
KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

AUTOMATED SOFTWARE ANALYSIS GROUP

INSTITUTE FOR THEORETICAL COMPUTER SCIENCE, DEPARTMENT OF INFORMATICS

www.kit.edu

Bounded Program Verification using an SMT Solver:
 A Case Study

Tianhai Liu, Michael Nagel, Mana Taghdiri

2012-04-18

Automated Software Analysis Group

Institute for Theoretical Computer Science
2 2012-06-29

Friday

Bounded Verification Tool: InspectJ

Modular verification
Can check methods in isolation

Rich data-structure properties of OO code
Arbitrarily complex object configurations in the heap

Scalability
Target High-level simplications of QBVF solvers

Usability
Fully automatic infrastructure

Soundness
Error traces reported by InspectJ are real bugs

Bounded completeness
If a bug exists wrt. bounds, InspectJ finds it

Only wrt. finite number of objects, and loop/recursion unrolling

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Foundations Related Work Approach Conclusion Motivation Evaluation

Automated Software Analysis Group

Institute for Theoretical Computer Science
3 2012-06-29

Friday

Architecture

Foundations Related Work Approach Conclusion Motivation Evaluation

Java

method

InspectJ SMT

Solver

3-parameter scope:
 Bit-width of integer

 Number of instances

of each type

 Number of loop /

recursion unrollings

JML

SAT

UNSAT

counter-example

Found against

the spec.

No bug found

wrt. scope

𝑅 𝑝𝑟𝑒𝐶𝑜𝑛𝑑, 𝑝𝑟𝑒𝑆𝑡𝑎𝑡𝑒 ∧ 𝑓

∧ 𝑅 ¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑, 𝑝𝑜𝑠𝑡𝑆𝑡𝑎𝑡𝑒 ∨ 𝑒𝑥𝑐

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Automated Software Analysis Group

Institute for Theoretical Computer Science
4 2012-06-29

Friday

Target Logic

Quantified bit-vector formulas (QBVF) with theory
of arrays.

QBVF were traditionally handled by flattening
quantifiers using conjunctions and disjunctions.

Recent QBVF solvers (e.g. Z3) perform several
high-level simplifications before flattening
quantifiers

skolemization

miniscoping

Rewriting

... makes them more efficient!

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Foundations Related Work Approach Conclusion Motivation Evaluation

Automated Software Analysis Group

Institute for Theoretical Computer Science
5 2012-06-29

Friday

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Encoding Control Flow --- after 1 loop unrolling

Foundations Related Work Approach Conclusion Motivation Evaluation

public class A {

 B[] f; int sum;

 void foo(int i){

 while(i<10){

 sum+=f[i].v;

 i++;

 }}}

class B{int v;}

0

1

3

2

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑓 𝑖 . 𝑣

𝑖 < 10

4

𝑖 = 𝑖 + 1

𝑖 ≥ 10

 Nodes labeled with numbers stand for states

 Edges stand for transitions or branches chosen

 CF is encoded with edge variables

 e.g. 𝐸0,1⋁𝐸0,4, 𝐸0,1 → 𝐸1,2

 Each edge variable is a predicate

 Predicates evaluation depends on stmt.

 e.g. 𝐸0,1 → 𝑖 < 10

𝑖 ≥ 10

Automated Software Analysis Group

Institute for Theoretical Computer Science
6 2012-06-29

Friday

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Encoding Control Flow --- after 1 loop unrolling

Foundations Related Work Approach Conclusion Motivation Evaluation

public class A {

 B[] f; int sum;

 void foo(int i){

 while(i<10){

 sum+=f[i].v;

 i++;

 }}}

class B{int v;}

0

1

3

2

𝑠𝑢𝑚1 = 𝑠𝑢𝑚0 + 𝑓0 𝑖0 . 𝑣0

𝑖0 < 10

4

𝑖1 = 𝑖0 + 1

𝑖1 ≥ 10

𝑖0 ≥ 10

 Nodes labeled with numbers stand for states

 Edges stand for transitions or branches choosen

 CF is encoded with edge variables

 e.g. 𝐸0,1⋁𝐸0,4, 𝐸0,1 → 𝐸1,2

 Each edge variable is a predicate

 Predicates evaluation depends on stmt.

 e.g. 𝐸0,1 → 𝑖0 < 10

 Each variable (field, argument, local variable) is suffixed

 by a number N

 N means variable update times

 N starts from 0

Automated Software Analysis Group

Institute for Theoretical Computer Science
7 2012-06-29

Friday

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Encoding Control Flow --- after 1 loop unrolling

