
Diploma Thesis

Verifying Alloy Models Using KeY

Ulrich Geilmann

August 16, 2011

Department of Informatics

Institute for Theoretical Computer Science

Responsible Supervisors: JProf. Dr. Mana Taghdiri
Prof. Dr. Peter H. Schmitt

Supervisors: Mattias Ulbrich
Aboubakr Achraf El Ghazi

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst zu haben und keine
weiteren als die angegebenen Hilfsmittel verwendet zu haben.

Ulrich Geilmann
Karlsruhe, den 16. August 2011

Abstract

Alloy is a declarative specification language suitable for modeling structurally rich
systems. It provides a relational first-order logic augmented with built-in operators
for transitive closure, set cardinality, and integer arithmetics. The Alloy Analyzer
automatically analyzes Alloy models by bounding the size of the modeled system.
Therefore, although capable of finding counterexamples, it cannot prove the model
correct. In this thesis, an interactive first-order theorem prover, namely the KeY
system, is used to provide such proving capability.

Alloy specifications are translated to KeY’s first-order logic. For this purpose, a re-
lational first-order theory is defined that resembles the relational calculus offered by
Alloy, and supports most of the language features including all relational, set, and
numerical operators. Unlike the Alloy Analyzer that bounds the size of a model’s
instances, our translation allows instances to be infinite. We prove that our transla-
tion is correct for the Alloy kernel, a subset of the Alloy language for which a formal
semantics is available.

A translated Alloy model is loaded in the KeY system for proving. KeY’s automatic
proof search strategy is extended to allow efficient relational reasoning. We evaluate
our approach by several experiments. As a case study, we prove Dijkstra’s solution
to the dining philosophers problem.

Contents

1 Introduction 1

1.1 Overview . 1

1.2 An Example . 2

1.3 Outline . 3

2 Background 5

2.1 Alloy . 5

2.2 KeY . 10

3 Translating Alloy to First-Order Logic 15

3.1 A First-Order Relational Theory . 16

3.2 Multiplicity Constraints . 19

3.3 Signatures . 20

3.4 Fields . 20

3.5 Expressions . 21

3.6 Formulas . 21

3.7 Functions and Predicates . 23

3.8 Advanced Features . 23

4 Theoretical Evaluation 27

4.1 Arity-Independent Operators . 27

4.2 Formalization of the Translation . 29

4.3 A Correctness Proof . 33

4.4 Model Correctness . 38

viii Contents

5 Reasoning 41

5.1 Deduction Rules . 42

5.2 Transitive Closure . 45

5.3 Finiteness and Cardinality . 47

5.4 Ordering . 48

6 Experiments 49

6.1 Automation . 49

6.2 Case Study . 50

7 Conclusion 55

7.1 Summary . 55

7.2 Related Work . 55

7.3 Future Work . 56

A Implementation Notes 57

B Operator Axiomatizations 59

Bibliography 61

1. Introduction

1.1 Overview

The Alloy specification language [19, 2] is a relational first-order logic, enriched
with a number of features to provide a simple, yet efficient modeling notation. Its
application to a wide range of diverse problems demonstrates the flexibility of the
language. Examples include the analysis of the flash filesystem [21], checking func-
tional properties of Java programs (see e.g. [28]), and modeling of network protocols
(see e.g. [29]).

One reason for Alloy’s popularity is its fully automatic analysis engine, called the
Alloy Analyzer. Since Alloy’s logic is undecidable, the automation comes at a price:
models are checked with respect to a finite scope – a bound on the size of the model’s
instances – that is provided by the user. The Alloy Analyzer finds counterexamples,
if there are any, within the given scope. This analysis helps the user find flaws in
the model or gain confidence about its correctness. However, the Alloy Analyzer is
not capable of a complete verification.

Critical systems rely on a correct design and a formal correctness proof is therefore
valuable. Since Alloy is a first-order language, it is a natural approach to translate
Alloy models to a first-order logic for the verification task. For proving, we use
the KeY system [5], a semi-automatic first-order theorem prover. Alloy models are
translated to KeY’s first-order logic KeYFOL. Using KeY as a proving back-end for
Alloy models is appealing for several reasons:

• The KeY system offers a simple, yet powerful way of defining first-order theo-
ries. Lemmas of a theory can be shown to follow from the axioms, thus keeping
the set of axioms in a theory small and, as a consequence, reducing the risk of
inconsistencies being introduced.

• Lemmas and axioms are conveniently written as taclet rules [4] for the un-
derlying sequent calculus and can easily be incorporated into the existing au-
tomation strategy.

• KeY supports for integer arithmetic.

2 1. Introduction

In order to translate Alloy models to KeYFOL, we developed a relational first-
order theory for KeY that resembles the relational calculus offered by Alloy: each
of Alloy’s operators has a counterpart in KeYFOL. While most of the operators can
be defined in a natural way, the semantics of some of Alloy’s features, for example
the cardinality operator, are only understood for finite relations. In our translation,
however, relations are potentially infinite. We therefore included an axiomatization
of finiteness which allows us to define such features distinctly for the finite and the
infinite cases. Having the relational theory at hand, Alloy formulas and expressions
are translated in a natural way.

Our translation has been proven correct for the kernel, a subset of the Alloy language
for which a formal semantics is available. The translation is implemented in the
Alloy2KeY tool. We call the collective of the translation tool and the KeY prover
“Kelloy”. There are a few language constructs that are currently not handled by
Kelloy, see Section 7.3.

KeY’s automatic proof search strategy has been extended to support the relational
theory. The strategy allows for efficient semi-automatic reasoning about Alloy mod-
els: experiments showed that user interaction can often be narrowed down to the
central steps of a proof while most subgoals are automized.

The applicability of our approach is demonstrated by means of a case study: We
prove Dijkstra’s solution [6] to the famous dining philosophers problem [18].

1.2 An Example

In this section we demonstrate the use of Kelloy by the means of a simple, yet
motivating example to give the reader a rough overview without going into detail.

Our example is a very simple Alloy model of a filesystem, shown in Figure 1.1. There
are two kinds of objects in the modeled filesystem: Files and directories. Each object
in the filesystem has at most one parent directory (Line 2) and every directory is
associated with the objects it contains – its entries (Line 8). A fact postulates that
each directory is the parent of its entries (Line 13). Furthermore, there is unique
root directory (Lines 11 and 14) that has no parent (Line 15) and from which all
objects in the filesystem are reachable (Line 16).

We want to prove that except for the root directory, all objects in the filesystem have
exactly one parent directory. The assertion OneParent formulates this property.
The Kelloy tool generates a proof obligation for this assertion that is loaded into
the KeY system for proving. A proof in the KeY system is conducted by applying
deduction rules to a proof sequent.

An excerpt of the proof sequent for the example after some automatic simplification
steps is shown in Figure 1.2. The sequent reads as follows: the formulas before the
sequent sign ` are assumed to hold, while the formulas following ` are assumed to
be false. The proof objective is to infer a contradiction from these assumptions.

The numbers next to the formulas indicate their origin in the Alloy model. Naturally,
the translated facts are assumed to hold and thus appear on the left-hand side of
the sequent. The assertion (Line 19) translates to

∀o: Atom | in(o, diff1(Object ,Root))⇒ one(join1×2(sin(o), parent))

1.3. Outline 3

1 abstract sig Object {
2 parent : lone Dir
3 }
4

5 sig File extends Object {}
6

7 sig Dir extends Object {
8 entries : set Object
9 }

10

11 sig Root extends Dir {}

12 fact {
13 all o: Object, d: Dir |

o in d.entries ⇒ o.parent = d
14 one Root
15 no Root.parent
16 Object = Root.∗entries
17 }
18 assert OneParent {
19 all o: Object - Root | one o.parent
20 }
21 check OneParent for 5

Figure 1.1: Simple Alloy model of a filesystem.

13 ∀o, d: Atom | in(o,Object) ∧ in(d,Dir)

⇒ (subset(sin(o), join1×2(sin(d), entries))⇒ join1×2(sin(o), parent)
.
= sin(d))

16 Object
.
= join1×2(Root , reflTransClos(entries))

`
19 in(o0, diff1(Object ,Root))⇒ one(join1×2(sin(o0), parent))

Figure 1.2: Excerpt of the proof sequent.

Note that the bounding expression of the Alloy quantifier is explicitly included in
the translation’s quantification body. Since we conduct a proof-by-contradiction, we
assume that the assertion does not hold. For some element o0, the quantification
body is thus violated and appears on the right-hand side of the sequent.

The KeY system automatically applies deduction rules to the sequent in order to
find a proof. In this case, however, it does not find the right quantifier instantiations
to finish the proof completely automatically, so we have to assist the prover with
some interaction. Fortunately, providing one quantifier instantiation suffices: We
instantiate the formula “13” with o0. This adds the formula

∀d: Atom | in(o0,Object) ∧ in(d,Dir)

⇒ (subset(sin(o0), join1×2(sin(d), entries))⇒ join1×2(sin(o0), parent)
.
= sin(d))

to the left-hand side of the sequent and KeY can now finish the proof automatically.

1.3 Outline

The next chapter covers the prerequisites needed to follow this thesis. In Chapter 3,
we define the relational first-order theory for KeY and presents in detail how Alloy
models are translated.

A correctness proof for our translation of the Alloy kernel is conducted in Chapter 4.
We furthermore examine the relationship between the analysis performed by the
Alloy Analyzer and the verification performed by Kelloy.

4 1. Introduction

Chapter 5 gives an overview of how reasoning about an Alloy model takes place
within the KeY system and presents the automation strategy.

Chapter 6 evaluates our approach and demonstrates its applicability by means of a
case study.

2. Background

2.1 Alloy

Alloy [19, 2] is a modeling language based on a first-order relational logic. In this
work we address a subset of Alloy version 4.1.10. Its syntax is shown in Figure 2.1.
Further features of the language are treated as syntactic sugar by Kelloy (i.e., they
are rewritten to the language of Figure 2.1). Some language constructs, however,
are currently not handled, see Section 7.3 for a comprehensive list.

2.1.1 Expressions

The value of every Alloy expression is a relation. The simplest expressions are
constants: none is the empty set, univ the universal set, and iden denotes the
identity relation.

Besides the usual set operations union (+), intersection (&), and difference (-), Alloy
offers several relational operators:

• The join operator “.” denotes relational composition: r.s contains the tuple
〈x1, . . . , xn, y1, . . . , ym〉 when there is an a such that r and s contain a tuple
〈x1, . . . , xn, a〉 and 〈a, y1, . . . , ym〉, respectively.

• r→ s is the cartesian product of r and s.

• ∼r is the transposition of a binary relation r.

• The transitive closure of a homogenous, binary relation r is denoted by r̂ and
the reflexive transitive closure by ∗r.

• For a unary relation s, s<:r denotes the domain restriction of r to s that
contains those tuples from r that start with an element in s. Similarly, the
range restriction r:>s contains those tuples of r that end with an element in s.

• The override operator r ++ s is similar to the union of r and s, but replaces
a tuple of r with a tuple of s when they start with the same atom.

6 2. Background

specification ::= open* paragraph*
path ::= ID / [path]
open ::= open [path] ID [[ref,+]] [as ID]
paragraph ::= factDecl | assertDecl | funDecl

| predDecl | cmdDecl | sigDecl

sigDecl ::= [abstract] sig ID [sigExt] { decl,* }
sigExt ::= extends ref | in ref [+ ref]*

factDecl ::= fact [ID] block
assertDecl ::= assert [ID] block
funDecl ::= fun ID [decl,*] : declExpr { expr }
predDecl ::= pred ID [decl,*] block
cmdDecl ::= check ref [for number]

decl ::= ID : declExpr
declExpr ::= [mult] expr | declRelExpr
declRelExpr ::= declRelExpr’ [mult] → [mult] declRelExpr’
declRelExpr’ ::= declRelExpr | expr
mult ::= lone | one | some | set

expr ::= ref | this | none | univ | iden
| (~ | ∗ | ^) expr | expr binOp expr | ref [[expr,*]]
| formula [⇒ | implies] expr else expr
| { decl,+ blockOrBar }
| Int [intExpr] | (expr)

binOp = & | + | - | ++ | <: | :> | . | →

intExpr ::= number | # expr | sum expr | int expr
| intExpr (+ | -) intExpr | (intExpr)

formula ::= expr (= | in) expr | expr in declExpr
| (no | some | lone | one) expr
| intExpr (< | > | =< | >=) intExpr
| (! | not) formula | formula logicOp formula
| formula [⇒ | implies] forumal else formula
| quant decl blockOrBar
| ref [[expr,*]]
| (formula) | block

logicOp = || | or | && | and | ⇔| iff | ⇒ | implies
quant ::= all | no | some | lone | one
block ::= { forumla* }
blockOrBar ::= block | | formula

ref ::= [moduleRef] ID | Int | univ
moduleRef ::= [path] ID [[ref,+]] /

Figure 2.1: Grammar of the Alloy language.

2.1. Alloy 7

2.1.2 Formulas

Alloy offers two comparison operators that construct formulas from expressions: the
subset operator in and the equality operator =. Quantified formulas take the form
Q x: e | F where Q is one of the quantifiers all, some, no, lone, and one. The unary
expression e bounds the quantification variable x, and F is a formula based on x.
This is a first-order quantification, so x denotes a single element of e. However, all
Alloy expressions are relational, so x is in fact a singleton subset of e. The meanings
of the quantifiers are as follows:

• all x: e | F holds when F holds for every x in e

• some x: e | F holds when F holds for at least one x in e,

• no x: e | F holds when there is no x in e such that F holds,

• lone x: e | F holds when F holds for at most one x in e,

• one x: e | F holds when F holds for exactly one x in e.

The quantifiers some, no, lone, and one can also be applied to an expression in
order to constraint the cardinality of its value. For example, the formula one Root
in Line 14 of Figure 1.1 holds when Root has exactly one element and Line 15 states
that Root.parent is empty.

Alloy offers all the standard propositional connectives including conjunction (and,
&&), disjunction (or, ||), negation (not, !), and implication (⇒ , implies)1. The
block notation { . . . } that is used in Lines 14 to 16 of Figure 1.1 is a shorthand for
conjunction.

2.1.3 Multiplicity Constraints

A formula of the form r in e denotes that r is a subset of e. In this particular case,
however, e can contain multiplicity annotations that additionally restrict the value
of r.

When e is a unary expression, it may be prefixed with one of the multiplicity key-
words set, one, lone, and some in order to restrict the size of r:

• r in (set e) does not induce any restriction and holds when r is a subset of e.

• r in (one e) holds when r is a singleton subset of e.

• r in (lone e) holds when r is a subset of e that contains at most one element.

• r in (some e) holds when r is a non-empty subset of e.

Expressions of higher arity can induce restrictions by annotating the product oper-
ator → with multiplicity keywords on either sides. The allowed keywords are one,
lone and some. set is also allowed in this context, but has the same effect as no
keyword. The following examples illustrate the meanings of the annotations:

1Contrary to some programming languages like Perl, both versions of each operator are of the
same precedence and thus completely interchangeable.

8 2. Background

• r in A → one B holds when r is a total function from A to B: a binary relation
that maps every element in A to exactly one element in B.

• r in A → lone B holds when r is a partial function from A to B.

• r in A some →B holds when r is a surjective, binary relation with domain A
and range B: every element in B is mapped from some element in A

• r in A one → one B holds when r is a bijective function from A to B.

2.1.4 Signatures

A central part of Alloy’s modeling notation are signatures which resemble classes in
object-oriented programming languages like Java. The model of Figure 1.1 declares
four signatures: Object, File, Dir, and Root. Each signature denotes a set2 of
uninterpreted elements, the atoms.

A signature can extend another signature: an extension is a subset of its parent. For
example, Dir and File are subsets of Object. Extensions of a common signature are
mutually disjoint. The signature Object is abstract : Every element in Object is an
element in an extension of Object.

A signature can also be declared as a subset signature. In contrast to extensions,
subset signatures of a common parent are not necessarily disjoint. A subset signature
can have multiple parents. It is then a subset of the union of its parents. We can,
for example, declare

sig Foo in File + Dir {}

2.1.5 Fields

Relations are declared as signature fields.

sig A {
f: e }

declares a relation f with domain A. The expression e may contain multiplicity
annotations. For every element this in A, e bounds the value of this.f. We can
write this equivalently as

all this: A| this.f in e

There is one exception: when e is unary and not prefixed with a multiplicity keyword,
the declaration defaults to one; f: e is then equivalent to f: one e.

The signature Dir has a field entries that associates every element in Dir with a
subset of Object. entries is thus a binary relation with domain Dir and range
Object. The declaration of parent contains the multiplicity keyword lone which
makes parent a partial function: A binary relation that associates every Object
with at most one Dir.

