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Bounded Verification Tool: InspectJ 

Modular verification 
Can check methods in isolation 

Rich data-structure properties of OO code 
Arbitrarily complex object configurations in the heap 

Scalability 
Target High-level simplications of QBVF solvers 

Usability 
Fully automatic infrastructure 

Soundness 
Error traces reported by InspectJ are real bugs 

Bounded completeness 
If a bug exists wrt. bounds, InspectJ finds it 

Only wrt. finite number of objects, and loop/recursion unrolling  

 

 
Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Foundations Related Work Approach Conclusion Motivation Evaluation 
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Architecture 

Foundations Related Work Approach Conclusion Motivation Evaluation 

Java 

method 

InspectJ SMT 

Solver 

3-parameter scope: 
 Bit-width of integer 

 Number of instances 

of each type 

 Number of loop / 

recursion unrollings 

JML 

SAT 

UNSAT 

counter-example 

Found against 

the spec. 

No bug found 

wrt. scope 

𝑅 𝑝𝑟𝑒𝐶𝑜𝑛𝑑, 𝑝𝑟𝑒𝑆𝑡𝑎𝑡𝑒 ∧ 𝑓 
 

∧ 𝑅 ¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑, 𝑝𝑜𝑠𝑡𝑆𝑡𝑎𝑡𝑒 ∨ 𝑒𝑥𝑐  

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 
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Target Logic 

Quantified bit-vector formulas (QBVF) with theory 
of arrays. 

QBVF were traditionally handled by flattening 
quantifiers using conjunctions and disjunctions. 

Recent QBVF solvers (e.g. Z3) perform several 
high-level simplifications before flattening 
quantifiers 

skolemization 

miniscoping 

Rewriting 

...  makes them more efficient! 

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Foundations Related Work Approach Conclusion Motivation Evaluation 
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Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Encoding Control Flow --- after 1 loop unrolling 

Foundations Related Work Approach Conclusion Motivation Evaluation 

 

public class A { 

 B[] f; int sum; 

 void foo(int i){ 

  while(i<10){ 

   sum+=f[i].v; 

   i++; 

  }}} 

class B{int v;} 

 

0 

1 

3 

2 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑓 𝑖 . 𝑣 

𝑖 < 10 

4 

𝑖 = 𝑖 + 1 

𝑖 ≥ 10 

 Nodes labeled with numbers stand for states 

 Edges stand for transitions or branches chosen 

 CF is encoded with edge variables 

 e.g. 𝐸0,1⋁𝐸0,4, 𝐸0,1 → 𝐸1,2 

 Each edge variable is a predicate 

 Predicates evaluation depends on stmt. 

 e.g. 𝐸0,1 → 𝑖 < 10 

𝑖 ≥ 10 
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Encoding Control Flow --- after 1 loop unrolling 

Foundations Related Work Approach Conclusion Motivation Evaluation 

 

public class A { 

 B[] f; int sum; 

 void foo(int i){ 

  while(i<10){ 

   sum+=f[i].v; 

   i++; 

  }}} 

class B{int v;} 

 

0 

1 

3 

2 

𝑠𝑢𝑚1 = 𝑠𝑢𝑚0 + 𝑓0 𝑖0 . 𝑣0 

𝑖0 < 10 

4 

𝑖1 = 𝑖0 + 1 

𝑖1 ≥ 10 

𝑖0 ≥ 10 

 Nodes labeled with numbers stand for states 

 Edges stand for transitions or branches choosen 

 CF is encoded with edge variables 

 e.g. 𝐸0,1⋁𝐸0,4, 𝐸0,1 → 𝐸1,2 

 Each edge variable is a predicate 

 Predicates evaluation depends on stmt. 

 e.g. 𝐸0,1 → 𝑖0 < 10 

 Each variable (field, argument, local variable) is suffixed 

      by a number N 

 N means variable update times 

 N starts from 0 
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Encoding Control Flow --- after 1 loop unrolling 

Foundations Related Work Approach Conclusion Motivation Evaluation 

 

public class A { 

 B[] f; int sum; 

 void foo(int i){ 

  while(i<10){ 

   sum+=f[i].v; 

   i++; 

  }}} 

class B{int v;} 

 

