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Abstract—We present a novel approach to bounded program
verification that exploits recent advances of SMT solvers in
modular checking of object-oriented code against its full speci-
fication. Bounded program verification techniques exhaustively
check the specifications of a bounded program with respect to a
bounded domain. To our knowledge, however, those techniques
that target data-structure-rich programs reduce the problem
to propositional logic directly, and use a SAT solver as the
backend engine. Scalability, therefore, becomes a major issue
due to bit blasting problems.

In this paper, we present a novel approach that translates
bounded Java programs and their JML specifications to quan-
tified bit-vector formulas (QBVF) with arrays, and solves them
using an SMT solver. QBVF allows logical constraints that are
structurally closer to the original program and specification,
and can be significantly simplified via high-level reasonings
before being flattened in a basic logic. We also present a case
study on a large-scale implementation of Dijkstra’s shortest
path algorithm. The results indicate that our approach provides
significant speedups over a SAT-based approach.

Keywords-Bounded verification, Scope-bounded checking,
SMT, Quantified bit-vector, JML, Dijkstra shortest path.

I. INTRODUCTION

Bounded program verification (a.k.a. static scope-bounded
checking) (e.g. [12, 13, 27–29, 33, 34, 36]) has become
an increasingly attractive choice for gaining confidence in
the correctness of software. Bounded program verification
techniques statically check full functional properties of a
bounded program (in which loops and recursions are un-
rolled) with respect to a bounded domain (in which the
number of elements of each type is bounded).

Similar to bounded model checkers (e.g. [1, 30]), bounded
verification tools perform an exhaustive analysis with respect
to the given bounds, are fully automatic, and require little
intermediate annotations. However, unlike model checkers
that focus on temporal safety properties of entire programs,
bounded verification approaches are modular—they can
check program methods in isolation, against specifications—
and target data-related properties of data-structure-rich
programs—those that manipulate object configurations in the
heap. Such properties can also be verified by full verification
engines such as theorem provers (e.g. [4]), SMT-based proof
engines (e.g. [3]), and shape analyses (e.g. [23]). Although
such approaches provide proofs, they require extensive user-
provided annotations (e.g. loop invariants) and interactions,
or are not easily extensible to arbitrary data structures, or
do not guarantee conclusive termination.

To our knowledge, all existing bounded verification tech-
niques translate object-oriented programs and their specifi-
cations to a boolean satisfiability problem (possibly via an
intermediate relational logic), and solve it using an off-the-
shelf SAT solver. Although they have been successfully used
to find bugs in various programs, such a direct translation
to SAT (known as bit blasting) limits their scalability: they
can check code with respect to only a few objects and loop
unrollings, especially when the code also contains integer
expressions and array objects.

In this paper, we present a novel approach to bounded
program verification that exploits recent advances in SMT
solvers to provide better scalability. We introduce a transla-
tion of object-oriented programs and their specifications to
quantified bit-vector formulas (QBVF) with arrays, which
can be solved efficiently using recent SMT solvers (e.g.
Z3 [10] versions 2.17 and later). Compared to SAT-based
bounded verifications that only perform boolean-level sim-
plifications (e.g. shared expression detection and symmetry
breaking), a QBVF solver performs high-level reasoning and
simplifications (such as heuristic quantifier instantiations and
template-based model finding), then flattens the formula and
analyzes it in a quantifier-free SMT logic, and uses bit-
blasting only as a last resort. This significantly improves
the scalability of the solver [39].

Of course applying SMT solvers in the context of program
verification is not new. Boogie [3] and ESC/Java [14], for
example, have successfully used SMT solvers to verify
object-oriented programs. These tools, however, analyze
programs with respect to unbounded types. Quantifying
over such types makes their target logics undecidable, and
thus a conclusive analysis is not guaranteed. On the other
hand, model checkers such as LLBMC [30] and SMT-
CBMC [1] target a decidable SMT logic with bit-vectors
and arrays. Their translations, however, are optimized for
checking legal memory-accesses and control-related proper-
ties; they do not address data-structure properties of object-
oriented programs. Armando et.al. [1] report that in CBMC,
an SMT solver often performs better than a SAT solver.
The comparison, however, is performed only in the context
of bounded model checking where all benchmarks consist
of only primitive integer types and arrays; object-oriented
programs are not considered.

The technique presented in this paper targets Java pro-
grams and JML specifications. The user selects a member



method of a Java class for analysis and provides its (ar-
bitrarily partial) pre- and post-conditions. He also provides
bounds on (1) the number of loop and recursion unrolling,
(2) the number of objects of each class, and (3) the bit-width
for integer values. Our technique automatically translates
the code and specifications to the decidable SMT logic
of QBVF with arrays, in which all types are encoded
as bit-vectors, and fields as arrays over bit-vectors. Since
bit-vectors provide a flat type system with a fixed range
of values, translating Java class hierarchy, dynamic object
allocation, null value, array objects, and JML reachability
expression efficiently becomes challenging. We handle such
constructs via additional uninterpreted functions and axioms,
and incorporate them into JML specifications when neces-
sary. The generated formulas are handed to the Z3 SMT
solver for a possible counterexample. All counterexamples
are guaranteed to be sound with respect to the bounds, but
lack of a counterexample does not constitute proof.