When a field of the same signature appears in another field’s declaration, it is inter-
preted in the context of that signature. We can, for example, add a field hidden to
the Dir signature to capture that directory entries might be hidden:

2more precisely a unary relation

2.1. Alloy 9

sig Dir extends Object {
entries: set Object,
hidden: set entries }

This declaration makes this.hidden a subset of this.entries for every element this
in Dir.

2.1.6 Functions and Predicates

An Alloy model can declare functions and predicates which are reusable, parame-
terized expressions and formulas, respectively. For example, the following predicate
is true when a given file is contained in a given directory or one of its subdirectories:

pred contains [d: Dir, f: File] {
f in d.∗entries }

The declaration of a function is similar, except that it also specifies the return value.
We can, for example, declare a function files to return all files that are contained in
a given directory:

fun files [d: Dir] : set File {
d.entries & File }

To use a function or predicate, we instantiate each of its arguments with an expres-
sion. We can, for example, state the obvious:

all d: Dir, f: File | f in files[d] ⇒ contains[d,f]

2.1.7 Modules

An Alloy model can be split amongst several modules defined in separate files. One
module can import the declarations of another one using the open directive.

Modules can be parameterized. A module parameter is a signature that is not
declared in the module itself, but in the one importing it. The importing module
therefore has to instantiate the parameters. The same parameterized module can
be imported more than once, with different instantiations. To resolve ambiguity, an
alias can be defined when a module is imported. The declarations of that module
can then be accessed by prefixing their names with the alias and “/”. For example,

open util/ordering[Dir] as do

imports the predefined ordering module, instantiates its parameter with the Dir
signature, and defines the alias do.

The ordering module defines a linear ordering for its parameter signature and pro-
vides several functions to access the ordering. For example, do/first returns the
smallest element of Dir and do/next returns a binary relation that associates every
Dir with its direct successor in the ordering.

10 2. Background

2.1.8 Integers

Alloy supports simple integer expressions which can be constructed from (1) literals
1, 2, etc., (2) the arithmetic operators + and -, (3) the cardinality expression #e,
where e is an arbitrary relational expression.

Integer expressions are syntactically separated from relational expressions. Thus,
integer values are no atoms. To use integers in relational expressions, Alloy provides
the built-in signature Int. For every integer value i, Int contains exactly one atom
corresponding to that value which can be obtained by Int[i]. The cast in the other
direction is performed by int[e] for a relational expression e. If the value of e contains
more than one integer-carrying atom, int returns the sum of all these values.

Alloy also offers the usual comparison operators =, < , > , <= , and >= to construct
formulas from integer values.

2.1.9 Comprehensions

Relations can be built from formulas using comprehension expressions. The compre-
hension {x1: e1, . . . , xn: en | F} denotes the n-ary relation that contains all tuples
〈x1, . . . , xn〉 of e1→ . . .→ en for which F holds. Alloy only allows unary bounding
expressions ei, which may not be prefixed with a multiplicity keyword. For example,

{f1: File, f2: File | f1.parent = f2.parent}

constructs the binary relation that relates two files if and only if they have the same
parent directory.

2.1.10 Analysis

An instance of an Alloy model is an assignment of sets and relations to the signatures
and fields of the model, respectively. A fact is an axiomatic constraint that holds
in every instance of the model, while an assertion is a property of the model that
is expected to hold. The model of Figure 1.1 declares one fact and the assertion
OneParent. The command check OneParent for 5 instructs the Alloy Analyzer
to look for counterexamples (i.e., instances that satisfy the facts but violate the
assertion) in a scope of 5. The scope bounds the size of the sets being assigned to the
signatures. Bounding the size of instances makes the logic decidable and the analysis
can thus be performed automatically. When the Alloy Analyzer does not find a
counterexample, the assertion is guaranteed to be valid within the analyzed scope.
It does not, however, ensure that there are no counterexamples in a larger scope.
Furthermore, the analysis performed by the Alloy Analyzer gives no information
about the validity of an assertion in an infinite scope.

2.2 KeY

KeY [5] is a verification system for the Java programming language, based on the
first-order dynamic logic JavaDL. KeY’s first-order logic KeYFOL is a subset of
JavaDL. At its heart, the KeY system is a deductive theorem prover based on a
sequent calculus for JavaDL.

2.2. KeY 11

2.2.1 First-Order Logic

In order to prove an Alloy model correct, it is translated to the first-order logic as
supported by the KeY system [5, 16], which we refer to as KeYFOL. The logic is
typed and supports subtyping. We denote the set of types with T , and the subtype
relation with v. We furthermore use F for the set of function symbols, P for the
set of predicate symbols, and VFO for the set of variables which we assume to be
infinitely large.

The typing function α determines the type of each variable, the number and type
of arguments of each function and predicate symbol, as well as the return type of
function symbols:

• α(v) ∈ T for all v ∈ VFO

• α(f) ∈ T ∗ × T for all f ∈ F

• α(p) ∈ T ∗ for all p ∈ P

We call functions that do not take any arguments constants. We use the notation
f : T1 × · · · × Tn → Tr to declare a function f ∈ F such that α(f) = 〈〈T1, . . . , Tn〉, Tr〉
and p ⊆ T1 × · · · × Tn to declare a predicate p ∈ P such that α(p) = 〈T1, . . . , Tn〉.

KeYFOL supports the standard propositional connectives ∧, ∨,⇒,⇔, the negation
operator ¬, and the boolean constants true and false. It furthermore provides a
conditional operator for terms and formulas, denoted by if(c) then(a) else(b), and
an equality predicate

.
= which we use in infix form.

Quantification ranges over the values of a given type. We write the universal and
existential quantification as ∀x: T | φ and ∃x: T | φ, respectively, for some type T and
formula φ. As a shorthand for nested quantification, we sometimes write ∀x, y: T | φ
instead of ∀x: T | ∀y: T | φ.

We denote the substitution of t for x in a formula φ with φ[x ←[t]. The same
notation is used for substitution in Alloy formulas.

KeYFOL formulas are evaluated in the context of first-order states. A first-order
state S = 〈D, δ, I〉 consists of a non-empty set D, called the domain, a typing
function δ, and an interpretation I. The typing function δ : D → T assigns a type
to every element of the domain. We write DT for the set of elements that are of
type T (i.e. DT = {x ∈ D : δ(x) v T}). The interpretation I maps each function
symbol f to a function fI of the appropriate type, and each predicate symbol p to a
relation pI . The interpretation of the equality predicate is fixed in every first-order
state:

.
=I = {〈x, x〉 | x ∈ D}.

An assignment is a function β : VFO → D that maps each variable to a value of the
appropriate type: β(v) ∈ Dα(v). We write βdv for the assignment that maps v to d
but otherwise agrees with β.

For every first-order state S = 〈D, δ, I〉 and assignment β, we associate every term
t with a value from the domain tS,β ∈ D, by defining

vS,β = β(v) for every v ∈ VFO
[f(t1, . . . , tn)]S,β = fI(tS,β1 , . . . , tS,βn)

12 2. Background

We ultimately define the models relation |= analogously to [5]. For a predicate
invocation, that definition is

S, β |= p(t1, . . . , tn) iff 〈tS,β1 , . . . , tS,βn 〉 ∈ pI

S, β |= φ denotes that the formula φ holds in the first-order state S and the assign-
ment β. The evaluation of closed formulas (i.e. formulas that do not contain free
variables) is independent from the assignment and we write S |= φ in that case. We
say that a formula φ is valid and write |= φ if it holds in every first-order state.

2.2.2 Sequent Calculus

A sequent consists of two sets of closed formulas, Γ and ∆, and is written as

Γ ` ∆

We call Γ the antecedent and ∆ the succedent. The semantics of the sequent is given
by the formula ∧

φ∈Γ

φ⇒
∨
ψ∈∆

ψ

We can thus read the sequent as follows:

It cannot be that all formulas in the antecedent are true while all formulas
in the succedent are false.

To prove the validity of a formula φ, we therefore start with the sequent ` {φ} and
try to construct a proof by applying deduction rules to the sequent. For brevity, we
write Γ, φ instead of Γ ∪ {φ}, and φ instead of {φ} for a set of formulas Γ and a
formula φ.

As an example3, we demonstrate how to prove the formula p ∧ q ⇒ q ∧ p for some
constant predicates p and q. We start with

` p ∧ q ⇒ q ∧ p

During the proof, this sequent is altered by rule applications. The following rules
handle an implication in the succedent, respectively a conjunction in the antecedent.

impRight
Γ, φ ` ψ,∆

Γ ` φ⇒ ψ,∆
andLeft

Γ, φ, ψ ` ∆

Γ, φ ∧ ψ ` ∆

Here, φ, ψ, Γ, and ∆ are schematic variables that are instantiated when a rules is
applied to a sequent. Throughout this thesis, the name of a schematic variable de-
termines how it can be instantiated as specified in Table 2.1. All names of schematic
variables might additionally be decorated with subscripts.

The meaning of the impRight rule is that if the premiss Γ, φ ` ψ,∆ is a valid sequent,
then the conclusion Γ ` φ ⇒ ψ,∆ is a valid sequent. The application of the rule
follows the opposite direction: The rule is applicable when the proof sequent matches

3which we borrowed from [5]

2.2. KeY 13

Schematic Variable Instantiations
∆, Γ Sets of closed formulas
φ, ψ Formulas
t, u, v, w Terms of type Tuple4

a, b, c, d Terms of type Atom
t(2), u(2) Terms of type Tuple2
t(3), u(3) Terms of type Tuple3
r, s Terms of type Relation
r(1), s(1) Terms of type Rel1
r(2), s(2) Terms of type Rel2
r(3), s(3) Terms of type Rel3
i, j Terms of type int

Table 2.1: Schematic variables and their instantiations.

the conclusion, that is, there are instantiations for the schematic variables such that
the proof sequent is equal to the conclusion. The proof sequent can then be replaced
by the premiss of the rule. To apply the impRight rule to our proof sequent, φ and
ψ are instantiated with p∧ q and q ∧ p, respectively, while Γ and ∆ are empty. The
result of the application is the new proof sequent 2.2. Applying the andLeft rule
then leads to 2.3:

` p ∧ q ⇒ q ∧ p (2.1)

p ∧ q ` q ∧ p (2.2)

p, q ` q ∧ p (2.3)

A sequent rule can have more than one premiss. The rule to handle a conjunction
in the succedent is an example:

andRight
Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ

The meaning of a rule with several premisses is that if all premisses are valid, then
the conclusion is valid. The application of the above rule to 2.3 therefore splits the
proof into two branches:

p, q ` q and p, q ` p

A rule without any premisses is called a closure rule and states the validity of the
sequent that it is applied to. The closure rule

close
Γ, φ ` φ,∆

can be applied to the sequents of both branches by instantiating φ with q and p.
We say that the branches are closed. When all branches of a proof are closed, the
initial proof sequent has been proven valid.

4The mentioned types are defined in Chapter 3

14 2. Background

The notation of sequent rules can be cumbersome. We therefore introduce some
notational shorthands to be used throughout this thesis. An inference rule

φ

ψ

allows us to infer ψ from the premiss φ. Its semantics is φ ⇒ ψ. To apply the
inference rule to a sequent, the premiss has to be matched in the antecedent. The
conclusion can then be added to the antecedent. The inference rule is thus a short-
hand for

Γ, φ, ψ ` ∆

Γ, φ ` ∆

A premiss can also be negated. In this case it is matched in the succedent. An
inference rule can also have multiple premisses. For example, the inference rule

φ1 ¬φ2

ψ

is a shorthand for the sequent rule

Γ, φ1, ψ ` φ2,∆

Γ, φ1 ` φ2,∆

A rewrite rule allows us to replace some term l with another term r anywhere in the
sequent. A rewrite rules is written as l r and has the semantics l

.
= r. Likewise,

there are rewrite rules for formulas φ ψ with the semantics φ ⇔ ψ. There are
also conditional rewrite rules which can only be applied when their premisses are
matched in the sequent. The following rule, for example, can be used to replace a
term with respect to an equation:

t
.
= s

t s

We occasionally have to define the semantics of functions and predicates. We do this
by axiomatic rewrite rules. To emphasize their character as definitions, we write

t := s and φ :⇔ ψ

for t s and φ ψ, respectively.

3. Translating Alloy to First-Order
Logic

This chapter presents how Alloy models are translated to KeY’s first-order logic
KeYFOL. Sections 3.1 to 3.7 cover the essential parts of the language, whilst Section
3.8 addresses more advanced features.

The translated model will be proved correct using KeY which potentially requires
user interaction. To lower this burden, the translation should be transparent; the
correspondence between the original model and its translation should be obvious.
Section 3.1 therefore defines a first-order relational theory to which formulas are
translated while preserving their structure.

An instance of an Alloy model is an assignment of sets and relations to the signatures
and fields of that model. An instance is admissible if its assignments conform to the
declarations of the signatures and fields. Sections 3.3 and 3.4 discuss the generation
of model constraints that characterize the admissible instances of a particular Alloy
model.

The translation of Alloy expressions and formulas is covered in sections 3.2, 3.5,
and 3.6. Section 3.7 focusses on the translation of Alloy functions and predicates.

An Alloy model is regarded as correct if, for any admissible instance, the facts imply
the assertions. Formally speaking, for a set of model constraints M, facts F , and
assertions C, we generate the following proof obligation in order to verify the model:1∧

M∧
∧
F ⇒

∧
C

Throughout this chapter, we use the following conventions:

• For any Alloy expression or formula x, x′ denotes its translation.

1We only consider those assertions that are marked for proving by a check command and ignore
the scope declaration that might be given.

16 3. Translating Alloy to First-Order Logic

• When considering named Alloy entities, for example variables, we need to
create a proper identifier for its translation. For the purpose of presentation,
we simply use the same name as in the original model. In the implementation,
however, this is not always suitable, because (1) Alloy identifiers are not always
legal identifiers in KeY, (2) Alloy allows (at least to some extent) overloading
of names, (3) identifiers used in Alloy might be reserved names in KeY.

3.1 A First-Order Relational Theory

Our relational theory declares several first-order types, predicates and functions, as
well as a set of rules for the sequent calculus, the axioms. This section introduces
these parts and motivates the design choices that were made.

Alloy’s signatures serve as basic types [20], so a crucial part of translating Alloy
to KeYFOL is the representation of signatures. We have examined two orthogonal
approaches for this.

The first approach is to introduce a type for every Alloy signature. Since KeYFOL
offers subtyping, signature extensions can be expressed conveniently. However, the
type system of KeYFOL is not powerful enough to express substantial parts of Alloy:
For example, since no product or union types are provided, it is not clear what type
should be assigned to a binary relation or the union of two distinct signatures.

We therefore selected the second, more flexible approach that captures the signature
hierarchy by explicit constraints. We define one type for relations (including unary
relations, i.e. sets), and another for tuples, called Relation and Tuple, respectively.
In the translation, Alloy signatures and relations become constant function symbols
of type Relation. The uninterpreted predicate in ⊆ Tuple×Relation relates the two
types and denotes the membership of a tuple to a relation.

While the membership predicate is sufficient to define the usual set operations like
union and intersection, expressing the semantics of relational operators, such as
Alloy’s join operator, requires access to the components of a tuple. For this purpose,
we introduce subtypes of Tuple and Relation to capture the arity information:

Atom,Tuple2 ,Tuple3 , . . . v Tuple

Rel1 ,Rel2 ,Rel3 , . . . v Relation

Furthermore, tuples are built from atoms. To denote this, constructor functions are
introduced:

binary : Atom × Atom → Tuple2

ternary : Atom × Atom × Atom → Tuple3

. . .

We state by axioms that (1) any tuple of at least arity two has a representation using
the constructor function for that arity, and (2) constructor invocations are equal iff
their parameters are equal. For arity two, these axioms are:

∀t: Tuple2 | ∃a, b: Atom | t .= binary(a, b)

∀a, b, c, d: Atom | binary(a, b)
.
= binary(c, d)⇔ a

.
= c ∧ b .= d

3.1. A First-Order Relational Theory 17

The described approach allows us to define relational operators in a simple way
(see Section 3.1.1). A drawback, however, is that relations of different arities have
to be treated separately. For every arity, a distinct set of operators has to be
defined. Chapter 4 presents a different approach, in which operators are defined
arity-independently. The arity of tuples is captured by a function instead of a
type, and the components of a tuple are accessed through a projection function.
While the operator definitions are arity-independent, the representation of tuples is
cumbersome and hardly intuitive. We value the simplicity of the translation over the
redundant work that our approach requires. The implementation of Kelloy currently
supports arities up to three, which is sufficient for the majority of Alloy models.