0 

1 

3 

2 

𝑠𝑢𝑚1 = 𝑠𝑢𝑚0 + 𝑓0 𝑖0 . 𝑣0 

𝑖0 < 10 

4 

𝑖1 = 𝑖0 + 1 

𝑖1 ≥ 10 

𝑖0 ≥ 10 && 𝒊𝟏 = 𝒊𝟎 

 Each variable (field, argument, local variable) is suffixed 

      by a number N 

 N means variable update times 

 N starts from 0 

 Correct variable when in join nodes 

 e.g. 𝐸0,4 → 𝑖0 ≥ 10 && 𝒊𝟏 = 𝒊𝟎 

 Nodes labeled with numbers stand for states 

 Edges stand for transitions or branches choosen 

 CF is encoded with edge variables 

 e.g. 𝐸0,1⋁𝐸0,4, 𝐸0,1 → 𝐸1,2 

 Each edge variable is a predicate 

 Predicates evaluation depends on stmt. 

 e.g. 𝐸0,1 → 𝑖0 < 10 
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Exceptions 

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Foundations Related Work Approach Conclusion Motivation Evaluation 

 

class A { 

 B[] f; int sum; 

 void foo(int i){ 

  while(i<10){ 

   sum+=f[i].v; 

   i++; 

  }}} 

class B{int v;} 

 

0 

1 

3 

2 

𝑠𝑢𝑚1 = 𝑠𝑢𝑚0 + 𝑓0 𝑖0 . 𝑣0 

𝑖0 < 10 

4 

𝑖1 = 𝑖0 + 1 

𝑖1 ≥ 10 

𝑖0 ≥ 10 && 𝑖1 = 𝑖0 

5 

exc 6 

𝟎 ≤ 𝒊𝟎 < 𝒇𝟎. 𝒍𝒆𝒏𝒈𝒕𝒉 

𝒇𝟎[𝒊𝟎] ≠ 𝒏𝒖𝒍𝒍 

𝒊𝟎 < 𝟎 ||  𝒊𝟎 ≥  𝒇𝟎. 𝒍𝒆𝒏𝒈𝒕𝒉 

𝒇𝟎[𝒊𝟎] = 𝒏𝒖𝒍𝒍 

Exceptions will be caught by an exc node 
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Encoding Classes 

Instances are bounded 

Given a bound n for a class A 

A encoded as  (define−sort A () (_ BitVec m)), 𝑚 = log(𝑛 + 1)   

Not all values represent instances 

value 0 stands for Java 𝑛𝑢𝑙𝑙, denoted by 𝑛𝑢𝑙𝑙𝐴 

values belonging to (𝑛, 2𝑚] are ignored. 

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Foundations Related Work Approach Conclusion Motivation Evaluation 

0 2𝑚 𝑛 ⋯ ⋯ 
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Encoding Classes (cont.) 

How to achieve bounded completeness 

no bug exists within a bound n implies no bug exists in 

any bounds less than n. 

an index id𝑥𝐴 is introduced to represent the last 

allocated object, 𝑖𝑑𝑥𝐴 ∈ [0, 𝑛]. 
 

 

 

 

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Foundations Related Work Approach Conclusion Motivation Evaluation 

0 2𝑚 𝑛 ⋯ ⋯ 𝑖𝑑𝑥𝐴 ⋯ 
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Encoding Classes (cont.) 

in pre-state, valid range of A is 0, 𝑖𝑑𝑥𝐴0  

in post-state, valid range of A is 0, 𝑖𝑑𝑥𝐴′  

translation of allocation statement „A a = new A();“ 
(assert (and 

(= idx𝐴𝑖+1 (𝑏𝑣𝑎𝑑𝑑 𝑖𝑑𝑥𝐴𝑖  _ 𝑏𝑣1 𝑚 )) 

= 𝑎 𝑖𝑑𝑥𝐴𝑖+1  

bvuge idx𝐴𝑖+1 𝑖𝑑𝑥𝐴𝑖  

(bvuge idx𝐴𝑖+1 (_ 𝑏𝑣1 𝑚)) 
)) 

 

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Foundations Related Work Approach Conclusion Motivation Evaluation 
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Encoding Fields 

Encoded as arrays over bit-vectors 

(declare−fun f () (Array A B)) 

Using theory of array 

Read o.f : (select f o) 