Foundations Related Work Approach Conclusion Motivation Evaluation

public class A {

 B[] f; int sum;

 void foo(int i){

 while(i<10){

 sum+=f[i].v;

 i++;

 }}}

class B{int v;}

0

1

3

2

𝑠𝑢𝑚1 = 𝑠𝑢𝑚0 + 𝑓0 𝑖0 . 𝑣0

𝑖0 < 10

4

𝑖1 = 𝑖0 + 1

𝑖1 ≥ 10

𝑖0 ≥ 10 && 𝒊𝟏 = 𝒊𝟎

 Each variable (field, argument, local variable) is suffixed

 by a number N

 N means variable update times

 N starts from 0

 Correct variable when in join nodes

 e.g. 𝐸0,4 → 𝑖0 ≥ 10 && 𝒊𝟏 = 𝒊𝟎

 Nodes labeled with numbers stand for states

 Edges stand for transitions or branches choosen

 CF is encoded with edge variables

 e.g. 𝐸0,1⋁𝐸0,4, 𝐸0,1 → 𝐸1,2

 Each edge variable is a predicate

 Predicates evaluation depends on stmt.

 e.g. 𝐸0,1 → 𝑖0 < 10

Automated Software Analysis Group

Institute for Theoretical Computer Science
8 2012-06-29

Friday

Exceptions

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Foundations Related Work Approach Conclusion Motivation Evaluation

class A {

 B[] f; int sum;

 void foo(int i){

 while(i<10){

 sum+=f[i].v;

 i++;

 }}}

class B{int v;}

0

1

3

2

𝑠𝑢𝑚1 = 𝑠𝑢𝑚0 + 𝑓0 𝑖0 . 𝑣0

𝑖0 < 10

4

𝑖1 = 𝑖0 + 1

𝑖1 ≥ 10

𝑖0 ≥ 10 && 𝑖1 = 𝑖0

5

exc 6

𝟎 ≤ 𝒊𝟎 < 𝒇𝟎. 𝒍𝒆𝒏𝒈𝒕𝒉

𝒇𝟎[𝒊𝟎] ≠ 𝒏𝒖𝒍𝒍

𝒊𝟎 < 𝟎 || 𝒊𝟎 ≥ 𝒇𝟎. 𝒍𝒆𝒏𝒈𝒕𝒉

𝒇𝟎[𝒊𝟎] = 𝒏𝒖𝒍𝒍

Exceptions will be caught by an exc node

Automated Software Analysis Group

Institute for Theoretical Computer Science
9 2012-06-29

Friday

Encoding Classes

Instances are bounded

Given a bound n for a class A

A encoded as (define−sort A () (_ BitVec m)), 𝑚 = log(𝑛 + 1)

Not all values represent instances

value 0 stands for Java 𝑛𝑢𝑙𝑙, denoted by 𝑛𝑢𝑙𝑙𝐴

values belonging to (𝑛, 2𝑚] are ignored.

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Foundations Related Work Approach Conclusion Motivation Evaluation

0 2𝑚 𝑛 ⋯ ⋯

Automated Software Analysis Group

Institute for Theoretical Computer Science
10 2012-06-29

Friday

Encoding Classes (cont.)

How to achieve bounded completeness

no bug exists within a bound n implies no bug exists in

any bounds less than n.

an index id𝑥𝐴 is introduced to represent the last

allocated object, 𝑖𝑑𝑥𝐴 ∈ [0, 𝑛].

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Foundations Related Work Approach Conclusion Motivation Evaluation

0 2𝑚 𝑛 ⋯ ⋯ 𝑖𝑑𝑥𝐴 ⋯

Automated Software Analysis Group

Institute for Theoretical Computer Science
11 2012-06-29

Friday

Encoding Classes (cont.)

in pre-state, valid range of A is 0, 𝑖𝑑𝑥𝐴0

in post-state, valid range of A is 0, 𝑖𝑑𝑥𝐴′

translation of allocation statement „A a = new A();“
(assert (and

(= idx𝐴𝑖+1 (𝑏𝑣𝑎𝑑𝑑 𝑖𝑑𝑥𝐴𝑖 _ 𝑏𝑣1 𝑚))

= 𝑎 𝑖𝑑𝑥𝐴𝑖+1

bvuge idx𝐴𝑖+1 𝑖𝑑𝑥𝐴𝑖

(bvuge idx𝐴𝑖+1 (_ 𝑏𝑣1 𝑚))
))

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Foundations Related Work Approach Conclusion Motivation Evaluation

Automated Software Analysis Group

Institute for Theoretical Computer Science
12 2012-06-29

Friday

Encoding Fields

Encoded as arrays over bit-vectors

(declare−fun f () (Array A B))

