no annotations; it automat-
ically infers a context-dependent specification for each procedure call, so that only
as much information about a procedure is used as is needed to analyze its caller.
Specifications are inferred iteratively. Empty specifications are initially used to over-
approximate the effects of all procedure calls; these are later refined in response to
spurious counterexamples. When the analysis terminates, any remaining counterex-
ample is guaranteed to be valid. However, since the heap is finitized, the absence of
a counterexample does not guarantee the validity of the given property.

1. Introduction

Traditional program verification makes extensive use of modulariza-
tion. Each procedure is checked against its specification, using the
specifications of its called procedures as surrogates for their code.

Automating such approaches has motivated several tools. ESC/-
Java [15], for example, extracts verification conditions from a procedure
and presents them for proof (or refutation) to a specially tailored
theorem prover. However, it requires users to provide specifications
for called procedures. This places a significant burden on users and
therefore limits the applicability of the tool. Jalloy [33], a SAT-based
counterexample detector for Java programs, suffers from the same prob-
lem. Although it can inline called procedures to eliminate the need
for user-provided specifications, such inlining does not scale to large
programs.

On the other hand, software model checkers, such as SLAM [3]
and BLAST [18], can find bugs in programs automatically without
requiring users to provide any annotations. Their scalability typically
comes from the demand-based refinements of predicate abstractions [16]
of the code, based on a paradigm known as “counterexample guided
abstraction refinement” (CEGAR) [7], which consists of the following
four basic steps:

− An abstraction of the program is computed which is an over-
approximation of the original code.
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− The abstraction is analyzed. If no counterexample is found, the
property holds in the code and the analysis terminates.

− If a counterexample is found, it is checked for validity. If valid, a
fault has been discovered and the analysis terminates.

− If the counterexample is spurious, the abstraction is refined so that
this counterexample is eliminated, and the process starts over.

This paradigm is the basis of a number of software analysis tech-
niques. However, to our knowledge, they all involve refinement of predi-
cate abstractions, and do not exploit the abstraction boundaries defined
by procedures.

In this paper, we describe a modular analysis in which a procedure is
checked against a given property by substituting specifications for the
called procedures. The specifications are inferred automatically from
the code rather than being provided by the user. These specifications
are exploited in checking like the specifications of ESC/Java, but are
refined by a mechanism more similar to that of SLAM and BLAST.

Our analysis is an application of the CEGAR paradigm. However,
it differs from all previous applications of this paradigm in that the ab-
straction and its subsequent refinements follow the abstraction bound-
aries of the code defined by procedures. Instead of refining a predicate
abstraction of the code, our approach refines the specifications that
represent the behavior of called procedures.

We do not aim at inferring full specifications that capture the be-
havior of called procedures completely. Instead, we start with a rough
initial specification for each procedure and refine it on demand. The
inferred specifications need capture only as much information about
procedures as is required to establish the correctness of the main proce-
dure being checked, which depends on not only the calling context, but
also the property being checked. As a result, a very partial specification
is sometimes sufficient, because even though it barely captures the
behavior of the called procedure, it nevertheless captures enough to
verify the caller with respect to the property of interest.

An earlier publication [32] presented these ideas. This paper im-
proves on that work in two respects. It presents a new abstract frame-
work that makes it easier to exploit the idea in a wider range of settings.
The framework assumes an underlying analysis in which counterex-
amples are found by solving constraints extracted from the code and
the given property. It (1) assumes very little about the programming
language except that it supports procedure declaration, (2) does not
assume any particular translation of code to constraints, and thus pro-
vides the opportunity for exploiting different translation techniques
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(e.g. [13, 35]), and (3) provides rigorous conditions for termination,
soundness, and completeness.

Furthermore, this paper presents a better technique for handling
loops and recursion. The technique does not require users to provide
bounds on the number of loop iterations and recursion executions.
Instead, it assumes that loops are desugared into recursive procedures,
and infers the specification of each recursive call as needed, i.e. unrolls
them on demand. Therefore, compared to our previous approach, this
approach potentially finds more errors in programs.

Our instantiation of the framework uses the Alloy modeling lan-
guage [21] as the logic, and a SAT solver as the constraint solver, and
handles programs written in a subset of Java. It analyzes procedures
with respect to finitized heaps. Consequently, although counterexam-
ples are guaranteed not to be spurious, their absence does not constitute
proof of correctness. The framework, however, does not depend on
these compromises, and seems to hold promise for application in other
contexts.

This paper is organized as follows: Section 2 gives an overview of the
method. Section 3 illustrates the method using a small Java program.
Section 4 gives the technical details of the abstract framework. Section
5 presents one instantiation of the framework as implemented in our
tool. Section 6 gives the experimental results. Section 7 discusses dif-
ferent aspects of our technique. Section 8 compares our method with
the related work, and Section 9 concludes the paper.

2. Overview

Our analysis checks a procedure with respect to a given property. Figure
1 shows the analysis framework. It consists of the following phases:

Abstraction: The body of the procedure selected for analysis is
translated to a set of logical constraints. These constraints capture the
semantics of the procedure except at its call sites. All procedure calls
are replaced with approximate specifications so that the abstraction is
an over-approximation of the original code.

Solving: The generated constraints and the negation of the property
being checked are handed to a constraint solver. If no solution is found,
the property holds in the original procedure. On the other hand, if a
solution satisfying all the constraints is found, it indicates a potential
violation of the property, and must be checked for validity.

Validity check: The validity of a solution is determined by checking
the consistency of each procedure call with the found solution, again
using a constraint solver. If all procedure calls are consistent, the solu-
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Figure 1. An overview of the framework

tion represents a feasible counterexample, and the analysis terminates.
If a procedure call is inconsistent, however, its specification must be
refined.

Specification inference: A new partial specification is inferred for
an inconsistent procedure call from a proof of invalidity generated by
the constraint solver. This specification rules out not only the given
invalid solution, but also all solutions isomorphic to that. The new
specification is then conjoined with the old specification of the proce-
dure to form a more precise specification. The process then starts over
at the solving phase.

Termination, soundness (that is, found counterexamples are feasi-
ble), and completeness (that is, all counterexamples are found) of this
analysis depend on the particular translation technique that encodes
program statements as logical constraints, and the constraint solver
used in the instantiation of the framework. However, as proved in
Section 4.4, the specification inference approach does not introduce fur-
ther unsoundness. Moreover, it does not introduce non-termination or
further incompleteness unless the analyzed program contains recursive
calls that can loop forever.

3. Example

In this section, we illustrate our technique by first describing the user’s
experience checking a Java program, then giving the specifications in-
ferred to check that program, and finally describing the underlying
analysis.
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class Entry {
int va l ;
Entry next ;

Entry ( int v ) {
va l = v ;
next = null ;

}
}
class Set {

Entry elems ;

/∗ as s e r t :
( ( t h i s . e lems = nu l l ) | | ( p . elems = nu l l ) ) => ( $return . elems ’ = nu l l )

∗/
Set i n t e r s e c t ( Set p) {

Set r e s = new Set ( ) ;
Entry cur r = this . elems ;
while ( cur r != null ) {

boolean found = p . conta ins ( cur r . va l ) ;
i f ( found )

r e s . add ( cur r . va l ) ;
cur r = cur r . next ;

}
return r e s ;

}

Set ( ) {
elems = null ;

}

void add ( int v ) {
i f ( ! conta ins (v ) ) {

Entry tmp = new Entry ( v ) ;
tmp . next = this . elems ;
this . elems = tmp ;

}
}

boolean conta ins ( int v ) {
Entry l = this . elems ;
while ( l != null ) {

i f ( l . va l == v)
return true ;

l = l . next ;
}
return fa l se ;

}
}

Figure 2. Example
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3.1. User Experience

Valid properties: Figure 2 shows a set datatype whose elements are
represented by a singly linked data structure. The intersect method
returns the intersection of the receiver set, this, and another set p,
passed as an argument. The given property asserts that if either one of
the intersected sets is empty (i.e. its elems field is null), the returned set
is also empty.

Since our tool checks programs with respect to finite heaps, the
user specifies a bound on the number of objects of each type. In this
example, we assume that the user-provided bound on the number of
entries and sets is 3.

Checking the intersect method against the given property does not
generate any counterexamples, implying that the property holds in the
finite heap.

Invalid properties: If the code were buggy, a counterexample
would have been generated. In order to illustrate that, assume that
the condition for adding an element to the resulting set is mistakenly
written as if (!found) rather than if (found). The property does not hold
any more, and the counterexample given in Figure 3 is generated.