We have implemented this technique in a prototype tool,
InspectJ, that currently handles a subset of Java and JML.
In addition to checking post-conditions and class invariants,
InspectJ checks for two built-in exceptions of null-pointer
dereferencing and array index out of bounds. We have
used InspectJ to check properties of a large-scale imple-
mentation of the Dijkstra shortest path algorithm [11]. To
our knowledge, all previous attempts to verify the imple-
mentations of this algorithm either abstracted away most
data structures [20] or checked a textbook implementation
with basic data structures [24]. The implementation we
chose is the basis of various optimizations for computing
shortest paths in large graphs (with millions of nodes), and
thus depends on interconnected, efficient data structures.
We found three previously-unknown bugs. Furthermore, to
evaluate the performance of our approach, we compared
InspectJ with JForge [12], a SAT-based bounded verification
tool, on various methods of the Dijkstra code. The results
show that InspectJ can analyze code with respect to larger
bounds, and can even achieve better code coverage.

II. BACKGROUND

A. Programs

We focus on analyzing object-oriented programs, and
currently support a basic subset of Java that does not include
real numbers, concurrency, and user-defined exceptions.
Figure 1 gives a grammar for supported programs, assuming
that the expressions are side-effect free.

We support a class hierarchy definition without interfaces
and abstract classes. Methods are assumed to have a single
return point. Loops are allowed, but are unrolled (based on
a user-provided limit) in a pre-processing phase. Unrolling a
loop while (c) s; twice will generate the nested branch state-
ment if (c) {s; if (c) {s; assume(!c)}}. The pre-processing
phase also decomposes allocation statements. That is, the
Java statement x = new T(e1, .., en); is broken into two

Prog ::= ClassDcl*
ClassDcl ::= class Class [extends Class]

{FieldDcl* ProcDcl*}
FieldDcl ::= Access Type Field
ProcDcl ::= Access Type Proc(ParDcl*){Stmt}
ParDcl ::= Type Var
Stmt ::= Var = Expr | Var[Expr] = Expr

| Expr.Field = Expr | [var =] Proc(Expr*)
| Var = new Class(Expr*) |new Class()[Expr]
| if (Expr) Stmt [else Stmt]
| while (Expr) Stmt | Return [Var]
| continue | break | Stmt; Stmt

Expr ::= Const | Var | Var[Expr] | Expr.Field
| Expr instanceof Class | (Class) Expr
| Expr BinOp Expr | !Expr

BinOp ::= + | - | * | / | >> | << | >>>
| & | | | < | > | == | != | && | ||

Const ::= null | true |false | 0 | 1 | -1 |...
Type ::= Class | boolean | int

| Class[] | boolean[] | int[]
Access ::= public | protected | private
Proc, Var, Class, Field ::= Identifier

Figure 1: Program Syntax

consecutive statements for the actual allocation and for field
initialization1: x = new T; x.init(e1, .., en); In the rest of this
paper, we assume that loops and recursive calls are already
unrolled, and allocation statements are decomposed.

B. Specifications

We currently check Java programs against specifications
written in a basic subset of JML (Java Modeling Lan-
guage) [18] that does not include model fields and excep-
tional behaviors. The specifications are categorized using the
keywords requires (for pre-conditions), ensures (for post-
conditions), and invariant (for class invariants). In addition
to user-provided specifications, we check null-pointer deref-
erencing and array index out of bounds exceptions.

By default, in JML, reference fields and the elements of an
array field are assumed to be non-null. The nullable modifier
is used to allow null values. We support arbitrarily nested
universal and existential quantifiers in the specifications.
Furthermore, the JML reachability construct is allowed. The
expression \reach(x, T, f) gives the smallest set of objects
of type T that are reachable from the object x via the field
f . If x is of type T , it will be included in the set.

C. Target Logic

We translate programs and their specifications to a first-
order SMT logic that contains only bounded types. It
consists of quantified bit-vectors, arrays over bit-vectors,
and uninterpreted functions. Quantified bit-vector formulas
(QBVF) were traditionally handled by flattening quantifiers
using conjunctions and disjunctions. This could result in
losing some high-level information, and generating formulas
that were too big to solve. Recent QBVF solvers [39],

1This may be done using the Soot framework [32].



however, perform several high-level simplifications such
as heuristic-quantifier instantiation [26], miniscoping [16],
and rewriting [21] before flattening quantifiers. Thus, the
formulas handed to the underlying theory and SAT solvers
are significantly more compact and easier to solve. Here, we
describe our target logic in the SMT-LIB 2.0 syntax [31] in
which expressions are given in a prefix notation.

Basics. We target a many-sorted first-order logic. The
command (declare-fun f (A1 .. An−1) An) de-
clares a function f : A1 × .. × An−1 → An. Constants are
functions that take no arguments. The command (assert
F) asserts a formula F in the current logical context. Basic
formulas are combined using the boolean operators and, or,
not, and => (implies). Universal and existential quantifiers
are denoted by the keywords forall and exists.

Fixed-Size Bit-Vectors. All sorts in this theory are of the
form ( BitVec m) where m is a non-negative integer
number, denoting the size of the bit-vector. Bit-vectors of
different sizes represent different sorts in SMT. A constant
number n represented by a bit-vector of size m is denoted
by ( bvn m). This theory models the precise semantics
of unsigned and of signed two-complements arithmetic. It
supports a large number of logical and arithmetic operations
on bit vectors. Examples include bvule (unsigned less than
or equal to), bvuge (unsigned greater than or equal to), and
bvadd (addition).