Write o.f = b : (store f o b) 

Values of all fields must be valid in pre-state 

(assert (forall (x A) 

(=> (and (not (= x nullA)) (bvule x idxA)) 

          (bvule (select f_0 x) idxB)))) 

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Foundations Related Work Approach Conclusion Motivation Evaluation 

class A { 

    B f; 

} 
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Encoding Arrays 

array objects of type 𝐴[ ] are encoded by 

introducing a new type 𝐴𝑟𝑟𝑎𝑦𝑂𝑏𝑗𝐴 and a 

reference 𝑅𝑒𝑓𝐴 from 𝐴𝑟𝑟𝑎𝑦𝑂𝑏𝑗𝐴 to their contents. 

(define−sort ArrayObjA (_ BitVec t)) 

(declare−fun RefA () (Array ArrayObjA (Array integer 
A))) 

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Foundations Related Work Approach Conclusion Motivation Evaluation 

class ArrayObjA 

[contents]  RefA; 0 1 … arr.length-1 

real array contents 

class A 

ArrayObjA arr; 

 

class A{ 

 A[] arr; 

} 
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Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Encoding Arrays --- bitwidth 5, instance 3 

Foundations Related Work Approach Conclusion Motivation Evaluation 

(define-sort int () (_ BitVec 5)) 

(define-sort A () (_ BitVec 2)) 

(define-sort ArrayObjA () (_ BitVec 2)) 

class A { 
 A[] arr; 
 void foo(){ 
  A elem = arr[0]; 
  int len = arr.length 
 }    
} 

Define types 
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Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Encoding Arrays --- bitwidth 5, instance 3 

Foundations Related Work Approach Conclusion Motivation Evaluation 

(define-sort int () (_ BitVec 5)) 

(define-sort A () (_ BitVec 2)) 

(define-sort ArrayObjA () (_ BitVec 2)) 

 

(declare-fun this () A) 

(declare-fun elem () A) 

(declare-fun len () int) 

class A { 
 A[] arr; 
 void foo(){ 
  A elem = arr[0]; 
  int len = arr.length 
 }    
} 

Define local variables 
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Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Encoding Arrays --- bitwidth 5, instance 3 

Foundations Related Work Approach Conclusion Motivation Evaluation 

(define-sort int () (_ BitVec 5)) 

(define-sort A () (_ BitVec 2)) 

(define-sort ArrayObjA () (_ BitVec 2)) 

 

(declare-fun this () A) 

(declare-fun elem () A) 

(declare-fun len () int) 

 

(declare-fun arr (A) ArrayObjA) 

(declare-fun RefA (ArrayObjA) (Array int A)) 

(assert (= elem 

   (select (select RefA (select arr this)) (_ bv0 5))) 

 

 

class A { 
 A[] arr; 
 void foo(){ 
  A elem = arr[0]; 
  int len = arr.length 
 }    
} 

Define array fields and access array 
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Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Encoding Arrays --- bitwidth 5, instance 3 

Foundations Related Work Approach Conclusion Motivation Evaluation 

(define-sort int () (_ BitVec 5)) 

(define-sort A () (_ BitVec 2)) 

(define-sort ArrayObjA () (_ BitVec 2)) 

 

(declare-fun this () A) 

(declare-fun elem () A) 

(declare-fun len () int) 

 

(declare-fun arr (A) ArrayObjA) 

(declare-fun RefA (ArrayObjA) (Array int A)) 

(assert (= elem 

   (select (select RefA (select arr this)) (_ bv0 5))) 

 

(declare-fun length () (Array ArrayObjA int)) 

(assert (= len 

   (select length (select arr this)))) 

 

class A { 
 A[] arr; 
 void foo(){ 
  A elem = arr[0]; 
  int len = arr.length 
 }    
} 

Define array length 
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Encoding JML Specifications 

Standard JML plus the \reach clause 

Simply transform to FOL formulas except... 

Constraint variables of a reference type 𝐴 must be in 

𝐴‘s instance range. 