Figure 3(a) shows the values of the program variables in the pre-
and post-states. The unprimed and primed names represent the values
of variables and fields before and after the execution of the intersect

method respectively. The values S0, S1, and S2 are symbolic set objects.
The values E0 and E1 are symbolic Entry objects, and the value int0 is a
symbolic integer. This counterexample represents the case in which the
receiver set contains one integer int0 and p is an empty set. Because of
the bug, the resulting set contains int0 rather than being empty.

Our tool currently outputs counterexamples in the format of Fig-
ure 3(a). However, it can easily be improved to generate the trace
corresponding to each counterexample by highlighting the statements
executed in that counterexample and annotating them by the values
of program variables before and after their execution. The trace cor-
responding to the counterexample of Figure 3(a) is shown in Figure
3(b). In this counterexample, all statements in the intersect method are
executed; the loop body is executed only once. Instead of rewriting the
values of all program variables, the trace describes only the updates
after each statement.

In the rest of this section, we describe analyzing the code given in
Figure 2 where the property holds. Analyzing the buggy case follows
the same general steps, but infers different specifications.
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pre-state:

(this = S0) (p = S1)

(S0.elems = E0) (S1.elems = null)

(E0.val = int0) (E0.next = null)

post-state:

($return = S2)

(S2.elems’ = E1)

(E1.val’ = int0) (E1.next’ = null)

(a)

Set intersect(Set p) : {

[ (this = S0 ), (p = S1 ), (S0 .elems = E0 ),

(S1 .elems = null), (E0 .val = int0 ), (E0 .next = null)]

Set res = new Set();

[.., (res = S2 ), (S2 .elems = null)]

Entry curr = this.elems;

[.., (curr = E0 )]

while (curr ! = null) {

boolean found = p.contains(curr.val);

[.., (found = false)]

if (!found) //bug seeded

res.add(curr.val);

[.., (S2 .elems = E1 ), (E1 .val = int0 ), (E1 .next = null)]

curr = curr.next;

[.., (curr = null)]

}

return res;

[.., ($return = S2 )]

}

(b)

Figure 3. Sample counterexample: (a) symbolic values for pre- and post-states, (b)
corresponding trace

3.2. Inferred Specifications

In order to validate the property in the example of Figure 2, our tool
infers the specifications given in Figure 4 for the methods reachable
from the intersect method.

A specification is represented by a set of logical constraints, im-
plicitly conjoined. The variable $return represents the return value. A
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Set.Set(): { (this.elems’ = null) }

Entry.Entry(v): { (this.val’ = ?int)

(this.next’ = ?Entry) }

Set.add(v): { (?Entry.val’ = ?int)

(?Entry.next’ = ?Entry)

(?Set.elems’ = ?Entry) }

Set.contains(v): { ((this.elems = null) ⇒ ($return = false))

((this.elems != null) ⇒ ($return = ?Bool)) }

Figure 4. Specifications inferred to validate the example property

question mark ?T is used to represent arbitrary values of type T cho-
sen non-deterministically. For example, $return = ?Bool in the Set.contains

specification indicates that this method can return any boolean value
arbitrarily, and ?Entry.val’ = ?int in the Set.add specification denotes an
arbitrary change in the value of the val field in any object of type Entry.
Any variable or field not mentioned in the specification is assumed to
be unchanged.

These specifications are inferred as needed in order to check the
given property, so they vary in precision. The specification inferred for
the Set constructor, for example, represents its behavior completely.
(Our tool desugars an allocation statement x = new T(e) to two con-
secutive statements x = new T; x.T(e) where the first one allocates a
fresh memory location and the second one calls the constructor. Thus,
the constructors’ specifications do not specify memory allocations; they
only initialize the allocated objects.) On the other hand, the specifica-
tions of the Entry constructor and the add method are very partial. They
only indicate what fields may be updated by those methods. The spec-
ification of the contains method also provides only partial information
about the method’s behavior: if the receiver set is empty (this.elems =

null), the contains method returns false, otherwise, the return value is
unknown.

Although these specifications barely capture the behavior of their
corresponding methods, they are sufficient for validating the property.

3.3. Underlying Analysis

The specifications described in the previous section are inferred in two
iterations. The underlying analysis proceeds as follows. Initial specifi-
cations (Figure 5) are computed to over-approximate the behaviors of
the methods reachable from the intersect method. These specifications
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Set.Set(): { (this.elems’ = ?Entry) }

Entry.Entry(v): { (this.val’ = ?int)

(this.next’ = ?Entry) }

Set.add(v): { (?Entry.val’ = ?int)

(?Entry.next’ = ?Entry)

(?Set.elems’ = ?Entry) }

Set.contains(v): { ($return = ?Bool) }

Figure 5. Initial specifications

Set i n t e r s e c t ( Set p) {
1 : Set r e s = new Set ;
2 : r e s . Set ( ) ;
3 : Entry cur r = this . elems ;
4 : i f ( cur r != null ) {
5 : boolean found = p . conta ins ( cur r . va l ) ;
6 : i f ( found )
7 : r e s . add ( cur r . va l ) ;
8 : cur r = cur r . next ;
9 : } <assume cur r == null>
10 : return r e s ;

}

Figure 6. Unrolled method

are rough approximations that only specify what fields are updated by
each method.

Although in general, our tool expects loops to be written as tail
recursion, in this example, we unroll each loop once for simplicity.
Figure 6 shows the intersect method after loop unrolling and desugaring
the allocation statement.

Figure 7(a) shows the initial abstraction of the intersect method. The
body of the method is translated to a set of constraints. Assignment
statements become equality constraints and branches become logical
implications. The function nextFresh(T) returns a logical expression rep-
resenting a fresh element of type T. (To keep the example simple, we
do not give the formal definition of this function.) The specifications in
Figure 5 are used to abstract the call sites. (Line numbers used in this
figure correspond to the line numbers in Figure 6.)

First iteration: These constraints along with the negation of the
given property (Figure 7(b)) are given to a constraint solver. The
solution shown in Figure 8 is found as a counterexample. In this coun-
terexample, the set constructor is called (in line 2). It assigns E0, rather
than null, to the elems field of the allocated object S2. Although ac-
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Set.intersect(p): {

1: (res’ = nextFresh(Set))

2: {(res’.elems’ = ?Entry)} res.Set()

3: (curr = this.elems)

4: (curr != null) ⇒ {

5: {(found’ = ?Bool)} found = p.contains(curr.val)

6: (found’) ⇒

7: {(?Entry.val’ = ?int) res.add(curr.val)

(?Entry.next’ = ?Entry)

(?Set.elems’ = ?Entry)}

8: (curr’ = curr.next’)

9: (curr’ = null)

}

10: ($return = res’)

}

(a)

{ (this.elems = null)

(p.elems = null)

($return.elems’ != null) }

(b)

Figure 7. (a) Initial abstraction: method body is translated to constraints; specifi-
cations are substituted for call sites. (b) Negation of the property being checked.

ceptable in the abstraction, this behavior is invalid in the original
code.

The invalidity of this counterexample is determined by checking the
original code of the set constructor against the counterexample. The
constraint solver generates the following proof of invalidity:

(res’ = S2)

(S2.elems’ = E0)

(this = res’)

(this.elems’ = null)

false

The proof gives an inconsistent subset of the constraints. The first two
lines correspond to the values assigned by the counterexample, and the
next two lines give the translation of the constructor call in line 2. A
new specification for this call is extracted from the proof by removing
those constraints that are included in the counterexample, namely (res’

= S2) and (S2.elems’ = E0). The following specification is inferred:
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(this = S0) (p = S1)

(S0.elems = null) (S1.elems = null)

(res’ = S2) (S2.elems’ = E0)

($return = S2)

(a)

Set intersect(Set p) : {

[ (this = S0 ), (p = S1 ), (S0 .elems = null), (S1 .elems = null)]

1 : res = new Set;

[.., (res = S2 )]

2 : res.Set();

[.., (S2 .elems = E0 )]

3 : Entry curr = this.elems;

[.., (curr = null)]

4: if (curr != null) {

5: boolean found = p.contains(curr.val);

6: if (found)

7: res.add(curr.val);

8: curr = curr.next;

9: } <assume curr == null>

10 : return res;

[.., ($return = S2 )]

}

(b)

Figure 8. First counterexample: (a) constraint solver’s solution, (b) corresponding
trace

{ (this = res’)

(this.elems’ = null)}

In this case, the inferred specification represents the full behavior of
the constructor. It is conjoined with the constructor’s old specification
in line 2.