3.1.1 Operators

Alloy provides two ways for comparing relations: The subset operator in, and
the equality operator =. In our relational theory, we define a subset predicate
subset ⊆ Relation × Relation and axiomatize equality of relations. We furthermore
introduce a predicate for disjointness disj ⊆ Relation × Relation. The semantics
of these predicates are defined by axioms. This is done separately for every arity,
leaving comparison of relations with different arities undefined. For arity two, these
axioms are:

subset(r(2), s(2)) :⇔ ∀t: Tuple2 | in(t, r(2))⇒ in(t, s(2))

disj (r(2), s(2)) :⇔ ∀t: Tuple2 | ¬(in(t, r(2)) ∧ in(t, s(2)))

r(2) .= s(2) :⇔ ∀t: Tuple2 | in(t, r(2))⇔ in(t, s(2))

We only specify comparison of relations with matching arities. This principle of
leaving arity mismatches undefined (known as underspecification [17]) is also applied
to all other operator definitions and the membership predicate.

In Alloy, singleton sets2 occur frequently. It is therefore useful to have an explicit no-
tion for them. The function sin : Atom → Rel1 serves this purpose by constructing
the set containing only one atom. It is defined by

in(b, sin(a)) :⇔ a
.
= b

Alloy provides several relational operators, as well as the standard set operations
union, intersection, and difference. Similar to the comparison operators, we enhance
the relational theory with a counterpart for each of these operators. As mentioned
earlier, this has to be done separately for any arity. We denote this by subscripting
the function names with the arity they are defined for. Table 3.1 shows the Alloy
operators and their counterparts.

To fix the semantics of an operator, we specify the membership predicate applied to
that operator. For example, the cartesian product of two sets r(1) and s(1) is defined
by

in(binary(a, b), prod1×1(r(1), s(1))) :⇔ in(a, r(1)) ∧ in(b, s(1))

2which are expressed in Alloy by multiplicities

18 3. Translating Alloy to First-Order Logic

Name Alloy KeYFOL
Join r.s join1×2(r′, s′), join2×2(r′, s′), . . .

Product r → s prod1×1(r′, s′), prod1×2(r′, s′), . . .
Union r + s union1(r′, s′), union2(r′, s′), . . .

Intersection r & s inter 1(r′, s′), inter 2(r′, s′), . . .
Difference r - s diff 1(r′, s′), diff 2(r′, s′), . . .

Domain restriction r <: s domRestr 2(r′, s′), domRestr 3(r′, s′), . . .
Range restriction r :> s rangeRestr 2(r′, s′), rangeRestr 3(r′, s′), . . .

Override r ++ s overr 2(r′, s′), overr 3(r′, s′), . . .
Transposition ∼r transp(r′)

Transitive closure r̂ transClos(r′)
Reflexive transitive closure ∗r reflTransClos(r′)

Table 3.1: Alloy operators and their counterparts in first-order logic.

Note again that we do not define arity mismatched cases. The definition of the join
operator is slightly more complex:

in(binary(a, c), join2×2(r(2), s(2)))
:⇔ ∃b: Atom | in(binary(a, b), r(2)) ∧ in(binary(b, c), s(2))

Most of the other operators have similar definitions, see Appendix B for their axiom-
atizations. Defining the transitive closure operator, however, is not that straightfor-
ward.

Transitive closure is defined for binary and homogenous relations, and can be ob-
tained by repeatedly joining the relation with itself, until a fix point is reached:
r̂ = r + r.r + r.r.r + . . .

Unfortunately, such inductive definitions can not be expressed in first-order logic,
so there is no recursively enumerable set of axioms that characterizes transitive
closure [22]. The same problem arises when defining the natural numbers in a first-
order language [12]. Nevertheless, KeY offers an approximation of the integers which
we use to define the transitive closure operator.

The function iterJoin : Rel2 × int → Rel2 captures the above iteration. It is defined
by a base case

iterJoin(r(2), 0) := r(2)

and a recursive step

i > 0

iterJoin(r(2), i) := union2(iterJoin(r(2), i− 1), join2×2(r(2), iterJoin(r(2), i− 1)))

Using the iterative join operator, the transitive closure is now defined by

in(t(2), transClos(r(2))) :⇔ ∃i: int | i ≥ 0 ∧ in(t(2), iterJoin(r(2), i))

3.2. Multiplicity Constraints 19

one(r(1)) :⇔ some(r(1)) ∧ lone(r(1))

lone(r(1)) :⇔ ∀a, b: Atom | in(a, r(1)) ∧ in(b, r(1))⇒ a
.
= b

some(r(1)) :⇔ ∃a: Atom | in(a, r(1))

Figure 3.1: Definition of the multiplicity predicates

3.1.2 Constants

The simplest relational expressions are constants of which three are offered by Alloy:
The empty set none, the universal set univ, and the identity relation iden. For each
of these constants, we define a counterpart:

in(a, none) :⇔ false

in(a, univ) :⇔ true

in(binary(a, b), iden) :⇔ a
.
= b

Although Alloy’s none constant denotes a set, it is convenient to also have a constant
for empty relations of higher arity. Analogously to none, we therefore define the
constants none2, none3, et cetera.

3.2 Multiplicity Constraints

Alloy allows multiplicity annotations on the right-hand side of the subset operator
in. A formula r in e holds when r is a subset of e and furthermore satisfies the mul-
tiplicity restrictions induced by e. There are two forms of multiplicity annotations,
depending on whether the expression e is unary (i.e. set valued) or a higher-arity
relational expression.

When e is a set valued expression, it may be prefixed with one of Alloy’s multiplicity
keywords set, one, lone, and some in order to restrict the size of r. To translate these
multiplicity restrictions, we introduce a predicate for each case (with the exception
of set). Figure 3.1 shows their definition for the unary case. The other cases are
similar. Most interesting is the definition of lone, which states that the predicate
holds iff there are no distinct elements in the set.

With these predicates at hand, we can translate the multiplicity restrictions of for-
mulas like r in (lone e). The formula translates to subset(r′, e′) ∧ lone(r′).

The second form of multiplicity annotations is an annotated product operator → .
For multiplicity keywords n and m, the multiplicity restriction of r in A n →m B
can be expressed by the following formulas:

all a: A | m a.r
all b: B | n r.b

We use these formulas to translate the multiplicity restrictions of an annotated prod-
uct operator. For example, to capture the multiplicity restriction of r in A → one B,
we translate all a: A | one a.r. The translation of quantified formulas is covered in
Section 3.6.

20 3. Translating Alloy to First-Order Logic

Annotated product operations may also be nested. These can be desugared in a sim-
ilar way, using consecutive join operations. For example, the multiplicity restriction
of r in A → one B → lone C is expressed by

all a: A | one a.r && all a: A, b: B | lone b.(a.r)

3.3 Signatures

Every Alloy model centers around its signatures. The model of Figure 1.1, declares
four signatures:

abstract sig Object { . . . }
sig File extends Object {}
sig Dir extends Object { . . . }
sig Root extends Dir {}

For every signature declared in the model, a constant function symbol is introduced,
for example Object : Rel1 . These constants are further restricted by model con-
straints:

• The signatures File and Dir are extensions of Object, and Root extends Dir:
subset(File,Object), subset(Dir ,Object), subset(Root ,Dir)

• Object is declared to be abstract, so every element in Object is an element in
one of its extensions: ∀a: Atom | in(a,Object)⇒ in(a,File) ∨ in(a,Dir)3

• Top-level signatures as well as extensions of a common signature are mutually
disjoint: disj (File,Dir)

A subset signature is a subset of the union of its parents. Thus,

sig Foo in File + Dir {}

translates to the constant function symbol Foo : Rel1 and a model constraint
subset(Foo, union1(File,Dir)).

3.4 Fields

Alloy relations are declared as signature fields. The Alloy model of Figure 1.1
declares two fields:

abstract sig Object {
parent : lone Dir }

sig Dir extends Object {
entries : set Object }

3Note that, if Object had no extension, the constraint had constant false in place of the
disjunction, and thus stated the emptiness of the signature.

3.5. Expressions 21

Alloy KeYFOL
F && G F and G F ′ ∧G′
F || G F or G F ′ ∨G′
F ⇔ G F iff G F ′ ⇔ G′

F ⇒ G F implies G F ′ ⇒ G′

!F not F ¬F ′
F ⇒ G else H F implies G else H if(F ′) then(G′) else(H ′)

Table 3.2: Translating Alloy’s logical connectives.

Like for signatures, the translation introduces a constant function symbol of the
appropriate type for every field being declared. In this case parent : Rel2 and
entries : Rel2 . The declaration of fields appear in the context of a signature. The
above declaration, for example, defines parent to be a binary relation with domain
Object. The context of the declaration is an element this of Object and the dec-
laration expression bounds the value of this.parent. The declaration of parent can
thus be expressed by the following formulas:

parent in Object→Dir
all this: Object | this.parent in (lone Dir)

We generate the model constraints for parent by translating these formulas. When a
field of the same signature appears in the declaration expression, it is also interpreted
in the context of that signature. In Section 2.1.5, we introduced the field hidden:

sig Dir extends Object {
entries: set Object,
hidden: set entries }

This declaration is expressed by

hidden in Dir→Object
all this: Dir | this.hidden in (set this.entries)

3.5 Expressions

Every constant and operator in Alloy has a counterpart in the relational theory, so
its translation is straightforward. Other expressions include signatures and fields
which are translated to constant function symbols. Variables (e.g. as introduced by
quantifiers) are translated to logic variables of the appropriate type.

Alloy also features conditional expressions: c ⇒ e1 else e2 evaluates to e1 when the
constraint c holds, and to e2 otherwise. Conveniently, KeY also offers a conditional
operator. Thus, the expression is translated to if(c′) then(e′1) else(e′2).

3.6 Formulas

Alloy features several logical connectives, each of which has an equivalent operator
in KeYFOL. Table 3.2 illustrates their translation.

22 3. Translating Alloy to First-Order Logic

Alloy offers two comparison operators to construct formulas from expressions: The
equality operator that is translated to the equality in KeYFOL as described in Sec-
tion 3.1.1, and the subset operator in which is translated as described in Section 3.2.

The multiplicity keywords one, lone and some can also be used in a formula to
express that some set or relation has exactly one, at most one, or at least one
element. Translating these formulas is simple using the predicates one, lone and
some described in Section 3.2. Alloy also supports the formula no e to express that
the expression e is empty, which is equivalent to the negation of some e, so we
translate it to ¬some(e′).

3.6.1 Quantification

Section 2.1 introduced quantifications of the form Q x: e | F where e is a set-valued
expression without a multiplicity keyword. The Alloy language also allows arbitrary
declarations in a quantification, not just such declarations that bind the variable to
a singleton set. These quantifications, however, can only be analyzed by the Alloy
Analyzer if they can be eliminated by skolemization.

Since relations are first-order citizens in the translation, there is no need to adopt
this limitation. Consider therefore a quantified formula of the form Q x: e | F,
where e is an arbitrary expression that may contain multiplicity annotation, and Q
is one of the quantifiers all, some, one, lone, and no. The quantification ranges over
all relations x that satisfy x in e, with one exception: like for field declarations, the
default multiplicity for a unary expression e is one; in this case, the quantification
range is characterized by x in (one e).

Let now B denote the translation of x in e (see Section 3.2) and α the arity of the
expression e. KeYFOL offers universal and existential quantification, so translating
the all and some quantifiers is rather straightforward: We include the restriction
on the variable in the body and choose the appropriate sort to quantify over. The
formula all x: e | F is thus translated to ∀x: Relα | B ⇒ F ′ and some x: e | F be-
comes ∃x: Relα | B ∧ F ′.
The no quantifier is just a shorthand for the negated existential quantifier. So
instead of translating no x: e | F, we translate not(some x: e | F).

The other quantifiers, namely one and lone, can be rewritten to all and some but this
requires a little more effort. Consider the formulas one x: e | F and lone x: e | F.
Let y be a variable that does not occur in F. The quantified formulas are then,
respectively, equivalent to

some x: e | (F && all y: e | (F[x← [y] ⇒ x = y))
all x: e | all y: e | ((F && F[x← [y]) ⇒ x = y)

So far, we have quantified over relations. In a quantification where the declaration
bounds the variable to a scalar (i.e. singleton and unary)4, this is not very desirable
and we rather want to quantify over atoms. This case is therefore treated specially.
For a unary expression e, we translate all x: e | F5 to

∀x: Atom | in(x, e′)⇒ F ′[x←[sin(x)]

and proceed similarly for existential quantification.

4which is the most frequent case
5and equally all x: one e | F

3.7. Functions and Predicates 23

3.7 Functions and Predicates

Functions and predicates denote parameterized expressions and formulas, respec-
tively. Recall the predicate contains we defined in Section 2.1:

pred contains [d: Dir, f: File] {
f in d.∗entries }

This predicate takes two unary parameters. We therefore introduce a declaration
contains ⊆ Rel1 ×Rel1 . Each predicate use contains[d,f] can now be translated to
contains(d′, f ′).

The predicate’s body translates to a formula φ with two free variables d and f . This
formula is used to define a rewrite rule for the contains predicate:

contains(r(1), s(1)) φ[d←[r(1), f ←[s(1)]

Note that we do not enforce the declaration constraint of the predicate’s parameters.
This conforms to the behavior of the Alloy Analyzer. Once the model is successfully
typechecked, the parameter declarations are ignored. Alloy’s typechecker guarantees
that the call respects each parameter’s arity, so our translation is appropriate for
any well-typed model.

The translation of functions is similar. In Section 2.1, we defined the files function:

fun files [d: Dir] : set File {
d.entries & File }

It translates to the function files : Rel1 → Rel1 and the rewrite rule

files(r(1)) t[d←[r(1)]

where t is the translation of the function’s body.

3.8 Advanced Features

3.8.1 Integers and Cardinalities

Alloy supports simple integer expressions, which can be constructed from (1) literals
1, 2, etc., (2) the arithmetic operators + and -, and (3) the cardinality expression
#e, where e is an arbitrary relational expression.

The Alloy Analyzer analyzes integer expressions with respect to a finite bitwidth,
which are therefore subject to overflow. When verifying a model, however, overflow
is usually not intended and integers are assumed to be infinite. We take this into ac-
count by translating integer expressions using KeY’s int type that has the semantics
of mathematical integers.

With the exception of the cardinality operator, the translation of integer expressions
is straightforward since literals and arithmetic operators are supported by the KeY
system. KeY also supports the comparison operators offered by Alloy.

The Int signature is translated to a constant function symbol Int : Rel1 , just like all
other signatures. Of course, we also define it to be disjoint from all other top-level

24 3. Translating Alloy to First-Order Logic

signatures. We connect the elements of Int with integer values using the bijection
i2a : int → Atom. We also define a2i : Atom → int to invert i2a:

in(a, Int) :⇔ ∃i: int | a .
= i2a(i) i2a(i)

.
= i2a(j) :⇔ i

.
= j

a2i(i2a(i)) := i
in(a, Int)

i2a(a2i(a)) := a

When analyzing a model using the Alloy Analyzer, every relation is finite and the
cardinality operator is therefore defined for any expression. In our translation, how-
ever, relations are potentially infinite, so we can only define a cardinality operator
for those relations that are known to be finite. For this purpose, we introduce a
finiteness flag finite ⊆ Relation, and a function card : Relation → int to yield the
cardinality of a finite relation. An inference system for the finiteness flag is intro-
duced in Section 5.3. Kelloy also allows the user to explicitly finitize signatures at
translation time.

The next step is to explicitly finitize the relations that are flagged as finite. This
is done by defining an enumerator, a bijection from an integer interval to the finite
relation, thus making the relation isomorphic to that interval. We do this separately
for each arity. In the unary case, elem1 : Rel1×int → Atom provides the enumerator
for every finite set:

finite(r(1)) in(a, r(1))

∃i: int | i ≥ 0 ∧ i < card(r(1)) ∧ a .
= elem1(r(1), i)

finite(r(1))

∀i: int | i ≥ 0 ∧ i < card(r(1))⇒ in(elem1(r(1), i), r(1))

finite(r(1))

∀i, j: int | i, j ≥ 0 ∧ i, j < card(r(1))⇒ (elem1(r(1), i)
.
= elem1(r(1), j)⇔ i

.
= j)

This makes every set r(1), for which finite(r(1)) holds, a finite set with card(r(1))
elements. There are several different ways to axiomatize finiteness and cardinality.
This one, however, comes in handy when translating Alloy’s ordering module (see
Section 3.8.2).

Being able to enumerate the elements of a set is also convenient for the translation
of the int operator, which sums up the values of all Int atoms in a set. We define
the function sum : Rel1 → int using KeY’s bounded sum operator.

finite(r(1))

sum(r(1))

:=
∑0...card(r(1))

i:int (if(in(elem1(r(1), i), Int)) then(a2i(elem1(r(1), i))) else(0))

The bounded sum operator Σ replaces the variable i in the given term by every
integer value from the defined interval, and sums up all values.

