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Abstract

In this thesis we apply bounded program verification techniques to an implementation of
Dijkstra’s Algorithm optimized for execution speed.

Bounded program verification is a formal technique to build confidence in the correctness
of a computer program. All possible inputs in a user-defined scope are guaranteed to be
checked, but no statement is made about inputs outside the bounds. Dijkstra’s Algorithm
is a well-known algorithm to calculate shortest paths in graphs. One of its applications
is in route planning to search the shortest route from Karlsruhe to Berlin in a graph
representation of the European road network. The algorithm utilizes a priority queue
often implemented using a binary heap.

We port Julian Delling’s implementation of Dijkstra’s Algorithm to Java because we use
JForge and InspectJ for bounded program verification. This way we are able to verify
important properties of the underlying BinaryHeap data structure. We report a bug in
the implementation undiscovered by previous testing. Furthermore, we find two more bugs
in our untested Java port of the codebase. We also discover many implicit assumptions on
the implementation level.

The aforementioned results were obtained by a modular bottom-up approach. Originally,
we used a top-down approach, characterizing valid inputs and criteria for correct outputs.
We intended to verify the correctness of an implementation of Dijkstra’s Algorithm within
a bounded scope and increase the scope as far as possible without specifying the internals.
Top-down verification of the FlatBaseDijkstra.run() method that calculates the short-
est path between nodes in a graph did not succeed for several reasons: performance issues,
complex analysis of counterexamples, and optimized code not created with verification in
mind.

The analyzed implementation of Dijkstra’s Algorithm was not specially created to be easy
to verify; it uses complex data structures for the priority queue and graph representation
and implements different optimization techniques important for real-world usage. For
example, memory layout is taken into consideration in order to minimize cache footprint.
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1. Introduction

On a precautionary note, be advised that the Java virtual machine heap used for dynamic
memory allocation and the tree-based data structure called heap are two independent
concepts and should not be confused.

We apply bounded program verification techniques to our Java port of an established
implementation of Dijkstra’s Algorithm [Dij59] that has been optimized for execution
speed [Del09]. We verify important properties of the underlying BinaryHeap data structure
using both JForge [Yes09] and InspectJ [LNT12]. We report a bug in the implementation
undiscovered by previous testing. Furthermore, we find two more bugs in our untested
Java port of the codebase.

All three bugs were detected using a modular bottom-up approach. The top-down ap-
proach, characterizing valid inputs and criteria for correct outputs on the top level, did
not succeed because of performance issues and complex analysis of the counterexamples.

1.1. Bounded Program Verification

Bounded program verification is a formal technique to build confidence in the correctness
of programs. It can be classified in between traditional testing and full formal verification
when considering the trade-off between the achievable degree of confidence and the required
effort for the user [Den09]. On the one hand, in bounded program verification all inputs
up to a certain size are guaranteed to be considered. On the other hand, it executes
fully automatically, requiring no interaction and only few annotations. Bounded program
verification has a focus on data structure rich code, e.g. code written in object-oriented
programming languages.

In bounded program verification, individual methods are analyzed. A method transforms a
prestate (heap state and parameters) into a poststate (heap state and return value). The
user defines preconditions that must hold in the prestate before executing the method,
and postconditions that are expected to hold in the poststate after the method finishes
execution. The process is modular in structure so verified properties of one method can
be used to verify other methods.

Bounded program verification imposes further restrictions (bounds) on the considered
prestates and execution length. Typically the following bounds are imposed: The bitwidth
for integer numbers is limited, the number of instances (allocated objects) of each class is
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1. Introduction

limited, and loops and recursive calls are unrolled a fixed number of times. Typical settings
for the bounds might be 5-5-2 and bounded program verification makes no statement about
inputs that cannot be processed within these bounds. On the one hand it is desirable
to increase the bounds as far as possible. On the other hand increasing the bounds is
expensive in terms of verification runtime. The small scope hypothesis [ADK03] tells us
that good coverage is possible with low bounds.

For efficiency reasons, current bounded program verification tools encode the Java pro-
gram and all specification into propositional logic formulas or satisfiability modulo theories
problems. When preconditions are encoded as PRE, the program execution is encoded as
PROG, postconditions are encoded as POST , and exceptions are signaled by EXCEPT
then the solvers search a satisfying assignment for PRE∧PROG∧(¬POST ∨EXCEPT ).
Thus, in bounded program verification, an unsatisfiable formula is a good thing because
the formula is satisfied by counterexamples that violate the specification.

Bounded program verification tools typically execute in three phases. Preprocessing: code,
specification, and bounds are transformed into a SAT or SMT formula. Solving: an off-
the-shelf solver is used to solve the generated formula. Postprocessing: the output of the
solvers is turned into a human-readable counterexample.

JForge [Yes09] is one of the most mature bounded program verification tools. JForge
checks a subset of the Java language against a specification written in JFSL [Yes09], based
on Alloy [Jac02]. The JForge backend relies on Alloy and a SAT solver, SAT4J [BP10]
by default. In inline mode the code of all called submethods is inlined. This mode does
not require specification of submethods but does not scale as well as constraint mode.
In constraint mode the specification of the called submethod is considered instead of the
actual code. Constraint mode requires additional specification effort from the user. Hybrid
mode combines inline mode and constraint mode but the respective disadvantages are not
solved completely.

InspectJ [LNT12] is an alternative to JForge and first versions became available during our
work on this thesis. Specifications are written in a dialect of the Java Modeling Language
(JML) [LBR99]. The InspectJ backend is based on SMT (Satisfiability Modulo Theories)
and the Z3 solver [dMB08]. Initial benchmarks [LNT12] show that InspectJ performs
better than JForge, especially for big scopes.

The verification workflow is similar with both tools. It is an iterative process: we start with
a functional requirement of the analyzed program and annotate the relevant code with the
formalized specification. Then we run the bounded program verification tool and analyze
any counterexample it might produce. Fixing the problem causing the counterexample
can require changes to the code and/or specification. After every change the bounded
program verification tool has to be rerun to check if the problem is fixed and/or if there
are regressions.

1.2. Dijkstra’s Algorithm

Dijkstra’s Algorithm is one of the best known algorithms in connection with graphs and
computes single-source shortest paths in a graph with non-negative edge weights. It was
originally published by Dijkstra in 1959 [Dij59].

In Dijkstra’s Algorithm all nodes are initialized with a tentative distance of infinity from
the source node. The graph is then explored starting at the source node, moving further
and further away from it. Nodes are examined (settled) with monotonically increasing
distance from the source node. When a node is settled a new node might be discovered
(touched for the first time) or a shorter path to an unsettled node might be discovered. In
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1.3. Our Approach

either case the tentative distance to the respective node is updated. The algorithm ends
when all reachable nodes have been settled.

The performance of an implementation of Dijkstra’s Algorithm is highly depending on the
underlying priority queue data structure. An efficient way to track the tentative distances
is crucial for a fast implementation. In sparse graphs like road networks the BinaryHeap
data structure offers optimal performance of O(|E|+ |V | · log |V |).

The BinaryHeap is a commonly used tree-based data structure that stores a set of key/-
value pairs and satisfies the following property:

key(p) ≤ key(n)
for each node n (except the root node) and its parent node p.

For a priority queue the key of the elements in the BinaryHeap is used as priority (or
distance in the case of Dijkstra’s Algorithm, with a node in the graph as value). The
BinaryHeap allows efficient extraction of the value with the minimal key. The most im-
portant operations to be executed on a BinaryHeap are:

• insert(): insert an element into the BinaryHeap

• deleteMin(): remove the element with the smallest key from the BinaryHeap

• decreaseKey(): decrease the key of an element in the BinaryHeap

There are two important internal functionalities to restore the heap property after an
element changed:

• upheap() to move a small element upwards to its correct position

• downheap() to move a large element downwards to its correct position

It is intuitive to think of the BinaryHeap as a tree, but many implementations (including
the one discussed in this thesis) store a BinaryHeap as an array for performance reasons
with implicit storage of parents and children.

1.3. Our Approach

It was an explicit goal of this project to verify an existing implementation optimized
for real-world usage. The code is based on an implementation of Dijkstra’s Algorithm
originally written by Daniel Delling in C++ for his Ph.D. thesis on route planning in
road networks [Del09]. It uses complex data structures for the priority queue and graph
representation and implements different optimization techniques resulting in a speedup in
relevant route planning scenarios.

JForge [Yes09] is the most mature bounded program verification tool available but it works
with Java code. An effort to create a version of JForge that operates on C and possibly
C++ code is stalled. Consequently, the C++ code had to be ported to Java in order to
work with JForge. Large parts of the codebase could be re-used verbatim because both
C++ and Java are curly braces programming languages.

The implementation does not provide any specification, which had to be created from
scratch. Functional level specification is the most fundamental and in many ways the
most important specification. Ideally verification would succeed if the user specified that
the solution returned by Dijkstra’s Algorithm is the shortest possible path between the
corresponding nodes. Formalizing this requirement already makes it more verbose, but
unfortunately that is insufficient because JForge and InspectJ still return counterexamples.
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1. Introduction

Functional level specification is typically what is mentioned when talking about what
has been verified in a program. However, additional specification is required. Bounded
program verification tools are excellent at detecting usage of pointers that are not checked
against null, array indexes that are out of bounds, arithmetic overflow and aliasing issues.
Implementation level specification takes care of all these corner cases that make programs
crash under certain circumstances but are irrelevant in the big picture. Context level
specification is about making the verification process work with the tools at hand. Bounded
program verification tools systematically consider every bit pattern within a given scope
as a possible prestate. However, many random bit patterns do not represent valid program
states.

We tried two different approaches to create the specification. Top-Down verification han-
dles the algorithm as a black box. Only the input and output of the top level method,
FlatBaseDijkstra.run(), is considered. It is irrelevant how the output is calculated. Rel-
atively few specifications are added and they are on the functional level. Bellman’s Prin-
ciple of Optimality can be used to specify that the result of the FlatBaseDijkstra.run()

method is indeed a shortest path. The somewhat lengthy JML applying the principle to
Dijkstra’s Algorithm can be found in chapter 4.3.1.1. There is also one functional level
precondition in Dijkstra’s Algorithm: all edge weights must be non-negative.

Bottom-Up verification means verifying the submethods called by the top-level method
separately. This allows the usage of constraint mode but requires far more extensive
context specification. It also helps to build confidence in the methods and provides simpler
counterexamples if there are problems.

The most important invariant for the BinaryHeap is the min heap property (see chapter
2.2.1)—even though it is not strictly on the functional level, as the external functionality
(being a priority queue) could be implemented otherwise.

1.4. Thesis Organization

The remainder of this thesis is structured as follows: Chapter 2 introduces the relevant
background concepts for the unfamiliar reader, chapter 3 lists prior work related to Di-
jkstra’s Algorithm and verification in general as well as the verification of Dijkstra’s Al-
gorithm in particular, chapter 4 discusses the approach executed in this thesis, chapter 5
discusses the various results and findings we gathered, and chapter 6 concludes, with some
outlook in chapter 7.
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2. Background

This chapter provides a brief introduction to the concepts used later on; it explains the
basics of bounded program verification, and discusses two current tools, namely JForge and
InspectJ. We review Dijkstra’s Algorithm and the heap data structure used as a priority
queue in many implementations of Dijkstra’s Algorithm.

2.1. Bounded Program Verification

Bounded program verification is a formal technique to build confidence in the correctness
of programs. It has a focus on data structure rich code, e.g. code written in object-oriented
programming languages. Bounded program verification can be classified in between tra-
ditional testing and full formal verification when considering the trade-off between the
achievable degree of confidence and the required effort for the user [Den09]. On the one
hand, in bounded program verification all inputs up to a certain size are guaranteed to be
considered. On the other hand, it executes fully automatically, requiring no interaction
and only few annotations.

The following is intended as a quick introduction with concrete examples for unfamil-
iar readers. More precise theoretical background information can be found in Gregory
D. Dennis’ Ph.D. thesis [Den09].

In bounded program verification individual methods are analyzed. The process is modular
in structure so verified properties of one method can be used to verify other methods. A
method transforms a prestate (heap state and parameters) into a poststate (heap state
and return value). The user defines any number of preconditions that must hold in the
prestate before executing the method, and postconditions that are expected to hold in the
poststate after the method finishes execution. Usually it is also possible to define invariants
for complete classes that basically serve as a pre- and postcondition for methods in that
class.