Using theory of array

Read o.f : (select f o)

Write o.f = b : (store f o b)

Values of all fields must be valid in pre-state

(assert (forall (x A)

(=> (and (not (= x nullA)) (bvule x idxA))

 (bvule (select f_0 x) idxB))))

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Foundations Related Work Approach Conclusion Motivation Evaluation

class A {

 B f;

}

Automated Software Analysis Group

Institute for Theoretical Computer Science
13 2012-06-29

Friday

Encoding Arrays

array objects of type 𝐴[] are encoded by

introducing a new type 𝐴𝑟𝑟𝑎𝑦𝑂𝑏𝑗𝐴 and a

reference 𝑅𝑒𝑓𝐴 from 𝐴𝑟𝑟𝑎𝑦𝑂𝑏𝑗𝐴 to their contents.

(define−sort ArrayObjA (_ BitVec t))

(declare−fun RefA () (Array ArrayObjA (Array integer
A)))

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Foundations Related Work Approach Conclusion Motivation Evaluation

class ArrayObjA

[contents] RefA; 0 1 … arr.length-1

real array contents

class A

ArrayObjA arr;

class A{

 A[] arr;

}

Automated Software Analysis Group

Institute for Theoretical Computer Science
14 2012-06-29

Friday

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Encoding Arrays --- bitwidth 5, instance 3

Foundations Related Work Approach Conclusion Motivation Evaluation

(define-sort int () (_ BitVec 5))

(define-sort A () (_ BitVec 2))

(define-sort ArrayObjA () (_ BitVec 2))

class A {
 A[] arr;
 void foo(){
 A elem = arr[0];
 int len = arr.length
 }
}

Define types

Automated Software Analysis Group

Institute for Theoretical Computer Science
15 2012-06-29

Friday

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Encoding Arrays --- bitwidth 5, instance 3

Foundations Related Work Approach Conclusion Motivation Evaluation

(define-sort int () (_ BitVec 5))

(define-sort A () (_ BitVec 2))

(define-sort ArrayObjA () (_ BitVec 2))

(declare-fun this () A)

(declare-fun elem () A)

(declare-fun len () int)

class A {
 A[] arr;
 void foo(){
 A elem = arr[0];
 int len = arr.length
 }
}

Define local variables

Automated Software Analysis Group

Institute for Theoretical Computer Science
16 2012-06-29

Friday

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Encoding Arrays --- bitwidth 5, instance 3

Foundations Related Work Approach Conclusion Motivation Evaluation

(define-sort int () (_ BitVec 5))

(define-sort A () (_ BitVec 2))

(define-sort ArrayObjA () (_ BitVec 2))

(declare-fun this () A)

(declare-fun elem () A)

(declare-fun len () int)

(declare-fun arr (A) ArrayObjA)

(declare-fun RefA (ArrayObjA) (Array int A))

(assert (= elem

 (select (select RefA (select arr this)) (_ bv0 5)))

class A {
 A[] arr;
 void foo(){
 A elem = arr[0];
 int len = arr.length
 }
}

Define array fields and access array

Automated Software Analysis Group

Institute for Theoretical Computer Science
17 2012-06-29

Friday

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Encoding Arrays --- bitwidth 5, instance 3

Foundations Related Work Approach Conclusion Motivation Evaluation

(define-sort int () (_ BitVec 5))

(define-sort A () (_ BitVec 2))

(define-sort ArrayObjA () (_ BitVec 2))

(declare-fun this () A)

(declare-fun elem () A)

(declare-fun len () int)

(declare-fun arr (A) ArrayObjA)

(declare-fun RefA (ArrayObjA) (Array int A))

(assert (= elem

 (select (select RefA (select arr this)) (_ bv0 5)))

(declare-fun length () (Array ArrayObjA int))

(assert (= len

 (select length (select arr this))))

class A {
 A[] arr;
 void foo(){
 A elem = arr[0];
 int len = arr.length
 }
}

Define array length

Automated Software Analysis Group

Institute for Theoretical Computer Science
18 2012-06-29

Friday

Encoding JML Specifications

Standard JML plus the \reach clause

Simply transform to FOL formulas except...

Constraint variables of a reference type 𝐴 must be in

𝐴‘s instance range.