The enumerator functions associate each element of a finite relation with an ordinal
number. We introduce the function ord : Relation×Tuple → int to provide us with
uniform access to this number. It is defined to invert the enumerator functions:

finite(r(1)) i ≥ 0 i < card(r(1))

ord(r(1), elem1(r(1), i)) := i

3.8. Advanced Features 25

3.8.2 Module Imports

A module can import the declarations of another one using the open directive.
Translating a module that (possibly indirectly) imports other modules is theoreti-
cally trivial, and performed as if all imported declarations were placed in the root
module (with potential name clashes resolved).

Translating a parameterized module import is done similarly, with the module’s
parameters being replaced by their instantiations.

The Alloy Analyzer provides several predefined modules. Most of them can be
translated just like user-defined modules. The only exception is the frequently used
ordering module, which we thus treat specially.

The Ordering Module

In Alloy, every signature is finite for the sake of analysis. It is therefore possible to
define a total ordering on the elements of a signature, thus identifying a smallest
and a largest element for non-empty signatures. The ordering module does exactly
this for its parameter signature by defining the binary relation next that relates an
element with its direct successor in the ordering. Although that property could also
be stated in pure Alloy, the module uses a built-in predicate for that purpose, which
enables the Alloy Analyzer to perform special optimizations. As a result, the usual
translation approach is not applicable to the ordering module.

If the signature S being ordered is finite (i.e. finite(S) holds), translating the next
relation is rather simple since the enumerator elem1 assigns an ordinal number to
the elements of S. In that case, we define a counterpart for the next relation
nextS : Rel2 by

finite(S)

subset(nextS , prod1×1(S, S))
(3.1)

finite(S) in(a, S) in(b, S)

in(binary(a, b), nextS) := ord(S, a) + 1
.
= ord(S, b)

(3.2)

For an infinite signature S, the next relation should intuitively relate every element
with its direct successor. Defining such a relation makes the set countable, hence
isomorphic to the natural numbers. Similar to the finitization shown in Section 3.8.1,
we define elem1 to provide such an isomorphism. We also define ord to invert elem1.
Figure 3.2 shows the rules for this. We can then define nextS the same way as in
the finite case, so we drop the premiss finite(S) from 3.1 and 3.2.

The built-in Alloy predicate that is used by the ordering module to define next also
defines the smallest element of S, which can be obtained using the function first.
Naturally, its counterpart firstS : Rel1 should yield the element associated with 0
if the set is not empty. It is, however, unclear what the semantics of first should
be, if S is in fact empty. In the Alloy Analyzer, the instantiation of the ordering
module is forced to contain exactly as many elements as permitted by the scope.
However, defining a scope of zero makes the model inconsistent, thus any assertion
becomes vacuously true. To overcome this problem, our translation leaves that case
undefined. The definition of firstS is then given by following rules:

finite(S) card(S) > 0

firstS := sin(elem1(S, 0))

¬finite(S)

firstS := sin(elem1(S, 0))

26 3. Translating Alloy to First-Order Logic

in(a, S) ¬finite(S)

∃i: int | i ≥ 0 ∧ a .
= elem1(S, i)

¬finite(S)

∀i: int | i ≥ 0⇒ in(elem1(S, i), S)

¬finite(S)

∀i, j: int | i, j ≥ 0⇒ (elem1(S, i)
.
= elem1(S, j)⇔ i

.
= j)

i ≥ 0 ¬finite(S)

ord(S, elem1(S, i)) i

Figure 3.2: Rules to linearly order an infinite set S.

The ordering module also declares several functions and predicates that are derived
from next and first. We can translate their definitions as usual. An interesting case
is the function for the largest element, last, which yields the set of elements that
have no successor in next. In the finite case, this set contains exactly one element.
In the infinite case, however, every element has a successor, so the empty set is
returned.

Proving properties about all elements of a linearly-ordered set is often performed
using induction. Conveniently, KeY already offers an induction theorem for its
integers which can be used for that.

3.8.3 Comprehensions

A comprehension {x1: e1, . . . , xn: en | F} denotes the n-ary relation that contains
all tuples 〈x1, . . . , xn〉 of e1→ . . .→ en for which F holds. We illustrate the translation
of comprehensions for the binary case, the others are analogous.

To translate the binary comprehension {x1: e1, x2: e2 | F}, we define an operator
compr 2 : Formula → Rel2 . It takes a formula as an argument which indicates
whether a tuple belongs to the relation. Consider the parameterized formula G that
is obtained from the comprehension:

G(a, b) ≡ in(a, e′1) ∧ in(b, e′2) ∧ F ′[x1 ←[sin(a), x2 ←[sin(b)]

Intuitively, the tuple binary(a, b) should be a member of the relation that compr 2

constructs, iff G(a, b) holds. To implement parameterized formulas in KeYFOL, we
introduce an operator to perform a λ-abstraction: The symbol bind v : T | φ binds
a variable v of type T that is free in φ. The formula

bind u : Atom | bind v : Atom | G(u, v) (3.3)

can then be used as a parameterized formula by substituting the parameter terms
for the variables bound by bind. We define the compr 2 operator in this way:

in(binary(a, b), compr 2(bind u : Atom | bind v : Atom | φ)) :⇔ φ[u←[a, v ← [b]

We now use 3.3 as the argument to compr 2 and translate the binary comprehension
to

compr 2(bind u : Atom | bind v : Atom | G(u, v))

4. Theoretical Evaluation

In this chapter, we discuss the translation of Alloy models from a theoretical view-
point. We formalize the translation approach for a subset of the Alloy formulas,
known as the Alloy kernel [8, 19]. For this purpose, we introduce arity-independent
versions of the operators from the relational theory of Chapter 3 Section 4.2 shows
the formalization of the translation and Section 4.3 conducts a proof of its correct-
ness.

In Section 4.4, we discuss the impacts of a successful verification attempt and exam-
ine the relationship between the verification performed by Kelloy and the analysis
performed by the Alloy Analyzer.

4.1 Arity-Independent Operators

The relational theory developed in Chapter 3 is well suited for translating and rea-
soning in a simple and effective way. For a theoretical evaluation, however, it is
not suitable since it handles every arity separately. Hence, general correctness prop-
erties cannot be proven. To formalize the translation of the Alloy kernel in an
arity-independent way, we define a set of new, arity-independent operators that are
generalizations of the corresponding operators discussed in Chapter 3.

The declarations and axioms for the new operators are shown in Figure 4.1. To
distinguish the newly defined operators from the old ones, we annotate them with a
prime, for example join ′. In Chapter 3, we used the types Tuple2 , Tuple3 , et cetera
to capture the arity of a tuple and constructor functions provided us with access to its
components. For the arity-independent operators, we declare functions to serve this
purpose: ar assigns an arity to each tuple and the projection function proj provides
access to the components of a tuple.1 These functions fully characterize each tuple,
as it is expressed by the equality axiom. We define some auxiliary functions to
work with tuples in a more convenient way: conc returns the concatenation of two
tuples, drop and tail remove the last, respectively the first component of a tuple.

1It may not seem intuitive that the components of a tuple – having type Atom – are again
tuples. This does, however, not impose any theoretical problems but is closer to the definitions
from Chapter 3.

28 4. Theoretical Evaluation

ar : Tuple → int join ′ : Relation × Relation → Relation
proj : Tuple × int → Atom prod ′ : Relation × Relation → Relation

union ′ : Relation × Relation → Relation
conc : Tuple × Tuple → Tuple inter ′ : Relation × Relation → Relation
drop : Tuple → Tuple diff ′ : Relation × Relation → Relation
tail : Tuple → Tuple transp ′ : Relation → Relation

iterJoin ′ : Relation × int → Relation
subset ′ ⊆ Relation × Relation transClos ′ : Relation → Relation
one ′ ⊆ Relation none ′ : Relation

sin ′ : Tuple → Relation

ar(t) ≥ 0 ar(a) := 1 proj (a, 0) := a

t1
.
= t2 :⇔ ar(t1)

.
= ar(t2) ∧ ∀i: int | i ≥ 0 ∧ i < ar(t1)⇒ proj (t1, i)

.
= proj (t2, i)

ar(t) ≥ 1

ar(drop(t)) := ar(t)− 1

ar(t) ≥ 1 n ≥ 0 n < ar(t)− 1

proj (drop(t), n) := proj (t, n)

ar(t) ≥ 1

ar(tail(t)) := ar(t)− 1

ar(t) ≥ 1 n ≥ 0 n < ar(t)− 1

proj (tail(t), n) := proj (t, n+ 1)

ar(conc(t1, t2)) := ar(t1) + ar(t2)
n ≥ 0 n < ar(t1)

proj (conc(t1, t2), n) := proj (t1, n)

n ≥ ar(t1) n < ar(t1) + ar(t2)

proj (conc(t1, t2), n) := proj (t2, n− ar(t1))

in(t, join ′(r1, r2)) :⇔ ∃u, v: Tuple | in(u, r1) ∧ in(v, r2) ∧ conc(drop(u), tail(v)) = t

∧ proj (u, ar(u)− 1) = proj (v, 0)

in(t, prod ′(r1, r2)) :⇔ ∃u, v: Tuple | in(u, r1) ∧ in(v, r2) ∧ conc(u, v)
.
= t

in(t, union ′(r1, r2)) :⇔ in(t, r1) ∨ in(t, r2)

in(t, inter ′(r1, r2)) :⇔ in(t, r1) ∧ in(t, r2)

in(t, diff ′(r1, r2)) :⇔ in(t, r1) ∧ ¬in(t, r2)

in(t, transp ′(r)) :⇔ ar(t)
.
= 2 ∧ in(conc(tail(t), drop(t)), r)

in(t, transClos ′(r)) :⇔ ∃i: int | i ≥ 0 ∧ in(t, iterJoin ′(r, i))

in(t, iterJoin ′(r, 0)) :⇔ in(t, r) ∧ ar(t)
.
= 2

n ≥ 1

in(t, iterJoin ′(r, n)) :⇔ ar(t)
.
= 2 ∧

in(t, union ′(iterJoin ′(r, n− 1), join ′(r, iterJoin ′(r, n− 1))))

subset ′(r1, r2) :⇔ ∀u: Tuple | in(u, r1)⇒ in(u, r2)

r1
.
= r2 :⇔ ∀u: Tuple | in(u, r1)⇔ in(u, r2)

in(t, none ′) :⇔ false

in(t, sin ′(s)) :⇔ t
.
= s

one ′(r) :⇔ ∃t1: Tuple | (in(t1, r) ∧ ∀t2: Tuple | (in(t2, r)⇒ t1
.
= t2))

Figure 4.1: Declarations and Axioms for the arity-independent operators.

4.2. Formalization of the Translation 29

Having these functions at hand, it is not a challenge to define all the operators
needed to translate the Alloy kernel, although the definitions are not as intuitive as
in Chapter 3. Note that there is a unique2 tuple with arity zero. Permitting this
saves us some special cases when defining the join ′ operator. Note further that it is
not necessary to restrict the tuples in a relation to have the same arity.

So far, the functions ar and proj are uninterpreted. To establish a relationship
between the newly defined and the former operators, however, we have to connect the
semantics of ar and proj to the arity-capturing types and the constructor functions.
For Tuple2 , Rel2 , and binary , this is achieved by the following axioms:

∀r: Rel2 | ∀t: Tuple | in(t, r)⇒ ar(t)
.
= 2 ∀t: Tuple2 | ar(t)

.
= 2

∀a, b: Atom | proj (binary(a, b), 0)
.
= a ∀a, b: Atom | proj (binary(a, b), 1)

.
= b

Using these axioms, one can prove that the definitions of the arity-dependent op-
erators agree with the corresponding arity-independent operators. We show this
exemplary for the prod1×2 operator.

Theorem 1. The operators prod′ and prod1×2 coincide in the following sense:

∀r: Rel1 | ∀s: Rel2 | ∀a, b, c: Atom |
in(ternary(a, b, c), prod1×2(r, s))⇔ in(ternary(a, b, c), prod ′(r, s))

Proof. With the definitions of both operators applied, we get the following objective:

∀r: Rel1 | ∀s: Rel2 | ∀a, b, c: Atom | in(a, r) ∧ in(binary(b, c), s)

⇔ ∃t1, t2: Tuple | in(t1, r) ∧ in(t2, s) ∧ conc(t1, t2)
.
= ternary(a, b, c)

“⇒”: To show the first direction of the equivalence, we show conc(a, binary(b, c))
.
=

ternary(a, b, c) using the equality axiom for tuples. We thus have to prove that (1)
the arities match, and (2) the components of both tuples are equal. We omit the
details here.

“⇐”: Let t1 and t2 be some elements of Tuple, such that in(t1, r), in(t2, s), and
conc(t1, t2)

.
= ternary(a, b, c). From the two former assumption, we infer ar(t1)

.
= 1

and ar(t2)
.
= 2 using the axioms for the Rel1 and Rel2 types. Using the last assump-

tion and the equality axiom for tuples, we can show t1
.
= a and t2

.
= binary(b, c),

thus concluding the proof.

4.2 Formalization of the Translation

Proving correctness properties requires the translation to be formally defined. This
section presents such a formalization for the Alloy kernel. The kernel is a subset of
Alloy’s logical formulas and has a formal semantics [19, 8]. Most other features of
the Alloy language can be desugared to the kernel. However, a formal description
of such desugaring is – to the best of our knowledge – not available.

The syntactical category relationName represents the signatures and fields that are
declared in a model, which we formally denote as the set N . For any signature and

2due to the equality axiom

30 4. Theoretical Evaluation

formula ::= elemFormula | compFormula | quantFormula
elemFormula ::= expr in expr | expr = expr
compFormula ::= not formula | formula logicop formula
logicop ::= and | or | ⇒
quantFormula ::= quantifier var : expr | formula
quantifier ::= all | some

expr ::= relationName | var | none | expr binop expr | unop expr
binop ::= - | + | & | . | →
unop ::= ^ | ~

relationName ::= ID
var ::= ID

Figure 4.2: Syntax of the Alloy kernel.

relation r ∈ N , there is a constant function symbol in KeYFOL associated with it,
which we write as r′. Consequently, the set of these constants is named N ′. The set
of Alloy variables, represented by the syntactical category var, is called VA.

The denotational semantics of the Alloy kernel are shown in Figure 4.3. The func-
tion E assigns relation values to expressions, and M boolean values to formulas.
Both functions take a binding as a parameter. A binding b over some universe
U is a function that assigns relation values to the relation names and variables:
b : N ∪ VA → P(U∗). We use U∗ to denote the set of all finite tuples (including the
empty tuple) over some non-empty set U , and P(U∗) is the powerset of U∗. Note
that the semantics of the Alloy kernel do not require relations to be finite or uniform.

The binding is a total function and thus assigns relation values to all variables. The
semantics of a particular formula or expression, however, only depend on the binding
of those variables occurring free in it. It is straightforward, and therefore omitted
here, to inductively define the set Fx of free variables in a formula or expression x.

The formalization of the translation in denotational style is shown in Figure 4.4. We
inductively define two translation functions E and C to translate Alloy expressions
and formulas, respectively. Both functions take a variable mapping as a parameter.
A variable mapping m is a partial function from Alloy variables to the KeYFOL
variables: m : VA ⇀ VFO. We write dom(m) to denote the domain of m.

The translation of expressions is straightforward using the operators defined in the
previous section. Since the variable mapping m is partial, EJeKm is only well-defined
if m is total on the free variables of the expression e, i.e. Fe ⊆ dom(m). The log-
ical connectives offered by Alloy are all available in KeYFOL, so the definition of
C for these cases is simple. The most interesting case of the definition is the quan-
tification. Naturally, we translate the all and some quantifiers to universal and
existential quantification, respectively. The quantification variable for the transla-
tion is required not to be in use yet3. The operator ⊕ denotes map update.

3recall that we assumed an infinite set of first-order variables VFO

4.2. Formalization of the Translation 31

M [not f]b = ¬M [f]b
M [f and g]b = M [f]b ∧M [g]b

M [f or g]b = M [f]b ∨M [g]b

M [f ⇒ g]b = M [f]b⇒M [g]b

M [all x: e | f]b = ∧{M [f](b⊕ x 7→ v) | v ⊆ E[e]b ∧ |v| = 1}
M [some x: e | f]b = ∨{M [f](b⊕ x 7→ v) | v ⊆ E[e]b ∧ |v| = 1}
M [p in q]b = E[p]b ⊆ E[q]b

M [p = q]b = E[p]b = E[q]b

E[none]b = ∅
E[p + q]b = E[p]b ∪ E[q]b

E[p & q]b = E[p]b ∩ E[q]b

E[p - q]b = E[p]b \ E[q]b

E[p.q]b =

{〈p1, . . . , pn−1, q2, . . . , qm〉 | 〈p1, . . . , pn〉 ∈ E[p]b ∧ 〈q1, . . . , qm〉 ∈ E[q]b ∧ pn = p1}
E[p→ q]b = {〈p1, . . . , pn, q1, . . . , qm〉 | 〈p1, . . . , p1〉 ∈ E[p]b ∧ 〈q1, . . . , qm〉 ∈ E[q]b}
E[∼p]b = {〈p2, p1〉 | 〈p1, p2〉 ∈ E[p]b}
E [̂ p]b = {〈x, y〉 | ∃p1, . . . , pn | 〈x, p1〉, 〈p1, p2〉, . . . , 〈pn, y〉 ∈ E[p]b}
Variables: E[x]b = b(x)

Relations: E[r]b = b(r)

Figure 4.3: Semantics of the Alloy kernel, taken from [8] and [19].