Extensional Arrays. An array sort is defined as (Array
S1 S2) where S1 and S2 denote the index sort and the value
sort, respectively. This theory supports two basic functions:

select : (Array S1 S2)× S1 → S2 (1a)
store : (Array S1 S2)× S1 × S2 → (Array S1 S2) (1b)

(select a x) returns the value corresponding to an
index x of an array a, thus providing a read access. (store
a x y) returns a copy of an array a in which the index
x is mapped to the value y, thus providing a write access.
Three properties are guaranteed: (1) updating the value of an
index does not update the values of other indices, (2) reading
an index yields the last value written in that index, (3) two
arrays are identical iff all of their elements are identical.

In our approach, all basic types (including the index and
value types of arrays) are fixed-size bit-vectors. Thus despite
the arbitrary use of quantifiers, the logic is decidable.

III. APPROACH

A (preprocessed) method m is translated to an SMT
formula based on a set of user-provided bounds b on the
size of each type. We use T to denote this translation.
That is, T [m, b] produces a tuple (s, s′, f, ex) in which s
denotes the symbolic pre-state used in the translation, s′

denotes the resulting post-state, f denotes an SMT formula
whose satisfying solutions represent normal executions of m,
and ex denotes an SMT formula whose satisfying solutions

represent those executions of m that cause a built-in ex-
ception. Furthermore, we use R to denote the translation of
specifications. That is, for a JML formula j and a symbolic
state s, R[j, s] produces an SMT formula whose satisfying
solutions represent those concretizations of s that satisfy j.

Given a set of bounds b, a requires clause req and an
ensures clause en for a method m defined in a class with
an invariant clause inv, we use T and R to produce the
following formula where T [m, b] = (s, s′, f, ex):

R[req, s] ∧R[inv, s] ∧ f ∧ (R[¬en, s′] ∨R[¬inv, s′] ∨ ex)

A solution to this formula represents a counter-example to
the specification: a pre-state that satisfies req and inv, but its
post-state either violates en or inv, or causes an exception.

The translation starts in a pre-state in which all the fields
and all the inputs of the analyzed method are mapped to un-
interpreted, symbolic constants. This section describes how
various program and specification constructs are translated.

A. Encoding Control Flow

We encode the control flow of the analyzed method using
a computation graph [36]. The nodes of this graph represent
control points in the program, and the edges are either
program statements or branch conditions. The graph has a
single entry node and a single exit node, and is acyclic due
to loop unrolling. All variables and fields are assumed to
be renamed so that they are assigned at most once along
each path of the graph. Explicit frame conditions are used
to avoid underspecification at merge nodes.

Compared to a global-state encoding, the computation
graph represents a program state implicitly, as a collection
of independent variables and fields. That is, each update
to a variable (field) replicates that variable (field) only,
without causing the whole global state of the program to
be replicated. Furthermore, using computation graphs allows
us to encode the control- and the data-flow constraints
separately, which prevents deeply-nested formulas and helps
produce more readable counterexamples. More details about
computation graphs can be found in [36].

Figure 2 provides an example. Suppose that the method
insert in the Entry class of Figure 2(a) is selected for analy-
sis. The computation graph of Figure 2(b) is constructed,
assuming that the initial variables and fields are named
using the index 0. The index is incremented every time
the variable or the field is updated. Figure 2(c) gives the
SMT formulas encoding the control flow: we introduce a
boolean variable E i j to represent an edge from a node
i to a node j. If an edge E i j is traversed and j has
some outgoing edges, at least one of those outgoing edges
must be traversed too. Furthermore, at least one of the entry
edges must be traversed. The control constraints alone do not
prevent infeasible paths (e.g. when both edges of a branch
are taken); data flow constraints are also needed for the right
semantics. Figure 2(d) gives the frame condition associated



class Entry {
Entry n;
int d;
void insert(Entry e){
if (e != null)
e.n = this.n;
this.n = e;

}
}

(a) (b)

(assert (and
(=> E_0_1 E_1_2)
(=> E_1_2 E_2_3)
(=> E_0_2 E_2_3)
(or E_0_1 E_0_2)))

(assert
(=> E_0_2 (= n_1 n_0)))

(c) (d)

(assert (and
(=> E_0_1 (not (= e_0 nullEntry)))
(=> E_0_2 (= e_0 nullEntry))
(=> E_1_2 (= n_1(store n_0 e_0

(select n_0 this_0))))
(=> E_2_3 (= n_2 (store n_1 this_0 e_0)))))

(e)

Figure 2: Control Flow Encoding: (a) a sample Java class,
(b) computation graph, (c) control constraints, (d) frame
conditions, (e) data constraints.

with the merge node 2. Since taking the edge E 0 2 leaves
the field n 1 underspecified, the frame condition explicitly
specifies n 1 = n 0 along this edge. Figure 2(e) gives the
data flow constraints as described in the next section.