Second iteration: The intersect method is checked against the given
property again. A new counterexample, shown in Figure 9, is found. In
this counterexample, the set constructor (in line 2), the contains method
(in line 5) and the add method (in line 7) are called. The value of curr.val

is the symbolic integer int0, and p.elems is null. Despite this, the call to
contains returns true, and the call to add assigns int1, rather than int0

to res’.elems’.val’. Although acceptable in the abstraction, again these
behaviors are not feasible in the original program.
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(this = S0) (p = S1)

(S0.elems = E0) (S1.elems = null)

(E0.val = int0) (E0.next = null)

(res’ = S2) (S2.elems = null)

(found’ = true)

(S2.elems’ = E1)

(E1.val’ = int1) (E1.next’ = null)

($return = S2)

(a)

Set intersect(Set p) : {

[ (this = S0 ), (p = S1 ), (S0 .elems = E0 ),

(S1 .elems = null), (E0 .val = int0 ), (E0 .next = null)]

1 : res = new Set;

[.., (res = S2 )]

2 : res.Set();

[.., (S2 .elems = null)]

3 : Entry curr = this.elems;

[.., (curr = E0 )]

4 : if (curr ! = null) {

5 : boolean found = p.contains(curr.val);

[.., (found = true)]

6 : if (found)

7 : res.add(curr.val);

[.., (S2 .elems = E1 ), (E1 .val = int1 ), (E1 .next = null)]

8 : curr = curr.next;

[.., (curr = null)]

9 : } <assume curr == null>

10 : return res;

[.., ($return = S2 )]

}

(b)

Figure 9. Second counterexample: (a) constraint solver’s solution, (b) corresponding
trace

To determine this, the contains method is analyzed first, by checking
its original code against the counterexample. It should be noted that
because the full specification of the set constructor was already inferred,
the call to the constructor is not checked again. Figure 10(a) shows the
contains method after one unrolling. Figure 10(b) gives its translation
into logical constraints. The first line of the translation handles the
mapping of the formal parameters to their actual values, and the last
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boolean conta ins ( int v ) {
1 : Entry l = this . elems ;
2 : i f ( l != null ) {
3 : i f ( l . va l == v )
4 : return true ;
5 : l = l . next ;
6 : } <assume l == null>
7 : return fa l se ;

}

(a)

Set.contains(v): {

(this = p) (v = curr.val)

1: (l = this.elems)

2: (l != null) ⇒ {

3: (l.val = v) ⇒

4: ($return = true)

(l.val != v) ⇒ {

5: (l’ = l.next)

6: (l’ = null)

7: ($return = false)}

}

(l = null) ⇒

7: ($return = false)

(found’ = $return)

}

(b)

Figure 10. The contains method: (a) unrolled code, (b) call site translation

line maps the returned value to the appropriate variable at the analyzed
call site. (Our tool actually renames local variables so that they are
distinct across call sites.) In order to capture the fact that the return
statement in line 4 terminates the method, the statement following the
loop (line 7) is duplicated and some branch conditions are added.

The constraints encoding the contains method along with the coun-
terexample given in Figure 9(a) are given to the constraint solver which
generates the following proof of invalidity. No further validity checking
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is performed at this stage.

(p = S1)

(S1.elems = null)

(found’ = true)

(this = p)

(l = this.elems)

((l = null) => ($return = false))

(found’ = $return)

false

The first 3 lines represent the values assigned by the counterexample,
and the other lines give a subset of the contains encoding. As before, a
new specification for the analyzed call site is extracted from the proof
by removing those constraints that are included in the counterexample,
namely the constraints given in the first 3 lines. Furthermore, interme-
diate local variables are removed by inlining their values. The following
specification is therefore inferred.

{ (this = p)

(found’ = $return)

((this.elems = null) => ($return = false)) }

This specification says that if the receiver set is empty, the method
returns false, otherwise, the return value is unconstrained, expressing
only those parts of the contains method that are relevant to the found
counterexample.

This new specification is conjoined at the call to the contains method
in line 5 and analyzing the intersect method starts over. In this example,
no further counterexamples are found. Thus, the process terminates and
the property has been validated for the finite heap.

4. Methodology

In this section, we explain the essence of our method formally and
discuss its termination, soundness, and completeness properties.

We describe an abstract framework for checking a procedure against
a user-provided assertion. The assertion can be expressed in any lan-
guage as long as it can be translated to a set of constraints. The core
idea is to infer the specifications of called procedures on demand. In
order to do that, the framework relies on a translation of code to a set
of constraints whose satisfiability can be determined using a constraint
solver. Examples of such a translation are Jalloy [33] that translates the
code to a relational first order logic, namely Alloy [21], and Saturn [35]
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prog ::= proc∗

proc ::= name([type var]∗):type {stmt}

stmt ::= if pred(expr∗) stmt [else stmt]
name(expr∗)

return expr

var = expr

stmt; stmt

Figure 11. Abstract syntax for the analyzed language

that translates the code to a set of boolean constraints in conjunctive
normal form.

This framework reformulates our approach in a more general setting
than our previous work [32]. It is parameterized by basic functions,
assumed to satisfy some basic axioms, in order to make the main idea
applicable to a wider range of applications.

Our instantiation of the framework explained in Section 5 will pro-
vide concrete examples for the basic functions introduced in this sec-
tion.

4.1. Definitions

Program syntax. We target imperative programs supporting proce-
dure declarations. Figure 11 gives an abstract syntax for a fragment of
a basic programming language. A program is a sequence of procedure
declarations. A procedure declaration consists of a name, a list of formal
parameters, and the type of the return value. The body of a procedure
is a statement that can be a branch, procedure call, return statement,
or variable mutation where variable is used as a general term that can
also include a pointer dereference, or an access to an object’s field.
There are no loop constructs in this language; they can be expressed
as tail recursions.

Program semantics. Let PV ar be the set of all variables of a
program, and PV al be the set of all concrete values that can be assigned
to those variables. A program state, σ ∈ Σ, is a partial function from
variables to their values:

Σ = PV ar → PV al

Each program statement s is viewed as a relation over Σ:

[[s]] ⊆ Σ × Σ

where (σ, σ′) ∈ [[s]] when executing s in the state σ can result in the
state σ′.
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Figure 12. Relationship between different domains.

Variable mapping. Translation of a program to logical constraints
is based on a mapping from program variables and their values to logical
variables and logical values. Since logical variables are immutable, the
same program variable can be mapped to different logical variables
at different program points. In fact, the mapping can differ not only
at each program point, but also at different executions of the same
program point. Therefore, we define a program moment, π ∈ Π, as a
unique identifier for each execution of a program point. That is,

Π = P × Int

where P is the set of program points. A program moment π = (p, i)
represents the ith execution of the program point p.

We use γ ∈ Γ to denote the variable mapping used in the translation:

Γ = ((PV ar × Π) → LV ar) ∪ (PV al → LV al)

where LV ar and LV al respectively represent the set of logical variables
and their possible values.

Constraints. Our framework does not rely on any particular prop-
erty of the logic used to express the constraints. However, it assumes
that a constraint solver is available that determines the satisfiability of
a set of constraints and generates proofs in case of unsatisfiability.

A logical assignment ψ ∈ Ψ is a partial function from logical vari-
ables to values:

Ψ = LV ar → LV al

Let C denote the set of all constraints. A logical assignment ψ is
a solution to a set of constraints C ⊆ C if all the constraints in C

evaluate to true under the value mapping defined by ψ, denoted by
evalψ(C) = true. Figure 12 shows the relationship between different
domains defined in this section.

4.2. Basic Operations

Constraint solving. A constraint solver is used to determine whether
or not a set of constraints has a solution. We assume that all solutions
generated by the constraint solver are total functions. That is, they
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assign some logical value to every variable that appears in the analyzed
constraints even if the constraints can be satisfied regardless of the
values of some variables.

Furthermore, if a partial logical assignment already exists, a con-
straint solver can determine if that assignment can be extended to a
solution to a given set of constraints. For a set of constraints C and a
partial assignment ψ0, solve(C,ψ0) represents the set of solutions to C
that preserve the mapping already defined by ψ0:

solve : P(C) × Ψ → P(Ψ)
solve(C,ψ0) = {ψ | ψ0 ⊆ ψ ∧ evalψ(C) = true}

where P(A) denotes the powerset of A. Thus, solve(C,ψ0) = ∅ implies
that no such solution exists.

Proof generation. We assume that the constraint solver used in
our analysis can generate a proof of invalidity when the given con-
straints are inconsistent (unsatisfiable). An invalidity proof for an in-
consistent set of constraints C is a subset of C that is also inconsistent
and thus is a witness that C does not have a solution. Although C is
an invalidity proof for itself, a good proof contains a smaller number of
constraints. We introduce a function core to represent the unsatisfiable
core of a set of inconsistent constraints returned by the constraint solver
as the invalidity proof.