Calling a method when the preconditions for that method are met should result in a
program state where the postconditions for that method hold. If this is the case for every
prestate fulfilling the preconditions, the program is verified to conform to its specification.
Bounded program verification imposes further restrictions (bounds) on the considered
prestates and execution length. Programs are said to be verified with respect to those
bounds. Typically the following bounds are imposed:

1. The bitwidth for integer numbers is limited.
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2. Background

2. The number of instances (allocated objects) of each class is limited.

3. Loops and recursive calls are unrolled a fixed number of times.

The semantics of such a program are nearly identical to the semantics of the original
program restricted to runs that can execute within the specified bounds. Hence problems
with the bounded program are useful indicators of problems with the real program.

On the one hand it is desirable to increase the bounds as far as possible. Some bugs are
missed when the bounds are too low and whole branches can become unreachable. On the
other hand increasing the bounds is expensive in terms of verification runtime. The small
scope hypothesis [ADK03] tells us that good coverage is possible with low bounds. In any
case, it is important to balance the bounds. Creating a lot of instances might be without
effect if loops are not unrolled to handle all instances.

Typical settings for the bounds might be 5-5-2, i.e. integers are five bits wide and overflow
occurs at 16, classes are limited to five instances (with further instantiations causing the
program to go out of bounds), and all loops are unrolled twice (ensuring the loop would
not be entered a third time, going out of bounds otherwise). Bounded program verification
makes no statement about inputs that cannot be processed within these bounds.

Current bounded program verification tools encode the Java program and all specification
into propositional logic formulas or satisfiability modulo theories problems. Existing off-
the-shelf SAT (or SMT) solvers solve the formulas faster than executing all considered
inputs sequentially.

If integer numbers are limited to a bitwidth of 3, every integer Java variable, e.g. x, y and
z, can be encoded using three boolean variables, one for each bit. A boolean Java variable,
e.g. b, can be encoded using one boolean variable in the resulting formula. Field access,
array access, object instantiation and all other Java features are encoded using similar
requirements for the underlying boolean values. Control flow is simplified by unrolling all
loops, inlining all method calls, and converting the code to single static assignment form.

For example, the Java statement

1 i n t x = b ? y : z ;

results in the propositional formula

(bi∧(xi+1
1 = yi1)∧(xi+1

2 = yi2)∧(xi+1
3 = yi3)) ∨ (¬bi∧(xi+1

1 = zi1)∧(xi+1
2 = zi2)∧(xi+1

3 = zi3))

where the superscript i is used to number variable versions incrementally.

We can assume that the preconditions including the invariants are encoded as PRE, the
program execution is encoded as PROG and the postconditions including the invariants
are encoded as POST . Exceptions are signaled by EXCEPT . The solvers then search a
satisfying assignment for

PRE ∧ PROG ∧ (¬POST ∨ EXCEPT )

If such an assignment is found (i.e. the formula is satisfiable) this means that the pro-
grams definitely does not conform to its specification and the assignment is returned as a
counterexample.

In bounded program verification, an unsatisfiable formula is a good thing. If the formula
is unsatisfiable it means the program conforms to its specification. However, the formula
might be unsatisfiable for undesirable reasons: It might be that PRE or PRE ∧ PROG
alone are already unsatisfiable. In the first case the contradiction in the precondition
needs to be fixed, whereas in the latter case the bounds need to be increased because the
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2.1. Bounded Program Verification

program cannot be executed within the bounds at all, for example because the program
creates more objects than the bounds allow.

It is a good idea to check if PRE ∧PROG∧POST ∧¬EXCEPT is satisfiable to ensure
there is at least one valid execution within the specified bounds. PRE ∧ PROG must
be satisfiable (see above) and the remaining reasons for unsatisfiability are the following.
POST might be unsatisfiable meaning that a contradiction in the postcondition needs to be
fixed. Alternatively, it might be that there is a mismatch between code and specification,
and all prestates in the current scope violate the postcondition or lead to exceptional
behavior. The bounded program verification tool cannot tell if the code or the specification
(or both) is broken, so the user has to detect and resolve the conflict.

Bounded program verification tools typically execute in three phases:

1. Preprocessing: In the preprocessing phase the inputs (i.e. program, specification,
and bounds) are transformed into a SAT or SMT formula.

2. Solving: An off-the-shelf solver such as SAT4J [BP10] or Z3 [dMB08] is used to
solve the formula generated in the preprocessing phase.

3. Postprocessing: In the postprocessing phase the tools transform the output of the
solvers into a human-readable counterexample. This might include the input leading
to the problematic execution as well as a trace with information on what exactly
went wrong where exactly.

2.1.1. JForge

JForge [Yes09] is one of the more mature bounded program verification tools. JForge checks
a subset of the Java language against a specification written in JFSL [Yes09], a custom
specification language based on Alloy [Jac02]. The JForge frontend is an Eclipse plug-in
allowing the user to set options, trigger the verification and examine the postprocessed
output. The JForge backend relies on Alloy and a SAT solver, SAT4J [BP10] by default.

JForge offers three operating modes:

• Inline Mode: In inline mode the code of all called submethods is inlined. Ad-
vantages: Inline mode does not require specification of submethods. This allows to
check partial specifications describing just some properties of the code. Disadvan-
tages: Inline mode does not scale well.

• Constraint Mode: In constraint mode the precondition of the called submethod is
checked when a submethod with specification is called. If it holds, the program state
is changed non-deterministically to make it respect the specified postcondition of the
called submethod. The actual code in the called submethod is ignored. Advantages:
Constraint mode scales better than inline mode. Disadvantages: Very detailed post-
conditions are required for replaced submethods. Otherwise traces inconsistent with
the actual code are generated. See chapter 5.2.3 for a more detailed discussion of
this problem.

• Hybrid Mode: Hybrid mode combines inline mode and constraint mode. Some
advantages from both modes apply, but as none of the respective disadvantages are
solved for all cases we found it to be not too useful in practice.

A screenshot of JForge can be seen in figure 2.1.
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2. Background

Figure 2.1.: Screenshot of JForge showing the trace for a counterexample.

2.1.2. InspectJ

First versions of InspectJ [LNT12] became available during our work on this thesis. In-
spectJ is a command line tool with features comparable to JForge. InspectJ checks a
subset of the Java language against specifications written in a dialect of the Java Mod-
eling Language (JML) [LBR99]. In contrast to JForge, the InspectJ backend is based on
SMT (Satisfiability Modulo Theories) and the Z3 solver [dMB08].

Initial benchmarks show that InspectJ performs better than JForge, especially for big
scopes. InspectJ still lacks some features that JForge supports, including the postprocess-
ing of the output, but the tool is under active development and rapidly improving.

InspectJ operates in inline mode.

A screenshot of InspectJ can be seen in figure 2.2.

2.2. Dijkstra’s Algorithm

Dijkstra’s Algorithm is one of the best known algorithms in connection with graphs and
computes single-source shortest paths in a graph with non-negative edge weights. It was
originally published by Dijkstra in 1959 [Dij59].

A pseudocode implementation of Dijkstra’s Algorithm is listed below.
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2.2. Dijkstra’s Algorithm

Figure 2.2.: Screenshot of InspectJ.

1 input : a graph o f nodes and edges with non−negat ive l ength
2
3 a l l nodes are i n i t i a l i z e d
4 − with a t e n t a t i v e d i s t ance o f i n f i n i t y
5 − untouched ( the re i s no known path yet )
6 − u n s e t t l e d ( f i n a l d i s t anc e i s not yet known)
7
8 s e t t e n t a t i v e d i s t anc e o f the source node to 0
9 mark the source node as touched

10
11 repeat u n t i l the re are no more touched−but−u n s e t t l e d nodes :
12 u <− touched−but−u n s e t t l e d node o f minimal t e n t a t i v e d i s t ance
13 d <− t e n t a t i v e d i s t anc e o f u
14 mark u as s e t t l e d
15 repeat f o r each neighbor v o f u :
16 l en <− l ength o f edge from u to v
17 i f (d+len ) < ( t e n t a t i v e d i s t anc e o f v ) :
18 s e t t e n t a t i v e d i s t anc e o f v to d+len
19 mark v as touched
20
21 output : l ength o f s h o r t e s t path f o r each reachab l e node

In lines 3-6, all nodes are assigned a tentative distance of infinity from the source node.
After this initialization Dijkstra’s Algorithm explores the graph starting at the source node,
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2. Background

moving further and further away from it. In lines 11-14 nodes are examined (settled) with
monotonically increasing distance from the source node. When a node is settled a new
node might be discovered (touched for the first time) in line 17 or a shorter path to an
unsettled node might be discovered. In either case the tentative distance to the respective
node is adjusted in lines 16-19. Once a node is settled its tentative distance becomes
final. Any path constructed later on passes through a node that is even further away and
thus the path cannot be shorter. The path corresponding to the calculated length can be
restored later if in line 19 v remembers u as its predecessor.

In the simplest case Dijkstra’s Algorithm calculates the distance from one source node to
all reachable nodes. This mode is called one-to-all. If only the distance to one particular
target node is relevant (one-to-one) the outer loop can be terminated when the target node
is about to be settled because the tentative distance becomes final then. Note that the
search is not specifically directed towards the target: in euclidean space the search space
is explored in expanding spheres around the source node.

An efficient way to track the touched nodes and their tentative distances is crucial for a fast
implementation of Dijkstra’s Algorithm. The worst case performance of an implementation
of Dijkstra’s Algorithm is highly depending on the underlying priority queue data structure
used to store, query and update that information. In a graph G(V,E) with nodes V
and edges E the worst case performance ranges from O(|E| + |V |2) using a linear list to
O(|E| + |V | · log |V |) using a Fibonacci heap and a reverse mapping from nodes to heap
position. In sparse graphs like road networks the simpler BinaryHeap data structure also
offers optimal performance of O(|E|+ |V | · log |V |).

2.2.1. BinaryHeap

A priority queue stores a set of key/value pairs. It allows efficient extraction of the value
with the minimal key. Priority queues can be implemented using a binary minimum
heap—a commonly used tree-based data structure that satisfies the following property:

Definition 1 minimum heap property:
key(p) ≤ key(n)
for each node n (except the root node) and its parent node p.

In this thesis BinaryHeap refers to a binary minimum heap because that is what is used
in the analyzed implementation. The most important operations to be executed on a
BinaryHeap are:

• insert(): insert an element into the BinaryHeap

• deleteMin(): remove the element with the smallest key from the BinaryHeap

• decreaseKey(): decrease the key of an element in the BinaryHeap

It is intuitive to think of the BinaryHeap as a tree, but many implementations (including
the one discussed in this thesis) store a BinaryHeap as an array for performance reasons.
If the root element is stored at index 1, the children of element e at index i are stored
at indexes 2 ∗ i and 2 ∗ i + 1, if they exists. The parent of element e is stored at index
bi/2c except for the root node. The parent/child relationship is implicit and not stored
explicitly. See figure 2.3 for an illustration.

Decreasing the key of an element e or inserting a new element e at the end of the array may
require to move element e upwards in the BinaryHeap. This restructuring method is called
upheap() and is necessary because the heap property might be violated after decreasing

10



2.2. Dijkstra’s Algorithm

0

3 8

5 12 9

idx1:

0
idx2:

3
idx3:

8
idx4:

5
idx5:

12
idx6:

9

right child: idx*2 + 1left child: idx*2

BinaryHeap as Tree:

BinaryHeap as Array:

Figure 2.3.: Different representations of a BinaryHeap.
The numbers in the elements are keys; values are not pictured.

the key or inserting e at the end. upheap() is implemented by repeatedly exchanging e
with its respective parent until the parent has a smaller key than e or the root node is
reached.

After removing the minimal element (i.e. the root element) from a BinaryHeap at index 1,
the last element e from the BinaryHeap is moved to index 1 to fill the gap. This typically
results in a temporary violation of the heap property that is corrected by downheap().
During downheap() e is repeatedly exchanged with its respective child with the smaller
key, until e’s key is smaller than the keys of both of e’s children or the bottom of the heap
is reached.

Elements store a key and a value. The value may be a reference to elsewhere with the real
value. For a priority queue the key of the elements is used as priority (or distance in the
case of Dijkstra’s Algorithm, with a node in the graph as value).
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3. Related Work

3.1. Software Verification

Software testing already is an established technique in the software industry. Software
verification is a promising alternative and/or supplement and a lot of different approaches
to software verification exist.

In this thesis we concentrated on bounded program verification because it can handle
data structure rich programs and check them exhaustively (in a bounded scope) without
requiring too much user interaction.