 

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Foundations Related Work Approach Conclusion Motivation Evaluation 

(assert (forall ((o A))  (=> (and (not (= o nullA)) (bvule o idxA)) 

                                             (= (select f o) nullA)))) 

transform 

class A{ 

    B f; 

    //@ invariants \forall o A; o.f == null; 

    void foo(){} 

} 
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Reachability 

expressed as \reach 𝑥, 𝑇, 𝑓  

Generally Transitive Closure encoded as 

(inspired by Claessen)  
1) ∀𝑥, 𝑦. 𝑥𝑅𝑦 ⇔ 𝑃 𝑥, 𝑦 = 1 

 

Foundations Related Work Approach Conclusion Motivation Evaluation 
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Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Reachability 

expressed as \reach 𝑥, 𝑇, 𝑓  

Generally Transitive Closure encoded as 

(inspired by Claessen) 
1) ∀𝑥, 𝑦. 𝑥𝑅𝑦 ⇔ 𝑃 𝑥, 𝑦 = 1 

2) ∀𝑥, 𝑦, 𝑧. 𝑃 𝑥, 𝑦 > 0 && 𝑃 𝑥, 𝑧 > 0 ⇒ 𝑃 𝑥, 𝑧 > 0 

 

Foundations Related Work Approach Conclusion Motivation Evaluation 
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Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Reachability 

expressed as \reach 𝑥, 𝑇, 𝑓  

Generally Transitive Closure encoded as 

(inspired by Claessen) 
1) ∀𝑥, 𝑦. 𝑥𝑅𝑦 ⇔ 𝑃 𝑥, 𝑦 = 1 

2) ∀𝑥, 𝑦, 𝑧. 𝑃 𝑥, 𝑦 > 0 && 𝑃 𝑥, 𝑧 > 0 ⇒ 𝑃 𝑥, 𝑧 > 0 

3) ∀𝑥, 𝑦. 𝑃 𝑥, 𝑦 > 1 ⇒ ∃w. (𝑃 𝑥, 𝑤 = 1 && 𝑃 𝑥, 𝑦 = 𝑃 𝑤, 𝑦 +
1) 

 

Foundations Related Work Approach Conclusion Motivation Evaluation 
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Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Reachability 

expressed as \reach 𝑥, 𝑇, 𝑓  

Generally Transitive Closure encoded as 

(inspired by Claessen) 
1) ∀𝑥, 𝑦. 𝑥𝑅𝑦 ⇔ 𝑃 𝑥, 𝑦 = 1 

2) ∀𝑥, 𝑦, 𝑧. 𝑃 𝑥, 𝑦 > 0 && 𝑃 𝑥, 𝑧 > 0 ⇒ 𝑃 𝑥, 𝑧 > 0 

3) ∀𝑥, 𝑦. 𝑃 𝑥, 𝑦 > 1 ⇒ ∃w. (𝑃 𝑥, 𝑤 = 1 && 𝑃 𝑥, 𝑦 = 𝑃 𝑤, 𝑦 +
1) 

Additional constraints in Java context 
1) ∀𝑥. 𝑃 𝑛𝑢𝑙𝑙, 𝑥 = 0 

 

Foundations Related Work Approach Conclusion Motivation Evaluation 
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Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Reachability 

expressed as \reach 𝑥, 𝑇, 𝑓  

Generally Transitive Closure encoded as 

(inspired by Claessen) 
1) ∀𝑥, 𝑦. 𝑥𝑅𝑦 ⇔ 𝑃 𝑥, 𝑦 = 1 

2) ∀𝑥, 𝑦, 𝑧. 𝑃 𝑥, 𝑦 > 0 && 𝑃 𝑥, 𝑧 > 0 ⇒ 𝑃 𝑥, 𝑧 > 0 

3) ∀𝑥, 𝑦. 𝑃 𝑥, 𝑦 > 1 ⇒ ∃w. (𝑃 𝑥, 𝑤 = 1 && 𝑃 𝑥, 𝑦 = 𝑃 𝑤, 𝑦 +
1) 

Additional constraints in Java context 
1) ∀𝑥. 𝑃 𝑛𝑢𝑙𝑙, 𝑥 = 0 

2) ∀𝑥. 𝑥𝑅𝑥 ⇒ ∀𝑦. 𝑥 ≠ 𝑦 ⇒ (𝑃 𝑥, 𝑦 = 0) 

 

Foundations Related Work Approach Conclusion Motivation Evaluation 
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Evaluation Benchmark 