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Foundations Related Work Approach Conclusion Motivation Evaluation

(assert (forall ((o A)) (=> (and (not (= o nullA)) (bvule o idxA))

 (= (select f o) nullA))))

transform

class A{

 B f;

 //@ invariants \forall o A; o.f == null;

 void foo(){}

}

Automated Software Analysis Group

Institute for Theoretical Computer Science
19 2012-06-29

Friday

Reachability

expressed as \reach 𝑥, 𝑇, 𝑓

Generally Transitive Closure encoded as

(inspired by Claessen)
1) ∀𝑥, 𝑦. 𝑥𝑅𝑦 ⇔ 𝑃 𝑥, 𝑦 = 1

Foundations Related Work Approach Conclusion Motivation Evaluation

Automated Software Analysis Group

Institute for Theoretical Computer Science
20 2012-06-29

Friday

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Reachability

expressed as \reach 𝑥, 𝑇, 𝑓

Generally Transitive Closure encoded as

(inspired by Claessen)
1) ∀𝑥, 𝑦. 𝑥𝑅𝑦 ⇔ 𝑃 𝑥, 𝑦 = 1

2) ∀𝑥, 𝑦, 𝑧. 𝑃 𝑥, 𝑦 > 0 && 𝑃 𝑥, 𝑧 > 0 ⇒ 𝑃 𝑥, 𝑧 > 0

Foundations Related Work Approach Conclusion Motivation Evaluation

Automated Software Analysis Group

Institute for Theoretical Computer Science
21 2012-06-29

Friday

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Reachability

expressed as \reach 𝑥, 𝑇, 𝑓

Generally Transitive Closure encoded as

(inspired by Claessen)
1) ∀𝑥, 𝑦. 𝑥𝑅𝑦 ⇔ 𝑃 𝑥, 𝑦 = 1

2) ∀𝑥, 𝑦, 𝑧. 𝑃 𝑥, 𝑦 > 0 && 𝑃 𝑥, 𝑧 > 0 ⇒ 𝑃 𝑥, 𝑧 > 0

3) ∀𝑥, 𝑦. 𝑃 𝑥, 𝑦 > 1 ⇒ ∃w. (𝑃 𝑥, 𝑤 = 1 && 𝑃 𝑥, 𝑦 = 𝑃 𝑤, 𝑦 +
1)

Foundations Related Work Approach Conclusion Motivation Evaluation

Automated Software Analysis Group

Institute for Theoretical Computer Science
22 2012-06-29

Friday

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Reachability

expressed as \reach 𝑥, 𝑇, 𝑓

Generally Transitive Closure encoded as

(inspired by Claessen)
1) ∀𝑥, 𝑦. 𝑥𝑅𝑦 ⇔ 𝑃 𝑥, 𝑦 = 1

2) ∀𝑥, 𝑦, 𝑧. 𝑃 𝑥, 𝑦 > 0 && 𝑃 𝑥, 𝑧 > 0 ⇒ 𝑃 𝑥, 𝑧 > 0

3) ∀𝑥, 𝑦. 𝑃 𝑥, 𝑦 > 1 ⇒ ∃w. (𝑃 𝑥, 𝑤 = 1 && 𝑃 𝑥, 𝑦 = 𝑃 𝑤, 𝑦 +
1)

Additional constraints in Java context
1) ∀𝑥. 𝑃 𝑛𝑢𝑙𝑙, 𝑥 = 0

Foundations Related Work Approach Conclusion Motivation Evaluation

Automated Software Analysis Group

Institute for Theoretical Computer Science
23 2012-06-29

Friday

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Reachability

expressed as \reach 𝑥, 𝑇, 𝑓

Generally Transitive Closure encoded as

(inspired by Claessen)
1) ∀𝑥, 𝑦. 𝑥𝑅𝑦 ⇔ 𝑃 𝑥, 𝑦 = 1

2) ∀𝑥, 𝑦, 𝑧. 𝑃 𝑥, 𝑦 > 0 && 𝑃 𝑥, 𝑧 > 0 ⇒ 𝑃 𝑥, 𝑧 > 0

3) ∀𝑥, 𝑦. 𝑃 𝑥, 𝑦 > 1 ⇒ ∃w. (𝑃 𝑥, 𝑤 = 1 && 𝑃 𝑥, 𝑦 = 𝑃 𝑤, 𝑦 +
1)

Additional constraints in Java context
1) ∀𝑥. 𝑃 𝑛𝑢𝑙𝑙, 𝑥 = 0

2) ∀𝑥. 𝑥𝑅𝑥 ⇒ ∀𝑦. 𝑥 ≠ 𝑦 ⇒ (𝑃 𝑥, 𝑦 = 0)

Foundations Related Work Approach Conclusion Motivation Evaluation

Automated Software Analysis Group

Institute for Theoretical Computer Science
24 2012-06-29

Friday

Evaluation Benchmark

Dijkstra algorithem implemented using

BinaryHeap data structure in Java

7 classes

346 Java source lines

37 methods

27 lines of JML specification, which checks binary heap

data structure internal intergrity.