JForge

JForge [Yes09] is one of the more mature bounded program verification tools. JForge checks
a subset of the Java language against a specification written in JFSL [Yes09], a custom
specification language based on Alloy [Jac02]. The JForge frontend is an Eclipse plug-in
allowing the user to set options, trigger the verification and examine the postprocessed
output. The JForge backend relies on Alloy and a SAT solver, SAT4J [BP10] by default.

JForge is used extensively in this thesis.

InspectJ

During our work on this thesis first versions of InspectJ [LNT12] became available. In-
spectJ is a command line tool with features comparable to JForge. InspectJ checks a
subset of the Java language against specifications written in a dialect of the Java Mod-
eling Language (JML) [LBR99]. In contrast to JForge, the InspectJ backend is based on
SMT (Satisfiability Modulo Theories) and the Z3 solver [dMB08].

Initial benchmarks show that InspectJ performs better than JForge, especially for big
scopes. InspectJ still lacks some features that JForge supports, including the postprocess-
ing of the output, but the tool is under active development and rapidly improving.

JForge is used extensively in this thesis.

3.2. Dijkstra’s Algorithm

Dijkstra’s Algorithm is one of the best known algorithms in connection with graphs and
it is the topic of many publications and countless implementations exists.
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A Note on Two Problems in Connexion with Graphs

The original paper originally published by Dijkstra in 1959 [Dij59] describing the algorithm.

Introduction to Algorithms

Dijkstra’s Algorithm is discussed in the reputable Introduction to Algorithms by Cormen,
Leiserson, Rivest and Stein [CLRS01].

Boost

Dijkstra’s Algorithm is part of the Boost C++ libraries [boo12].

Engineering and Augmenting Route Planning Algorithms

The code verified in this thesis is based on an implementation of Dijkstra’s Algorithm
originally written by Daniel Delling in C++ for his Ph.D. thesis on route planning in road
networks [Del09]. The code was developed with raw performance in mind, and no plans
to verify it. It uses complex data structures and applies many optimizations resulting in
speedup in relevant route planning scenarios.

3.3. Verifying Dijkstra’s Algorithm

Several attempts have been made to verify Dijkstra’s Algorithm. The following section
lists previous attempts and describes how they are different from the approach described
in this thesis.

KeY: Dijkstra’s Algorithm

In his diploma thesis Volker Klasen proves the correctness of a Java implementation of
Dijkstra’s Algorithm in KeY [Kla10, ABB+05]. However, the implementation of the al-
gorithm is specifically created to make it provable. For example, a linear list is traversed
instead of using a BinaryHeap, which is slower in theory and practice. KeY was not able to
automatically close the required proof obligations, so besides creating detailed specification
a significant amount of time was spend on manually constructing a proof.

Somewhat related, Peter H. Schmitt constructed a proof of the correctness of the Bellman
Equation [Sch11] used in the specification.

Jahob: Dijkstra’s Algorithm

Robin Mange and Jonathan Kuhn verified some unmentioned properties of a basic im-
plementation of Dijkstra’s Algorithm using Jahob [MK07, jah12]. The code is minimal,
academic code without optimizations. In comparison to our approach Jahob requires more
detailed annotations, e.g. loop invariants. Also, it is unclear if Jahob could handle more
complex code, as the authors mention performance issues with the code they verified.

Mizar: Dijkstra’s Algorithm

Jing-Chao Chen formalized Dijkstra’s Algorithm in Mizar and proved it [Che03, miz12].
His work is very theoretical and does not involve an actual implementation.

ACL2: Dijkstra’s Algorithm

J Strother Moore and Qiang Zhang verified an unoptimized Lisp implementation of Dijk-
stra’s Algorithm using ACL2 [MZ05, KMB97]. The proof is not automatic and requires
significant user interaction.
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Three things are required to perform a bounded program verification of an implementation
of Dijkstra’s Algorithm: the actual implementation, a specification of the implementation,
and a bounded program verification tool to perform the verification.

There are many existing implementations of Dijkstra’s Algorithm available, thus starting a
new implementation is unnecessary—on the contrary, it was an explicit goal of this project
to verify an existing implementation optimized for real-world usage. The implementation
used does not provide any specification, which had to be created from scratch. JForge and
an early version of InspectJ were used as bounded program verification tools.

This chapter describes the origins of the analyzed implementation of Dijkstra’s Algorithm,
and how we ported it to Java for verification purposes. We tried two different approaches
creating the specification: a top-down approach without looking at the internals, and
a bottom-up approach, starting with the verification of single submethods. Finally we
describe the iterative workflow of testing and improving specification.

4.1. Implementation of Dijkstra’s Algorithm

The code verified in this thesis is based on an implementation of Dijkstra’s Algorithm
originally written by Daniel Delling in C++ for his Ph.D. thesis on route planning in
road networks [Del09]. The implementation was benchmarked for multiple theses and
publications on algorithm engineering by Delling and other researchers, e.g. Sascha Mein-
ert [Mei11]. The code was developed with raw performance in mind, and no plans to verify
it. It uses complex data structures and applies many optimizations resulting in speedup
in relevant route planning scenarios.

After stripping all functionality except the shortest path calculation from the codebase,
the following classes remain:

• FlatBaseDijkstra (contains the main algorithm)

• BinaryHeap (the heap implementation)

• BinaryHeapElement (data container)

• BinaryHeapIndexKey (data container)

• BasicGraph (data container)
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• BasicNode (data container)

• BasicEdge (data container)

The names are taken from the Java port for consistency throughout this thesis.

Typical usage of the FlatBaseDijkstra class is structured like this:

1. An instance of BasicGraph is created. Typically the graph is read from a file, but
Input/Output is ignored in this thesis.

2. The FlatBaseDijkstra constructor is called and the BasicGraph instance created
in step 1 is passed as a parameter.

3. FlatBaseDijkstra.run() is called and the source and target nodes are passed as
parameters. Dijkstra’s Algorithm is executed and makes numerous calls to different
methods of an internal BinaryHeap instance.

4. FlatBaseDijkstra.getDistance(), an accessor method for the distance calculated
and stored within the BinaryHeap instance, is called.

In the BinaryHeap class an array of IndexKeys builds a heap, where each node stores its
key and a reference to a HeapElement. The HeapElements store the real payload and are
kept in a separate array, that does not conform to the heap property; in fact HeapElements
are never relocated once added. This way less data needs to be moved when the heap is
restructured. IndexKeys are kept small to minimize cache footprint: for example indexes
into the HeapElement array are stored instead of pointers, because unlike pointers indexes
can be stored as 32bit integers on 64bit machines; more of them will fit in the cache and/or
less data needs to be discarded from the cache. The key is stored in the HeapElement,
so it can be accessed after removal of the IndexKey from the heap. Nonetheless a copy
of the key is kept in the IndexKey to save a dereference operation and to minimize cache
footprint when traversing the heap. No virtual methods are used, only templating.

A dummy IndexKey is kept as a guard object in the heap at all times. The parent/child
relationship is never expressed explicitly, only indexes are multiplied/divided by 2 when
necessary.

Proper usage of all classes is assumed; parameters are rarely checked, overflow of path
lengths is not handled and the code easily crashes if invoked outside the context of Flat-
BaseDijkstra.run().

4.1.1. Java Port of the Codebase

There was an effort to create a version of JForge that operates on C and possibly C++ code
at the Toshiba Corporate Research and Development Center [DY12]. No code, documen-
tation or paper is available. We contacted the engineers and the project seems dormant.

Consequently the C++ code had to be ported to Java in order to work with JForge. Large
parts of the codebase could be re-used verbatim because both C++ and Java are curly
braces programming languages.

There have been some more involving changes, however:

• Code not directly related to the calculation of shortest paths was removed. This
affects debugging code to visually trace single steps of the algorithm, code to read
graphs and queries from files, and similar code. For example the following code was
completely dropped:
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1 // v i s u a l i z a t i o n ( can be s e t by c o m p i l e r f l a g −DVISUAL)
2 #i f d e f VISUAL
3 #d e f i n e VISUALMODE( x ) x
4 #e n d i f
5 #i f n d e f VISUAL
6 #d e f i n e VISUALMODE( x )
7 #e n d i f

These changes are justified because we are interested in verifying the core of the
implementation—not the supporting code.

• The original code uses typedefs and templating to allow reuse in other search al-
gorithms. In our port all numerical types become int, and instead of function or
class templates, we create versions with the actually used types substituted for the
template parameters. For example we make the following replacement:

1 template < typename ExternalKey ,
2 typename MetaExtKey ,
3 typename Data ,
4 typename Count ,
5 typename Key = ExternalKey ,
6 typename KeyExtractor = SimpleKeyExtractor<ExternalKey> >
7 c l a s s BinaryHeap { . . .

becomes

1 c l a s s BinaryHeap { . . .

Typedefs and templates are not supported in Java and the flexibility is not required
for the analyzed implementation.

• std::vector<...> is replaced with plain arrays as can be seen in the following
example:

1 typede f BinaryHeapElement<ExternalKey , Data , Count> PQElement ;
2 std : : vector<PQElement> e l ements ;

becomes

1 pub l i c BinaryHeapElement [ ] e lements ;

std::vector<...> from the C++ Standard Template Library is not available in
Java. The implementations of the java.util interface List<...> cause problems
with the bounded program verification tools, because they require support for gener-
ics and the Java class library. This change causes no further problems because the
number of nodes in the graph is a reasonable upper limit for the number of elements
in the heap.

We introduced one bug when implementing this change, see chapter 5.2.1.

The port does not include a main method, so it can not be run and it was—on purpose—
not tested in a traditional way, to see what errors the bounded program verification tools
detect. Some syntax errors where detected and fixed by the IDE, Eclipse. There are no
changes on the algorithmic level between the C++ and the Java implementation.
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4.2. Three Levels of Specification

Ideally verification would succeed if the user specified that the solution returned by Dijk-
stra’s Algorithm is the shortest possible path between the corresponding nodes. Formaliz-
ing this requirement already makes it more verbose (see chapter 4.3.1.1), but unfortunately
that is insufficient because the bounded program verification tools still return counterex-
amples.

Additional specification is required to get rid of the counterexamples and to successfully
verify the program. From a user’s point of view this additional specification is different
from the original specification. Bounded program verification tools are oblivious and do
not make any distinction.

For the user the following levels of specification exist:

1. Functional Level Specification: This specification is the most fundamental and
in many ways the most important specification. It describes the desired effect of
a method, and applies at a high level. It could be used to specify pseudocode or
structures described by UML diagrams. Functional level specification is typically
what is mentioned when talking about what has been verified in a program.

2. Implementation Level Specification: This specification works around small
shortcomings in the actual implementation and makes it airtight. The specifica-
tion or ideally the code must take care of all corner cases that make programs crash
under certain circumstances but are irrelevant in the big picture. Bounded program
verification tools are excellent at detecting usage of pointers that are not checked
against null, array indexes that are out of bounds, arithmetic overflow and aliasing
issues.

3. Context Level Specification: This level of specification is about making the ver-
ification process work with the tools at hand. Bounded program verification tools
systematically consider every bit pattern within a given scope as a possible prestate.
However, many random bit patterns do not represent valid program states—states
that can be reached starting with an empty heap and running code from the pro-
gram. Most programs function according to garbage in, garbage out and will not
deal with such cases properly. As verification tools cannot tell what prestates should
be considered valid, the developer must explicitly state it in specification. The coun-
terexamples excluded by context level specification look similar to counterexamples
ruled out by implementation level specification. However, they are only an issue in
the verification process, and never during program execution.

Furthermore, there is specification to cope with shortcomings of the tools: For ex-
ample in the current version of InspectJ it is necessary to add an additional precon-
dition array != null && array[5] != null when there already is a precondition
array[5].key == 5 that should imply the former.

Sometime it helps to temporarily introduce specification to influence the counterexample
that is removed again later on. JForge and InspectJ only report one counterexample
at a time—and not necessarily a simple one at that. The scope of the counterexample is
bounded but the bounds are traversed in no particular order. So a complex counterexample
with many interconnected instances in the prestate might be created. One might ask if
this can also happen when the prestate is simple before untangling that prestate. The
only influence on the counterexamples one has is to add further preconditions that exclude
complex prestates.

The following self-contained scenario shows the different levels of specification and typical
bugs found by formal verification:
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In a racing simulation the race class stores an array a of car instances to represent the
competing drivers and their cars. The array is ordered according to the current position
in the race. The method overtake() is called whenever the car at position pos overtakes
another car. overtake() restores the correct order of a and increases the counter of
maneuvers for the involved cars.