32 4. Theoretical Evaluation

Variables: EJvKm = m(v)

Relations: EJrKm = r′

EJnoneKm = none ′

EJe1→ e2Km = prod ′(EJe1Km, EJe2Km)

EJe1 .e2Km = join ′(EJe1Km, EJe2Km)

EJe1+ e2Km = union ′(EJe1Km, EJe2Km)

EJe1- e2Km = diff ′(EJe1Km, EJe2Km)

EJe1& e2Km = inter ′(EJe1Km, EJe2Km)

EJ∼eKm = transp ′(EJeKm)

E Ĵ eKm = transClos ′(EJeKm)

CJe1in e2Km = subset ′(EJe1Km, EJe2Km)

CJe1= e2Km = EJe1Km
.
= EJe2Km)

CJnot cKm = ¬CJcKm
CJc1and c2Km = CJc1Km ∧ CJc2Km
CJc1or c2Km = CJc1Km ∨ CJc2Km
CJall x: e | cKm = ∀y: Relation | one ′(y) ∧ subset ′(y, EJeKm)⇒ CJcK(m⊕ x 7→ y)

where y ∈ VFO \ m(VA)

CJsome x: e | cKm = ∃y: Relation | one ′(y) ∧ subset ′(y, EJeKm) ∧ CJcK(m⊕ x 7→ y)

where y ∈ VFO \ m(VA)

Figure 4.4: Formalization of the translation of the Alloy kernel.

We mentioned in Section 3.6.1 that the case of a unary and singleton bounding
expression is treated specially, and all x: e | F is translated to4

∀x: Atom | in(x, e′)⇒ F ′[x← [sin(x)]

This is not reflected by the formalization which translates the formula to

∀x: Relation | one ′(x) ∧ subset ′(x, e′)⇒ F ′

It can, however, be shown that this optimization is sound:

Theorem 2. Let φ be a formula and γ a term of type Rel1 with no free occurrences
of x. Then, the following formula holds:

∀x: Relation | (one ′(x) ∧ subset ′(x, γ)⇒ φ)

⇔ ∀x: Atom | (in(x, γ)⇒ φ[x←[sin(x)])

4like in Chapter 3, we denote the translations of e and F with e′ and F ′, respectively, and
assume that the Alloy variable x is translated to the logic variable x.

4.3. A Correctness Proof 33

4.3 A Correctness Proof
The evaluation of an Alloy formula is performed in the context of a binding, while
the evaluation of a KeYFOL formula is performed in the context of a first-order
state. A KeYFOL formula φ is valid if it holds in every first-order state that satisfies
the axioms, which we write as |= φ. We say that an Alloy formula f is valid if it
holds for all bindings, written as |= f. The intuition of a correct translation is, that
an Alloy formula is valid if its translation is valid. In this section, we prove that
property for the translation of the Alloy kernel as formalized in the previous section.

To conduct a proof for the correctness property, we need to establish a relationship
between first-order states and bindings. Let b : N ∪ VA → P(U∗) be some binding
over some universe U . We construct first-order states S that agree with b: An Alloy
formula holds in b iff its translation holds in S.

We define Sb to be the set of all first-order states S = 〈D, δ, I〉 that satisfy the
following constraints:

DRelation = P(U∗) DTuple = U∗ DAtom = {〈x〉 | x ∈ U} Dint = Z
inI = {〈t, r〉 ∈ DTuple ×DRelation | t ∈ r} (4.1)

proj I(〈x1, . . . , xn〉, i) = xi+1 for 〈x1, . . . , xn〉 ∈ DTuple , i ∈ 0 . . . n− 1 (4.2)

arI(〈x1, . . . , xn〉) = n for 〈x1, . . . , xn〉 ∈ DTuple (4.3)

(r′)I = b(r) (4.4)

0I = 0 1I = 1

−I(x, y) = x− y and +I (x, y) = x+ y for x, y ∈ Dint

≥I= {〈x, y〉 ∈ Dint ×Dint | x ≥ y} (4.5)

Note that we fixed the interpretation of the int type and its constants and operators
to exactly mirror the mathematical integers. We furthermore note that Sb is not
empty.

It is easy to show that, in every S ∈ Sb, the functions drop, tail , and conc have the
intended semantics:

dropI(〈x1, . . . , xn〉) = 〈x1, . . . , xn−1〉 (4.6)

tailI(〈x1, . . . , xn〉) = 〈x2, . . . , xn〉 (4.7)

concI(〈x1, . . . , xn〉, 〈y1, . . . , ym〉) = 〈x1, . . . , xn, y1, . . . , ym〉 (4.8)

We now prove that the first-order states in Sb agree with b in the evaluation of Alloy
expressions. For this property to hold, we have to restrict the variable assignment
performed by b.

Lemma 1. Let b : N ∪ VA → P(U∗) be a binding and e an Alloy expression. For
every first-order state S = 〈D, δ, I〉 ∈ Sb, assignment β : VFO → D, and injective
variable mapping m : VA ⇀ VFO, if

b(x) = β(m(x))

for all x ∈ dom(m) and Fe ⊆ dom(m), then

E[e]b = EJeKmI,β

34 4. Theoretical Evaluation

Proof. The lemma is proven by induction on the syntax of the Alloy kernel. We
show the most interesting cases here. The base case of a variable follows directly
from the lemma’s assumption and similarly the case of a relation name from 4.4:

E[v]b = b(v)
Ass.
= β(m(v)) = m(v)I,β = EJvKmI,β

E[r]b = b(r)
4.4
= (r′)I = (r′)I,β = EJrKmI,β

Join: For relations R, S ⊆ U∗, we first prove

join ′
I
(R, S) = {〈x1, . . . , xn−1, y2, . . . , ym〉 | 〈x1, . . . , xn〉 ∈ R

∧ 〈y1, . . . , ym〉 ∈ S
∧ xn = y1}

(4.9)

Consider an element t ∈ join ′I(R, S). Let u be a variable of type Tuple, and r, s
variables of type Relation. Then, for the assignment γ = βtRSu r s ,

S, γ |= in(u, join ′(r, s))
Axiom⇐⇒ S, γ |=∃u, v: Tuple | in(u, r) ∧ in(v, s) ∧ conc(drop(u), tail(v))

.
= w

∧ proj (u, ar(u)− 1)
.
= proj (v, 0)

⇐⇒ S, γ〈x1,...,xn〉u
〈y1,...,ym〉
v |= in(u, r) ∧ in(v, s)

∧ conc(drop(u), tail(v))
.
= w

∧ proj (u, ar(u)− 1)
.
= proj (v, 0)

for some 〈x1, . . . , xn〉, 〈y1, . . . , ym〉 ∈ U∗

⇐⇒ 〈x1, . . . , xn〉 ∈ R and 〈y1, . . . , ym〉 ∈ S
and concI(dropI(〈x1, . . . , xn〉), tailI(〈y1, . . . , ym〉)) = t

and proj I(〈x1, . . . , xn〉, arI(〈x1, . . . , xn〉)− 1) = proj I(〈y1, . . . , ym〉, 0)

⇐⇒ 〈x1, . . . , xn〉 ∈ R and 〈y1, . . . , ym〉 ∈ S
and 〈x1, . . . , xn−1, y2, . . . , ym〉 = t and xn = y1

⇐⇒ t ∈ {〈x1, . . . , xn−1, y2, . . . , ym〉 | 〈x1, . . . , xn〉 ∈ R ∧ 〈y1, . . . , ym〉 ∈ S ∧ xn = y1}

which shows the equality of both sets. From 4.9, we immediately infer

join ′
I
(E[p]b, E[q]b) = E[p.q]b

and use the induction hypothesis (IH) to conclude

EJp.qKmI,β = join ′(EJpKm, EJqKm)I,β

= join ′
I
(EJpKmI,β, EJqKmI,β)

IH
= join ′

I
(E[p]b, E[q]b) = E[p.q]b

Transitive Closure: To prove the case of transitive closure, we need an inner induc-
tion on the natural numbers. For relations R ⊆ U∗, we define an iteration by

R0 = {〈x, y〉 ∈ R}
Rn+1 = {〈x, z〉 | ∃y | 〈x, y〉 ∈ R, 〈y, z〉 ∈ Rn} for all n ∈ N0

4.3. A Correctness Proof 35

and prove by induction on the natural numbers

iterJoin ′
I
(R, n) =

⋃
i=0..n

Ri (4.10)

For n = 0, the objective becomes

iterJoin ′
I
(R, 0) = R

Consider two variables u and r of type Tuple and Relation, respectively, and the
assignment γ = βtu

R
r . The objective is then proven by:

t ∈ iterJoin ′
I
(R, 0)

4.1⇐⇒ S, γ |= in(u, iterJoin ′(r, 0))
Axiom⇐⇒ S, γ |= in(u, r) ∧ ar(u)

.
= 2

4.1⇐⇒ t ∈ R and arI(t) = 2
4.3⇐⇒ t ∈ R and t = 〈x, y〉 for some x, y ∈ U
⇐⇒ t ∈ R0

In the step case, we get the following objective:

iterJoin ′
I
(R, n+ 1) =

⋃
i=0..n

Ri ∪Rn+1

Let now be u, r, and k be variables of type Tuple, Relation, and int , respectively,
and γ = βtRnu r k . The objective is then proven by:

t ∈ iterJoin ′
I
(R, n+ 1)

4.1⇐⇒ S, γ |= in(u, iterJoin ′(r, k + 1))
Axiom⇐⇒ S, γ |= ar(u)

.
= 2 ∧ in(u, union ′(iterJoin ′(r, k), join ′(r, iterJoin ′(r, k))))

4.3⇐⇒ t = 〈x, y〉 for some x, y ∈ U
and S, γ |= in(u, union ′(iterJoin ′(r, k), join ′(r, iterJoin ′(r, k))))

Axiom⇐⇒ t = 〈x, y〉 for some x, y ∈ U
and S, γ |= in(u, iterJoin ′(r, k)) ∨ in(u, join ′(r, iterJoin ′(r, k)))

⇐⇒ 〈x, y〉 ∈ iterJoin ′
I
(R, n) or 〈x, y〉 ∈ join ′

I
(R, iterJoin ′

I
(R, n))

IH⇐⇒ 〈x, y〉 ∈ ∪i=0..nR
i or 〈x, y〉 ∈ join ′

I
(R, iterJoin ′

I
(R, n))

4.9⇐⇒ 〈x, y〉 ∈ ∪i=0..nR
i

or 〈x, y〉 ∈ {〈x1, . . . , xn−1, y2, . . . , ym〉 | 〈x1, . . . , xn〉 ∈ R
∧ 〈y1, . . . , ym〉 ∈ iterJoin ′

I
(R, n)

∧ xn = y1}
⇐⇒ 〈x, y〉 ∈ ∪i=0..nR

i

or 〈x, z〉 ∈ R ∧ 〈z, y〉 ∈ iterJoin ′
I
(R, n) for some z ∈ U

36 4. Theoretical Evaluation

IH⇐⇒ 〈x, y〉 ∈ ∪i=0..nR
i

or 〈x, z〉 ∈ R and 〈z, y〉 ∈ ∪i=0..nR
i for some z ∈ U

⇐⇒ 〈x, y〉 ∈ ∪i=0..nR
i

or 〈x, z〉 ∈ R and 〈z, y〉 ∈ Rj for some z ∈ U, 0 ≥ j ≥ n

⇐⇒ 〈x, y〉 ∈ ∪i=0..nR
i

or 〈x, y〉 ∈ Rj+1 for some 0 ≥ j ≥ n

⇐⇒ 〈x, y〉 = t ∈
⋃
i=0..n

Ri ∪Rn+1

We now use 4.10 to prove the objective of the outer induction. It is easy to see that

E [̂ p]b =
⋃
i∈N0

(E[p]b)i (4.11)

Let u and k be logic variables of type Tuple and int , respectively, that do not occur
free in EJpKm. We then prove the equality E [̂ p]b = E Ĵ pKmI,β by

t ∈ E [̂ p]b
4.11⇐⇒ t ∈

⋃
i∈N0

(E[p]b)i

⇐⇒ t ∈
⋃
i=0..n

(E[p]b)i for some n ∈ N0

4.10⇐⇒ t ∈ iterJoin ′
I
(E[p]b, n) for some n ∈ N0

IH⇐⇒ t ∈ iterJoin ′
I
(EJpKmI,β, n) for some n ∈ N0

4.1⇐⇒ S, βtu
n

k |= in(u, iterJoin ′(EJpKm, k)) for some n ∈ N0

4.5⇐⇒ S, βtu
n

k |= k ≥ 0 ∧ in(u, iterJoin ′(EJpKm, k)) for some n ∈ Dint

⇐⇒ S, βtu |= ∃k: int | k ≥ 0 ∧ in(u, iterJoin ′(EJpKm, k))
Axiom⇐⇒ S, βtu |= in(u, transClos ′(EJpKm))

4.1⇐⇒ t ∈ E Ĵ pKmI,β

With Lemma 1 proven, we can show the equivalence between Alloy formulas and its
translation.

Theorem 3. Let b : N ∪ VA → P(U∗) be a binding and f an Alloy formula. For
every first-order state S = 〈D, δ, I〉 ∈ Sb, assignment β : VFO → D, and injective
variable mapping m : VA ⇀ VFO, if

b(x) = β(m(x))

for all x ∈ dom(m) and Ff ⊆ dom(m), then

S, β |= CJfKm iff M [f]b

Proof. We again use induction on the syntax of the Alloy kernel to proof the theorem.
The cases of the logical connectives are trivial.

4.3. A Correctness Proof 37

Subset: The case of the subset operator in is proven using Lemma 1:

S, β |= CJe1 in e2Km
⇐⇒ S, β |= subset ′(EJe1Km, EJe2Km)
Axiom⇐⇒ S, β |= ∀u: Tuple | in(u, EJe1Km)⇒ in(u, EJe2Km)

⇐⇒ S, βtu |= in(u, EJe1Km)⇒ in(u, EJe2Km) for all t ∈ U∗

⇐⇒ if t ∈ EJe1KmI,β then t ∈ EJe2KmI,β for all t ∈ U∗
Lem. 1⇐⇒ if t ∈ E[e1]b then t ∈ E[e2]b for all t ∈ U∗

⇐⇒ E[e1]b ⊆ E[e2]b

⇐⇒M [e1 in e2]b

Since the equality operator is just a shorthand for mutual inclusion, the proof for
this case is analogous to the case of the in operator.

Quantification: We first state two auxiliary lemmas. Let y be a variable that is not
free in EJeKm and v ⊆ U∗ a relation. Then,

S, βvy |= one ′(y) ⇐⇒ |v| = 1 (4.12)

S, βvy |= subset ′(y, EJeKm) ⇐⇒ v ⊆ E[e]b (4.13)

The first one can easily be shown by contradiction, and 4.13 can be proven using
Lemma 1. We now infer:

S, β |= CJall x: e | fKm
⇐⇒ S, β |= ∀y: Relation | one ′(y) ∧ subset ′(y, EJeKm)⇒ CJfK(m⊕ x 7→ y)

for some y 6∈ m(VA)

⇐⇒ if S, βvy |= one ′(n) and S, βvy |= subset ′(y, EJeKm)

then S, βvy |= CJfK(m⊕ x 7→ y) for all v ⊆ U∗

From y 6∈ m(VA), we see that y is not free in EJeKm. Thus, 4.13 is applicable and
we further infer

if |v| = 1 and v ⊆ E[e]b
then S, βvy |= CJfK(m⊕ x 7→ y) for all v ⊆ U∗

(4.14)

Since m is an injective variable mapping and y 6∈ m(VA), m⊕x 7→ y is also injective.
We furthermore see that Sb⊕x 7→v = Sb. The induction hypothesis thus yields

S, βvy |= CJfK(m⊕ x 7→ y) ⇐⇒ M [f](b⊕ x 7→ v)

which we use to infer from 4.14:

if |v| = 1 and v ⊆ E[e]b
then M [f](b⊕ x 7→ v) for all v ⊆ U∗

⇐⇒ ∧ {M [f](b⊕ x 7→ v) | v ⊆ E[e]b ∧ |v| = 1}
⇐⇒M [all x: e | f]b

The proof for existential quantification is similar.