If a set of constraints C is solved with respect to a partial solution
ψ and no solution is found, the invalidity proof, core(C,ψ), will denote
a subset of C which is unsatisfiable with respect to ψ. That is,

core : P(C) × Ψ → P(C)
core(C,ψ) = C ′ ⇒ ((C ′ ⊆ C) ∧ solve(C ′, ψ) = ∅)

Converting states to assignments. A program state σ corre-
sponding to a program moment π can be encoded as a logical as-
signment using the mapping defined by γ. We use toAssignment to
represent this encoding.

toAssignment : Σ × Π × Γ → Ψ
toAssignment(σ, π, γ) = { (v,w) : LV ar × LV al |

(∃x : PV ar, y : PV al | σ(x) = y ∧ γ(x, π) = v ∧ γ(y) = w) }

That is, toAssignment generates a logical assignment containing all
pairs that correspond to some pair in the given program state σ.

Converting assignments to executions. If a set of logical con-
straints encodes the behavior of a program, each solution to those
constraints can be interpreted as an execution of the encoded program.
Using a variable mapping γ, the toState function extracts a program
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state for a program moment π from a logical assignment ψ:

toState : Ψ × Π × Γ → Σ
toState(ψ, π, γ) = { (x, y) : PV ar × PV al |

(∃v : LV ar,w : LV al | ψ(v) = w ∧ γ(x, π) = v ∧ γ(y) = w) }

That is, the program state contains all pairs of program variables to
values that correspond to some pair in ψ.

Using the toState function, we define getTrace as a function that
generates a program execution for a logical assignment. A program
execution is represented by a set of executed program moments and
their corresponding program states. A program moment π is executed
if all branch conditions leading to it, i.e. its guard conditions, evaluate
to true in their corresponding program states. Let guard(π) denote
the set of guard conditions of π along with their corresponding pro-
gram moments, and symEval(e, σ) denote a symbolic evaluation of an
expression e in a program state σ. That is,

guard : Π → P(Expr × Π)
symEval : Expr × Σ → PV al

The getTrace function can then be defined as follows:

getTrace : Ψ × Γ → P(Π × Σ)
getTrace(ψ, γ) = { (π, σ) | (toState(ψ, π, γ) = σ) ∧

(∀(e, π′) ∈ guard(π) | symEval(e, toState(ψ, π′, γ)) = true) }

We define calls to represent the set of executed program moments
that correspond to call sites. That is,

calls : Ψ × Γ → P(Π)
calls(ψ, γ) = {π | (π is call site) ∧ (∃σ| (π, σ) ∈ getTrace(ψ, γ)) }

Translation. The translation of program statements to logical con-
straints is denoted by the translate function. Our framework assumes
the existence of such a function, but it is independent of how the code
is actually translated. Given a variable mapping γ and a statement s
at a program moment π, translate returns a set of logical constraints
C that encodes the behavior of that statement, denoted by:

translate : Stmt× Π × Γ → P(C)
translate(s, π, γ) = C

The translate function is semantics-preserving iff for each statement
s executing at a program moment π and ending at a program moment
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(a) (b)

Figure 13. Translation properties: (a) completeness (b) soundness. Each diagram
gives an implication read as “if the solid arrows exist, the dashed arrow exists too”.
Oval boxes denote tupling of function arguments.

π′, the set of constraints C generated by translate(s, π, γ) satisfies the
following two rules:

completeness: (σ, σ′) ∈ [[s]] ⇒ solve(C,ψ) 6= ∅ where

ψ = toAssignment(σ, π, γ) ∪ toAssignment(σ′, π′, γ)

soundness: ψ ∈ solve(C, ∅) ⇒ (σ, σ′) ∈ [[s]] where

σ = toState(ψ, π, γ) and σ′ = toState(ψ, π′, γ)

That is, (1) any execution of s corresponds to some solution of C
(completeness), and (2) any solution to C corresponds to some valid
execution of s (soundness). These properties are shown graphically in
Figure 13.

We assume that the translate function always returns a finite set
of constraints. Depending on the translation method, this may require
bounding variable domains, heap size, execution length, and/or recur-
sive calls. Therefore, the translation may not be semantics-preserving.
However, since our technique is geared at finding bugs, rather than
proving the correctness of the code, it can use any translation that
satisfies the soundness rule; the completeness rule is not required to
hold.

Abstraction. We use the spec function to denote the initial speci-
fication used for a procedure call. An initial specification must under-
specify the effects of its corresponding call site. That is, for a variable
mapping γ and a program moment π that corresponds to a call site,
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Figure 14. Over-approximation property

spec(π, γ) must satisfy the following property:

spec : Π × Γ → P(C)
solve(spec(π, γ), ψ) ⊇ solve(translate(callee(π), π, γ), ψ)

where callee(π) denotes the procedure that is called at π, and ψ is an
arbitrary logical assignment. Any specification that satisfies the above
condition can be used as the initial specification in our framework.
Therefore, even an empty specification that allows arbitrary change in
the state of the program can serve as the initial specification. More
precise specifications are inferred during the analysis if needed.

The function abstract(s, π, γ) represents the initial abstraction of
a program statement s at a program moment π based on a variable
mapping γ. This function generates a set of constraints defined as
follows:

abstract : Stmt× Π × Γ → P(C)

abstract(s, π, γ) =

{

spec(π, γ) π is a call site

translate(s, π, γ) elsewhere

Since the specifications used for call sites are under-specifications,
any solution satisfying the constraints generated by translate also
satisfies the constraints generated by abstract. That is,

solve(abstract(s, π, γ), ψ) ⊇ solve(translate(s, π, γ), ψ)

In other words, the abstract function gives an over-approximation of
the translate function. Figure 14 shows this property graphically.

4.3. Algorithm

The abstractAnalyze algorithm shown in Figure 15 describes the analysis
in terms of the above functions. It takes a procedure p selected by
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datatype Result = Valid + Invalid(Trace)

function abstractAnalyze(Proc p,

ConstraintSet A, VarMap γ): Result {
1: C = abstract(p, π0, γ) ∪ ¬A (abstraction)
2: checkC = true

3: while checkC {
4: if solve(C, ∅) = ∅ (solving)
5: return Valid

6: checkC = false

7: ψ = choose(solve(C, ∅))
8: P = calls(ψ, γ)
9: foreach πi ∈ P { (validity check)
10: pi = callee(πi)
11: Ci = abstract(pi, πi, γ)
12: if solve(Ci, ψ) = ∅ (refinement)
13: Si = core(Ci, ψ)
14: C = C ∪ Si
15: checkC = true

16: break

17: else (concretization)
18: ψ′ = choose(solve(Ci, ψ))
19: ψ = ψ ∪ ψ′

20: P = P ∪ calls(ψ′, γ)
21: }
22: }
23: trace = getTrace(ψ, γ)
24: return Invalid(trace)

}

Figure 15. Analysis by procedure abstraction

the user to verify, a set of constraints A representing the assertion to
check, and a variable mapping γ to use in translation. The result of
the analysis is either Valid, indicating that no counterexample has been
found, or Invalid(t), indicating that t is a trace of p that violates the
assertion.

The analysis starts by abstracting all procedures called in the ana-
lyzed procedure p (Line 1). The resulting constraints are then combined
with the constraints encoding the negation of the assertion. The result
is denoted by the variable C. Throughout the algorithm, this variable
represents an abstraction of the code that is refined iteratively along
with the negation of the assertion to check.
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In the solving phase (Line 4), a constraint solver is used to find
a solution to C. The empty set used in solve(C, ∅) denotes that no
partial solution exists at this point. Thus, the constraint solver can
return any solution satisfying C. If no such solution exists, it means
that no program execution can be found that violates the assertion and
the analysis terminates (Line 5).

Otherwise, a solution ψ is arbitrarily chosen from the set of solutions
to C (Line 7). This solution represents a counterexample that should
be checked for validity with respect to the original program. The only
abstracted statements are procedure calls. Therefore, we only need to
check the consistency of the procedure calls with ψ. Variable P (Line 8)
denotes the set of all call sites in the program execution corresponding
to ψ. These call sites will be checked for consistency.