Dijkstra algorithem implemented using 

BinaryHeap data structure in Java 

7 classes 

346 Java source lines 

37 methods 

27 lines of JML specification, which checks binary heap 

data structure internal intergrity. 

runtime compared with JForge 
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Properties Checked 

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 
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Copy by reference bug 
/*@ invariant 

 @(\forall int i; i >= 0 && i < this.heap.len 

 @ ==> this.elems[this.heap[i].val].key == 

 @ this.heap[i].key) 

 @*/ 

 // VERSION WITH BUG 

 heap[index2] = heap[index1]; 

 heap[index2].key = k; 

 

 // VERSION WITHOUT BUG 

 heap[index2].key = heap[index1].key; 

 heap[index2].val = heap[index1].val; 

 heap[index2].key = k; 

 

null pointer dereference 
// VERSION WITH BUG 

 this.dropHeap(); 

 x = heap[1]; 

 .... 

 

// VERSION WITHOUT BUG 

 x = heap[1]; 

 this.dropHeap(); 

 .... 

 

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Bugs found 

Foundations Related Work Approach Conclusion Motivation Evaluation 
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Runtime Evaluation Results 

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Method Bit Obj Loop 
JForge InspectJ 

PrePro. Z3 Total Result Result PrePro. Z3 Total 

decreaseKey 

3 3 3 0.6 61.8 62.4 unsat unsat 1.5 0.4 1.9 

4 4 4 0.7 82.5 83.2 unsat unsat 1.5 8.7 10.3 

5 5 5 1.8 TO TO - unsat 1.5 31.3 32.8 

7 7 6 66.0 TO TO - unsat 1.6 507.5 509.1 

deleteMin 

3 3 3 0.5 0.6 1.1 unsat unsat 1.7 0.2 1.9 

4 4 4 1.5 36.4 37.9 unsat unsat 1.7 3.4 5.0 

5 5 5 4.8 TO TO - unsat 1.7 52.5 54.2 

6 6 6 29.5 TO TO - unsat 1.7 133.4 135.1 

insert 

3 3 3 0.5 0.5 1.0 unsat unsat 1.6 0.4 1.9 

4 4 4 1.5 14.8 15.6 unsat unsat 1.6 5.4 7.0 

5 5 5 2.1 409.8 411.9 unsat unsat 1.6 86.8 88.4 

6 6 6 11.3 TO TO - unsat 1.6 110.0 111.6 

minElement 

4 4 4 0.5 0.2 0.7 unsat unsat 1.4 0.0 1.4 

7 7 7 49.5 16.6 66.1 unsat unsat 1.4 0.0 1.4 

8 8 8 TO - - - unsat 1.4 0.0 1.4 

run 

3 3 1 9.6 2.2 11.8 sat sat 3.2 0.7 3.9 

4 4 1 16.7 4.3 21.0 sat sat 3.2 6.9 10.0 

7 7 1 371.1 299.0 TO - sat 3.2 2.4 5.6 

3 3 2 TO - - - sat 5.0 52.7 57.7 
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SMT-based program checking 

ESC/Java, ESC/Java2 
Unrolling loops bounded only 

Undecidable target logics 

Armando et al.[09], Cordeiro et al. [09], Ganai et al. 
[06], Sinz et al. [10] and LAV 

Quantifier-free target logics 

Check finite-state-machine properties 

No data-structure properties checked 

Boogie 
Undecidable target logics 

Loop invariants required 

Spurious counterexamples 

 

Tianhai Liu – Bounded Program Verification using an SMT Solver: A Case Study 

Foundations Related Work Approach Conclusion Motivation Evaluation 
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Rich-Data-Structure checkings 

Bounded verification approaches 

SAT solver used and fully bounded 

JAlloy, JForge, TACO, Miniatur, Karun and MemSAT 

SMT solver used and only loops are bounded 

ESC/Java and ESC/Java2 

Dynamic checking with bounded heap 

TestEra and Korat 

Java PathFinder + Korat 

Deductive verification 

Key, LOOP 
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Conclusion 

Main contribution 

First attempt to use SMT solver on bounded data-

structure-rich program verification. 

Present a translation from subset of Java to QBVF with 

theory of arrays. 

Future 

incorporating optimizations to reduce the burden of the 

underlying solver 

finding relationship between the number of objects and 

loop unrollings 
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