
Study Thesis

Proving Alloy models
by introducing an explicit relational

theory in SMT

Jonathan Best

19.12.2012

Department of Informatics

Institute for Theoretical Computer Science

Responsible Supervisors: JProf. Dr. Mana Taghdiri
Supervisors: Aboubakr Achraf El Ghazi





Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst zu haben und keine
weiteren als die angegebenen Hilfsmittel verwendet zu haben.

Jonathan Best
Karlsruhe, den 19.12.2012





0.1. Abstract v

0.1 Abstract

This thesis demonstrates that Alloy problems can be proven by using solvers for
Satisfiability Modulo Theories (SMT) while preserving the structure of the original
problem. The verification condition of the Alloy problem is translated from Alloy to
an equi-satisfiable problem in the language of SMT-LIB. The translation is extended
with lemmas and shown to be efficiently provable. Furthermore, we motivate a
systematic way for finding these lemmas using a hand-written proof and evaluate
the process in a case report. The proof is also included in this work.



vi



Contents

0.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Approach 5

2.1 Translating Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 On ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Baseline problem: FileSystem/oneParent . . . . . . . . . . . . . . . . 10

3 COM: ‘theorem 1’  a case report 13

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 How we tried to find lemmas in a systematic way . . . . . . . . . . . 15

3.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Experiments 19

4.1 Verifying our approach . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Evaluation 23

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Secondary finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



viii Contents

6 Appendix 25

6.1 COM: theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Proof for COM: theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Selected axioms of RelSMT . . . . . . . . . . . . . . . . . . . . . . . 27

6.4 Axioms for an ordered signature B . . . . . . . . . . . . . . . . . . . 28

6.5 Proof listing for the lemma ‘step 45’ . . . . . . . . . . . . . . . . . . . 30

Bibliography 31



1. Introduction

1.1 Overview

The purpose of this thesis is to demonstrate that Alloy [15] models can be proven by
using a solver for Satisfiability Modulo Theories (SMT). We1 introduce a translation
of Alloy problems2 into SMT verification conditions (VC) while preserving the struc-
ture of the original Alloy problem in SMT. A translation of this sort is often difficult
for automatic solvers to handle. We therefore extend the translation with lemmas
and show that these extended translations are efficiently provable. Furthermore, we
motivate a systematic way for finding these lemmas.

1.2 An Example

Consider a complex problem written in Alloy. There are no counter-examples and
now you are tasked with proving its check assertion. Before writing a manual proof,
you would probably like to use an automated theorem prover. This is where we
start.

The following listing shows the ‘FileSystem’ problem, which we will use as a baseline
to evaluate our approach.

abstract sig FSO {
parent: lone Dir

}

sig File extends FSO {}
sig Dir extends FSO {

1Although these words are the author’s, many ideas are not. Thanks and credit goes to the
supervision for the idea of making this thesis; for the axioms subset, join, transitive closure and
more; and for the many corrections, lively arguments and support. Further credit goes to Ulrich
Geilmann whose collected knowledge[20] laid out, readily encoded in Java.

2Terminology: “Alloy problem” refers to the assumptions and the verification condition of a
given theorem, “Alloy benchmark suite” refers to all the problems and their input file.



2 1. Introduction

entries: set FSO
}

sig Root extends Dir {}

fact {
one Root
no Root.parent
FSO = Root + Root.^entries
all o: FSO, d: Dir | o in d.entries => o.parent = d
entries = ~parent

}

assert oneParent {
all o: FSO-Root | one o.parent

}
check oneParent for 8

The whole problem is translated into the language of SMT-LIB. The resulting file is
to long to cite here, so we only show the translation of the verification condition (the
“assert” part). SMT-LIB uses a prefix notation with brackets to separate arguments.
After each opening bracket, there is a symbol which stand for an operation or a
variable. The first symbol is not, because the Alloy Analyzer searcher for a counter-
example whereas the SMT solver tries to find if the problem is satisfiable. After
that, there is a quantified formula with o as the bound variable. The symbol => is
the logical implication =⇒ . Its left-hand argument is the type constraints taken
from the corresponding bounding expression in Alloy. The right-hand argument is
the actual body of the quantified formula.