Runtime Exception Checking: We check the two runtime
exceptions of null pointer dereferencing and array index
out of bounds by augmenting the computation graph with
additional tests as shown in Figure 3. To check that a field
dereference x.f at an edge E i j does not cause a null-
pointer exception, we add an extra node i′ that has an edge
to i for the normal execution (x 6= null), and an edge to
a unique exception node exc for the exceptional execution
(x = null). The exc node has one outgoing edge to the final
node. For an array access a[k], we check that (1) a is not
null, and (2) k is within the legal range. In the example of
Figure 2, these checks amount to (e 0 6= null) && (this 0
6= null) before node 1, and (this 0 6= null) before node 2,
both of which can be optimized out.

As a built-in property, we check if the edge from exc to
the final node can be taken. To ensure valid counterexamples,
an extra constraint specifies that only one of the incoming
edges of the final node can be taken.

B. Encoding Data Flow

1) Primitive Types: The primitive boolean type is en-
coded as a 1-bit bitvector, and the int type is encoded as
( BitVec i) where i is a user-provided bitwidth. All
operations on integers are translated to their corresponding

(a) (b)

Figure 3: Exception handling: (a) null pointer dereferencing,
(b) array index out of bounds.

bit-vector operations in SMT. Division and multiplication
are computed using arithmetic shift operators.

2) Classes: Encoding the complete Java class hierarchy
requires defining an Object class as the super-type of all
classes. This imposes a significant overhead on the solver.
Therefore, we avoid modeling the Object class unless the
analyzed code actually reaches it or one of its methods.
Thus, we cannot encode null as a single value that is
compatible with all classes. In the absence of the Object
class, any class that does not syntactically inherit a parent
is considered a top-level class and has a distinct null value.

A top-level class A is encoded as a bit-vector of size
m = dlog(n + 1)e where n is the user-provided bound
on the size of A. The value 0 stands for the null value
for type A, denoted by nullA. We use an uninterpreted
constant idxA to denote the last object of type A already al-
located in the pre-state: (declare-fun idxA () (
BitVec m)). The additional constraint (bvule idxA
n) ensures that the bound constraint is met in the pre-state.

nullA, 1, 2, . . . , idxA︸ ︷︷ ︸
valid range of A

, .., n, .., 2m − 1

An object of type A is valid if it belongs to A’s valid range
of [0, .., idxA]. We explicitly constrain all objects of the pre-
state (e.g. the receiver object and the method’s arguments)
to be valid. The receiver object is further constrained to be
non-null:
(declare-fun this () (_ BitVec m))
(assert (and (not (= this nullA))

(bvule this idxA)))

3) Class Hierarchies: We support class inheritance for
concrete classes. We encode a superclass and its subclasses
as the same SMT sort, and use additional constraints to
maintain subtype semantics. Consider a class hierarchy
where A and B extend C. Given user-provided bounds m,
n, and w for A, B, and C, respectively (with an additional
constraint m + n ≤ w), we encode all three types as bit-
vectors of size s = dlog(w + 1)e. This allows us to treat
instances of a subclass as an instance for the superclass.



The null values of all subtypes and their supertype are the
same and is represented by the value 0. An uninterpreted idx
constant is used to represent the last allocated object of each
type. Instances of subclasses are represented by the values
of non-overlapping sub-ranges. In our example, the allocated
objects of types A, B, and C are given by the subranges
[1, .., idxA], [m + 1, .., idxB], and [m + n + 1, .., idxC],
respectively, where idx constants are constrained as follows:
(declare-fun idxA () (_ BitVec s))
(declare-fun idxB () (_ BitVec s))
(declare-fun idxC () (_ BitVec s))
(assert (and (bvule idxA m)
(or (= idxB (_ bv0 s))
(and(bvule idxB(bvadd m n))(bvugt idx_B m)))

(or (= idxC (_ bv0 s))
(and(bvule idxC w)(bvugt idxC(bvadd m n))))))

The valid ranges of A and B are [0, .., idxA] and
[0,m+ 1, .., idxB], respectively. The valid range of C also
includes the valid ranges for A and B, and is defined as
[0, .., idxA,m+ 1, .., idxB,m+ n+ 1, .., idxC].

The Java expression (o instanceof T) evaluates to true if o
is not null, and is in the valid range of T . Casting an object o
to a class T is allowed if o = null or (o instanceof T) holds.
Overridden methods and fields are resolved via a sequence
of nested tests on the actual object type using instanceof.

4) Object Allocation: In order to allocate an object of
type A, we increment2 idxA. The new value of idxA
denotes the allocated object. More precisely, the statement
A a = new A is encoded by the following constraints where
idxAi and idxAi+1 represent the value of idxA before
and after the allocation, respectively, and m represents the
number of bits for A.
(assert (and

(= idxAi+1 (bvadd idxAi ( bv1 m)))

(= a idxAi+1)

(bvuge idxAi+1 idxAi)

(bvuge idxAi+1 ( bv1 m))))

The last two constraints ensure that the expression
idxAi + 1 does not overflow by constraining the result to
be greater than both idxAi and 1. Furthermore, the final
number of allocated objects in the post-state, denoted by
idxA′, will be constrained not to exceed A’s bound.

5) Fields: Fields are translated to arrays over bit-vectors.
Read accesses to the fields are encoded using the select
operator, and updates are encoded using the store operator.
Each update to a field requires a new array to represent the
result. A field f of type B declared in a class A is en-
coded as (declare-fun f () (Array ( BitVec
m) ( BitVec n))) where m and n denote the number
of bits for A and B, respectively.