runtime compared with JForge

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Foundations Related Work Approach Conclusion Motivation Evaluation

Automated Software Analysis Group

Institute for Theoretical Computer Science
25 2012-06-29

Friday

Properties Checked

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Automated Software Analysis Group

Institute for Theoretical Computer Science
26 2012-06-29

Friday

Copy by reference bug
/*@ invariant

 @(\forall int i; i >= 0 && i < this.heap.len

 @ ==> this.elems[this.heap[i].val].key ==

 @ this.heap[i].key)

 @*/

 // VERSION WITH BUG

 heap[index2] = heap[index1];

 heap[index2].key = k;

 // VERSION WITHOUT BUG

 heap[index2].key = heap[index1].key;

 heap[index2].val = heap[index1].val;

 heap[index2].key = k;

null pointer dereference
// VERSION WITH BUG

 this.dropHeap();

 x = heap[1];

// VERSION WITHOUT BUG

 x = heap[1];

 this.dropHeap();

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Bugs found

Foundations Related Work Approach Conclusion Motivation Evaluation

Automated Software Analysis Group

Institute for Theoretical Computer Science
27 2012-06-29

Friday

Runtime Evaluation Results

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Method Bit Obj Loop
JForge InspectJ

PrePro. Z3 Total Result Result PrePro. Z3 Total

decreaseKey

3 3 3 0.6 61.8 62.4 unsat unsat 1.5 0.4 1.9

4 4 4 0.7 82.5 83.2 unsat unsat 1.5 8.7 10.3

5 5 5 1.8 TO TO - unsat 1.5 31.3 32.8

7 7 6 66.0 TO TO - unsat 1.6 507.5 509.1

deleteMin

3 3 3 0.5 0.6 1.1 unsat unsat 1.7 0.2 1.9

4 4 4 1.5 36.4 37.9 unsat unsat 1.7 3.4 5.0

5 5 5 4.8 TO TO - unsat 1.7 52.5 54.2

6 6 6 29.5 TO TO - unsat 1.7 133.4 135.1

insert

3 3 3 0.5 0.5 1.0 unsat unsat 1.6 0.4 1.9

4 4 4 1.5 14.8 15.6 unsat unsat 1.6 5.4 7.0

5 5 5 2.1 409.8 411.9 unsat unsat 1.6 86.8 88.4

6 6 6 11.3 TO TO - unsat 1.6 110.0 111.6

minElement

4 4 4 0.5 0.2 0.7 unsat unsat 1.4 0.0 1.4

7 7 7 49.5 16.6 66.1 unsat unsat 1.4 0.0 1.4

8 8 8 TO - - - unsat 1.4 0.0 1.4

run

3 3 1 9.6 2.2 11.8 sat sat 3.2 0.7 3.9

4 4 1 16.7 4.3 21.0 sat sat 3.2 6.9 10.0

7 7 1 371.1 299.0 TO - sat 3.2 2.4 5.6

3 3 2 TO - - - sat 5.0 52.7 57.7

Automated Software Analysis Group

Institute for Theoretical Computer Science
28 2012-06-29

Friday

SMT-based program checking

ESC/Java, ESC/Java2
Unrolling loops bounded only

Undecidable target logics

Armando et al.[09], Cordeiro et al. [09], Ganai et al.
[06], Sinz et al. [10] and LAV

Quantifier-free target logics

Check finite-state-machine properties

No data-structure properties checked

Boogie
Undecidable target logics

Loop invariants required

Spurious counterexamples

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Foundations Related Work Approach Conclusion Motivation Evaluation

Automated Software Analysis Group

Institute for Theoretical Computer Science
29 2012-06-29

Friday

Rich-Data-Structure checkings

Bounded verification approaches

SAT solver used and fully bounded

JAlloy, JForge, TACO, Miniatur, Karun and MemSAT

SMT solver used and only loops are bounded

ESC/Java and ESC/Java2

Dynamic checking with bounded heap

TestEra and Korat

Java PathFinder + Korat

Deductive verification

Key, LOOP

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Foundations Related Work Approach Conclusion Motivation Evaluation

Automated Software Analysis Group

Institute for Theoretical Computer Science
30 2012-06-29

Friday

Conclusion

Main contribution

First attempt to use SMT solver on bounded data-

structure-rich program verification.

Present a translation from subset of Java to QBVF with

theory of arrays.

Future

incorporating optimizations to reduce the burden of the

underlying solver

finding relationship between the number of objects and

loop unrollings

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study

Foundations Related Work Approach Conclusion Motivation Evaluation