38 4. Theoretical Evaluation

A closed Alloy formula is translated to a closed formula in KeYFOL and is thus
independent from the variable mapping. If we use the empty mapping ε for the
translation, the premisses of Theorem 3 are always satisfied. We formulate this as
a corollary.

Corrolary 1. For a closed Alloy formula f, a binding b : N ∪ VA → P(U∗), and a
first-order state S ∈ Sb

S |= CJfKε iff M [f]b

From Corollary 1, we ultimately prove the correctness theorem:

Theorem 4 (Correctness Theorem). A closed Alloy formula f is valid if its transla-
tion is a valid KeYFOL formula.

Proof. If the theorem did not hold, there was a closed Alloy formula f such that f
is not valid but its translation is: |= CJfKε. Since f is not valid, there is a binding b
in which f does not hold: M [f]b = ⊥. Using of Corollary 1, we can thus construct
a first-order state S ∈ Sb such that S 6|= CJfKε hence contradicting the assumption
that the translation of f is valid.

Theorem 4 states the soundness of our translation of the Alloy kernel, but it says
nothing about its completeness. It does therefore not obviate that some closed and
valid Alloy formula translates to an KeYFOL formula that is not valid. In fact,
due to the built-in transitive closure operator of Alloy, our translation cannot be
complete [24].

The correctness proof conducted in this section is based on different operators than
used for the translation in Chapter 3. However, we saw in Section 4.1 that the
new operators agree with the old ones but are defined for a larger domain, namely
the types Relation and Tuple rather than Rel2 and Tuple3, et cetera. When we
translate well-typed Alloy models, the arity of the tuples in a relation is always
uniform and the arity of every expression is statically determined by Alloy’s type
system. Thus, the arity-capturing types are applicable and the broader domain of
the new operators is not significant to the validity of formulas. The findings of this
section therefore also apply to the translation of the kernel as described in Chapter 3.

4.4 Model Correctness

The Alloy kernel that was considered in the previous sections is a subset of Alloy’s
formulas and omits several features. Furthermore, the full Alloy language enriches
the logic with declarations such as signatures and fields, and embeds formulas as
facts and assertions.

The signature and field declarations restrict the admissible instances of a model. A
model is considered correct if the assertions hold in any admissible instance that
satisfies the facts. We addressed this in Chapter 3 by generating model constraints
and including these in the proof obligation, together with the translation of the
facts and assertions. When the translation of formulas is correct in the sense of
Theorem 4 and the model constraints correctly identify the admissible instances, it
is easy to see that a valid proof obligation implies the correctness of the model. In

4.4. Model Correctness 39

this setting, where Theorem 4 holds, when a model has been proven correct by the
KeY system, the bounded analysis performed by the Alloy Analyzer will not find
any counterexample, regardless of the defined scope. The reverse, however, is not
true because Kelloy does not restrict the model’s instances to be finite. Consider,
for example, the following model:

sig A {
foo: A }

fact {
some A
foo in A some→A }

assert {
some a: A | a in a. f̂oo }

The fact states that A is not empty and the functional relation foo is surjective. The
assertion that foo is a cyclic relation holds in all finite instances. If A was infinite,
however, the assertion can be violated when foo represents an infinite chain.

We observe that the correctness of Theorem 4 is rooted in the fact that the semantics
of the Alloy kernel does – in contrast to the Alloy Analyzer – not impose the finiteness
of relations. Most of Alloy’s features can be desugared to the kernel and it is
therefore not a theoretical challenge to expand the theorem to cover also these
features. However, there are features whose the semantics cannot be directly adopted
to infinite instances.

The most natural of such features is the cardinality operator, which is only eval-
uated if the argument is guaranteed to be finite and unspecified otherwise (see
Section 3.8.1). A model might be proven correct although it uses the cardinality
operator for a potentially infinite relation. Since the operator is unspecified in that
case, it is ensured that the model is in fact correct for all finite and infinite instances.
It can, however, be intentional that parts of a model are always finite. For example,
it might be safe to assume a finite number of clients in the model of a network proto-
col. In such cases, the user can choose to explicitly finitize signatures at translation
time. This should be done with care, since it can make the model inconsistent.
For example, finitizing the Int signature (possibly indirectly), contradicts with its
axiomatization and the model might thus be unintentionally proven correct.

Integer expressions are analyzed with respect to a finite bitwidth by the Alloy An-
alyzer and are thus subject to overflow. This can lead to the somehow awkward
behavior that an increased scope vanishes counterexamples. Overflow is usually not
intended for the verification of a model, so we use mathematical integers for the
translation of integer expressions. In the presence of integer expressions, the Al-
loy Analyzer might therefore produce a counterexample for a verified model. This
counterexample, however, is then due to overflow and disappears when choosing a
sufficiently large bitwidth.

We mentioned in Section 3.6.1 that the Alloy language allows quantification over
arbitrary relations, but the Alloy Analyzer might not be able to analyze such models.
Since relations are first-order citizens in our translation, Kelloy can potentially prove
models correct that the Alloy Analyzer does not handle.

40 4. Theoretical Evaluation

In Section 3.8.2 we extended the meaning of the ordering module to infinite sets in
a natural way. In a proof, however, we might need to separate the infinite and the
finite cases. There are, for example, two different induction principles. In the case
of a finite set being linearly ordered, Kelloy conforms to the Alloy Analyzer.

5. Reasoning

Once that an Alloy model is successfully translated, it should be proven correct.
This chapter presents how reasoning about Alloy models is performed within the
KeY system.

The KeY system can verify the correctness of Alloy models, but it is, in general,
not capable of refuting incorrect ones. Therefore, we suggest that a model is tested
extensively using automatic tools like the Alloy Analyzer before it is handed to the
interactive prover. We can thus presume that the user is confident about the model’s
correctness and, more importantly, has some understanding why it is correct. For
the verification task, these correctness arguments have to be formalized in the KeY
system in order to conduct a proof. To keep this step simple, we follow the design
principle that the reasoning should be performed on a similar abstraction level as
the modeling. Due to the relational theory introduced in Chapter 3, Alloy formulas
and expressions are translated in a structure preserving way.

Using solely the axioms of the relational theory, we can eliminate all relational
operators from a formula by rewriting it to an equivalent one, in which only the un-
interpreted symbols (i.e. the membership predicate and the constructor functions)
appear. While this might be appropriate for purely automatic approaches, we con-
sider this not suitable for interactive proving since it breaks the correspondence
between the original model and its translation, hence violating the design principle
stated above. Moreover, this approach tends to produce large proof sequents that
contain a lot of quantifiers which are difficult to handle efficiently, and KeY achieves
only poor automation.

Consider for example the formula union1(r, r)
.
= s appearing in the antecedent. The

union operator is idempotent and the term on the left-hand side should be simplified
to r. The equation could then be used to replace occurrences of r with s throughout
the sequent. However, since the union operator is defined through the membership
predicate, the axioms cannot be applied here without rewriting the equation first.
Evidently, the theory’s axioms alone are not suitable for reasoning on the abstraction
level of relations. We therefore define a set of deduction rules to provide us with
the necessary abstraction. All rules that are shown here are lemmas and have been
proven to follow from the axioms.

42 5. Reasoning

The next sections present a reasoning strategy for proving Alloy models. Reading
them should enable the user to efficiently conduct proofs for Alloy models with KeY.
They give an overview of the strategy, rather than an exhaustive definition. Sec-
tion 5.1 outlines the general approach and presents the deduction rules the reasoning
is based on. Sections 5.2 to 5.4 extend the approach for the more special features of
Alloy. The strategy has been implemented to be applied automatically by the KeY
system, but we omit the technical details for that.

Compared to a simple automation strategy that only applies the axioms from the
relational theory, the strategy presented here achieves a much higher degree of au-
tomation: for one of the simplest models that is distributed with Alloy, the birthday
book example, our strategy found a proof after 82 rule applications. The simple
strategy needed 680 steps. Another rather simple example is the “Self-Grandpa”
example from [19]. While our strategy finished the proof in 718 steps, the simple
strategy did not succeed to prove the model in a reasonable amount of time.

5.1 Deduction Rules

The reasoning strategy we develop here is integrated in KeY’s proof search strategy
for KeYFOL1. We do therefore not consider the logical connectives and quantifiers,
but are only interested in the Alloy specific parts.

5.1.1 Predicates

The Alloy specific formulas that we are interested in, are composed of a predicate
from the relational theory. The predicate one is defined using lone and some. Its
treatment is therefore redundant and the presentation hence omitted.

The semantics of most predicates is defined by universally quantified formulas (the
some predicate is an exception that is discussed later). Whether it is desirable to ex-
pand these predicates to their definitions depends on their occurrence in the sequent.
Universal quantification in the succedent can be eliminated by skolemization using
the δ-rules2 of the calculus. It is therefore suitable to rewrite predicate invocations
on the right-hand side of the sequent to their definitions.

Contrary to that, universally quantified formulas in the antecedent need to be in-
stantiated. Since providing a suitable instantiation automatically is a complex and
heuristic task, expanding predicates on the left-hand side of the sequent is not de-
sirable and the axioms should not be applied. Instead, we define rules to exploit the
semantics of the predicate occurring in the antecedent, without rewriting it. For the
predicates subset , disj , and lone, such rules are:

useSubsetTrue
subset(r, s) in(t, r)

in(t, s)
useSubsetFalse

subset(r, s) ¬in(t, s)

¬in(t, r)

useDisj1
disj (r, s) in(t, r)

¬in(t, s)
useDisj2

disj (r, s) in(t, s)

¬in(t, r)

replWithSin
lone(r) in(t, r)

r sin(t)

1actually, JavaDL which is a superset of KeYFOL
2δ-rules replace a quantification with its body while substituting the quantification variable

with a skolem term: a previously unused constant.

5.1. Deduction Rules 43

1 subset(A,B),

2 lone(B),

3 in(x,A),

4 in(y,B),

5 in(z, C)

`
some(C)

Figure 5.1: An example proof sequent.

When applying the replWithSin rule, we have to ensure that the replacement is not
performed within the premisses since that can be destructive: the application might
result in a sequent that is not valid although the preceding sequent was.

In a nutshell, we rewrite predicates on the right-hand side of the sequent, but leave
them on the left-hand side. This approach is implemented by defining a rewrite rule
to match only in the succedent, while the axioms of the predicates are not to be
applied.

As mentioned before, the some predicate is an exception since its semantics is defined
by existential quantification. We therefore rewrite it in the antecedent, since the
quantifier is then eliminated by skolemization. When the some predicate appears in
the succedent (and is thus assumed to be false), we can conclude that the relational
argument is empty, hence add equality to the empty relation to the left-hand side
of the sequent. In the unary case, the rule for this is

someRight
Γ, r(1) .= none ` ∆

Γ ` some(r(1)), ∆

The KeY system uses equations in the antecedent to replace occurrences of the left-
hand term anywhere else in the sequent. For this purpose, the equation is ordered
so that the simpler term (determined by a lexicographical order) is to the right of
the equality sign. This behavior is particularly useful when the right-hand side of
the equation is a constant, like the equality to an empty relation above. However,
equality of two relations has the same semantics as their mutual inclusion. We also
want to leverage this like it is done by the useSubsetTrue and useSubsetFalse rules.
We therefore rewrite equalities to two subset invocations, and dynamically add a
rewrite rule to maintain the replacement facility. Obviously, this rewrite rule should
not be applied within the newly introduced formulas.

To illustrate the reasoning approach, we apply some of the rules to the example
proof sequent shown in Figure 5.1: from lines 1 and 3, we can infer in(x,B) using
the useSubsetTrue rule. Together with line 2, replWithSin lets us replace B with
sin(x) in line 4, thus inferring x

.
= y. The someRight rule adds C

.
= none to the

antecedent, which is then rewritten to subset(C, none) and subset(none, C).3 At this
step, the rewrite rule C none is dynamically created and can be used to replace

3Section 5.1.3 introduces simplification rules for such trivial predicate invocations.

44 5. Reasoning

union2(r(2), r(2)) r(2) join1×2(r(1), iden) r(1)

inter 1(none, r(1)) none lone(none) true

subset(sin(a), r) in(a, r)
subset(r, s)

union1(r, s) s

join1×2(r(1), transp(s(2))) join2×1(s(2), r(1))

Figure 5.2: Selected simplification rules.

C with none in line 5, which can then be replaced with false by the definition of
none. Since false now appears in the antecedent, the sequent has been proven valid.

5.1.2 Tuple Terms

The value of every Alloy expression is a relation. There is no notion for the elements
of relations. Contrary to that, tuples are explicit in the translation. Tuple terms
(i.e., terms of type Atom, Tuple2 , etc.) that appear in the sequent are variables,
constants, and constructor invocations. Constants usually appear as skolem terms
when a δ-rule is applied.

Axioms that require access to the components of a tuple match on constructor
invocations rather than general terms. It is therefore not desirable to have terms
of type Tuple2 , Tuple3 , etc. in the sequent that are not constructor invocations.
We therefore carefully define all the rules to prevent this.4 For example, rather
than using quantification over Tuple2 to rewrite a subset invocation for two binary
relations in the succedent, we use quantification over Atom twice:

Γ ` ∀a, b: Atom | in(binary(a, b), r(2))⇒ in(binary(a, b), s(2)),∆

Γ ` subset(r(2), s(2)),∆

We can therefore presume that tuple terms appearing in the sequent are constants
or variables of type Atom, or constructor invocations. We say that these tuple terms
are in normal form.

5.1.3 Relational Terms

The relational terms appearing in a proof sequent are composed of the theory’s
operators and constants. We introduce a number of rules to efficiently support the
relational operators. The treatment of transitive closure, however, is postponed to
Section 5.2.

In some cases, relational terms can be simplified. Figure 5.2 shows representatives
of simplification rules to be applied greedily. Similarly, formulas can sometimes be
rewritten to simpler ones. The figure also shows some rules for this.

When discussing the treatment of predicates in Section 5.1.1, we did not examine
the membership predicate. Following the previous section, the first argument to an
invocation of in is a tuple term in normal form. The axioms for the top-level operator

4We can of course not prevent the user from introducing such terms interactively.

5.2. Transitive Closure 45

of the relational argument are thus applicable, and all operators can be eliminated.
The resulting formula is composed of elementary memberships : invocations of the
membership predicates where the first argument is a tuple term in normal form, and
the relational argument is a constant or a variable. For example, the term

in(b, inter 1(join1×2(sin(a), foo), bar))

is rewritten by the axioms to

in(binary(a, b), foo) ∧ in(b, bar)

In Section 5.1.1 we introduced rules to capture the semantics of predicates appearing
in the antecedent, that match on membership invocations. Since these membership
invocations are subject to rewriting, the rules might not be applicable. For example,
in a sequent

subset(diff1(A,B), C), in(a,A) ` in(a,B)

we want to infer in(a, C), but the useSubsetTrue rule can not be applied. To overcome
this problem, we define rules that match on predicate/operator combinations and
their elementary membership representation, for example

useSubsetTrueDiff
subset(diff1(r(1), s(1)), t(1)) in(a, r(1)) ¬in(a, s(1))

in(a, t(1))

Using the useSubsetTrueDiff rule, we can now infer in(a, C) as intended.

The operators in a relational term may be nested, but the rules that we just dis-
cussed only match on the top-level operator of the predicate’s arguments. For nested
operators, the same problem as before arises again. Apparently, this argument can
be applied to an arbitrary depth of operator nesting, so no set of rules can ever
handle all possible cases. However, we rarely observe deeply nested operators. In
those cases where the lemmas do not suffice, the predicate should be expanded to
its definition by user interaction.

Alloy models frequently talk about the value of a field for a single element of a
signature, which is expressed by joining a field with a singleton set. Thus, terms
like join1×2(sin(x), foo) and join1×2(sin(y), join1×3(sin(x), bar) appear frequently
and should therefore be handled efficiently. We address this by introducing further
lemmas like the following:

subset(join1×2(sin(b), join1×3(sin(a), r(3))), s(1)) in(ternary(a, b, c), r(3))

in(c, s(1))

5.2 Transitive Closure

Transitive closure of a binary relation cannot be expressed in first-order languages [22].
Consequently, a universally efficient reasoning strategy is not achievable. Many mod-
els, however, only rely on certain properties of transitive closure which are expressible
in first-order logic. In this section, we define a set of rules to capture such properties.
While some of them are suitable for automatic application, others require the user
to provide an instantiation.

46 5. Reasoning

The problem of reasoning about transitive closure in first-order languages has been
tackled in several ways. Some approaches are only applicable in a limited context:
Nelson [25] addresses the transitive closure of functional relations, while Dong and
Su [7] maintain transitive closure under unit changes to a relation. A more general
approach is proposed by Lev-Ami et al. [24]. Similar to our approach, several first-
order axioms capturing essential properties of transitive closure are defined.