To ensure that the initial value of the field f is valid,
we constrain that f maps all values of the valid range of
A (except null) to a value in the valid range of B in the

2This is slightly more involved for the case of inheritance.

pre-state. For simple ranges of [0, .., idxA] and [0, .., idxB]
for A and B, respectively, the following constraint is used:
(assert (forall (x (_ BitVec m))
(=> (and (not (= x nullA)) (bvule x idxA))

(bvule (select f x) idxB))))

Since each field update either uses an object from the
pre-state or one that is allocated, the above constraint along
with the constraints on allocated objects (see Section III-B4)
ensure that all field updates throughout the code are valid.

6) Arrays: In Java, each array is an object that holds its
contents. We encode array objects of type A[] by introducing
a new type ArrayObjA as ( BitVec t). Furthermore,
we introduce RefA as a reference from array objects of type
A[] to their contents:
(declare-fun RefA ()
(Array (_ BitVec t)

(Array (_ BitVec i) (_ BitVec m))))

where t, i, and m denote the number of bits for ArrayObjA,
integers, and the class A, respectively.

The length of an array in Java is initialized upon its
allocation, and remains unchanged over its lifetime. Thus,
it can be efficiently modeled using an uninterpreted SMT
function from array objects to integers. The length of any
array of type A[] is given by (declare-fun LenA (
BitVec t) ( BitVec i)) where t and i denote the
number of bits for ArrayObjA and integers, respectively.

Array Allocation: Upon array allocation, its length is
determined and its elements are initialized to 0 for primitive
types, and null for others. Similar to other types, allocated
array objects are modeled using an idx counter. The follow-
ing constraint initializes the array attributes for an allocation
statement A[] ao = new A[length], where i is the number of
bits for integers and RefAk represents the array reference
before this statement.
(assert (and (= (LenA ao) length)

(forall (x ( BitVec i))

(=> (bvult x length)

(= (select (select RefAk ao) x) nullA)))))

Array Access: As shown above, a read access to an array
object requires two nested select operations. Similarly,
a write access requires nested store operations. That is,
a Java statement ao[j] = a is encoded as follows, where
RefAk and RefAk+1 represent the array references before
and after this statement, respectively.
(assert (let (RA (select RefAk ao))

(= RefAk+1(store RefAk ao (store RA j a)))))

C. Encoding JML Specifications

JML specifications can refer to fields, the receiver object,
the input arguments, and the return value that are accessible
in the pre- or post-state of the analyzed method. We replace
these references with the appropriate symbolic constants that
are used in our translation.



1) Valid instances: Encoding types as bit-vectors has the
side effect that the accessible range of a type can be bigger
than its valid range. Therefore, our translation modifies every
JML formula that uses a variable x of type A to incorporate
an additional constraint that x belongs to the valid range
of A. This becomes particularly important for the variables
used in quantification.

2) Reachability: Transitive closure (the reachability op-
erator) over arbitrary domains cannot be axiomatized in
pure first-order logic [22]. For finite domains, however, an
axiomatization has been given by Claessen [6]. Inspired by
his approach, we introduce the following axioms to compute
the transitive closure of a (homogeneous) field f of type A
declared in a class A. For a more concise syntax, we pretend
that f is a function of type A→ A.
(assert (forall ((x A)(y A))
(= (= (f x) y) (= (P x y) 1))))

(assert (forall ((x A)(y A)(z A))
(=>(and (>(P x y)0)(>(P y z)0))(>(P x z)0))))

(assert (forall ((x A)(y A))
(=>(> (P x y) 1) (exists (w A) (and
(= (P x w) 1) (= (P x y) (+ 1 (P w y))))))))

The auxiliary function P : A × A → int is defined to
represent the smallest number of steps required to reach from
one object to another (via f ). The first constraint sets P (x, y)
to 1 if and only if x.f = y. The second constraint ensures
transitivity, and the third constraint defines a partial order
over all the objects reachable from a single source. This con-
straint is crucial for soundness when f is cyclic. Converting
the axioms to use arrays and bit-vectors is straightforward.
It should be noted that the maximum value of P is at most
the number of objects in A. Therefore, in converting to bit-
vectors, the int type used in the declaration of P above can
use the same number of bits as A. Furthermore, the addition
operator must be constrained not to overflow.

We use P to rewrite the reachability construct of JML.
That is, an object y is in the set \reach(x, T, f) iff it is a
valid object of type T , and (x = y) or ((P x y) > 0).

3) Call Site Specifications: If the user provides pre- and
post-conditions for a method foo, they will be used to
substitute any call to foo. Otherwise, the body of foo will
be inlined using the arguments of each call site. In order to
substitute specifications, foo’s pre-conditions will be asserted
(checked) to hold in the pre-state of the call, and post-
conditions will be assumed to hold in a fresh post-state in
which a fresh SMT constant is introduced for the return
value and any field that may be modified by foo, and a
fresh idx constant is introduced for any type of which foo
may allocate an object. These constants will be constrained
further to belong to the valid ranges of their corresponding
types as described before.