The validity check phase (Lines 9 - 21) checks procedure calls one
by one until either a refinement is needed or all of them are shown to
be consistent with the found counterexample ψ. As our abstraction is
based on the procedure call hierarchy of the code, the check for validity
is also done hierarchically. That is, when a procedure pi is checked, all
of its callees are abstracted. The abstraction of pi is denoted by the
variable Ci (Line 11). If pi is not consistent with ψ, that is, if Ci does
not have a solution that preserves ψ, the specification of pi should be
refined (Lines 12 - 16). In this case, the constraint solver returns a
subset of Ci which is still inconsistent with ψ, as an invalidity proof
represented by Si (Line 13). This proof is a partial specification for pi
that rules out the current counterexample ψ, and possibly more. Line
14 adds Si to the current set of constraints C to guarantee that ψ will
never be generated by the constraint solver again. After this refinement,
the solving phase starts over.

On the other hand, if the procedure pi is consistent with ψ, con-
cretization is performed (Lines 17 - 20) by choosing a new solution
ψ′ from the set of possible solutions (Line 18). This solution indicates
an execution of pi that concretizes the behavior defined for pi in the
counterexample ψ. The current counterexample ψ is augmented by ψ′

to include the execution within pi as well (in Line 19). Furthermore,
since the call sites of pi had been abstracted when it was checked, the
consistency of its callees has to be checked. Therefore, the procedures
called in ψ′ are added to the set P (Line 20) to be checked later.

If all the call sites needed to be checked are consistent with the
current counterexample ψ, this counterexample is valid. The function
getTrace is then used (Line 23) to map ψ back to an execution in
the original program. The result is assigned to the trace variable and
returned in Line 24.
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It should be noted that abstractAnalyze is just an outline of the
process. There are several opportunities for optimization in an actual
implementation. We explain some of them in Section 5.

4.4. Properties

Termination. The abstractAnalyze algorithm contains two iteration points:
a refine-solve cycle (Lines 3 - 16), and a validity check cycle (Lines 9
- 21). The syntax of Figure 11 allows analyzed programs to contain
executions with infinite recursive procedure calls. The analysis of such
programs can loop forever because the set of call sites to check can
grow without bound. If the program execution corresponding to a
found counterexample calls a recursive procedure p infinitely, all those
call sites have to be checked for consistency with the counterexam-
ple. Therefore, checking the validity of the counterexample will not
terminate. Thus, in general the analysis is not guaranteed to terminate.

However, if the analyzed program terminates on all inputs, the set
of call sites to check is finite for all counterexamples. Therefore, the
validity check cycle terminates. Moreover, the refine-solve loop is guar-
anteed to terminate, too. Intuitively, this is because the refinement
phase monotonically extends the specification of some procedure. The
specification is an abstraction of the code, so in the limit, it will be
equivalent to the code. The following expresses this more precisely.

LEMMA 1. The set of constraints C solved in the abstractAnalyze algo-
rithm is bounded.

Proof. From the over-approximation property of the abstract func-
tion, after the abstraction in Line 1,

C = (abstract(p, π0, γ) ∪ ¬A) ⊆ (translate(p, π0, γ) ∪ ¬A)

and after the assignment in Line 11,

Ci = abstract(pi, πi, γ) ⊆ translate(pi, πi, γ)

Since the call site πi is reachable from the analyzed procedure p,

translate(pi, πi, γ) ⊆ translate(p, π0, γ)

Thus, in Line 13,

Si = core(Ci, ψ) ⊆ Ci ⊆ translate(p, π0, γ)

which implies that throughout the analysis the following invariant holds:

C ⊆ translate(p, π0, γ) ∪ ¬A

Since translate generates a finite set of constraints, and the assertion
A is finite, C is bounded. 2
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THEOREM 1. Assuming that translate and solve operations always
terminate, the refine-solve cycle is guaranteed to terminate.

Proof. We show that whenever the set of constraints C is updated, it
is strictly extended. That is, Si (in Line 13) contains some constraints
that are not included in C. Proof is by contradiction: Assume that Si ⊆
C. By the assignment in Line 7,

ψ ∈ solve(C, ∅)

The assumption Si ⊆ C implies that

ψ ∈ solve(Si, ∅)

By definition of solve,

ψ ∈ solve(Si, ψ)

which implies

solve(Si, ψ) 6= ∅

On the other hand, from the assignment in Line 13,

Si = core(Ci, ψ)

which implies

solve(Si, ψ) = ∅

which is a contradiction.
Therefore, C is strictly extended in each iteration of the refine-solve

cycle. On the other hand, from Lemma 1, C is bounded. Thus, the
number of refinements is finite, and the refine-solve cycle terminates. 2

Completeness. An error detecting analysis is complete if and only
if whenever there exists a counterexample to a given assertion, the
analysis can find it. As discussed before, our method may loop forever if
it is given a program which has a non-terminating execution. Therefore,
in general, our analysis is not complete.

However, if the analysis terminates, we argue that our abstractAnalyze

algorithm is as complete as a similar analysis method that does not
abstract procedures, namely the inlinedAnalyze algorithm given in Figure
16. Therefore, the abstraction phase does not introduce incompleteness
unless the analyzed program can loop forever. This is proved by the
following theorem.

THEOREM 2. If inlinedAnalyze finds a counterexample and abstractAnalyze

does not loop forever, it finds a counterexample too.
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datatype Result = Valid + Invalid(Trace)

function inlinedAnalyze(Proc p,

ConstraintSet A, VarMap γ): Result {
C = translate(p, π0, γ) ∪ ¬A
if solve(C, ∅) = ∅

return Valid

ψ = choose(solve(C, ∅))
trace = getTrace(ψ, γ)
return Invalid(trace)

}

Figure 16. Analysis without abstraction

Proof. Assume to the contrary that inlineAnalyze finds a counterex-
ample, but abstractAnalyze terminates without any counterexamples. That
is, abstractAnalyze terminates in Line 5 implying that

solve(C, ∅) = ∅

However, by Lemma 1, the set of analyzed constraints in abstractAnalyze,
C, is bounded by the set of constraints solved in inlinedAnalyze. That is,

C ⊆ translate(p, π0, γ) ∪ ¬A

Therefore,

solve(translate(p, π0, γ) ∪ ¬A, ∅) ⊆ solve(C, ∅)

Consequently, if solve(C, ∅) = ∅ then,

solve(translate(p, π0, γ) ∪ ¬A, ∅) = ∅

That is, inlinedAnalyze does not find any counterexamples either,
contradicting the assumption. 2

Soundness. A bug finding method is sound if and only if all the
counterexamples it returns are feasible executions of the analyzed code
that violate the analyzed assertion. We show that our abstraction phase
does not introduce unsoundness. That is, the following theorem holds:

THEOREM 3. If all counterexamples returned by inlinedAnalyze are
feasible executions of the analyzed code, all counterexamples returned
by abstractAnalyze are also feasible.

Proof. Assume that abstractAnalyze(p,A, γ) returns a counterex-
ample, a trace t, corresponding to a logical solution ψ. According to
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the algorithm, all procedures called in t have been checked for validity.
Therefore, ψ satisfies all the constraints in T = translate(p, π0, γ)
that encode those program moments that are executed in t. Any other
constraint in T encodes an unexecuted program moment, a program
moment whose guard condition evaluates to false under the logical as-
signment ψ. Since their antecedent conditions are false, these con-
straints are vacuously true. Thus, ψ satisfies all constraints in T , and
its corresponding trace, t, can be returned by inlinedAnalyze, too. Since all
counterexamples returned by inlinedAnalyze are feasible executions, t is
also feasible. Therefore, all counterexamples returned by abstractAnalyze

are feasible too. 2

5. Framework Instantiation

In this section we explain our particular instantiation of the proposed
framework. This instantiation is implemented in our tool and used in
our experiments.

5.1. Inputs

We focus on checking object-oriented programs. Our tool currently
supports a subset of Java that does not include exceptions, concurrency,
or arithmetic expressions.

The analysis starts with a user-provided assertion that (partially)
specifies the behavior of a procedure in a given program. We partic-
ularly target structural properties, i.e., properties that constrain the
configuration of the heap. The given assertion is expressed in Alloy [21],
a first order relational logic that includes transitive closure, making it
well suited for expressing complex structural properties succinctly.

Programs are checked with respect to finitized heaps. The user
bounds the size of the heap by specifying the maximum number of
objects to consider for each type; the bound is fixed over the course
of the analysis. If a counterexample is returned, it is guaranteed to
be non-spurious. However, because the heap is finitized, absence of a
counterexample does not constitute proof of correctness.