The rules that we introduce here are lemmas and have been proven using the in-
duction principle for KeY’s integers. Like the other relational operators, transitive
closure can be simplified in some cases. We therefore introduce simplification rules
like the following, that are applied greedily:

lone(r(2))

transClos(r(2)) r(2)
transClos(transp(r(2))) transp(transClos(r(2)))

We furthermore introduce rules to capture some simple properties about transitive
closure: (1) Transitive closure is transitive, (2) the transitive closure of a relation is a
superset of that relation, and (3) the transitive closure of a subset of some relation is
a subset of the transitive closure of that relation, and (4) an element in the domain
of the transitive closure of a relation is also in the domain of that relation (and
analogous for the range). These properties are implemented by the following rules:

in(binary(a, b), transClos(r(2))) in(binary(b, c), transClos(r(2)))

in(binary(a, c), transClos(r(2)))

Γ, in(t(2), r(2)) ` in(t(2), transClos(r(2))),∆

subset(r(2), s(2))

subset(transClos(r(2)), transClos(s(2)))

in(binary(a, b), transClos(r(2)))

∃c: Atom | in(binary(a, c), r(2))

in(binary(a, b), transClos(r(2)))

∃c: Atom | in(binary(c, b), r(2))

While these rules suffice in some cases, they are usually not capable of proving
functionally complex properties about a model involving transitive closure. For
such cases, we introduce two lemmas for interactive application. The first one is an
induction principle:

∀a, b: Atom | in(binary(a, b), r(2))⇒ φ(a, b)

∀a, b, c: Atom | in(binary(a, b), r(2)) ∧ in(binary(b, c), transClos(r(2))) ∧ φ(b, c)

⇒ φ(a, c)

∀a, b: Atom | in(binary(a, b), transClos(r(2)))⇒ φ(a, b)

To apply this rule, the user has to provide an instantiation for the parameterized
formula φ. The rule can then be used to show φ(a, b) for every a and b that are
connected in r(2) by proving a base and a step case. The second rule is one of the
coloring axioms from [24], namely the NoExit axiom:

∀a, b: Atom | φ(a) ∧ ¬φ(b)⇒ ¬in(binary(a, b), r(2))

∀a, b: Atom | φ(a) ∧ ¬φ(b)⇒ ¬in(binary(a, b), transClos(r(2)))

Again, the parameterized formula φ has to be instantiated interactively. The intu-
ition of the rule is the following: when the class of nodes for which φ holds is never
left by an edge of r(2), then no path in r(2) leaves this class.

5.3. Finiteness and Cardinality 47

finite(union1(r(1), s(1))) finite(r(1)) ∧ finite(s(1))

finite(r(1))

finite(diff 1(r(1), s(1))) true

finite(none) true finite(sin(a)) true

lone(r)

finite(r) true

subset(r, s) finite(s)

finite(r) true

card(none) 0

card(sin(a)) 1

finite(r(1)) finite(s(1))

card(union1(r(1), s(1))) card(r(1)) + card(s(1))− card(inter 1(r(1), s(1)))

finite(r(1)) finite(s(1))

card(diff1(r(1), s(1))) card(r(1))− card(inter 1(r(1), s(1)))

Figure 5.3: Inference rules the finiteness and cardinality.

5.3 Finiteness and Cardinality

The cardinality operator is defined for every relation that can be shown to be finite.
The card function and the finite predicate can be applied to arbitrary relational
terms. However, if the finiteness flag has not been shown to hold, the cardinality
function is unspecified. We therefore define a set of rules to infer the finiteness flag
for relational terms. Some representatives are shown in Figure 5.3. This inference
system can be used to show that the value of relational terms is guaranteed to be
finite. However, the inference system is not complete, that is, it may not be capable
to infer the finiteness flag for an in fact finite relation. Akin to the inference system
for the finiteness flag, we define a set of inference rules for the cardinality operator.
Representatives of these are also shown in the figure.

Our inference systems for finiteness and cardinality are very similar to those im-
plemented in the Rodin tool [26] for the Event-B language [1]. The inference is
straightforward and intuitive, but incomplete. Verifying Alloy models that use the
cardinality operator might thus require explicit finitization. Kelloy therefore allows
the user to finitize a signature at translation time. This feature, however, has to be
used with care since it can make the model inconsistent (see Section 4.4).

When the finiteness flag was inferred for some relation, all of its tuples are associated
with an integer value by the enumerator (e.g. elem1, see Section 3.8.1). A tuple of a
finite relation can thus have two representations in the sequent, namely a tuple term
in normal form and an enumerator invocation. To have a uniform representation
for the tuples, we therefore maintain equations in the antecedent that relate normal
form tuple terms with their ordinal numbers. Consider for example a finite binary
relation foo, and an element binary(a, b) of that relation. We introduce two equations
to the antecedent: elem2(foo, i)

.
= binary(a, b) is used to replace occurrences of the

enumerator invocation with binary(a, b), and ord(foo, binary(a, b))
.
= i captures the

ordinal number for the tuple.

48 5. Reasoning

5.4 Ordering

For a signature S that is linearly ordered by the ordering module, the function ord
is defined to assign an ordinal number to each element of S (see Section 3.8.2). In
this section, we present lemmas to efficiently handle the ordering module’s successor
relation next. All functions and predicates in the module are defined by means of
this relation. We only consider the infinite case here, the finite case is similar.

The successor relation next is frequently joined with a singleton set to obtain the
direct successor of an element. We introduce a lemma for this case:

in(a, S) ¬finite(S)

join1×2(sin(a), nextS) sin(elem1(S, ord(S, a) + 1))

A similar lemma covers the case of obtaining the predecessor of an element. Some
functions and predicates of the ordering module are defined using the transitive
closure of next, for example the comparison predicates lt and gt. We therefore
introduce a lemma for the transitive closure of nextS , which is independent from the
finiteness of S:

in(a, S) in(b, S)

in(binary(a, b), transClos(nextS)) ord(S, a) < ord(S, b)

As mentioned in Section 3.8.2, the induction rule for integers can be used to prove
properties about all elements of a linearly ordered signature S. However, we intro-
duce a more convenient induction rule for this case:

¬finite(S)
φ(elem1(S, 0))
∀i: int | i ≥ 0 ∧ (φ(elem1(S, i))⇒ φ(elem1(S, i+ 1)))

∀a: Atom | in(a, S)⇒ φ(a)

6. Experiments

In this chapter, we evaluate the applicability of our verification approach. Section 6.1
summarizes our experiences with the automation strategy. As a case study, a proof
of Dijkstra’s solution to the dining philosophers problem is presented in Section 6.2.

6.1 Automation

Throughout the development of Kelloy, numerous models that are distributed with
the Alloy Analyzer have been proven, including the address book model from [19]
and the mark-and-sweep garbage collection algorithm. In this section, we summarize
our experiences with the automation strategy.

In the absence of transitive closure, relational reasoning is efficient and simple models
are usually proven automatically. When transitive closure is involved, the problem
is potentially hard. Many problems, however, only rely on simple properties of
transitive closure. The filesystem model of Figure 1.1 is such an example: the model
uses transitive closure to postulate that every object in the filesystem is reachable
from the root directory. For the proof of the assertion, KeY automatically infers from
this fact that every object besides the root directory is an entry of some directory.

Besides transitive closure, universal quantifiers in the antecedent can pose a challenge
to the automation. KeY’s proof search strategy heuristically instantiates quantifiers
with terms from the sequent. The performance of the heuristic depends on the
complexity of the quantified formula. Complex formulas therefore usually require
interactive instantiation, like the doubly quantified formula we manually instantiated
in our example of Section 1.2. When a quantified formula is known not to be needed
anymore, it is advisable to “hide” it from the sequent so the automation strategy
won’t bother with unnecessary instantiations.

The automation strategy reduces the user interaction necessary to conduct a proof.
For interesting correctness properties of non-trivial models, however, complete au-
tomation is rarely achieved and the user has to perform central steps of the proof
interactively, for example providing an induction hypothesis. In such proofs, the
strategy can be used to prove the simpler branches automatically while the user

50 6. Experiments

focusses on the hard parts. Interaction can often be narrowed down to a few cen-
tral interactive steps. The complete proof of the mark-and-sweep garbage collection
algorithm took 20839 rule applications, out of which only 10 were interactive steps,
mostly instantiations of lemmas about transitive closure (like the NoExit coloring
axiom, see Section 5.2).

6.2 Case Study

In this section, we conduct a case study with the Kelloy tool. The purpose of
the case study is to apply the presented approach to a real-world problem, thus
providing evidence of its practical applicability. In our case study we prove that, in a
system where multiple processes concurrently allocate resources, Dijkstra’s ordering
criterion [6] prevents deadlocks.

6.2.1 The Problem and its Solution

The context of the problem is a system with multiple concurrently executed pro-
cesses, and a set of resources that may be allocated through mutexes. A process
can grab the mutexes it needs, use the resources and ultimately release the mutexes
again. When a process tries to grab a mutex that is held by a different process,
it gets stalled, that is, it waits for that mutex to get released. The system just
described is subject to deadlocks: it can run into a state in which all processes are
stalled.

The problem has several solutions, one of them is Dijkstra’s ordering criterion [6]
that assumes all mutexes to be ordered. Mutexes have to be grabbed in order. A
process can thus only grab a mutex that is larger than those it already holds. In our
case study, we consider an existing formalization of the system in Alloy and prove
that deadlocks are in fact prevented.

6.2.2 The Model

A model for the problem is included in the Alloy distribution. That model1, however,
has only trivial instances because of an overrestrictive assumption that prevents
mutexes from being grabbed. We therefore present a corrected version here. Its
declaration part is the following:

1 open util/ordering [State] as so
2 open util/ordering [Mutex] as mo
3

4 sig Process {}
5 sig Mutex {}
6

7 sig State { holds, waits: Process →Mutex }

The processes and mutexes of the system are represented by the signatures Process
and Mutex, respectively. An ordering for the mutexes is introduced by instantiating
the ordering module for the Mutex signature (Line 2).

1shipped along with the Alloy Analyzer, Version 4.1.10

6.2. Case Study 51

9 pred Initial [s: State] { no s.holds + s.waits }
10 pred IsFree [s: State, m: Mutex] { no m.∼(s.holds) }
11 pred IsStalled [s: State, p: Process] { some p.(s.waits) }
12

13 pred GrabMutex [s: State, p: Process, m: Mutex, s’: State] {
14 !s.IsStalled[p]
15 m !in p.(s.holds)
16 all m’: p.(s.holds) | mo/lt[m’,m]
17 s.IsFree[m] ⇒ {
18 p.(s’.holds) = p.(s.holds) + m
19 no p.(s’.waits)
20 } else {
21 p.(s’.holds) = p.(s.holds)
22 p.(s’.waits) = m }
23 all otherProc: Process - p {
24 otherProc.(s’.holds) = otherProc.(s.holds)
25 otherProc.(s’.waits) = otherProc.(s.waits) }
26 }
27

28 pred ReleaseMutex [s: State, p: Process, m: Mutex, s’: State] {
29 !s.IsStalled[p]
30 m in p.(s.holds)
31 p.(s’.holds) = p.(s.holds) - m
32 no p.(s’.waits)
33 no m.∼(s.waits) ⇒ {
34 no m.∼(s’.holds)
35 no m.∼(s’.waits)
36 } else {
37 some lucky: m.∼(s.waits) {
38 m.∼(s’.waits) = m.∼(s.waits) - lucky
39 m.∼(s’.holds) = lucky }
40 }
41 all mu: Mutex - m {
42 mu.∼(s’.waits) = mu.∼(s.waits)
43 mu.∼(s’.holds)= mu.∼(s.holds) }
44 }
45

46 pred GrabOrRelease {
47 Initial[so/first]
48 all pre: State - so/last | let post = so/next [pre] |
49 (post.holds = pre.holds and post.waits = pre.waits)
50 or (some p: Process, m: Mutex | pre.GrabMutex [p, m, post])
51 or (some p: Process, m: Mutex | pre.ReleaseMutex [p, m, post])
52 }

Figure 6.1: Predicate definitions of the model.

52 6. Experiments

The typical methodology to describe dynamic systems in Alloy is to model them
as execution traces (e.g. proposed in [20]): a snapshot of the system is described
as a state, and valid state transitions are defined. Our model directly follows this
methodology and introduces the signature State, which is made a sequence using the
ordering module (Line 1). The fields holds and waits describe which processes hold,
respectively wait for what mutexes. The predicates that are defined in the model are
shown in Figure 6.1. The predicate GrabOrRelease describes the execution trace:
The system starts with all mutexes being free, so holds and waits are empty in
the first state (Line 47). The transition between two adjacent states is one of the
following:

• A process tries to grab a mutex. If the mutex was previously free, the process
now holds that mutex and otherwise waits for it (Line 50).

• A process releases one of the mutexes it holds. If there is a process waiting for
that mutex, the mutex is passed on (Line 51).

• Nothing happens at all (Line 49).

The first transition is modeled by the GrabMutex predicate. Its parameters are a
pre- and a post-state, s and s’, a process, p, and the mutex, m, that p tries to grab.
In the pre-state, p must not be stalled and not already hold m (Lines 14 and 15).
Line 16 ensures that mutexes are grabbed in order: the process may only grab the
mutex m if it is larger than the mutexes already held by p. The next lines describe
the transition from s to s’. If m is free, then p holds m in the post-state, along with
all the mutexes previously held, and is not waiting for any mutex (Lines 18 and 19).
When m is already occupied by another process, p holds the same mutexes as in
the pre-state and waits for m in the post-state (Lines 21 and 22). Lines 23 to 25
express that things remain unchanged for the processes other than p.

The predicate ReleaseMutex describes the transition between the states s and s’
in which the process p releases the mutex m. In the pre-state, p is not stalled and
holds the mutex m (Lines 29 and 30). In the post-state, p holds the same mutexes
as before, except for m (Line 31). If no process waits for the released mutex, it is
free in the post-state (Line 34). Otherwise, it is passed on to some process that
waits for m (Lines 37 to 39). Lines 41 to 43 describe that things remain unchanged
for all mutexes but m.

When the system runs into a deadlock, all processes wait for some mutex. Thus no
process can act and only the trivial transition is possible. This situation is expressed
by the predicate Deadlock:

54 pred Deadlock {
55 some Process
56 some s: State | all p: Process | some p.(s.waits)
57 }

The following assertion checks that a system as described by GrabOrRelease never
runs into a deadlock and the ordering criterion thus prevents deadlocks.

6.2. Case Study 53

59 assert DijkstraPreventsDeadlocks {
60 GrabOrRelease ⇒ not Deadlock
61 }
62 check DijkstraPreventsDeadlocks

The analysis of the Alloy Analyzer does not find a counterexample in a scope that
bounds the size of State to 8, and the sizes of Process and Mutex to 5. This analysis
finished in about 6 minutes. When increasing the scope for State to 9, the analysis
is no longer feasible: we aborted the solver after 30 minutes.

6.2.3 The Proof

The system is modeled as an execution trace that describes legal transitions between
adjacent states. To prove properties about the system, we therefore need induction
on the State signature. For the proof as it is shown here, we assume this signature
to be infinite. For the finite case, the proof is similar.

For a complex proof, it is advisable to partition it into simpler subproofs. We
therefore formulate and prove several auxiliary lemmas. Such lemmas are introduced
by a“cut”: a case distinction on a user provided formula. In this proof, we introduced
seven such auxiliary lemmas. We present the most central ones here and sketch how
they are used to prove the assertion.