IV. EVALUATION

We have implemented our technique in a prototype tool,
InspectJ, that uses the Jimple 3-address intermediate repre-

sentation provided by the Soot optimization framework [32]
to preprocess Java Bytecode, the Common JML Tools pack-
age (ISU) [18] to preprocess JML specifications, and Z3 [10]
as the underlying SMT solver. We have checked a large-
scale implementation of Dijkstra’s shortest path algorithm
that forms the basis of several optimized routing algorithms
in graphs with millions of nodes. Furthermore, we have
compared the runtime of InspectJ against JForge [12], a well-
known SAT-based bounded verification tool that can handle
data-structure-rich Java programs.

A. An implementation of Dijkstra’s Shortest Path Algorithm

Dijkstra’s Shortest Path Algorithm computes single-
source shortest paths in graphs with non-negative edge
weights. The optimized version [11] that we target makes
heavy use of a priority queue backed by a binary heap.
The original codebase is written in C++, which the second
author has manually ported to Java for another project.
Porting required mostly syntactic conversions but also two
significant changes:

1) All C++ templates were removed and the actual types
were substituted.

2) All occurrences of STL:vector in the C++ code were
replaced with arrays, as our prototype does not handle
Java library (such as List) at the moment.

The resulting Java code consists of 7 classes with a total of
37 methods and 346 Java source lines, excluding whitespace
and specifications. To our knowledge, all previous verifica-
tions of the Dijkstra algorithm were performed on either a
very abstract, or a very basic implementation [20, 24]. Our
target code optimizes the memory layout and cache effects
through sophisticated interconnections of data structures.

B. Formal Specifications

In order to check a method foo in a class C, formal
specifications of foo are needed. Unlike full verification
tools, our tool does not need specifications for foo’s called
methods or loop invariants.

In the absence of any formal specifications, we provided
JML specifications for the Dijkstra code by consulting
its developers. The specifications of the analyzed methods
consist of 27 lines and mostly constrain the internal integrity
of the binary heap data structure. A sketch of the binary heap
along with some of its invariants is shown in Figure 4.

Since JForge expects specifications in the JFSL lan-
guage [40], we also converted JML specifications to JFSL.
This conversion required only simple syntactic changes.

C. Detected Bugs

So far we have checked 10 out of a total of 19 public
methods. Our analysis revealed 3 previously-unknown bugs
in the Java implementation of the binary heap data structure,
two of which represented the same problem in two different
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Figure 4: A sketch of the binary heap data structure and a sampling of its invariants.

methods. All bugs required small bounds (max. 3) and could
be found in under two seconds by both InspectJ and JForge.

The first problem (repeated twice) was introduced when
the C++ code was ported to Java. Assigning a struct in C++
copies all of its fields by value, while assigning an object in
Java only copies it by reference. Mimicking the C++ code,
we used a simple assignment to get copies of the elements
of the binary heap, which caused inconsistencies. The bug
and its fix are shown in Listing 1. The JML specification that
caught the bug is also given. It constrains the keys of the
elems array to match the keys of the heap array. In C++, line
8 modifies a fresh copy of heap[index1], whereas in Java,
it modifies the same object (key and val are integer values).
This unintended modification to heap causes inconsistencies
between heap and elems which causes the specification to
fail.

1 /*@ invariant
2 @(\forall int i; i >= 0 && i < this.heap.len
3 @ ==> this.elems[this.heap[i].val].key ==
4 @ this.heap[i].key)
5 @*/
6 // VERSION WITH BUG
7 heap[index2] = heap[index1];
8 heap[index2].key = k;
9

10 // VERSION WITHOUT BUG
11 heap[index2].key = heap[index1].key;
12 heap[index2].val = heap[index1].val;
13 heap[index2].key = k;

Listing 1: Invalid Copy Semantics

The second problem was present in the original C++
code that was already heavily tested. It involved a memory
location that was freed, but under certain conditions, was
referenced again. InspectJ detected this as a null pointer
exception since our Java code marks freed locations by null.
The bug and its fix are shown in Listing 2. Line 2 removes
the last element of the heap, but Line 3 accesses the first
element without checking whether the heap has become
empty (heap[0] is a dummy element). Swapping Lines 2
and 3 produces the intended behavior and fixes the bug in

this case. We have already reported the problem and it has
been fixed by the original developers.

1 // VERSION WITH BUG
2 this.dropHeap();
3 x = heap[1];
4 ....
5
6 // VERSION WITHOUT BUG
7 x = heap[1];
8 this.dropHeap();
9 ....

Listing 2: Invalid Memory Access

D. Runtime Evaluation
In order to evaluate the performance of our SMT-based

technique, we compared the runtime of InspectJ with JForge.
Apart from different specification languages, both JForge
and InspectJ operate on the same inputs. To evaluate scala-
bility, we set both tools to inline called methods in all the
experiments, and increased the bounds until both tools timed
out. All the experiments are performed on an Intel Xeon 2.53
GHz with 16 GB of RAM using OpenSUSE 11.3 64bit. We
used JForge 0.2.6, SAT4J 2.3.0.v20110329, and Z3 3.2.