Since our tool supports recursive procedure calls, the validity check
phase may be non-terminating. However, if it terminates, the analysis
is sound. Also, it is complete within the given heap bounds.
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5.2. Translation

We translate Java programs to boolean constraints in conjunctive nor-
mal form (CNF). This is done in two phases: the program is first
translated to the Alloy language using a technique previously used
in Jalloy [33]; the resulting Alloy formula is then translated to CNF
using the Alloy translator [20]. This two-phase translation enables us to
take advantage of the optimized boolean encoding offered by the Alloy
translator. Examples of these optimizations are symmetry breaking and
sharing detection, as explained elsewhere [29]. Here we explain each of
the two translation phases briefly.

Java to Alloy. A Java program can be encoded as a conjunction
of Alloy formulas whose satisfying solutions denote executions of the
program. This encoding is based on a relational view of the heap: a
field f of type T defined in a class C is viewed as a relation f : C → T

that maps elements of type C to those of type T .
The translation starts with the control flow graph (CFG) of the

code with nodes corresponding to the control points and the edges
corresponding to the statements or control predicates. Figure 17(b)
gives a CFG constructed for the small piece of program given in Figure
17(a).

A CFG edge connecting node u to node v is encoded in Alloy by a bit
Euv whose truth value indicates whether or not that edge is traversed
during an execution. For a node v in a CFG, let in(v) and out(v) be
the set of incoming and outgoing edges of v respectively. The control
flow corresponding to this node is encoded by the following constraint.

∨

i∈in(v)

Eiv =>
∨

j∈out(v)

Evj

That is, if either one of the incoming edges is traversed, at least one of
the outgoing edges has to be traversed, too. The infeasible paths are
ruled out by encoding the control predicates as explained below. The
first group of constraints in Figure 17(c) encodes the control flow of the
example CFG in Alloy. (The constraints are implicitly conjoined. The
operator ‘+’ gives the disjunction of bit variables.)

Since Alloy is a declarative language with no notion of mutation, a
technique similar to static single assignment (SSA [6]) is used to encode
value updates. That is, variables and fields are renamed whenever their
values are changed. However, we reuse the same variable/field name in
different paths of CFG as long as no path has two updates to the same
variable/field instance. This constructs a mapping from occurrences of
program variables to Alloy variables.
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x = y;

if (x == c)

x.r = z;

x = x.r;

(control flow)

E12 ⇒ E23 + E24

E23 ⇒ E34

E24 + E34 ⇒ E45

(data flow)

E12 ⇒ (x1 = y0)

E23 ⇒ (x1 = c0)

E24 ⇒ (x1! = c0)

E34 ⇒

(r1 = r0 ++ x1 → z0)

E45 ⇒ (x2 = x1.r1)

(frame conditions)

E24 ⇒ (r1 = r0)

(a) (b) (c)

Figure 17. Translating sample code to Alloy: (a) a piece of code, (b) corresponding
CFG, (c) Alloy encoding

The data flow corresponding to a CFG edge Euv is encoded by a
constraint

Euv => f

where f is the formula encoding the corresponding statement or con-
trol predicate. This ensures that whenever an edge is traversed, the
constraint associated with its behavior applies. The second group of
constraints in Figure 17(c) are the data flow constraints of the example
code. A variable/field name with a 0 subscript denotes the instance
of that variable/field prior to this piece of code. The Alloy expression
r ++ (x → z) gives a relation in which x is mapped to z while other
objects have the same mappings as in r.

Because of the declarative nature of Alloy, an unconstrained variable
can take any arbitrary value. Therefore, additional constraints, called
frame conditions, are added to ensure that when a value is updated,
other values remain the same. The last constraint in Figure 17(c) is
a frame condition that specifies r does not change in the else branch.
More details about this translation can be found elsewhere [33].

Alloy to Boolean. Since first order logic is undecidable, the trans-
lation of Alloy to Boolean is done within a finite scope, i.e. a user-
provided finite bound on the number of atoms of each type. We use the
heap size bounds provided by the user as the scope. The translation is
sound and complete for the given scope.
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If the scope of a type T is n, an array of n boolean variables is
allocated for each variable of type T . For each relation r : T1 → T2

a matrix of n1 × n2 boolean variables is allocated where ni denotes
the scope of type Ti. This provides a variable mapping that maps
Alloy variables to boolean variables. Using this mapping along with
the variable mapping from the first phase of the translation, a variable
mapping γ is constructed that maps different occurrences of program
variables to matrices of boolean variables. This mapping is later used
to translate boolean solutions back to the program executions.

The allocated boolean matrices are then combined into matrices
of boolean formulas to represent different Alloy expressions. Alloy con-
straints are translated by combining these matrices into a single propo-
sitional formula.

The Alloy translator then converts the propositional formulas to
CNF using a technique based on renaming all intermediate subformu-
las [26]. Details of the Alloy translation can be found elsewhere [29].

5.3. Abstraction

Initial specifications of procedure calls can be empty specifications
that allow arbitrary behaviors. However, starting with more precise
specifications can result in fewer refinements. On the other hand, since
some procedures are totally irrelevant to the property being verified,
computing detailed specifications is unnecessary and wastes resources.

The initial specifications that we compute for a procedure aims at
preserving its frame conditions. That is, the value of any variable or
field that is not modified by a procedure is preserved by its specifica-
tion. Frame conditions cannot be computed statically with complete
accuracy, of course. Therefore, we compute conservative specifications:
no frame condition is generated for a variable or field that may be
modified at a call site.

A Java method can modify the state of its callers by mutating
objects’ fields. The algorithm in Figure 18 determines what fields are
updated by each method1. In order to take care of possible aliasings,
if a procedure updates a field f of an object of type T , the initial
specification allows f to change in all objects of type T . Therefore, the
algorithm does not keep track of the objects whose fields are mutated;
it only determines what fields can be changed.

This algorithm computes the set of all fields updated by each proce-
dure directly or indirectly. This is stored in the mutate data structure.
The algorithm first detects all the fields that each procedure updates

1 Special cases, e.g. updating arrays which are passed as parameters, can be easily
added to this algorithm.
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datatype UpdateMap = ProcName → Set<Field>

function computeUpdates() : UpdateMap {
mutate = {}
foreach pi ∈ Procedures

mutate[pi] = {x ∈ fields | pi mutates x directly}
changed = true

while changed {
changed = false

foreach pi ∈ Procedures

foreach qi ∈ callees(pi)
if mutate[qi] * mutate[pi] {
mutate[pi] = mutate[pi] ∪mutate[qi]
changed = true

}
}
return mutate

}

Figure 18. Computing field updates of procedures

directly, i.e. without further procedure calls. Then, for each procedure
pi, all the fields updated by its callees are added to its set of mutations.
This is repeated until a fixed point is reached, that is, the set of muta-
tions does not grow for any of the procedures. Since the number of all
fields is finite in a program, the set of mutations is bounded. Therefore,
the algorithm terminates. It should be noted that in some special cases
this algorithm can be optimized. For example, if the program does not
have any recursive procedures, field updates can be computed based on
the topological order [9] of the procedures instead of iterating until a
fixed point is reached.

After computing the fields updated by each procedure, we compute
an initial abstraction for the analyzed procedure p. The body of p is
translated to Alloy as explained in Section 5.2 except that at each
call to a procedure q, we allocate new Alloy variables for the relations
(fields) that q may update and its returned value (if any). An example
is shown in Figure 19. Variable/field names with a 0 subscript denote
the variable/field instances in p prior to the given piece of code. As
shown in Figure 19(b), since mutate[q] = {r}, after the call to q, a
fresh relation instance, namely r1, is allocated for the field r. Also, a
fresh variable, q$return, is allocated to hold q’s returned value. Leaving
these new variables unconstrained allows the constraint solver to assign
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class T {

T r;

}

T q(T x,T y){

if (x.r != y)

x.r = y;

return x.r;

}

void p(...) {

0: ...

1: b = a.r;

2: a = q(b, c);

3: d = a.r;

4: ...

}

mutate[q] = {r}

E01 ⇒ E12

E12 ⇒ E23

E23 ⇒ E34

E12 ⇒ (b1 = a0.r0)

E23 ⇒ (a1 = q$return)

E34 ⇒ (d1 = a1.r1)

(a) (b)

Figure 19. Abstraction example: (a) a piece of code, (b) abstraction of p in Alloy

arbitrary values to them. The generated Alloy model is therefore an
over-approximation of the original program.

5.4. Solving

We use the ZChaff [25] SAT solver to check the CNF formula encoding
the abstraction of the code and the negation of the assertion. A solution
returned by the SAT solver assigns truth values to all boolean variables.
Boolean variables assigned to true can be interpreted as symbolic values
for the variables in the Alloy model based on the variable mapping
(γ) constructed during the translation phase. The values of the initial
variables give an initial state and the edge variables assigned to true
give an execution path. Therefore, a solution gives an execution of the
abstract program that violates the given assertion.