(assert
(not
(forall ((o Atom))
(=>
(in_1 o (diff_1 FSO Root))
(one_1
(join_1x2 (a2r_1 o) parent))))))

1.3 Outline

This paper is split into five parts. We are obviously not the first to address this field,
so we will begin with the status quo and how our work furthers the development
of Alloy. Part 2 contains the description of our approach to a relevant detail. In
part 3, we explore this approach by example. Chapter 4 shows our experiments and
results. We conclude this work with chapter 5, where we evaluate our approach and
discuss some of the observations made during our work.



1.4. Related work 3

1.4 Related work

Proof automation has been around for a while. Recent work by Blanchette, Paulson
and Böhme [8, 9] has shown that SMT solvers contribute to automation by verifying
proof goals using Isabelle/HOL. We would like to increase the role of the theorem
prover by using it to prove Alloy problems.

Alloy is a powerful system with a descriptive modeling language. Its underlying
theory is a relational calculus. The problems look very much like object oriented
code and often behave similarly. This contrasts with other input formats3 which are
perceived to be “less easy”, for example the input languages for Isabelle.

Alloy’s major drawback is the limitation to finite scopes. Several publications have
approached this issue before: The project “Prioni” [3] and the more recent “Kelloy”
[20, 4] mitigate the issue by translating a given Alloy model into proof obligations
of an interactive theorem prover. Another approach called “AlloyPE” [1, 12] demon-
strates that Alloy models can be translated to SMT for automated checking. Al-
loyPE could automatically solve a large number of non-trivial problems which is a
promising find. Kelloy on the other hand provides a relational theory in first order
logic but usually requires a person to operate it. One result of Kelloy was that some-
times inductive assertions can be proven by providing simple additional assertions:
lemmas.

In general, lemmas are proven assumptions which are used as intermediate steps
towards the goal of a proof. We use lemmas to teach the relationship between two
or more functions to the solver. We want to improve the existing concepts on the
basis of these two findings, producing a relational theory in SMT that can be checked
automatically. To this end, we need to find suitable lemmas and determine when
they are needed and how to provide them.

1.5 Background

1.5.1 About SMT and RelSMT

The language of SMT-LIB [6] (abbreviated “SMT”) is a language adopting a version
of many-sorted first-order logic with equality, universal and existential quantifiers
and “let” bindings. Additional symbols can be added by “satellite” theories. The
core theory implements propositional logic and equality. The input format is a
dialect of the programming language Lisp. SMT features free sorts and uninterpreted
functions. This work uses SMT-LIB 2.0 as implemented by Z3. To date, there is no
theory that implements relational logic.

Like SAT-solvers before them, SMT-solvers are based on the DPLL algorithm for
theories, DPLL(T) [13]. To handle quantified logic, most state of the art SMT
solvers, like Z3, CVC3 [7] and CVC4 [5] use the E-matching algorithms, based on
the backtracking algorithm introduced by the Simplifier theorem prover [10]. This
mechanic incorporates quantifier reasoning with satellite ground decision procedures.
Z3, our underlying solver, uses a variant with a so-called “E-matching code trees”-
index, inspired by saturation-based theorem provers [11]. Alternative algorithms

3Referring to other formats in the formal language domain.



4 1. Introduction

have been suggested [18], but they have not yet been compared to each other in
detail.

Z3 is also capable of finding satisfiable instances by model-based quantifier instan-
tiation (MBQI). While we do not examine satisfiable problems, this has proven to
be useful for dealing with issues that arise in practice.

RelSMT is our extension to SMT, not by satellite theory, but by writing the
additional functions and sorts into the problem file. These additional assertions
encode the functions and sorts which are needed to express relational problems.
SMT problems need the declaration of the occurring sorts and function symbols
and the assertions which these functions and sorts are meant to satisfy. From the
perspective of the SMT solver, a sort is a set. In RelSMT, the sorts are meta-sets
which contain relations or atoms. It is also the name of the tool, which we built to
implement this approach.