In order to prove the assertion, we need to find for every state a witness process
that is not stalled. Intuitively, the process that holds the largest mutex fulfills
this property. We use the maxMutex function from the translation of the ordering
module to express this property:

∀s, p,m: Atom | in(s, State) ∧ in(p,Process) ∧ in(m,Mutex)

∧ in(m,maxMutex (join1×2(Process , join1×3(sin(s), holds))))

∧ in(ternary(s, p,m), holds)

⇒ ¬some(join1×2(sin(p), join1×3(sin(s),waits)))

(6.1)

We use induction over the elements of State to prove (6.1). In the step case, we dis-
tinguish between the three possible transitions. The case of a mutex being released
required two auxiliary lemmas, which were again proven by induction on State. The
first one states that, if a process waits for some mutex, then all mutexes it holds are
smaller than that mutex:

∀s, p,m: Atom | in(s, State) ∧ in(p,Process) ∧ in(m,Mutex)

∧ in(ternary(s, p,m),waits)

⇒
∀mh: Atom | in(mh,Mutex) ∧ in(ternary(s, p,mh), holds)

⇒ ltMutex (sin(mh), sin(m))

(6.2)

The second auxiliary lemma expresses that no process waits for a free mutex:

∀s, p,m: Atom | in(s, State) ∧ in(p,Process) ∧ in(m,Mutex)

∧ in(ternary(s, p,m),waits)

⇒ some(join2×1(join1×3(sin(s), holds), sin(m)))

(6.3)

54 6. Experiments

For the proof of the assertion, we get the assumption that the predicate Deadlock
holds. So there is a process p0 and in some state s0, all processes are stalled. The
latter is expressed by:

∀p: Atom | in(p,Process)⇒ some(join1×2(sin(p), join1×3(sin(s0),waits))) (6.4)

We want to use (6.1) to refute this assumption. We thus have to find the maximal
mutex mmax that is being held in the state s0. To achieve this, we first prove a set
theoretical theorem that every non-empty and finite subset of Mutex (which is thus
ordered) has a maximal element:

∀r: Rel1 | finite(r) ∧ card(r) > 0 ∧ subset(r,Mutex)⇒ some(maxMutex (r)) (6.5)

We prove this theorem by induction on the set’s cardinality. To use the theorem, we
infer from (6.4) and (6.3) that the set join1×2(Process , join1×3(sin(s0), holds)) is not
empty. To show that the set is also finite, we show that in every state, only finitely
many mutexes are held:

∀s: Atom | in(s, State)⇒ finite(join1×3(sin(s), holds)) (6.6)

We again use induction on State to show the correctness of (6.6): Since every state
is reached by a finite number of state transitions, only finitely many mutexes can
be grabbed. From (6.5) and (6.6), we obtain mmax and ultimately use (6.1) to show
that the process holding mmax is not stalled, thus contradicting to (6.4).

6.2.4 Conclusion

During the proof, seven auxiliary lemmas have been proven. Despite (6.5), the proofs
used induction on the execution trace. Before conducting a proof for these lemmas
in the KeY system, confidence about their correctness can be gained by formulating
them in Alloy and use the Alloy Analyzer for automatic analysis. Providing suitable
correctness properties requires in-depth knowledge of the model and is the central
part of the required user interaction.

Proving the auxiliary lemmas needed guidance by the user, mostly quantifier in-
stantiations. Providing these instantiations requires the user to follow the proof
and identify the difficult cases that the automation strategy does not handle. The
user can increase the performance of the automation by hiding unnecessary (usually
quantified) formulas from the sequent. While this requires some experience, large
parts of the proof can be automated.

In total, the proof took 18875 rule applications, out of which 291 were performed
manually. Most of the manual steps were quantifier instantiations (92) and hiding
of formulas (80). An experienced user can conduct such a proof in roughly one work
day.

The Alloy model makes extensive use of the ordering module. Kelloy leverages KeY’s
integers to handle the module. The case study provides evidence for the efficiency of
this approach: no considerable user interaction was needed to handle the ordering
module.

While the case study shows some of the strengths of Kelloy, it also shows some
deficiencies. Most notably was the proof of (6.6) cumbersome and required some
user interaction in order for the inference rules about finiteness to be applicable. In
contrast to that, the proof of (6.5) was quite elegant. However, this set-theoretical
theorem is not directly related to the model being verified.

7. Conclusion

7.1 Summary

Based on the KeY system, we developed the Kelloy tool that is capable of verifying
Alloy models. A first-order theory was defined to permit relational reasoning within
the KeY system. Kelloy uses this theory to translate Alloy specifications to KeY’s
first-order logic. The translated model can then be verified using KeY. Restrictions
on the size of the model’s instances, as imposed by the Alloy Analyzer, are dropped
and instances are potentially infinite. Some parts of the Alloy language, however, are
only understood for finite instances, most notably the cardinality operator. Their
semantics in an infinite setting had to be defined separately from the finite case. For
a subset of Alloy’s relational logic, the translation has been proven correct.

KeY’s automated proof search strategy was extended to the newly defined relational
theory. Several hundred lemmas have been written to allow for efficient relational
reasoning. We evaluated the performance of the approach in several experiments
and a case study.

7.2 Related Work

The verification of Alloy models has been addressed earlier in several ways. The
approach closest to ours is Prioni [3] that translates Alloy models to a polymorphic
multi-sorted first-order logic. Similar to this work, Prioni provides a first-order
relational theory as abstraction layer. In contrast to Kelloy, however, it regards
only finite instances.

The Dynamite tool [10] verifies Alloy models by translating them to PVS [27]. It is
based on fork algebras [11] and a complete proof calculus [9]. In contrast to Prioni
and our approach, the target of the translation is a higher-order language. Thus,
the degree of user interaction is presumably higher.

Both system, Prioni and Dynamite, integrate the Alloy Analyzer into the process
of interactive proving, for example to check a user-provided hypotheses. Such ideas
might also be incorporated into Kelloy, see Section 7.3. To the best of our knowledge,

56 7. Conclusion

Prioni and Dynamite both only cover a rather small Alloy subset and lack support
for several language features like integers.

El Ghazi and Taghdiri [14, 15] use SMT solvers to verify Alloy models automatically.
However, since the Alloy logic is undecidable, the solver occasionally fails to verify
correct models. The approach is thus complementary to this work. A framework
coupling their approach with Kelloy is presented in [13].

In [23], Event-B [1] proof obligation are translated to KeY. Event-B is a set theoret-
ical language that also supports binary relations. Similarly to the relational theory
in this work, a first-order theory that resembles the language constructs of Event-B
is developed. Relations of higher arity, however, are not supported by Event-B and
therefore not covered.

7.3 Future Work

In this section, we outline some possible extensions to the Kelloy tool that might be
addressed in the future.

The automatic analysis performed by the Alloy Analyzer might be leveraged by
Kelloy to make interactive proving more efficient. Formulas from the proof sequent
could be translated back to Alloy and analyzed automatically, thus saving the user
from introducing false hypotheses to the proof. One might further use the Alloy
Analyzer to generate and visualize instances of the model that correspond to a
particular proof sequent, thus helping the user to keep track of the proof while
sequences become more complex.

The KeY system is a software verification tool. As specification languages, OCL,
JML, and dynamic logic are supported. In contrast to Alloy, these languages are
designed to specify an implementation rather than an abstract model of the system
being implemented. Future work might explore how Alloy can be used as an alternate
specification language for Java programs to be verified in the KeY system: refinement
steps towards the implementation might be carried out as proof obligations in KeY,
thus providing a uniform framework for the proof of the abstract model, as well as
its implementation.

Kelloy does currently not handle all of Alloy’s language constructs. Adding support
for most of the missing features, however, does not present a theoretical challenge.
The unsupported features are:

• Multiple variable bindings for the one and lone quantifiers as in one x,y: e | F.

• Sequences of atoms.

• The disj keyword on the right-hand side of a field declaration.

• The sum quantifier sum x: e | i.

• The shift operators <<, >>, and >>>. They manipulate the binary represen-
tation of an integer value. For mathematical integers, however, they do not
seem to be very useful.

• The maximal and minimal integer values are undefined in the translation.

A. Implementation Notes

Kelloy consists of two parts: The translation tool Alloy2KeY and the KeY prover.
Alloy2KeY uses the API of the Alloy Analyzer to parse and typecheck Alloy models,
and desugar several syntactical features.

The translation tool gets an Alloy specification as input and generates a .key problem
file containing the proof obligation to be loaded into the KeY system. Along with
the problem file, a directory called theory is created that contains the rules and
declarations of the relational theory, as well as the lemmas of the reasoning strategy.

To load the problem file created by Alloy2KeY, a special version of the KeY system
is needed. This version is based on a current development version of KeY (1.7.2205)
and implements the strategy as described in Chapter 5. It furthermore allows for-
mulas as parameters to functions and predicates which we use for the translation of
comprehensions.

Kelloy currently supports relations up to an arity of three. The Alloy2KeY tool,
however, handles arbitrary arities. The limitation arises from the relational theory
that lacks the necessary declarations for higher arities.

We document the usage of the translation tool Alloy2KeY here. Documentation
on how to use the KeY system can be found elsewhere1. The distribution of Al-
loy2KeY comes with an executable startup script named alloy2key. It takes the
Alloy specification to be translated as an argument. For example,

alloy2key model.als

translates model.als. It creates the problem file model.als.key and the directory
theory in the same place as the input model. To change this behavior, an output
file might be specified: Calling the script with

alloy2key model.als /path/to/model.key

creates the problem file model.key in the /path/to/ directory, and also stores the
theory directory there. By default, Alloy2KeY does not overwrite any existing files.
Using the --force switch changes this behavior:

1http://www.key-project.org

http://www.key-project.org

58 A. Implementation Notes

alloy2key --force model.als

overwrites the file model.als.key when it exists. It is occasionally desired that
signatures in an Alloy model are finite. Alloy2KeY allows the user to explicitly
finitize signatures through the --finite switch. For example,

alloy2key model.als –finite=Foo,Bar

makes Foo and Bar finite.

B. Operator Axiomatizations

Chapter 3 introduced numerous relational operators. We show their axiomatizations
here, each exemplary for one arity.

Union
in(a, union1(r(1), s(1))) :⇔ in(a, r(1)) ∨ in(a, s(1))

Intersection

in(a, inter 1(r(1), s(1))) :⇔ in(a, r(1)) ∧ in(a, s(1))

Difference
in(a, diff 1(r(1), s(1))) :⇔ in(a, r(1)) ∧ ¬in(a, s(1))

Join

in(b, join1×2(r(1), s(2))) :⇔ ∃a: Atom | in(a, r(1)) ∧ in(binary(a, b), s(2))

Product

in(ternary(a, b, c), prod1×2(r(1), s(2))) :⇔ in(a, r(1)) ∧ in(binary(b, c), s(2))

Domain Restriction

in(binary(a, b), domRestr 2(r(1), s(2))) :⇔ in(a, r(1)) ∧ in(binary(a, b), s(2))

Range Restriction

in(binary(a, b), rangeRestr 2(r(2), s(1))) :⇔ in(b, s(1)) ∧ in(binary(a, b), r(2))

60 B. Operator Axiomatizations

Override

in(binary(a, b), overr 2(r(2), s(2))) :⇔ in(binary(a, b), s(2)) ∨
(in(binary(a, b), r(2)) ∧
∀c: Atom | ¬in(binary(a, c), s(2)))

Transpose

in(binary(a, b), transp2(r(2))) :⇔ in(binary(b, a), r(2))

Transitive Closure

iterJoin(r(2), 0) := r(2)

i > 0

iterJoin(r(2), i) := union2(iterJoin(r(2), i− 1), join2×2(r(2), iterJoin(r(2), i− 1)))

in(t(2), transClos(r(2))) :⇔ ∃i: int | i ≥ 0 ∧ in(t(2), iterJoin(r(2), i))

Reflexive Transitive Closure

reflTransClos(r(2)) := union2(iden, transClos(r(2)))

Bibliography

[1] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition, and
instantiation of discrete models: Application to Event-B. Fundamenta Infor-
maticae, 2007.

[2] Alloy Analyzer 4. http://alloy.mit.edu/alloy4.

[3] Konstantine Arkoudas, Sarfraz Khurshid, Darko Marinov, and Martin Rinard.
Integrating model checking and theorem proving for relational reasoning. In
Seventh International Seminar on Relational Methods in Computer Science,
2003.

[4] Bernhard Beckert, Martin Giese, Elmar Habermalz, Reiner Hähnle, Andreas
Roth, Philipp Rümmer, and Steffen Schlager. Taclets: A new paradigm for con-
structing interactive theorem provers. Revista de la Real Academia de Ciencias
Exactas, F́ısicas y Naturales, Serie A: Matemáticas, 2004.

[5] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification
of Object-Oriented Software: The KeY Approach. Springer-Verlag, 2007.

[6] Edsger W. Dijkstra. Cooperating sequential processes. In Programming Lan-
guages: NATO Advanced Study Institute. Academic Press, 1968.

[7] Guozhu Dong and Jianwen Su. Incremental and decremental evaluation of
transitive closure by first-order queries. Information and Computation, 1995.

[8] Jonathan Edwards, Daniel Jackson, and Emina Torlak. A type system for
object models. In Foundations of Software Engineering, 2004.

[9] Marcelo Frias, Carlos Lopez Pombo, and Nazareno Aguirre. An equational cal-
culus for Alloy. In ICFEM 2004: International conference on formal engineering
methods, 2004.

[10] Marcelo Frias, Carlos Lopez Pombo, and Mariano Moscato. Alloy Ana-
lyzer+PVS in the analysis and verification of Alloy specifications. In 13th.
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, 2007.

[11] Marcelo Fabian Frias. Fork Algebras in Algebra, Logic and Computer Science.
World Scientific Publishing Co., Inc., 2002.

[12] Stefan Geschke. Model theory. http://www.hausdorff-center.uni-bonn.de/
people/geschke/teaching/ModelTheory.pdf.

http://alloy.mit.edu/alloy4
http://www.hausdorff-center.uni-bonn.de/people/geschke/teaching/ModelTheory.pdf
http://www.hausdorff-center.uni-bonn.de/people/geschke/teaching/ModelTheory.pdf

62 Bibliography

[13] Aboubakr Achraf El Ghazi, Ulrich Geilmann, Mattias Ulbrich, and Mana
Taghdiri. A dual-engine for early analysis of critical systems. In Workshop
on Dependable Software for Critical Infrastructures (DSCI), 2011.

[14] Aboubakr Achraf El Ghazi and Mana Taghdiri. Analyzing alloy constraints
using an smt solver: A case study. In 5th International Workshop on Automated
Formal Methods (AFM), 2010.

[15] Aboubakr Achraf El Ghazi and Mana Taghdiri. Relational reasoning via SMT
solving. In 17th International Symposium on Formal Methods (FM), 2011.

[16] Martin Giese. A calculus for type predicates and type coercion. In Automated
Reasoning with Analytic Tableaux and Related Methods, Tableaux 2005, 2005.

[17] David Gries and Fred B. Schneider. Avoiding the undefined by underspecifica-
tion. In Computer Science Today: Recent Trends and Developments, number
1000 in Lecture Notes in Computer Science, 1995.

[18] Charles A.R. Hoare. Communicating sequential processes. Communications of
the ACM, 1978.

[19] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT
Press, 2006.

[20] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity
mechanism. In Proceedings of the 9th ACM SIGSOFT international symposium
on Foundations of software engineering / 8th European software engineering
conference, 2001.

[21] Eunsuk Kang and Daniel Jackson. Formal modeling and analysis of a flash
filesystem in Alloy. In Proceedings of the 1st international conference on Ab-
stract State Machines, B and Z, 2008.

[22] Uwe Keller. Some remarks on the definability of transitive closure in first-order
logic and datalog, 2004.

[23] Christopher Köker. Discharging Event-B proof obligations. Studienarbeit, Uni-
versität Karlsruhe (TH), 2008.

[24] Tal Lev-Ami, Neil Immerman, Thomas W. Reps, Mooly Sagiv, Siddharth Sri-
vastava, and Greta Yorsh. Simulating reachability using first-order logic with
applications to verification of linked data structures. Computing Research
Repository, 2009.

[25] Greg Nelson. Verifying reachability invariants of linked structures. In Proceed-
ings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, 1983.

[26] User Manual of the RODIN Platform. Version 2.3, October 2007.

[27] Natarajan Shankar, Sam Owre, John Rushby, and David Stringer-Calvert. PVS
Prover Guide. Computer Science Laboratory, SRI International, September
1999.

Bibliography 63

[28] Mana Taghdiri and Daniel Jackson. Inferring specifications to detect errors in
code. Journal of Automated Software Engineering (JASE), 2007.

[29] Pamela Zave. Lightweight modeling of network protocols in Alloy. www2.
research.att.com/~pamela/chord.pdf, 2009.

www2.research.att.com/~pamela/chord.pdf
www2.research.att.com/~pamela/chord.pdf

	Contents
	1 Introduction
	1.1 Overview
	1.2 An Example
	1.3 Outline

	2 Background
	2.1 Alloy
	2.2 KeY

	3 Translating Alloy to First-Order Logic
	3.1 A First-Order Relational Theory
	3.2 Multiplicity Constraints
	3.3 Signatures
	3.4 Fields
	3.5 Expressions
	3.6 Formulas
	3.7 Functions and Predicates
	3.8 Advanced Features

	4 Theoretical Evaluation
	4.1 Arity-Independent Operators
	4.2 Formalization of the Translation
	4.3 A Correctness Proof
	4.4 Model Correctness

	5 Reasoning
	5.1 Deduction Rules
	5.2 Transitive Closure
	5.3 Finiteness and Cardinality
	5.4 Ordering

	6 Experiments
	6.1 Automation
	6.2 Case Study

	7 Conclusion
	7.1 Summary
	7.2 Related Work
	7.3 Future Work

	A Implementation Notes
	B Operator Axiomatizations
	Bibliography