The evaluation results are given in Table I. The Bits, Objs,
and Loop columns give the bounds on the integer bitwidth,
objects of each class, and loop iterations, respectively. The
runtime of each tool is given in seconds, and is split into the
time spent in the preprocessing phase (denoted by PrePro),
in which the code and its specifications are translated to
SAT or SMT formulas, and in the solving phase, which is
performed by the underlying solver. By default, JForge uses
an old version of SAT4J which we replaced with its most
recent version. Furthermore, for a fair comparison, we also
used Z3 (in SAT solving mode) as the backend solver for
JForge. The Total column gives the sum of the preprocessing
time and the best solving time. Any runtime beyond our
threshold of 600 seconds is denoted by TO.

The methods insert, decreaseKey, and deleteMin provide
the main functionality of the binary heap. They are used to



insert, update, and delete heap elements, respectively. The
method minElement returns the root element of the heap.
Checking these methods returns unsat, meaning that the
solver cannot find a counterexample, and thus the specifica-
tions hold for the given bounds. All the bugs previously
described were fixed prior to this comparison. We also
experimented with some satisfiable cases by underspecifying
the run method, the functional entry point of the Dijkstra
code. Calling this method typically involves calling all the
above methods multiple times.

As shown in Table I, when checking some methods with
respect to very small bounds (see first rows for deleteMin,
insert, and minElement), InspectJ is slower than JForge.
This is caused by the slow startup of the Soot and ISU
libraries used in InspectJ preprocessing. However, in all
other cases, InspectJ is significantly faster, and is capable
of checking bounds that JForge cannot. An interesting case
is minElement for which the runtime of InspectJ is inde-
pendent of the bounds. This is because the SMT solver
can deduce unsatisfiablity of the formula using high-level
simplifications. Increasing the bounds beyond 10 in this case,
causes an internal error in JForge due to the big sizes of the
formulas.

As shown in the table, InspectJ preprocessing is indepen-
dent of the analyzed bounds. This is because it only makes
a few passes over the input program and specification to
generate the SMT formulas. JForge preprocessing, however,
generates boolean formulas through bit-blasting. It incorpo-
rates low-level optimizations such as symmetry breaking and
sharing detection, and thus depends on the analyzed bounds.

During the experiments, we noticed that InspectJ covers
some paths in the code that JForge does not. For example,
deleteMin removes the root of the heap and restructures the
resulting tree to remain balanced. Covering all distinct cases
requires at least 5 tree nodes, but JForge times out in that
scope, and thus cannot analyze certain paths of the code.

Although more scalable than JForge, InspectJ still does
not deliver required scalability in all cases. The run method,
for example, cannot be checked beyond 2 loop iterations
due to its complexity (nested loops with various method
calls). We are currently investigating some abstraction ideas
to further improve the scalability of our approach.

V. RELATED WORK

Many bounded verification approaches (e.g. Jalloy [36],
JForge [12], TACO[27], Miniatur[13], Karun[33], and
MemSAT[34]) have been developed that target data-
structure-rich programs. Similar to our technique, these
approaches are exhaustive in the analyzed domain and
produce non-spurious counterexamples (wrt. the analyzed
bounds). However, unlike our technique that translates the
code and specifications to an SMT logic to allow high-level
simplifications, they use propositional logic (via a relational

logic) with only local simplifications at boolean level. Thus,
scalability is their key issue due to bit-blasting problems.

Scalability of bounded program verification can be im-
proved by partitioning the set of all program executions
based on the program’s control-flow or data-flow properties,
and analyzing each partition separately [28, 29]. Another
possibility is to introduce a CEGAR framework (see e.g.
Karun [33]), to iteratively analyze only the necessary parts
of the code. Such ideas are independent of the underlying
solver and can be incorporated into our approach in future.

ESC/Java[14] and ESC/Java2[8] analyze JML specifica-
tions of Java programs where loops are bounded, but Java
classes are not. They support various SMT solvers and
theorem provers, but due to quantification over infinite types,
their target logics are undecidable. Thus the solver may not
terminate with a conclusive outcome.

TestEra [25] and Korat [5] also check Java programs
against data-structure properties with respect to a bounded
heap. However, they perform the check dynamically. That is,
they generate all nonisomorphic input structures that satisfy
the pre-conditions within the given bounds, run the program
on each input, and check the results against an oracle (or a
post-condition). For checking code that involves a single data
structure (e.g. a linked list or a tree), these approaches would
suffice; they would achieve the same results as bounded pro-
gram verification. However, for checking code that involves
several data structures, the number of possible inputs can
become too large to enumerate and execute explicitly.

Model checkers such as FSoft [17], CBMC[7], and
SLAM [2] focus on checking temporal safety properties,
provide a fully automatics analysis, and can produce sound
counterexamples. However, they require the entire program;
no modular analysis is supported. They have been suc-
cessfully used in checking large programs against control
properties, but they are not suitable for checking the kind of
data-structure properties that we aim.

Several model checkers (e.g. [1, 9, 15, 30, 38]) incor-
porate SMT solvers as their underlying engines. Similar
to our approach, they translate a program and its property
to an SMT logic that consist of bitvectors and/or arrays.
Unlike our approach, their logics are quantifier-free. To our
knowledge, all of these model checkers target C programs
(thus no object-oriented features are supported), and their
translations are highly tuned for checking memory layout
and finite-state-machine properties; no data-structure prop-
erties (beyond simple array accesses) can be checked.