1.5.2 About Alloy

Alloy [15] is a modeling language based on a relational logic. This means that Alloy
supports typical operations for relations and sets. The logic includes operations
for transitive closure and cardinality, as well as quantifiers. Alloy has therefore a
higher expressiveness than (pure) first-order logic. Every Alloy problem starts with
a signature, which is the Alloy term for “set”, or “unary relation”.

sig Object {}

Inside the signature declaration are relation declarations, which can be constrained
by multiplicity keywords. For the declaration below, the resulting relation is contains :
Container → Object

sig Container {
contains : Object

}

Constraints are declared within “facts” and theorems are expressed within “assert”
statements. The instruction “check” is a command to the solver to verify a given
theorem. Check commands are always scoped; that means there is an upper bound
to how many elements for any given relation are created during the check. The Alloy
Analyzer tool transforms the given problem to SAT.



2. Approach

2.1 Translating Alloy

The idea of this translation is to provide a relational theory in SMT. It has been
demonstrated [17] how axioms can be used to extend first order logic for specific
purposes by introducing axioms, so we hope that this will facilitate our approach.
We use the same approach to build a relational theory which simulates the Alloy
language. Our logic of choice is the logic of linear integer arithmetic and free,
uninterpreted sorts and functions. We chose the logic AUFLIA because it fits our
purposes the best. Because the SMT core theory is flat typed, it does not support
subtyping or multiplicity. We introduce our own type constraints instead.

2.1.1 Scope and Grammar

RelSMT handles most of the Alloy 4 core. Specifically it handles declarations, for-
mulas, expressions, quantifiers, all of the relational operations, and all of the built-in
signatures except Int. Integer literals and most integer operations are handled, in-
cluding cardinality. The operation sum is not supported. The only handled module
is util/ordering. Other modules are not supported. Comprehensions and sequences
are not supported either.

The grammar (fig. 2.1.1) of the handled subset has been taken from Geilmann [14]
and adapted for RelSMT.

2.1.2 Method

We try to transform Alloy expressions as closely as possible in a manner that pre-
serves the structure of the given Alloy problem. This means every expression in
Alloy should have exactly one corresponding expression in RelSMT. Translating
into exactly one corresponding expression is not always possible since we need to
guard functions and quantifiers for type safety. Another point is that names are
translated so that no named expression will occur as an implicit, unnamed expres-
sion in RelSMT. Preserving names literally may not always be possible for syntactic
reasons.



6 2. Approach

specification ::= open* paragraph*
path ::= ID / [path]
open ::= "open util/ordering" ID [ [ ref,+ ] ] [ as ID ]
paragraph ::= factDecl | assertDecl | funDecl

| predDecl | cmdDecl | sigDecl
sigDecl ::= [abstract] sig ID [sigExt] { decl,* }
sigExt ::= extends ref | in ref [+ ref]*
factDecl ::= fact [ID] block
assertDecl ::= assert [ID] block
funDecl ::= fun ID [ decl,* ] : declExpr { expr }
predDecl ::= pred ID [ decl,* ] block
cmdDecl ::= check ref [ for number ]
decl ::= ID : declExpr
declExpr ::= [mult] expr | declRelExpr
declRelExpr ::= declRelExpr? [mult] -> [mult] declRelExpr?
declRelExpr? ::= declRelExpr | expr
mult ::= lone | one | some | set
expr ::= ref | this | none | univ | iden

| (~ | * | ^) expr | expr binOp expr | ref [ [ expr,* ] ]
| formula [=> | implies] expr else expr
| { decl,+ blockOrBar }
| Int [ intExpr ] | ( expr )

binOp = & | + | - | ++ | <: | :> | . | =>
intExpr ::= number_literal | # expr

| intExpr (+ | -) intExpr | ( intExpr )
formula ::= expr (= | in) expr | expr in declExpr

| (no | some | lone | one) expr
| intExpr (< | > | =< | >=) intExpr
| (! | not) formula | formula logicOp formula
| formula [=> | implies] forumal else formula
| quant decl blockOrBar
| ref [ [ expr,* ] ]
| ( formula ) | block

logicOp = || | or | && | and | <=> | iff | => | implies
quant ::= all | no | some | lone | one
block ::= { formula* }
blockOrBar ::= block | | formula
ref ::= [moduleRef] ID | univ
moduleRef ::= [path] ID [ [ ref,+ ] ] /

Figure 2.1: The subset of the Alloy language which is handled by RelSMT.