The following method does all this and would actually work perfectly in the context of the
racing simulation without ever being the source of any problems with the program:

1 void overtake ( i n t pos ) {
2 car [ ] a = t h i s . a ;
3 car tmp = a [ pos ] ;
4 a [ pos ] = a [ pos +1] ;
5 a [ pos +1] = tmp ;
6 a [ pos ] . count += 1 ;
7 a [ pos +1] . count += 1 ;
8 }

A formal specification of the overtake() method at the functional level looks this:

1 /∗@ ensure s (
2 @ a [ pos ] == \ o ld ( a [ pos +1]) &&
3 @ a [ pos +1] == \ o ld ( a [ pos ] ) &&
4 @ // t r i c k y : array rearrangement and count ing i s in t e r tw ined
5 @ a [ pos ] . count == \ o ld ( a [ pos +1] . count ) + 1 &&
6 @ a [ pos +1] . count == \ o ld ( a [ pos ] . count ) + 1
7 @ ) ; @∗/

Line 2 of the specification ensures that the car that was at position pos+1 in the prestate
(denoted by old) is at position pos in the poststate. Line 3 ensures that the other car was
moved respectively. Lines 5 and 6 ensure that for both cars count is increased by one.

However—and this might come as a surprise—the code does not conform to this specifica-
tion because of the following assumptions that most likely hold in the given scenario but
are not true in general, especially if the method is verified in isolation.

1. In line 3 a is assumed to be not null. However, a might be null, leading to a
null dereference, resulting in a NullPointerException. Depending on the rest of
the program this either requires implementation level specification enforcing a valid
value or context level specification excluding unreachable prestates.

2. In line 3 pos is assumed to be zero or positive. However, pos might be negative,
leading to an array access that is out of bounds, resulting in an ArrayIndexOutOf

BoundsException. Depending on the rest of the program this either requires im-
plementation level specification enforcing a valid value or context level specification
excluding unreachable prestates.

3. In line 3 pos is assumed to be smaller than a.length. However, pos might be
a.length or bigger, leading to an array access that is out of bounds, resulting in
an ArrayIndexOutOfBoundsException. Depending on the rest of the program this
either requires implementation level specification enforcing a valid value or context
level specification excluding unreachable prestates.

4. In line 4 pos is assumed to be smaller than Integer.MAX_VALUE. However, pos might
be MAX_VALUE, leading to an integer overflow when calculating pos+1, resulting in
undesired behavior later. Depending on the rest of the program this either requires
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implementation level specification enforcing a valid value or context level specification
excluding unreachable prestates.

5. In line 4 pos+1 is assumed to be smaller than a.length. However, pos+1 might be
a.length or bigger, leading to an array access that is out of bounds, resulting in
an ArrayIndexOutOfBoundsException. Depending on the rest of the program this
either requires implementation level specification enforcing a valid value or context
level specification excluding unreachable prestates.

6. In line 6 a[pos] (initially a[pos+1]) is assumed to be not null. However, a[pos]
might be null, leading to a null dereference, resulting in a NullPointerException.
Depending on the rest of the program this either requires implementation level spec-
ification enforcing a valid value or context level specification excluding unreachable
prestates.

7. In line 6 a[pos].count is assumed to be smaller than Integer.MAX_VALUE. However,
a[pos].count might be MAX_VALUE, leading to an integer overflow when adding 1,
resulting in undesired behavior later. This requires implementation level specification
describing what should happen instead of overflow.

8. In line 7 a[pos+1] is assumed to be not null. However, a[pos+1] might be null,
leading to a null dereference, resulting in a NullPointerException. Depending
on the rest of the program this either requires implementation level specification
enforcing a valid value or context level specification excluding unreachable prestates.

9. In line 7 a[pos+1].count is assumed to be smaller than Integer.MAX_VALUE. How-
ever, a[pos+1].count might be MAX_VALUE, leading to an integer overflow when
adding 1, resulting in undesired behavior later. This requires implementation level
specification describing what should happen instead of overflow.

10. a[pos] and a[pos+1] are assumed to be referencing different instances of car. How-
ever, a[pos] and a[pos+1] might be aliased increasing count twice in lines 5 and
7, possibly resulting in unexpected behavior later.

Aliasing means that one entity is referred to by two different names. This is not
necessarily a problem, but causes problems when a compiler or a programmer as-
sumes that two different entities are referred. Aliasing can happen when working
with multiple pointers or references, especially with different array elements if they
are by-reference as in Java, with the same array element if two differently named
indexes (with the same value) are used, with overlapping arrays when referred to by
pointers in C, and with overlapping memory segments when using memmove() et al.

Depending on the rest of the program this either requires implementation level spec-
ification enforcing a valid value or context level specification excluding unreachable
prestates.

11. As a consequence of the aliasing issue above it follows, that a[pos].count is assumed
to be smaller than Integer.MAX_VALUE-1, because otherwise adding 1 twice will
overflow, possibly resulting in unexpected behavior later.

12. The specification is incomplete in the sense that an implementation that incorrectly
sets all elements of a to null, except those at index pos and pos+1 would still be
verified. This can be worked around using modifies clauses, but constitutes a major
problem in constraint mode, see chapter 5.2.3.

13. Let us assume one more invariant: the sum of the counts of all cars in one race is
an even number (because it is always increased by 2). After all problems mentioned
above have been fixed, and the aliasing problem is solved by requiring all cars in a
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race to be different, there will still be counterexamples with a second instance i of
the race class, where one car is added to both races. Even though the invariant is
correct in the context of this it might still fail in the context of i if only one of the
cars has been added to that race.

The code cannot be verified successfully unless it handles all those corner cases gracefully—
the snippet above does not—or unless another set of specifications is added, making all
the implicit assumptions explicit.

Implementation level specification undoubtedly refers to real deficits in the codebase. It
is possible to write actual snippets of code (e.g. test cases) that trigger the problems. An
attacker might exploit the problem or the problem might show when the code is used under
slightly changed circumstances. System programmers and developers of security relevant
code typically are interested in these corner cases and handle them in their code.

However, a lot of other code (including the implementation of Dijkstra’s Algorithm dis-
cussed in this thesis) is not written so defensively because it is used only by non-malicious
programmers knowing the implicit assumptions.

Missing implementation and context level specification both completely block further ver-
ification. The tools only report one counterexample at a time, even if it is of low value to
the programmer. As long as there are low level counterexamples one cannot tell whether or
not there still are problems on the functional level. Therefore it is not possible to postpone
low level specification to a later point.

For successful bounded program verification each and every arithmetic operation must be
guaranteed to not overflow, each and every reference dereferenced must be guaranteed to
be not null and each and every array access must be guaranteed to be within bounds.
Each and every reference must be assumed to be aliased.

4.3. Top-Down Approach

JForge and InspectJ will only check for some built-in properties, namely the absence
of NullPointerException and ArrayIndexOutOfBoundsException, if no specification is
provided. In order to check functional properties of the code user-defined specification is
required.

Top-Down verification handles the algorithm as a black box. Only the input and output
of the top level method, FlatBaseDijkstra.run(), is considered. It is irrelevant how the
output is calculated. Relatively few specifications are added and they are on the functional
level.

4.3.1. Postconditions of Dijkstra’s Algorithm

The goal of this thesis is to prove that the result of the FlatBaseDijkstra.run() method
is indeed a shortest path. To check this with the bounded program verification tools we
need a criterion that is true if and only if a given path is a shortest path.

4.3.1.1. Bellman’s Principle of Optimality

In dynamic programming a more complex problem is solved by combining solutions of less
complex problems. Richard Bellman formulated the following principle in the context of
dynamic programming:
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Definition 2 Bellman’s Principle of Optimality:
An optimal policy has the property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.

The solution to the complex problem is as good as the solutions of the simpler problems
combined. In terms of the shortest path problem, where we want to prove that Dijkstra’s
Algorithm is an optimal policy, every path from s to t with s 6= t can be split in two parts:

1. part: path from s to u

2. part: path from u to t

where u is a direct neighbor of t. The shortest path from s to t via u cannot be shorter
than those two parts combined (added). This holds for all neighbors u of t. u will be an
alias for s if t is a neighbor of s.

Formalized:

∀t ∈ V : ∀u ∈ N(t) : D(s, t) ≤ D(s, u) + d(u, t)

• V is the set of nodes in the graph.

• N(a) is the set of the neighbors (nodes that are connected via a direct edge) of a.

• D(a, b) is the distance (length of the shortest path) from a to b
and assumed to be ∞ if b is not reachable from a.

• d(a, b) is the length of the edge from a to b
and only defined if there is a direct edge from a to b.

If s 6= t there must be at least one node where equality holds, namely any node u that is
a direct predecessor to t on a shortest path from s to t:

∀t ∈ V \ {s} : ∃u ∈ N(t) : D(s, t) = D(s, u) + d(u, t)

The source node has distance 0 by definition: D(s, s) := 0.
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In JML syntax the formula for the one-to-all case reads:

1 /∗@ ensure s (
2 @ ( t h i s . queue . e lements
3 [ t h i s . graph . nodes [ sourceNodeId ] . s l o t I d ] . key == 0) &&
4 @ (\ f o r a l l i n t t a r g e t I d ;
5 @ ((0 <= t a r g e t I d ) &&
6 @ ( t a r g e t I d < t h i s . graph . nodes . length −1) &&
7 @ ( t a r g e t I d != sourceNodeId ) )
8 @ ==>
9 @ (\ e x i s t s i n t ne ighborId ;

10 @ ((0 <= neighborId ) &&
11 @ ( ne ighborId < t h i s . graph . nodes . length −1) )
12 @ &&
13 @ (\ e x i s t s i n t edgeId ;
14 @ ( t h i s . graph . nodes [ ne ighborId ] . f i r s t E d g e <= edgeId ) &&
15 @ ( edgeId < t h i s . graph . nodes [ ne ighborId +1] . f i r s t E d g e ) &&
16 @ ( t h i s . graph . edges [ edgeId ] . targetNodeId == t a r g e t I d ) &&
17 @ ( t h i s . queue . e lements
18 [ t h i s . graph . nodes [ t a r g e t I d ] . s l o t I d ] . key
19 @ ==
20 @ t h i s . queue . e lements
21 [ t h i s . graph . nodes [ ne ighborId ] . s l o t I d ] . key
22 @ + t h i s . graph . edges [ edgeId ] . weight )
23 @ )
24 @ &&
25 @ (\ f o r a l l i n t edgeId ;
26 @ ( t h i s . graph . nodes [ ne ighborId ] . f i r s t E d g e <= edgeId ) &&
27 @ ( edgeId < t h i s . graph . nodes [ ne ighborId +1] . f i r s t E d g e ) &&
28 @ ( t h i s . graph . edges [ edgeId ] . targetNodeId == t a r g e t I d ) ==>
29 @ ( t h i s . queue . e lements
30 [ t h i s . graph . nodes [ t a r g e t I d ] . s l o t I d ] . key
31 @ <=
32 @ t h i s . queue . e lements
33 [ t h i s . graph . nodes [ ne ighborId ] . s l o t I d ] . key
34 @ + t h i s . graph . edges [ edgeId ] . weight )
35 @ )
36 @ )
37 @ ) ) ; @∗/

There are still some implementation level issues that have to be addressed:

• Overflow: Preconditions make sure there is no overflow, see chapter 4.3.2.

• Multiple Connected Components: The specification is correct for graphs with mul-
tiple connected components if the distance is set to ∞ for unreachable nodes. In
the implementation Integer.MAX_VALUE can be used if instead of + an addition
method that does not overflow is used. A node will have distance ∞ if and only if
all neighbor nodes have distance ∞ (are unreachable), thus it is semantically is cor-
rect. this.queue.elements[this.graph.nodes[nodeId].slotId].key might be
undefined for untouched nodes, thus a wrapper that returns ∞ is required.

• Search Mode: The specification only works in one-to-all mode because all shortest
distances need to be known. For one-to-one mode it must be checked that distances
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are correct for settled nodes, tentative distances are correct considering the settled
nodes and all nodes that should have been settled actually have been settled.

• Edge Direction: The specification assumes that all edges are bidirectional. The code
supports directed graphs via forward/backward flags in the edges. To support this
in the specification, it must check whether the forward flag is set and skip the edge
otherwise.

Please note that we did not successfully verify this specification with JForge or InspectJ.
It might therefore be incomplete or inaccurate.