5.5. Validity Check

We check the validity of a solution by checking the procedures called
in the program execution corresponding to that solution in the depth
first order, i.e. the order in which they are actually called. Each called
procedure is abstracted as explained in Section 5.3, substituting the
actual parameters passed at the checked call site for the formal param-
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eters. The generated CNF is conjoined with the solution being checked
and solved again using ZChaff.

5.6. Refinement

Given an unsatisfiable CNF, ZChaff is capable of generating a proof of
unsatisfiability called an unsat core [36], which is a subset of the given
clauses that is unsatisfiable. Although the core generated by ZChaff is
not necessarily minimal, it is usually much smaller than the original
CNF.

If the conjunction of the CNF encoding a call to a procedure p and a
solution ψ found as a counterexample is unsatisfiable, ZChaff generates
an unsat core that encodes the reason for unsatisfiability. However,
since this core is unsatisfiable, using it directly as a specification causes
any assertion to be vacuously true. The following observation, however,
enables us to extract a valid specification from the unsat core. If all
clauses of the unsat core are contained in the formula encoding p, that
formula itself is unsatisfiable. Due to our translation technique, this
means that the user-provided bound on the size of the heap is not
sufficient for any valid execution of p. This special case is handled by
translating the unsat core back to the code statements and returning
it to the user as a witness for insufficient heap objects. However, if the
provided heap bound is big enough for some executions of p, the formula
encoding p is satisfiable. Therefore, the unsat core must contain some
clauses from both the formula encoding p and ψ. We remove the clauses
contained in ψ from the unsat core and get a formula that encodes a
partial specification of p that not only rules out the current solution ψ,
but also rules out all counterexamples that execute the same path in p
as ψ.

The resulting CNF formula can be conjoined with the formula en-
coding the caller of p, and be used in the following iterations of our
analysis. However, we translate the resulting CNF back to Alloy using
a technique described in a previous paper [30] and then re-translate it
to CNF using the Alloy translator to exploit the symmetry breaking
feature implemented in the Alloy translator.

6. Experiments

We used our tool to check the validity of some of the components
we implemented for the backend of our tool itself. These components
manipulate a directed graph data structure which is represented by
lists of nodes and edges. Each node has pointers to sets of incoming
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and outgoing edges. Since our tool currently handles only a subset of
the Java language, these components have been simplified. Although
the components are small, their correctness depends on complex ma-
nipulations of data structures in the heap. The analyzed components
are as follows:

− List operation:

• removeList. This procedure removes all the elements in-
cluded in a list passed as an argument from the receiver list
object. We checked this procedure against the subset property
asserting that after executing removeList, the remaining set of
elements in the receiver list object is a subset of the elements
in the original list.

− Graph operations:

• removeNodes. This procedure takes a list of nodes l and
removes all nodes included in it from a graph structure. This
is done by first removing all the edges adjacent to the nodes
of l from the graph’s edge list, and then removing the nodes
of l from the graph’s node list. Two properties were checked
in this code, namely sameEdges and sameNodes, that specify a
corner case in the removeNodes component. They assert that if
the passed list of nodes to remove is empty, removeNodes does
not change the graph’s lists of edges and nodes.

• spanningTree. This procedure computes a spanning tree for
a graph. The algorithm is similar to the Kruskal’s minimum
spanning tree algorithm [9] except that the generated tree is
not necessarily minimum. We checked the code against the
consistency property which specifies a consistency condition of
the underlying data structures. It claims that if an edge is
included in the resulting spanning tree, both of its nodes are
included too. We also checked a corner case specified by the
deg0Node property. It asserts that if a node is disconnected
from the rest of the graph, i.e., its edge degree is zero, it will
not be included in the spanning tree by this algorithm.

Our experiments aim at showing the improvements gained by the
specification inference approach. Therefore, we compare the perfor-
mance of our tool to another version that inlines called procedures.
In order to achieve a fair comparison, we shared code between the two
versions whenever possible. Therefore, both versions use Alloy as an
intermediate language, and the ZChaff SAT solver as the constraint
solver.
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Table I. Experiment results

without spec inference with spec inference
component property loops vars clauses time vars clauses time #refs speedup

/ scope (sec) (sec)

remove subset 4/4 8216 18124 15 4928 10260 9 0 1.7
List 5/5 14555 34704 162 8611 19002 98 0 1.7

(40 loc) 6/4 13554 30555 40 6702 14013 12 0 3.3
6/5 18137 43760 234 9857 21776 83 0 2.8

remove same 4/4 66566 151323 164 6187 13507 8 0 20.5
Nodes Edges 4/5 87710 214959 206 9524 23383 27 0 7.6

(101 loc) 5/4 − − > 900 6807 14794 8 0 > 112.5
5/5 − − > 900 10346 25263 36 0 > 25
6/4 − − > 900 7499 16207 9 0 > 100

same 3/3 27147 56298 44 5927 11652 7 3 6.3
Nodes 4/4 66661 151489 123 11057 23450 13 3 9.5

4/5 87803 215129 224 15682 36890 107 3 2.1
5/4 108016 246914 359 13075 27446 17 3 21.1

spanning consistency 5/4 26917 80214 108 9219 26695 50 4 2.16
Tree 5/5 37727 115109 348 13447 39918 124 6 2.8

(120 loc) 6/4 34425 102841 143 9948 28848 49 4 2.9
6/5 48306 147732 328 14542 43227 189 6 1.7

deg0Node 5/4 27191 81094 93 10481 30550 35 11 2.7
5/5 38380 117285 178 13263 39948 83 10 2.1
6/4 34699 103721 125 9901 29145 39 10 3.2
6/5 48959 149908 491 16172 48439 93 13 5.3

The results of the experiments are given in Table I. All the checked
properties are valid in the analyzed procedures. Therefore, no coun-
terexamples are found. It should be noted that comparing the per-
formance for cases with counterexamples is not conclusive because it
depends on the SAT solver’s strategy for finding a solution, whereas
for cases with no counterexamples, the SAT solver has to exhaust the
search space.

Since the version without specification inference requires loop un-
rolling, in order to use identical input programs to both versions, we
tailored our tool to unroll the loops rather than expecting them to
have been written as recursive functions. In Table I, the loops/scope

column indicates the number of times the loops are unwound and the
maximum number of objects considered for each type during the anal-
ysis. The numbers of variables and clauses given for the version that
does not infer procedure specifications show the size of the generated
boolean formula in CNF format; the time column gives the analysis
time in seconds. The numbers of variables and clauses for our tool that
iteratively infers specifications denote the size of the CNF generated
after the last refinement. The time column gives the total analysis time,
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including all refinements, in seconds. The refs column shows the number
of refinements needed in each case. The last column summarizes the
speedup gained as a ratio between total analysis times without and
with specification inference.

As shown in Table I, in order to check the first two properties, the
initial specifications that only preserve frame conditions are sufficient;
no further refinements are needed. To check other properties, procedure
specifications are refined a few times. In general, the number of required
refinements depends on the amount of code that is related to the as-
sertion being checked. However, as shown in Table I, the number of
refinements is not predictable even when checking the same assertion.
This is because the number of required refinements also depends on
the order in which the solutions are found by the SAT solver: to rule
out some invalid solutions, a rich specification is inferred that rules out
other solutions, too.

Although in order to check each of the above properties only a
small portion of code need be analyzed, the inlining version spends
considerable time to translate the whole code into a boolean formula.
Consequently, the generated formula is much bigger than needed and,
therefore, harder for the SAT solver to check. As shown by dashes in
the table, even the translation phase sometimes takes a long time.

Although current experiments involve small procedures, the im-
provement of analysis time gained by our specification refinement tech-
nique is considerable. Our technique improves the analysis time by
(1) reducing the translation time, and (2) generating smaller boolean
formulas that can be checked faster. More experiments have yet to be
done to check the performance of our method on programs with deeply
nested procedure calls.

7. Discussion

In this section we discuss some qualities, limitations, and possible im-
provements of our technique.

Target properties. Most program analysis techniques developed
so far (e.g. SATURN [35], SLAM [3], and BLAST [18]) check pro-
grams against temporal safety properties that can be described as
state machines. Our analysis, on the other hand, checks programs that
extensively manipulate data structures stored in the heap against rich
structural properties that constrain the configuration of the heap before
and after the execution of a procedure. These properties are more
similar to the kind of properties that shape analysis techniques (e.g.
[1, 27, 28]) target. However, those techniques aim at proving a property
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of a program, while our technique provides a lightweight analysis geared
at finding bugs.