2.1. Translating Alloy 7

Type declarations in Alloy are called ”signatures” and represent sets of atoms.
They are translated into constants of the sort Rel1. This applies to both top-
level signature declarations sig A{}, as well as subtypes sig B extends A{}1. Sorts
themselves do not differ apart from arity, therefore we introduce additional assertions
to satisfy the type properties of their original declaration, e.g. that sub-signatures
are mutually disjoint.

Relation declarations are fields of signatures. A declaration of arity N is trans-
lated to a constant of the sort RelN . For example, the declaration r in sig A{lone r :
B → C} has arity 3 and is translated to (declare-fun r () Rel3). The type con-
straints of a relation declaration are translated to additional assertions. Multiplicity
predicates like lone, one, some are explicitly built into RelSMT. Multiplicity con-
straints are translated to assertions using those predicates.

Expressions are either basic or complex. Basic expressions are explicitly declared
relations. Complex expressions are the result of relational operations like union,
intersection and difference. We translate a given basic expression e with arity N
to a constant e of sort RelN . The relational operation is declared as a function of
the appropriate arity and types. Each operation comes with a number of assertions
(the axioms) to satisfy the operation’s semantics. The complex expression is then
mapped to function calls of appropriate operations.

Formulas (or “Constraints” as they are called in Alloy) are formed using the op-
erator in. A formula has the form (expression) in (expression). We introduce
a family of membership functions inN , the subset functions subsetN

2 and the sort
Atom for for atoms. N denotes the appropriate arity. inN relates N atoms to an ex-
pression of sort RelN . Likewise, subsetN relates two relations of arity N . Formulas
can be combined to complex formulas using logical operators or quantifiers. Integer
literals are either integer expressions3 or atomic formulas4 and can be combined with
integer operations. Logical operators, quantifiers and integer operations (except for
cardinality) are already built into SMT and utilized accordingly.

Functions and predicates that involve relations are mapped to function symbols
and assertions in SMT. Function symbols are declared for atoms and relation sorts.
The body of the function is translated to a number of assertions, which are all
guarded with expressions to satisfy their type properties. A unary function fun
with argument of type T and body B is translated to one or more assertions of
the form {∀r : Rel1 | r ∈ T ⇒ B}. Integer operations are mapped directly if
the operation exists in SMT. In the special case of cardinality we introduce a new
function and appropriate axioms in RelSMT.

1Subtypes are subsets B ⊆ A, but they also partition the parent set A.
2In RelSMT, there is no concept of proper subsets, so (subset_1 A A) is always true.
3(+ 1 2)
4(> 1 2)



8 2. Approach

Relational operators and their interpretation

The relational operators are interpreted by axioms an operator in terms of formulas.
In this case, all axioms are based on the operator in. Another choice would be to
express similar operators in terms of each other5. The axiom for transitive closure
is defined using first-order logic only, in a similar way to [21]. Axioms for Alloy-only
constructs were built to fit the purpose described in their documentation [15].

2.1.3 Transitive closure

Transitive closure is an important tool to formulate graph-related problems like
reachability and aggregation. RelSMT uses an integer-less axiomatization to express
the closure properties.

A common approach on writing transitive closure in first-order logic, is to extend the
logic with integers and then write down the inductive definition: R+ =

⋃
Ri;R1 =

R;Ri+1 = Ri + R. However, Z3 will not prove inductive facts [2], even when sup-
ported by integer arithmetics.