4.3.2. Preconditions of Dijkstra’s Algorithm

There is one functional level precondition in Dijkstra’s Algorithm: all edge weights must
be non-negative. In JML this reads:

1 /∗@ r e q u i r e s (
2 @ (\ f o r a l l i n t i ; ( ( i >= 0) && ( i < t h i s . graph . edges . l ength ) )
3 @ ==> t h i s . graph . edges [ i ] . weight >= 0)
4 @ ) ; @∗/

There are some implementation level preconditions describing how a valid instance of the
graph looks.

1 /∗@ r e q u i r e s (
2 @ ( t h i s . graph . nodes != n u l l ) &&
3 @ ( t h i s . graph . nodes . l ength >= 2) && // dummy
4 @ (\ f o r a l l i n t i ; ( ( i >= 0) && ( i < t h i s . graph . nodes . l ength ) )
5 @ ==>
6 @ ( ( t h i s . graph . nodes [ i ] != n u l l ) &&
7 @ ( t h i s . graph . nodes [ i ] . f i r s t E d g e >= 0) &&
8 @ ( ( i != t h i s . graph . nodes . length −1) ==>
9 ( t h i s . graph . nodes [ i ] . f i r s t E d g e

10 <
11 t h i s . graph . edges . l ength ) ) &&
12 @ ( t h i s . graph . nodes [ i ] . timestamp <= t h i s . time ) ) )
13 @ ) ; @∗/

1 /∗@ r e q u i r e s (
2 @ ( t h i s . graph . edges != n u l l ) &&
3 @ ( t h i s . graph . edges . l ength >= 0) &&
4 @ (\ f o r a l l i n t i ; ( ( i >= 0) && ( i < t h i s . graph . edges . l ength ) )
5 @ ==>
6 @ ( ( t h i s . graph . edges [ i ] != n u l l ) &&
7 @ ( t h i s . graph . edges [ i ] . targetNodeId >= 0) &&
8 @ ( t h i s . graph . edges [ i ] . targetNodeId <
9 t h i s . graph . nodes . l ength ) &&

10 @ ( t h i s . graph . edges [ i ] . forwardFlag == true ) ) ) // WORKAROUND
11 @ ) ; @∗/

node.firstEdge must be in order for the loop traversing all edges:
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1 /∗@ r e q u i r e s (
2 @ ( t h i s . graph . nodes [ 0 ] . f i r s t E d g e == 0) &&
3 @ (\ f o r a l l i n t i ; ( ( i >= 0) && ( i < t h i s . graph . nodes . length −1) )
4 @ ==>
5 @ ( ( t h i s . graph . nodes [ i ] . f i r s t E d g e <=
6 t h i s . graph . nodes [ i +1] . f i r s t E d g e ) ) )
7 @ &&
8 @ ( t h i s . graph . nodes [ t h i s . graph . nodes . length −1] . f i r s t E d g e ==
9 t h i s . graph . edges . l ength ) // dummy po in t s behind

10 @ ) ; @∗/

Obvious bounds checking:

1 /∗@ r e q u i r e s (
2 @ (0 <= sourceNodeId ) &&
3 @ ( sourceNodeId < t h i s . graph . nodes . length −1) && // dummy
4 @ (0 <= targetNodeId ) &&
5 @ ( targetNodeId < t h i s . graph . nodes . length −1) && // dummy
6 @ ( t h i s . queue . capac i ty >= t h i s . graph . nodes . length −1)
7 @ ) ; @∗/

The verifiers are excellent at finding arithmetic overflows. The algorithm basically sums
up the lengths of a set of edges that form a path. This addition is prone to overflow. The
original code does not even consider that case because it is intended to be run on road
networks where lengths of shortest paths are small in comparison to Integer.MAX_VALUE.

This vague domain knowledge must be formalized in an exact precondition to be useful
to the bounded program verification tools. The precondition must hold in a degenerated
road network where e.g. all nodes are linked linearly.

We require that the sum of the length of all edges does not overflow. As no edge is added
to a path more than once, the summation can no longer overflow.

Unfortunately InspectJ does not support aggregation of values via a sum predicate. As a
workaround we create a maxWeight variable that limits the weight of any single edge.

1 /∗@ r e q u i r e s (
2 @ (\ f o r a l l i n t i ; ( ( i >= 0) && ( i < t h i s . graph . edges . l ength ) )
3 @ ==>
4 @ ( ( i ∗ maxWeight <= I n t e g e r .MAX VALUE) &&
5 @ ( i ∗ maxWeight > 0) ) // catch over f l ow
6 @ (\ f o r a l l i n t i ; ( ( i >= 0) && ( i < t h i s . graph . edges . l ength ) )
7 @ ==>
8 @ ( t h i s . graph . edges . weight <= maxWeight )
9 @ ) ; @∗/

For performance reasons (fast reverse lookup), the position in the BinaryHeap is stored
within each element. An element cannot be added to two BinaryHeap instances h1 and
h2, as only the position in one BinaryHeap can be stored in the element. However there
are possible prestates where one element is in multiple BinaryHeap instances at the exact
same position, and running the algorithm will corrupt the other BinaryHeap instances. A
counterexample will be reported if there are invariants that catch such corruptions. This
never happens in the context of Dijkstra’s Algorithm. As a workaround only one instance
of the BinaryHeap class is allowed.

In JFSL this can be achieved by:
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1 one BinaryHeap

In JML there is no language level support for this feature and an additional command line
parameter has to be given to InspectJ.

4.4. Bottom-Up Approach

Bottom-Up verification means verifying the submethods called by FlatBaseDijkstra.

run() separately. This allows the usage of constraint mode. It also helps to build confi-
dence in the methods and provides simpler counterexamples if there are problems.

4.4.1. Postconditions for BinaryHeap

The most important invariant for the BinaryHeap is the min heap property (see chapter
2.2.1)—even though it is not strictly functional level, as the external functionality (being
a priority queue) could be implemented otherwise.

In this context and in JML the min heap property reads:

1 // MIN−HEAP PROPERTY
2 /∗@ i n v a r i a n t (
3 @ (\ f o r a l l i n t i ;
4 @ ( ( i /2 >= 0) &&
5 @ ( i >= 0) &&
6 @ ( i < t h i s . heapLength ) &&
7 @ ( i < t h i s . heap . l ength ) )
8 @ ==>
9 @ ( ( t h i s . heap [ i ] != n u l l ) &&

10 @ ( t h i s . heap [ i /2 ] != n u l l ) &&
11 @ ( t h i s . heap [ i ] . key >= t h i s . heap [ i / 2 ] . key ) ) )
12 @ ) ; @∗/

The public methods of BinaryHeap and their functional level postconditions are:

• BinaryHeap constructor: After running the BinaryHeap constructor, the BinaryHeap
must be empty. This is the case if heapLength == 1 because of the dummy element
that is always present.

1 //@ ensure s ( t h i s . heapLength − 1 == 0) ;

• BinaryHeap.insert() method: After running insert() a new element must have
been added with the correct key.

1 /∗@ ensure s (
2 @ ( t h i s . e lementsLength ==
3 @ \ o ld ( t h i s . e lementsLength + 1) ) &&
4 @ ( t h i s . e lements [\ r e s u l t ] . key == key )
5 @ ) ; @∗/

• BinaryHeap.decreaseKey() method: After running decreaseKey() the key for the
element must have been decreased.

1 //@ ensure s ( t h i s . e lements [ s l o t I d ] . key == newKey) ;

• BinaryHeap.min() method: The min() method must return the minimal key in the
heap.
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1 /∗@ ensure s (
2 @ (\ f o r a l l i n t i ; ( ( i >= 1) && ( i < t h i s . heapLength ) )
3 @ ==> \ r e s u l t <= t h i s . heap [ i ] . key ) &&
4 @ (\ e x i s t s i n t j ; ( ( j >= 1) && ( j < t h i s . heapLength ) )
5 @ ==> \ r e s u l t == t h i s . heap [ j ] . key )
6 @ ) ; @∗/

Together with the min heap property this can be simplified to:

1 //@ ensure s (\ r e s u l t == t h i s . heap [ 1 ] . va lue ) ;

• BinaryHeap.minElement() method: The minElement() method must return the
minimal element in the heap, identified by the index in the elements array.

1 /∗@ ensure s (
2 @ (\ r e s u l t == t h i s . heap [ 1 ] . va lue ) &&
3 @ (\ e x i s t s i n t r e s ; (\ r e s u l t == t h i s . heap [ r e s ] . va lue ) &&
4 @ (\ f o r a l l i n t j ; ( ( j >= 1) && ( j < t h i s . heapLength ) )
5 @ ==> ( t h i s . heap [ r e s ] . key <= t h i s . heap [ j ] . key ) ) )
6 @ ) ; @∗/

We use the temporary variable res because \result seems to be invalid in some
syntactical constellations.

• BinaryHeap.deleteMin() method: The deleteMin() method must remove the min-
imal element from the heap.

1 /∗@ ensure s (
2 @ (\ e x i s t s i n t r e s ;
3 @ ( ( r e s == \ r e s u l t ) &&
4 @ ( t h i s . e lements [ r e s ] . heapIndex == 0) &&
5 @ (\ o ld ( t h i s . e lements [ r e s ] . heapIndex != 0) ) &&
6 @ (\ f o r a l l i n t j ; ( ( j >= 1) && ( j < t h i s . heapLength ) )
7 @ ==> ( t h i s . e lements [ r e s ] . key <= t h i s . heap [ j ] . key ) ) ) )
8 @ ) ; @∗/

• BinaryHeap.clear() method: After running the clear() method, the BinaryHeap
must be empty. A heapLength of 1 means that the BinaryHeap is empty because of
the dummy element that is always present.

1 //@ ensure s ( t h i s . heapLength − 1 == 0) ;

• BinaryHeap.size() method: The size() method must return the number of ele-
ments in the heap, corrected for the dummy element.

1 //@ ensure s (\ r e s u l t == t h i s . heapLength − 1) ;

• BinaryHeap.empty() method: The empty() method must return true if and only if
the heap is empty, i.e. there are no elements besides the dummy element.

1 //@ ensure s (\ r e s u l t == ( t h i s . heapLength − 1 == 0) ) ;

4.5. Verification Workflow

Bounded program verification is an iterative process:

1. Start with a functional requirement of the analyzed program.
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2. Annotate the according method with the formalized specification.

3. Run the bounded program verification tool. The runtime is highly depending on the
selected bounds and can range from less than one second to hours or days.

4. Analyze the counterexample. First, trace the control flow if all statements are ex-
ecuted as expected. Second, untangle the prestate to get it back in terms of Java
objects. Sometimes it is enough to translate the obviously relevant state, but un-
expected aliasing might make it necessary to translate all state. This step can well
take hours and greatly benefits from tool support.

5. Change specification or code to resolve the problem leading to the counterexample.
Repeat steps 3 and 4 until no more counterexample show up.

6. Check if the specification works as intended. Deliberately insert a bug it should
catch. There might be a contradiction in the preconditions, the annotation might
get parsed in an unexpected way, the tools might be buggy or not support a certain
feature, or the selected scope might be too low.

28
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This chapter discusses the bugs and implicit assumptions discovered while executing the
approach described in chapter 4. The findings from the top-down approach are discussed
first, followed by the findings from the bottom-up approach. Benchmarks were executed
to assess performance of the tools. We conclude with some remarks regarding the feature
set and usability of the tools and there is a list of suggested improvements.

5.1. Results of the Top-Down Approach

The top-down approach handles FlatBaseDijkstra as a black box, trying to directly verify
FlatBaseDijkstra.run(). After initial experiments it became clear that this would not
succeed for two reasons:

1. performance: in inline mode JForge cannot handle FlatBaseDijkstra.run() within
a reasonable scope. See chapter 5.4 for reasonable scopes, and see chapter 5.3 for
actual performance. Using constraint mode might improve performance but requires
specification of the called methods; i.e. the BinaryHeap.

2. counterexamples: with small scopes counterexamples are found that do not directly
violate the functional specification. These counterexample are about crashes in cor-
ner cases hidden in lots of irrelevant state. To understand these counterexamples,
an understanding of the implicit assumptions in the code (chapter 5.2.2) is required,
obtained by analyzing the BinaryHeap.

FlatBaseDijkstra.run() repeatedly calls public methods of BinaryHeap. A correct im-
plementation of BinaryHeap is a prerequisite for Dijkstra’s Algorithm, even if this approach
violates the original top-down approach.