Modularity. Our analysis technique is modular. It checks each pro-
cedure using the specifications of its called procedures as surrogates for
their code. Therefore, although it infers the specifications of called pro-
cedures automatically and does not rely on user-provided annotations,
it can benefit from such annotations whenever available. That is, a
user can optimize the analysis of a program by providing specifications
for some procedures. This becomes handy in analyzing code with calls
to methods whose source code is not available. It also enables us to
construct optimized specifications for the methods provided by the Java
library and use them in our analyses.

Applications. Our work is motivated by the observation that the
full specification of a software system can often be written as a con-
junction of partial specifications. Furthermore, even when specifying
the full behavior of a system is prohibitively difficult, checking some
partial specifications will increase one’s confidence in the developed
system.

Our technique is particularly useful for checking partial specifica-
tions. It provides a context-dependent analysis that extracts those parts
of the called procedures that are relevant to the assertion; all irrelevant
parts are ignored. Consequently, although our technique can be used to
check a program against its full specification too, it may require several
specification refinements to infer the full behavior of all procedures.

Limitations. As explained before, our current tool handles only
a basic subset of the Java language. However, this is not an inherent
limitation. Our technique is independent of how the code is translated
to the logical constraints. Therefore, the subset of the language that
our tool is able to analyze depends on the translation technique that is
used in our tool. Several translation techniques (e.g. [13, 35]) are cur-
rently available that can be used in our tool. Experimenting with these
techniques to handle a larger subset of the Java language efficiently is
left as future work.

Possible improvements. Our current implementation computes
initial specifications that only express the frame conditions of proce-
dures. Starting the analysis with more precise specifications of called
procedures can lower the number of required refinements. On the other
hand, computing very detailed initial specifications is not necessarily
cost-effective because some procedure calls are irrelevant (or only par-
tially relevant) to the analyzed property. Obtaining initial specifications
that are effective in ruling out some invalid executions, but not so costly
to compute might improve the performance of our tool.
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Furthermore, our current tool checks the validity of a counterexam-
ple by checking all of its called procedures in the order in which they
are actually called. This phase might be optimized by first inferring
some priorities for procedure calls based on their relevance to the ana-
lyzed property, and then checking procedure calls in that priority order.
Investigating these ideas is left as future work.

8. Related Work

8.1. SAT-Based Analysis

Our method is inspired by previous work, Jalloy [33], and Sitaram’s
method [31], that translate a program to a boolean formula and use
a SAT solver to check a property in a finite scope. However, they
inline all called procedures that are not annotated with user-provided
specifications. This severely limits their scalability as our experiments
indicate.

Saturn [35] is another SAT-based error detection tool that translates
a finitized program to CNF. It uses procedure summaries similar to a
type signature for interprocedural analysis. In addition to a temporal
safety property expressed by a state machine, the user provides a set
of states along with the input and output predicates for each proce-
dure. SATURN then computes a relation over the defined states that
summarizes the behavior of a procedure. This computation is done by
enumerating all possible state transitions and calling a SAT solver sev-
eral times to check the feasibility of each transition. Saturn is different
from our tool in that it unrolls loops and cannot handle recursive pro-
cedure calls. Furthermore, it targets temporal safety properties and in
general is not capable of checking the kind of rich structural properties
that we do.

MAGIC [5] is another modular software analysis tool that checks a
program against a specification using a SAT solver. The specifications
are expressed as labeled transition systems (LTS), finite state machines
in which the transitions are labeled by actions. MAGIC computes
a predicate abstraction [16] of the program using a theorem prover,
and checks it against the specification. Unlike our method, MAGIC
assumes that the user provides specifications for called procedures; all
procedures with no specifications are inlined.
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8.2. Software Model Checking

The software model checker SLAM [3] over-approximates the code us-
ing predicate abstraction. The abstraction is represented by a boolean
program which is analyzed using the BEBOP model checker [2]. It
is later refined by the NEWTON tool [4] which discovers additional
predicates by analyzing the feasibility of paths in the program.

SLAM uses procedure summaries in Bebop to avoid computing the
output of a procedure for the same input twice. Procedure summaries
are similar to the procedure specifications we generate in that they
(partially) represent the behavior of a procedure. However, unlike our
method, SLAM uses procedure summaries only in the phase in which
the validity of a found counterexample is checked. The abstraction
and refinement phases are not based on the abstraction boundaries
the procedures define.

BLAST [18] is similar to SLAM. It uses predicate abstraction and
constructs a reachability tree which represents a portion of the reach-
able, abstract state space of the program. If an error node is reachable
in the generated tree, the corresponding error is checked for validity. In
case of invalidity, a theorem prover suggests new abstraction predicates
which are used to refine the program. BLAST differs from SLAM in
that it uses lazy abstraction and local refinements to achieve better
performance. However, they both target temporal safety properties,
and unlike our method, they cannot check rich properties about data
structures stored in the heap.

Bandera [8] analyzes Java code by extracting a finite state model
of code that can be mapped to the input format of several existing
model checkers and theorem provers. The analyzed code is reduced to
a relevant subset using static slicing techniques [17]. The analysis is
done using existing model checkers such as Spin [19], SMV [24], and
JPF [34]. Bandera differs from our technique in that it abstracts data
based on the user-provided abstraction rules that may also yield false
alarms.

8.3. Theorem Proving

The extended static checker for Java (ESC/Java) [15] checks a user-
provided assertion in a finitized program. It translates code to Di-
jkstra’s guarded commands [11] and generates verification conditions
using optimized weakest preconditions. A specialized theorem prover,
Simplify [10], is then used to check the result against the assertion.
Failed proofs are turned into error messages and returned to the user.
ESC/Java requires user-provided specifications for all procedures.
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Inspired by ESC, Flanagan introduced a method [13] to check prop-
erties of code by translating it to a constraint logic program (CLP) [22].
This eliminates the need for user-provided procedure specifications.
The resulting formula is checked for satisfiability iteratively based on
predicate abstraction. An explicating theorem prover, e.g. Verifun [14],
is used to infer new predicates upon finding spurious counterexamples.
His method differs from ours in that it first translates the whole code
into CLP and then checks its satisfiability iteratively. Our analysis
framework might be instantiated with CLP and a proof-generating
theorem prover like Verifun.

8.4. Shape Analysis

Like our technique, shape analysis algorithms (e.g. [1, 23, 27, 28]) can
check properties about the structure of the heap. They typically repre-
sent the heap as a graph in which the nodes represent objects, and edges
represent field relations connecting different objects. Parametric shape
analysis (PSA) [28] uses a 3-valued logic to represent shape graphs and
can prove properties without bounds. It starts with a set of possible
input heap shapes and performs an abstract interpretation given the
semantics of each statement in the program. It requires the user to
specify how each statement affects each predicate of interest. The result
of the analysis is a sound ‘yes’, ‘no’, or ‘don’t know’. Our method differs
from PSA in that it does not require any user-provided annotations and
does not give false alarms. However, unlike PSA, our method cannot
prove that a property holds in the code; it only finds counterexamples.

8.5. Specification Extraction

Daikon [12] is a tool that detects likely invariants about programs. It
works by running an instrumented program over a test suite and storing
all the values taken by variables in those program executions. An offline
analysis then processes these values for an extensive set of invariants at
each program point. Although both Daikon and our tool infer partial
specifications about programs, the specifications returned by Daikon
are not necessarily valid in general; they are only valid with respect to
the analyzed test suite.

9. Conclusions

In this paper we proposed a framework to statically check a user-
provided property in code. The framework exploits the modular struc-
ture of the program and is based on constraint solving. We start with
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a rough over-approximate specification for each procedure and refine
it on-demand. While our method is capable of automatically inferring
context-dependent specifications for procedure calls, it can still benefit
from user-provided specifications, if available, to reduce the analysis
time.

We also explained our implementation of the framework. We target
Java programs and use Alloy as an intermediate language to translate
Java to boolean constraints. Specification inference is based on the
unsat core generated by the SAT solver ZChaff. While further exper-
iments are needed to evaluate the performance of our technique on
larger programs, current experiments show that, on small programs,
procedure abstraction can considerably reduce the analysis time by
analyzing only the parts of the code that are actually relevant to the
verified property.

The technique proposed in this paper provides a unified approach
in which a constraint solver is used for both the checking and the
refinement phases. Furthermore, it can analyze recursive procedures.
Therefore, if loops are written as recursion, the program can be ana-
lyzed without requiring loops to be unrolled a finite number of times
in advance. Consequently, although the analysis is incomplete, the only
source of incompleteness is bounding the heap.
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