Java PathFinder [37], model checks Java programs by
explicitly traversing their state spaces. Originally it only
checked temporal safety properties, but then it was integrated
with Korat to handle data structure properties [19]. Similar
to Korat, explicitly enumerating all (nonisomorphic) inputs
can limit the applicability of this approach when the input
consists of several data structures or is weekly constrained.

KeY [4] and LOOP [35] use theorem provers to verify



Table I: Evaluation Results

Method Bits Objs Loop JForge InspectJ
PrePro SAT4J Z3 Total Result Result PrePro Z3 Total

3 3 3 0.6 TO 61.8 62.4 unsat unsat 1.5 0.4 1.9
4 4 4 0.7 TO 82.5 83.2 unsat unsat 1.5 8.7 10.3

decreaseKey 5 5 5 1.8 TO TO TO - unsat 1.5 31.3 32.8
6 6 6 8.7 TO TO TO - unsat 1.5 117.1 118.6
7 7 5 63.5 TO TO TO - unsat 1.5 357.6 359.1
7 7 6 66.0 TO TO TO - unsat 1.6 507.5 509.1
3 3 3 0.5 3.4 0.6 1.1 unsat unsat 1.7 0.2 1.9

deleteMin 4 4 4 1.5 414.8 36.4 37.9 unsat unsat 1.7 3.4 5.0
5 5 5 4.8 TO TO TO - unsat 1.7 52.5 54.2
6 6 6 29.5 TO TO TO - unsat 1.7 133.4 135.1
3 3 3 0.5 1.6 0.5 1.0 unsat unsat 1.6 0.4 1.9
4 4 4 0.8 69.8 14.8 15.6 unsat unsat 1.6 5.4 7.0

insert 5 5 5 2.1 TO 409.8 411.9 unsat unsat 1.6 86.8 88.4
6 6 6 11.3 TO TO TO - unsat 1.6 110.0 111.6
7 7 6 71.2 TO TO TO - unsat 1.6 311.4 313.0
4 4 4 0.5 0.3 0.2 0.7 unsat unsat 1.4 0.0 1.4
6 6 6 6.4 19.5 6.9 13.3 unsat unsat 1.4 0.0 1.4
7 7 7 49.5 70.0 16.6 66.1 unsat unsat 1.4 0.0 1.4

minElement 8 8 8 TO - - TO - unsat 1.4 0.0 1.4
10 10 10 TO - - TO - unsat 1.4 0.0 1.4
11 11 11 FAIL - - - - unsat 1.4 0.0 1.4

3 3 1 9.6 1.5 2.2 11.8 sat sat 3.2 0.7 3.9
4 4 1 16.7 9.5 4.3 21.0 sat sat 3.2 6.9 10.0

run 7 7 1 371.1 TO 299.0 TO - sat 3.2 0.2 3.4
10 10 1 TO - - TO - sat 3.2 2.4 5.6

3 3 2 TO - - TO - sat 5.0 52.7 57.7

rich properties of Java programs in a modular way, without
bounding domains. However, they often need user interac-
tion to prove their generated proof obligations. Boogie [3],
on the other hand, uses the Z3 SMT solver to fully verify
Java programs. Although Z3 is fully automatic, since Boogie
targets an undecidable SMT logic, it does not always termi-
nate with a conclusive result. Furthermore, these approaches
require the user to provide loop invariants. Shape analysis
techniques also provide full verification. TVLA [23], for
example, uses a 3-valued logic to analyze certain data
structures such as singly- and doubly-linked lists. However,
it is not easily extensible to arbitrary data structures.

VI. CONCLUSION

We presented an SMT-based, bounded verification tech-
nique for finding bugs in data-structure-rich programs. Pro-
grams are checked with respect to user-provided bounds on
the number of loop iterations and the number of elements
of each type. All found counterexamples are guaranteed to
be sound in the analyzed domain and any counterexample
within that domain is guaranteed to be found. Lack of a
counterexample, however, does not constitute a proof of
correctness beyond the analyzed domain. The novelty of
the approach is to exploit the quantified bitvector theory
(QBVF) of recent SMT solvers, which allows high-level
simplifications. To our knowledge, this is the first attempt
to use an SMT solver for bounded program verification.

We described how object-oriented features such as class
hierarchies, fields, dynamic object allocations, and array ob-
jects can be efficiently encoded in QBVF. We also reported

on applying our prototype tool, InspectJ, to a large-scale
implementation of the Dijkstra’s shortest path algorithm.
The results were encouraging; we found 3 previously-
unknown bugs, and witnessed significantly better scalability
over JForge—a compatible SAT-based engine. Checking
programs with respect to bigger bounds allowed us to cover
some execution paths that JForge could not cover.

In addition to improving InspectJ to handle more of Java
(e.g. exceptions and library methods), we will investigate
incorporating several optimizations such as slicing, parti-
tioning, and CEGAR (see Sec. V) to reduce the burden of
the underlying solver. Furthermore, although we described
a translation of reachability specifications to QBVF, this
feature was not used in our case study. Therefore, the
efficiency of this translation has to be evaluated in the future.

An important question in bounded verification is the rela-
tionship between the number of objects and loop unrollings.
Increasing one without increasing the other is not always
meaningful; it may only cause dead code or unused objects.
We will investigate such relationships in the future.
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