5.2. Results of the Bottom-Up Approach

The bottom-up approach requires a lot of additional specification that is unnecessary in
top-down mode because the FlatBaseDijkstra.run() arranges everything accordingly.
In top-down verification many preconditions for the BinaryHeap methods are required
before they can be checked in isolation. With this additional specification we discovered
bugs and recovered lots of undocumented knowledge about the BinaryHeap data structure.
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5.2.1. Discovered Bugs

JForge and later InspectJ created counterexamples pointing out the following bug in the
Java port that was also present in the C++ version. The bug has been reported to the
original developers and is fixed.

1 // code with bug ’ i n v a l i d memory access ’
2 i n t minSlotId = minElement ( ) ;
3 i n t lastHeapIndex = t h i s . heapLength − 1 ;
4 BinaryHeapIndexKey la s t IK = heap [ lastHeapIndex ] ;
5
6 t h i s . dropHeap ( ) ; // remove l a s t element
7 heap [ 1 ] = la s t IK ; // copy l a s t element to f r o n t
8
9 i n t pivotHeapIndex = 1 ;

10 BinaryHeapIndexKey pivotIK = heap [ pivotHeapIndex ] ;
11 i n t dropp ingS lot Id = pivotIK . va lue ;
12 i n t droppingKey = pivotIK . key ;

Under certain circumstances (when there is exactly one element in the heap) the element
that is about to be moved to the front is removed by dropHeap(). There is no code
handling this special case. As a result freed memory is accessed. The solution is to
postpone freeing until after the last access:

1 // code without bug ’ i n v a l i d memory acces s ’
2 i n t minSlotId = minElement ( ) ;
3 i n t lastHeapIndex = t h i s . heapLength − 1 ;
4 BinaryHeapIndexKey la s t IK = heap [ lastHeapIndex ] ;
5
6 heap [ 1 ] = la s t IK ; // copy l a s t element to f r o n t
7
8 i n t pivotHeapIndex = 1 ;
9 BinaryHeapIndexKey pivotIK = heap [ pivotHeapIndex ] ;

10 i n t dropp ingS lot Id = pivotIK . va lue ;
11 i n t droppingKey = pivotIK . key ;
12
13 t h i s . dropHeap ( ) ; // remove l a s t element

This bug was not discovered by testing, because in the C++ version it is unlikely that the
memory is reallocated in the meantime.

The following two bugs were also discovered by JForge and InspectJ:

1 // code with bug ’ a l i a s i n g i s s u e 1 ’
2 BinaryHeapIndexKey bestChi ld = heap [ nextIndex ] ;
3 . . .
4 // c h i l d+parent are not exchanged . c y c l i c r o t a t i o n in s t ead .
5 heap [ pivotHeapIndex ] = bestChi ld ; // p u l l up the entry
6
7 . . .
8
9 pivotIK = heap [ pivotHeapIndex ] ;

10 pivotIK . va lue = dropp ingS lot Id ; // i n s e r t dropping element here
11 pivotIK . key = droppingKey ;
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1 // code with bug ’ a l i a s i n g i s s u e 2 ’
2 BinaryHeapIndexKey ik = heap [ heapIndex ] ;
3 i n t key = ik . key ;
4 i n t r i s i n g S l o t I d = ik . va lue ;
5
6 . . . heapIndex changes . . .
7
8 ik = heap [ heapIndex ] ;
9 ik . va lue = r i s i n g S l o t I d ;

10 ik . key = key ;
11 e lements [ r i s i n g S l o t I d ] . heapIndex = heapIndex ;

The IndexKey in question is aliased in the Java version and must not be changed.

There is a difference between assignment of structs in std::vector<...> in C++ on the
one hand and assigning Objects in a Java array on the other hand. The former is by value
whereas the latter is by reference:

1 // C++
2 s t r u c t pa i r {
3 i n t a ;
4 i n t b ;
5 }
6 std : : vector<pair> vec ;
7 . . . // i n s e r t 2 p a i r s i n to vec
8
9 pa i r p = new pa i r (12 , 34) ;

10 vec [ 0 ] = p ;
11 vec [ 1 ] = p ;
12
13 vec [ 0 ] . a = 42 ;
14
15 // vec [ 1 ] . a == 12 ; // unchanged

is different from

1 // JAVA
2 c l a s s pa i r {
3 i n t a ;
4 i n t b ;
5 }
6 pa i r [ ] vec = new pa i r [ 1 0 0 ] ;
7 . . . // i n s e r t 2 p a i r s i n to vec
8
9 pa i r p = new pa i r (12 , 34) ;

10 vec [ 0 ] = p ;
11 vec [ 1 ] = p ;
12
13 vec [ 0 ] . a = 42 ;
14
15 // vec [ 1 ] . a == 42 ; // i t changed !

In both cases the bug was introduced when porting from C++ to Java. The fixed versions
are listed below.
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1 // code without bug ’ a l i a s i n g i s s u e 1 ’
2 BinaryHeapIndexKey bestChi ld = heap [ nextIndex ] ;
3 . . .
4 // c h i l d+parent are not exchanged . c y c l i c r o t a t i o n in s t ead .
5 heap [ pivotHeapIndex ] = bestChi ld ; // p u l l up the entry
6
7 . . .
8
9 // reuse some unused IK

10 // ( and mag ica l ly i t even a l ready conta in s the c o r r e c t va lue s ! )
11 heap [ pivotHeapIndex ] = las t IK ;

1 // code without bug ’ a l i a s i n g i s s u e 2 ’
2 BinaryHeapIndexKey ik = heap [ heapIndex ] ;
3 i n t key = ik . key ;
4 i n t r i s i n g S l o t I d = ik . va lue ;
5
6 . . . heapIndex changes . . .
7
8 heap [ heapIndex ] = ik ;
9 // ad jus t element to have v a l i d back−po in t e r

10 e lements [ r i s i n g S l o t I d ] . heapIndex = heapIndex ;

5.2.2. Recovered Implicit Assumptions

The bugs listed in section 5.2.1 break functionality even if the code is used as intended.
Besides that we discovered a lot of cases where some implicit and undocumented assump-
tion is made. From a developers point of view it might be argued that the code works
as intended in the given context. From a verification perspective these are bugs where
the external interface is unsafe, and might become a problem in the future. Reuse of the
code in another context or slight changes in the calling context might possibly trigger the
hidden bug.

Verification is only successful if there are no counterexamples at all. Therefore all of the
listed issues are blockers to successful verification on the functional level.

• Invariants on the class level

The following invariants enforce that the arrays elements and heap are not null,
which is assumed basically everywhere and causes crashes if it is not the case. This
is always the case in the context of FlatBaseDijkstra.run(), making this specifi-
cation only necessary in bottom-up mode when checking methods out of context.

1 // not n u l l
2 //@ i n v a r i a n t ( t h i s . e lements != n u l l ) ;
3 //@ i n v a r i a n t ( t h i s . heap != n u l l ) ;

Arrays are used to simulate the functionality of std::vector<..> because the
bounded program verification tools do not support Java Generics. The following
invariants are necessary to rule out unreachable prestates. Entries in heap and el-

ements are used starting at the front and later entries must be null. This is always
the case in the context of FlatBaseDijkstra.run(), making this specification only
necessary in bottom-up mode when checking methods out of context.
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1 // capac i ty o f the s imulated vec to r
2 //@ i n v a r i a n t ( t h i s . capac i ty < I n t e g e r .MAX VALUE) ;
3 //@ i n v a r i a n t ( t h i s . capac i ty > 0) ;
4
5 // array l ength
6 //@ i n v a r i a n t ( t h i s . e lements . l ength == t h i s . capac i ty + 1) ;
7 //@ i n v a r i a n t ( t h i s . heap . l ength == t h i s . e lements . l ength ) ;
8
9 // t r a c k e r f o r heap length

10 //@ i n v a r i a n t ( t h i s . heapLength >= 1) ;
11 //@ i n v a r i a n t ( t h i s . heapLength <= t h i s . capac i ty + 1) ;
12
13 // t r a c k e r f o r e lements l ength
14 //@ i n v a r i a n t ( t h i s . e lementsLength >= 1) ;
15 //@ i n v a r i a n t ( t h i s . e lementsLength <= t h i s . capac i ty + 1) ;

1 // unused array e n t r i e s must be n u l l
2 /∗@ i n v a r i a n t (
3 @ (\ f o r a l l i n t i ;
4 @ ( ( i >= 0) &&
5 @ ( i < t h i s . e lements . l ength ) &&
6 @ ( i >= t h i s . e lementsLength ) )
7 @ ==> ( t h i s . e lements [ i ] == n u l l ) )
8 @ ) ; @∗/
9

10 /∗@ i n v a r i a n t (
11 @ (\ f o r a l l i n t i ;
12 @ ( ( i >= 0) &&
13 @ ( i < t h i s . heap . l ength ) &&
14 @ ( i >= t h i s . heapLength ) )
15 @ ==> ( t h i s . heap [ i ] == n u l l ) )
16 @ ) ; @∗/

This invariant defines that the dummy element must have key 0, placing it in front
of all other elements. Otherwise problems arise with elements with keys smaller than
the dummy key, but 0 is a guaranteed minimum. FlatBaseDijkstra.run() does
not add elements with negative keys and uses a dummy element with key 0, making
this specification only necessary in bottom-up mode when checking methods out of
context.

1 // key f o r dummy element
2 //@ i n v a r i a n t ( t h i s . heap [ 0 ] . key == 0) ;

The following invariants block counterexamples with null entries in this.elements

or this.heap. This is not an issue in the context of FlatBaseDijkstra.run(), but
necessary in bottom-up mode when checking methods out of context.

1 /∗@ i n v a r i a n t (
2 @ (\ f o r a l l i n t i ;
3 @ ( ( i >= 0) &&
4 @ ( i < t h i s . e lements . l ength ) &&
5 @ ( i < t h i s . e lementsLength ) )
6 @ ==> ( t h i s . e lements [ i ] != n u l l ) )
7 @ ) ; @∗/
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1 /∗@ i n v a r i a n t (
2 @ (\ f o r a l l i n t i ;
3 @ ( ( i >= 0) &&
4 @ ( i < t h i s . heap . l ength ) &&
5 @ ( i < t h i s . heapLength ) )
6 @ ==> ( t h i s . heap [ i ] != n u l l ) )
7 @ ) ; @∗/

heapIndex must be an actually valid index. This is not an issue in the context of
FlatBaseDijkstra.run(), but necessary in bottom-up mode when checking meth-
ods out of context.

1 // e lements must have v a l i d heapIndex ’ es
2 /∗@ i n v a r i a n t (
3 @ (\ f o r a l l i n t i ;
4 @ ( ( i >= 0) &&
5 @ ( i < t h i s . e lementsLength ) &&
6 @ ( i < t h i s . e lements . l ength ) )
7 @ ==>
8 @ ( ( t h i s . e lements [ i ] != n u l l ) &&
9 @ ( t h i s . e lements [ i ] . heapIndex >= 0)

10 @ ( t h i s . e lements [ i ] . heapIndex < t h i s . heapLength ) ) )
11 @ ) ; @∗/

FlatBaseDijkstra.run() never adds an element to the heap multiple times. In a
bottom-up approach this must be formalized. A prestate with one element added
multiple times causes breakage when the heap is restructured. Only the properly
linked element is updated, leaving behind a broken element. This is not an issue in
the context of FlatBaseDijkstra.run(), but necessary in bottom-up mode when
checking methods out of context.

1 // e lements cannot be added mul t ip l e t imes
2 // because they only s t o r e one po in t e r i n to the heap
3 /∗@ i n v a r i a n t (
4 @ (\ f o r a l l i n t i , j ;
5 @ ( ( i >= 0) &&
6 @ ( j > i ) &&
7 @ ( j < t h i s . e lementsLength ) &&
8 @ ( j < t h i s . e lements . l ength ) )
9 @ ==> ( t h i s . e lements [ i ] != t h i s . e lements [ j ] ) )

10 @ ) ; @∗/

1 // same f o r the heap
2 /∗@ i n v a r i a n t (
3 @ (\ f o r a l l i n t i , j ;
4 @ ( ( i >= 0) &&
5 @ ( j > i ) &&
6 @ ( j < t h i s . heapLength ) &&
7 @ ( j < t h i s . heap . l ength ) &&
8 @ ( i < t h i s . heap . l ength ) )
9 @ ==> ( t h i s . heap [ i ] != t h i s . heap [ j ] ) )

10 @ ) ; @∗/

Entries from heap and elements must be interconnected properly, linking forth and
back again. See figures 5.1 and 5.2 for an illustration. This is not an issue in
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the context of FlatBaseDijkstra.run(), but necessary in bottom-up mode when
checking methods out of context.

1 // STRUCTURAL HEAP SANITY
2 /∗@ i n v a r i a n t (
3 @ (\ f o r a l l i n t i ;
4 @ ( ( i >= 0) &&
5 @ ( i < t h i s . heapLength ) &&
6 @ ( i < t h i s . heap . l ength ) )
7 @ ==> ( ( t h i s . heap [ i ] != n u l l ) &&
8 @ ( t h i s . heap [ i ] . va lue >= 0) &&
9 @ ( t h i s . heap [ i ] . va lue < t h i s . e lements . l ength ) &&

10 @ ( t h i s . e lements [ t h i s . heap [ i ] . va lue ] != n u l l ) &&
11 @ ( t h i s . e lements [ t h i s . heap [ i ] . va lue ] . heapIndex == i ) ) )
12 @ ) ; @∗/

Linked BinaryHeapElements and IndexKeys must have matching keys. This is not
an issue in the context of FlatBaseDijkstra.run(), but necessary in bottom-up
mode when checking methods out of context.

1 // KEYS MATCH
2 /∗@ i n v a r i a n t (
3 @ (\ f o r a l l i n t i ;
4 @ ( ( i >= 0) &&
5 @ ( i < t h i s . heap . l ength ) &&
6 @ ( i < t h i s . heapLength ) )
7 @ ==> ( ( t h i s . heap [ i ] != n u l l ) &&
8 @ ( t h i s . heap [ i ] . va lue >= 0) &&
9 @ ( t h i s . heap [ i ] . va lue < t h i s . e lements . l ength ) &&

10 @ ( t h i s . e lements [ t h i s . heap [ i ] . va lue ] != n u l l ) &&
11 @ ( t h i s . heap [ i ] != n u l l ) &&
12 @ ( t h i s . e lements [ t h i s . heap [ i ] . va lue ] . key ==
13 @ t h i s . heap [ i ] . key ) ) )
14 @ ) ; @∗/

BinaryHeap Class
BinaryHeapElement[]
elements

heap
BinaryHeapIndexKey[] 

key:4 key:7 key:18 key:1 key:34

key:1 key:7 key:4 key:18

Slots in elements are handled „First Come First Served“ by BinaryHeap.insert().
Once allocated, elements are never relocated. 

data:x

MinHeap Property
heap array must be a „real“ MinHeap:

child keys must be greater or the same.

key: 0
dummy

key: 0
dummy

dummy has only one child because
parents implicitly are at floor(index/2).

...

value: 0

heapIndex 0

3

312

142

4

elements can be longer 
than heap.

data:y data:a data:k data:f

Figure 5.1.: Minimum heap property in the BinaryHeap.

Each heap entry must be pointed to only once, with the exception of the dummy
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BinaryHeapElement Class

key: 4

x

heapIndex:3

BinaryHeapIndexKey Class

key: 4 value: 1

Structural Heap Sanity
this.elements[this.heap[i].value].heapIndex == i

value is an index into elements
inside BinaryHeap class.

heapIndex is an index into heap
inside BinaryHeap class.

Keys Match
keys of instances related by

heapIndex/value must match.

data: data stored in the heap:
a node, as index into an array 
of nodes in a graph.

Figure 5.2.: Keys Match and Structural Heap Sanity invariants in the BinaryHeap.

heap entry, where all elements removed from the heap point to. Different elements
could be pointing to the same heap entry, causing problems when the heap gets
restructured. This is not an issue in the context of FlatBaseDijkstra.run(), but
necessary in bottom-up mode when checking methods out of context.

1 // only dummy element can be pointed−to mu l t ip l e t imes
2 /∗@ i n v a r i a n t (
3 @ (\ f o r a l l i n t i , j ;
4 @ ( ( i >= 0) &&
5 @ ( j > i ) &&
6 @ ( j < t h i s . e lementsLength ) &&
7 @ ( i < t h i s . e lements . l ength ) &&
8 @ ( j < t h i s . e lements . l ength ) )
9 @ ==> ( ( ( t h i s . e lements [ i ] != n u l l ) &&

10 @ ( t h i s . e lements [ j ] != n u l l ) &&
11 @ ( t h i s . e lements [ i ] . heapIndex ==
12 @ t h i s . e lements [ j ] . heapIndex ) )
13 @ ==> ( t h i s . e lements [ i ] . heapIndex == 0) ) )
14 @ ) ; @∗/

Keys must not be negative. This is not an issue in the context of FlatBaseDi-

jkstra.run(), but necessary in bottom-up mode when checking methods out of
context.
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5.2. Results of the Bottom-Up Approach

1 // non−negat ive keys
2 /∗@ i n v a r i a n t (
3 @ (\ f o r a l l i n t i ;
4 @ ( ( i >= 0) &&
5 @ ( i < t h i s . heap . l ength ) &&
6 @ ( i < t h i s . heapLength ) )
7 @ ==> ( ( t h i s . heap [ i ] != n u l l ) &&
8 @ ( t h i s . heap [ i ] . key >= 0) ) )
9 @ ) ; @∗/

The individual BinaryHeap methods also have additional preconditions, mostly restrictions
on the valid ranges for parameters.

• BinaryHeap constructor

There are no preconditions for the BinaryHeap constructor. The constructor can be
called at any time.

• BinaryHeap.insert() method

There are two additional preconditions for the BinaryHeap.insert() method. The
key of the inserted element must be valid and an overflow of the arrays must be
avoided. The former is always the case in the context of FlatBaseDijkstra.run(),
the latter is an implementation level issue caused by the Java port that does not use
a flexible length vector.

1 /∗@ r e q u i r e s (
2 @ ( key >= 0) &&
3 @ ( t h i s . e lementsLength − 1 < t h i s . capac i ty )
4 @ ) ; @∗/

• BinaryHeap.decreaseKey() method

There are some additional preconditions to the BinaryHeap.decreaseKey() method.
The element in question must be valid, it must still be in the heap (not pointing to
the dummy entry), and the new key must be valid and actually lower than the
previous key of the element. These preconditions check that arguments are valid in
a way always the case in the context of FlatBaseDijkstra.run().

1 /∗@ r e q u i r e s (
2 @ ( s l o t I d >= 1) &&
3 @ ( s l o t I d < t h i s . e lementsLength ) &&
4 @ (newKey >= 0) &&
5 @ (newKey < t h i s . e lements [ s l o t I d ] . key ) &&
6 @ ( s l o t I d < t h i s . e lements . l ength ) &&
7 @ ( t h i s . e lements [ s l o t I d ] != n u l l ) &&
8 @ ( t h i s . e lements [ s l o t I d ] . heapIndex > 0) &&
9 @ ( t h i s . e lements [ s l o t I d ] . heapIndex < t h i s . heapLength )

10 @ ) ; @∗/

• BinaryHeap.min() method

The BinaryHeap.min() method only works if there is at least one element in the
heap. This is a implementation level issue.

1 //@ r e q u i r e s ( t h i s . heapLength − 1 != 0) ;
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• BinaryHeap.minElement() method

The BinaryHeap.minElement() method only works if there is at least one element
in the heap. This is a implementation level issue.

1 //@ r e q u i r e s ( t h i s . heapLength − 1 != 0) ;

• BinaryHeap.deleteMin() method

The BinaryHeap.deleteMin() method only works if there is at least one element in
the heap. This is a implementation level issue.

1 //@ r e q u i r e s ( t h i s . heapLength − 1 != 0) ;

• BinaryHeap.clear() method

The BinaryHeap.clear() method works in all as long as the class invariants are re-
spected in the prestate. No additional preconditions are required.

• BinaryHeap.size() method

The BinaryHeap.size() method works in all as long as the class invariants are
respected in the prestate. No additional preconditions are required.

• BinaryHeap.empty() method

The BinaryHeap.empty() method works in all as long as the class invariants are
respected in the prestate. No additional preconditions are required.

Richard A. Kemmerer suggests to integrate formal specification into the development pro-
cess [Kem90]. That way information does not need to be reverse-engineered. Recovering
lost information is much more difficult than saving it in the first place. We spent a lot of
time creating preconditions the original developers must have known about to make thinks
work at all. Moreover, the design could be influenced to make integrity checks easier.

5.2.3. Modifies Clauses

JForge requires that all data changed by the verified method must be explicitly listed in a
@Modifies clause as shown in the example below:

1 @Requires ( . . .
2 @Modifies ( ” t h i s . heap . elems , ” +
3 ”BinaryHeapElement . key , BinaryHeapElement . heapIndex , ” +
4 ”BinaryHeapIndexKey . key , BinaryHeapIndexKey . va lue ”)
5 @Ensures ( . . .
6 pub l i c void decreaseKey ( i n t s l o t I d , i n t newKey) { . . .

All other state is required to be the same in the prestate and in the poststate. An error
will be reported otherwise.

In the top-down approach the @Modifies clause can be created by trial and error as the
modified objects are not known a priori. For the FlatBaseDijkstra.run() method this
are basically all objects. The input graph will remain unmodified, but as the implementa-
tion of Dijkstra’s Algorithm tracks distances and state in the nodes themselves this is not
completely true, either. The @Modifies clause may have an influence on the performance
of the bounded program verification tool, but from a user’s point of view there is no real
meaning in the clause.

The clause is much more important in constraint mode, e.g in the bottom-up approach.
Whenever a submethod is replaced by it’s specification all state listed in the @Modifies
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clause is lost and the only thing guaranteed is that the specified postcondition holds. Take
the overtake() method from the race example that swaps two elements in an arrays as
an example. The specification only requires values for the two affected cars. If the array is
marked as modifiable in constraint mode a counterexample might be generated where all
other cars are set to null (or any arbitrary value) after calling this method, even though
this certainly does not happen if executing the code. JForge assumes some state of the
heap that is consistent with the specified postcondition. The prestate is irrelevant if the
poststate does not refer to it via @old, and the code in the submethod is irrelevant as well.
If a certain value is expected or deemed sensible for something it must be specified or not
listed in the @Modifies clause.

In BinaryHeap.insert() the heap and elements arrays are listed in the @Modifies clause
to allow the heap to be restructured. In constraint mode this means that all elements might
be deleted from the heap or be assigned arbitrary values. While one might assume that
state that is not referred to in the specification or the code does not change. This leads
to counterexamples with traces that are not feasible as executions of the real code. It is
the reason that the functional specification of BinaryHeap is not strict enough to use it in
constraint mode.

5.3. Benchmarks and Scalability

With JForge runtime and memory consumption are an issue. The FlatBaseDijkstra.

run() method consists of two nested loops. Unrolling three times instead of twice in-
creases the unrolled code by a factor of 9/4, disregarding the fact that the loops in called
methods are also unrolled more often, resulting in even worse slowdown. Consequentially
the number of loop unrollings cannot be increased to high values.

Table 5.1 shows the JForge and InspectJ performance. All benchmarks were executed
on the same machine with 8 2.66 GHz cores and 32 GB of RAM under openSUSE 11.3
(x86 64). CPU time and memory usage of the bounded program verification tools was
determined using GNU time.

We can obtain the SAT formulas generated by JForge by replacing the Alloy library with a
custom version. Using Z3 on the formulas instead of SAT4J speeds up JForge, but breaks
postprocessing and does not solve the scalability issues. The listed numbers were obtained
using SAT4J. With InspectJ performance is a lot more promising, but it became available
too late for this thesis and has some usability issues discussed in chapter 5.5.

With JForge Java VM settings had to be tweaked as follows:

1 . / e c l i p s e −vmargs −Xmx22600m −Xms22600m \
2 −XX: MaxPermSize=22600m −XX:−UseGCOverheadLimit

With InspectJ the following settings are required:

1 java −Xss100m −Xmx4G −Xms4G [ . . . ]

5.4. Specification Metrics

The amount of specification is difficult to measure, for similar reasons why counting lines
of code is difficult. Moreover, as the specification is not complete, it is difficult to decide
how much is missing. For an estimate see chapters 4.3.2, 4.4.1, and 5.2.2. It is obvious
that a few high level annotations are not sufficient.

The original implementation typically runs on graphs with millions of nodes with an integer
bitwidth of 32 or even 64. This requires millions of instances and millions of loop unrollings.
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Table 5.1.: Benchmarking Results
Method B I L JF stdev JF mem stdev IJ stdev IJ mem stdev Result

3 3 3 38.1 0.8 4631.4 7.6 5.1 0.1 973.9 17.4 unsat
decreaseKey 4 4 4 TO TO TO TO 17.4 0.1 966.4 18.0 unsat

5 5 5 — — — — 25.0 0.2 978.3 8.7 unsat
6 6 6 — — — — 120.8 0.1 979.8 15.1 unsat

3 3 3 36.2 0.7 5159.5 17.5 5.1 0.0 997.2 13.5 unsat
deleteMin 4 4 4 TO TO TO TO 8.0 0.8 1013.7 11.6 unsat

5 5 5 — — — — 126.9 0.1 1017.7 6.0 unsat

3 3 3 31.4 0.4 4624.0 119.4 5.1 0.1 984.5 15.6 unsat
insert 4 4 4 199.1 18.7 5938.1 47.6 11.6 3.3 975.7 10.3 unsat

5 5 5 TO TO TO TO 83.2 0.4 994.6 20.2 unsat

4 4 4 38.0 0.5 5999.6 55.4 4.2 0.0 954.6 3.7 unsat
6 6 6 TO TO TO TO 4.4 0.0 936.4 10.4 unsat

minElement 8 8 8 — — — — 12.9 0.1 955.5 0.8 unsat
10 10 10 — — — — 43.2 0.1 947.2 13.2 unsat
11 11 11 — — — — 315.2 2.0 957.7 3.9 unsat

3 3 1 50.0 3.7 11074.4 147.8 11.2 0.1 2963.2 15.0 sat
4 4 1 235.5 40.8 28911.7 404.0 12.6 0.7 2910.3 17.6 sat

run 7 1 1 TO TO TO TO 5.1 0.1 1002.1 23.2 sat
10 10 1 — — — — 25.3 14.2 2934.9 22.1 sat
3 3 2 TO TO TO TO 344.1 435.5 4776.9 26.1 sat

Legend to Table 5.1

Column Description Unit

Method name of the checked method —
B integer bitwidth [1]
I number of instances [1]
L number of loop unrollings [1]
JF mean JForge CPU time [seconds], TO denotes timeout
JF mem mean JForge memory consumption [MB]
IJ mean InspectJ CPU time [seconds], TO denotes timeout
IJ mem mean InspectJ memory consumption [MB]
Result counterexample found (un)sat: (no) counterexample found
stdev standard deviation of previous value —
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The scopes with JForge or even InspectJ are many orders of magnitude lower. As can be
seen in table 5.1 not even a scope of 6-6-6 is possible for all methods.

The small scope hypothesis postulates that relatively small scopes are sufficient to discover
most forgotten cases, off-by-ones and logical errors [ADK03]. Unfortunately there is no
tool support to determine the required scope to achieve a certain amount of coverage. It
is possible to check if certain lines in the code have been reached at all, by deliberately
inserting bugs at certain places, however.

The following scopes are required to hit certain statements in the code:

Location Bitwidth Instances Loop Unrollings

inner loop in upheap() 3 3 1

break in deleteMin() 4 4 1

inner if in deleteMin() 4 5 1

The scopes required to find the bugs mentioned in chapter 5.2.1 are listed in the table
below. With smaller scopes the tools do not find the bugs and report unsat.

Bug Bitwidth Instances Loop Unrollings

Memory Access Bug 3 2 1

First Aliasing Bug 4 4 1

Second Aliasing Bug 3 3 1

Statistics for running the code on simple graphs are listed in the table below.

Graph Bitwidth Instances Loop Unrollings

1 Node, 0 Edges 4 4 1

2 Nodes, 1 Edge 4 5 2

5 Nodes, 20 Edges, Varying Weights 6 20 5

The number of instances and loop unrollings is determined by running instructed code
that prints the relevant numbers. The bitwidth is the minimal number of bits required to
store the number of instances in two’s complement, typically required to iterate over an
array containing all instances.

5.5. Usability of Bounded Program Verification Tools

JForge and InspectJ are specialized tools on the forefront of research, so they don’t receive
as much polish as more mainstream applications. There were problems with the feature
sets and usability that slowed things down unnecessarily.

Some Java features are unsupported by both JForge and InspectJ:

• static methods †

• generics †

• Java Class Library is not supported fully †

• Integer.MAX_VALUE is not handled in a useful way †

• real arithmetic

• autoboxing

• multithreading
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The features marked with † require more or less involving workarounds in the codebase or
specification of Dijkstra’s Algorithm. In other projects support for other features might
be required.

The annotation syntax for the tools is not compatible, so two versions of the specification
had to be maintained. Moreover, the annotations cannot be in the same file, so there exist
two versions of the code.

Neither tool fully utilizes multiple cores resulting in bad performance on contemporary
hardware. For unknown reasons both tools create formulas non-deterministically, making
benchmarks difficult.

Postprocessing is weak with both tools: InspectJ does not explicitly list the prestate and
the poststate, but displays the solution to the internal SMT formula with very little tracing
information. JForge explicitly lists the prestate and poststate, but the mapping back to
the Java source code is not perfect either. Overflows are not handled like exceptions. In
the case of an uncaught exception or overflow neither tool links back to the Java source
statement.

Compound statements are split up with JForge creating lots of temporary variables with
cryptic names, making it difficult to scan through a long trace of autogenerated identifiers.
InspectJ does not even support compound statements. Thus the following refactoring is
required:

1 ar r [ base+o f f ] = value + s h i f t ;

becomes

1 i n t idx = base + o f f ;
2 i n t tmp = value + s h i f t ;
3 a r r [ idx ] = tmp ;

If a method violates an invariant in a class with many invariants JForge does not give the
problematic invariant, but only the conjugation of all invariants. InspectJ only gives a
satisfying assignment to the formula it created.

Neither tool supports an automatic indication of coverage, e.g. statement coverage.

JForge was one of the first tools of its kind, but there have been no updates since 2009, and
some problems remain unsolved: There are problems with parameters aliasing attributes.
The GUI is very helpful in the beginning but the lack of a command line interface becomes
troublesome later, because automating tests for benchmarks is difficult. There is a bug with
inline mode, effectively turning it into constraint mode in some cases where submethods
are annotated with specification. To work around this issue specification of submethods
needs to be commented out to enforce the expected behavior.

InspectJ is still a young project, it is very fast allowing top-down approaches, but it has
not been tested as thoroughly as JForge, so some bugs are not yet resolved: Construc-
tors cannot be verified. All methods have to be public for verification. Using boolean
expressions in preconditions (like requires(!this.decativated)) was not supported.
Invalid counterexamples were created, sometimes with inconsitent prestate like arr[3] ==

3 where arr is of type int[2]; initially InspectJ did not offer to check for contradictions
in the preconditions. InspectJ calls an external tool, dot, for visualization. Support for
dot had to be disabled because counterexamples from FlatBaseDijkstra.run() were to
big to be processed within one hour. InspectJ created invalid SMT formuals. Z3 crashed.
Comments within JML were problematic.
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During the work on this thesis we ran benchmarks to compare InspectJ against JForge
for a paper on InspectJ [LNT12]. I added the following features to InspectJ to improve
usability and scalability:

• Support for running InspectJ on 32bit machines, previously only 64bit architectures
were supported by InspectJ.

• Support to start InspectJ from command line in addition to running it from within
Eclipse for easier modification of command line arguments.

• Speedup by using StringBuilder instead of String when creating large formulas.
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6. Conclusion

The original goal of this thesis was to perform a top-down bounded program verification of
a real-world implementation of Dijkstra’s Algorithm with minimal, functional level specifi-
cation. This goal could not be reached because of performance issues with JForge and too
complex counterexamples with InspectJ. The fallback solution of bottom-up verification
yielded several interesting results, but also failed to verify the functional correctness of the
central FlatBaseDijkstra.run() method because of problems with constraint mode and
many implicit assumptions in the code.

During bottom-up verification we achieved the following interesting results: We detected,
fixed and reported a bug in the original implementation of Dijkstra’s Algorithm. We
recovered many implicit assumptions that constitute bugs from a verification point of
view. We specified methods from the BinaryHeap class and proved adherence to the
specification. We created specification for Dijkstra’s Algorithm listed in chapter 4.3.1.1
(although we could not check it successfully). We benchmarked InspectJ against JForge.
The results are published in a paper [LNT12]. We found and reported bugs in InspectJ
itself and added some features.

Bounded program verification of real-world code is hard, especially if there are many
undocumented implicit assumptions and the code is not written with verification in mind.
Current bounded program verification tools require some more polish before mainstream
adaption will happen. The iterated workflow, especially analysis of counterexamples, is
too time consuming and lacks tool support.

Upcoming versions of InspectJ with better postprocessing support might enable top-down
verification of Dijkstra’s Algorithm.
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7. Outlook and Future Work

Verifying the full FlatBaseDijkstra.run() method within a reasonable scope is an un-
solved problem. It might be achievable soon as InspectJ is constantly improving.

Once the run() method has been verified for one-to-all it should be verified for one-to-one
and different optimizations on the algorithmic level should be considered, like bidirectional
search or arc-flags [Del09].

The recovered implicit assumptions might be incorporated in the original code to improve
reliability, but the additional checks might decrease performance.

The tools, especially the postprocessing phase, could be polished and a set of standardized
regression tests and benchmarks could be developed to help improve comparability between
the available tools.
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Appendix

A. Deutsche Zusammenfassung

In dieser Studienarbeit wenden wir Techniken der Bounded Program Verification auf eine
geschwindigkeitsoptimierte Implementierung des Dijkstra-Algorithmus an.

Bounded Program Verification ist eine formale Methode zur Verifikation von Computerpro-
grammen innerhalb gewisser Grenzen. Sämtliche Eingaben bis zu einer benutzerdefinierten
Maximalgröße werden dabei analysiert; über das Verhalten bei größeren Eingaben wird
jedoch keinerlei Aussage getroffen. Der Dijkstra-Algorithmus dient der Berechnung kür-
zester Wege in Graphen und wird beispielsweise in der Routenplanung verwendet. Der
Algorithmus nutzt eine Prioritätswarteschlange, die oftmals als binärer Heap realisiert
wird.

Wir verwenden die beiden Java-Tools JForge und InspectJ zur Verifikation und portieren
daher zunächst die in C++ geschriebene Implementierung des Dijkstra-Algorithmus nach
Java. Wir erstellen außerdem eine formale Spezifikation des Algorithmus. In der Stu-
dienarbeit stellen wir dazu zwei unterschiedliche Ansätze vor: einen Top-Down Ansatz,
bei dem eine globale Vor- und Nachbedingung verifiziert wird und der abgearbeitete Code
als Black Box behandelt wird sowie einen Bottom-Up Ansatz, bei dem die aufgerufenen
Untermethoden betrachtet und einzeln verifiziert werden.

Beim Top-Down Ansatz stoßen wir auf Performanceprobleme, aber durch den Bottom-Up
Ansatz ist es möglich, wichtige Eigenschaften der zugrundeliegenden Heap-Datenstruktur
zu beweisen. Wir finden und melden den Entwicklern einen Fehler in der Implementie-
rung, welcher durch vorhergegangenes Testen nicht entdeckt wurde. Wir entdecken auch
mehrere Fehler in unserer ungetesteten Java-Version des Programms, sowie zahlreiche im-
plizite, undokumentierte Annahmen der Implementierung. Darüber hinaus führen wir
einen Benchmark zum Vergleich von InspectJ mit JForge durch, entdecken und melden
Fehler in InspectJ selbst und fügen einige neue Funktionen zu InspectJ hinzu.

Die größten Herausforderungen im Rahmen der Studienarbeit sind Probleme mit der Per-
formance und dem Ressourcenverbrauch von JForge, die zeitaufwändige und wenig auto-
matisierte Analyse der Gegenbeispiele, insbesondere mit InspectJ, sowie die vielen impli-
ziten Annahmen im Quellcode—dadurch, dass es sich um hochoptimierten Code handelt,
der ursprünglich nicht zur Verifikation vorgesehen war.

Es stellt sich außerdem heraus, dass neben der Spezifikation der eigentlichen Funktionalität
für eine erfolgreiche Verifikation erforderlich ist, dass in der Spezifikation auch auf Details
der Implementierungs-Ebene eingegangen wird, und dass eine Spezifikation erstellt wird,
deren Notwendigkeit in der konkreten Funktionsweise der Bounded Program Verification-
Tools begründet ist.

Die erfolgreiche Verifikation im Top-Down Ansatz ist noch ausstehend. Die gegenwärtig
verfügbaren Programme zur Bounded Program Verification benötigen noch einen gewissen
Feinschliff, bevor sie im großen Stil angewendet werden können. Zukünftige Versionen
von InspectJ mit besserer Nachbearbeitung der Gegenbeispiele könnten die erfolgreiche
Verifikation des Dijkstra-Algorithmus ermöglichen.
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