Instead of using the arithmetic approach, we use the following axioms for an integer-
less axiomatization:

1. ∀R ∈ Rel2 | trans(R+)

2. ∀R ∈ Rel2 | R ⊆ R+

3. ∀R1, R2 ∈ Rel2 | R1 ⊆ R2 ∧ trans(R2)⇒ R+
1 ⊆ R2

with trans(�) defined as

∀R ∈ Rel2 | trans(R)⇔ ∀a1, a2, a3 ∈ Atom | 〈a1a2〉 ∈ R∧〈a2a3〉 ∈ R⇒ 〈a1a3〉 ∈ R

Dealing with the power set and completeness

The axioms for transitive closure have some issues, which need to be discussed. In
particular, they are not complete. That means that not all valid instances (which
satisfy these axioms) have a proper transitive closure. There is a very simple counter-
example found by Z3 in small problems:

R1 R2
∼= R+

1

〈2 3〉 〈0 1〉
〈3 4〉 〈3 4〉

〈2 3〉
〈2 4〉

This false counter-example shows two relations that satisfy the axioms introduced
above, yet R2 is not actually the transitive closure of R1.

The problem of this counter-example is, that some relations from the power set of
R+

1 are missing. For our axioms to work, we need to make sure that the solver
considers the power set of the relation under the transitive closure operator.

5For example, the operator disjoint could be expressed in terms of
⋂

and ∅.



2.2. On ordered sets 9

Although many operators are supported by RelSMT, the translated problem will
not contain them all. In order to provide an efficient translation, it was our goal
that operators should only be included, if they occur in the original problem.

In order to assert the existence of the power set for the problems at hand, some of
the axioms are always included whether they occur in the original problem or not.
Those axioms are ∅,×,⊆,∪, the conversion function a2rx for Atoms to Relations
and yet another equality axiom ∀r, s : Relx|r = s ⇔ (∀a1:x : Atom|〈a1:x〉 ∈ r ⇔
〈a1:x〉 ∈ s)6 for arity 1 and 2. We found that these are sufficient to prevent false
counter-examples. 7

2.1.4 On the equality of expressions

Equality is expressed with the = symbol in SMT. This symbol can mean the logical
connective ‘if and only if’, if the arguments are boolean, and ‘identity’ otherwise.
The two interpretations could sufficiently express all formulas of our theory, but
within RelSMT there is also the interpretation of equality as mutual inclusion: For
a given term A = B we translate the expression (A ⊆ B)∧ (B ⊆ A) instead. We use
this mutual inclusion to express all equality statements, where the arguments are
relations. For formulas, atoms and integers, we use the built-in 8 equality operator.
This decision has some practical implications. Using mutual inclusion instead of
built-in equality enables us to solve some problems which we could otherwise not
handle at all. An example is the “theorem 1” problem of the COM benchmark-suite,
which we will examine in chapter 3.

On the other hand, this mutual inclusion can have a negative impact on some models.
During exploration, we found that problems with long runtimes would typically
not terminate until much later or not at all9. This can be discouraging, because
intermediate results are hard to find. We suggest that during exploration, the built-
in equality operator should be used for all expressions. In those cases, we used an
appropriate lemma instead. The lemma simply states the mutual inclusion as an
implication: A = B =⇒ (A ⊆ B) ∧ (B ⊆ A). For the results presented in this
work, we used relational equality, unless otherwise noted.

2.2 On ordered sets

Alloy problems can be extended with modules. Modules are a powerful way of
increasing capabilities while keeping the language simple. Alloy comes with some
commonly used, built-in modules. One of these modules is the ordering module.
We added support for the documented operations in order to examine more com-
plex models. The actual examination didn’t make it into this paper and has to be
addressed in future work. Other modules apart from the ordering module are not
supported.

When discussing order in set theory, it can be useful to distinguish between finite
and infinite cases. We define order as a function of integer and employ SMT’s

6Introduced in [19]
7They may not actually be sufficient to assert the existence of the power set in arbitrary cases.
8We will refer to SMT’s = operator as ’built-in equality’.
9See (3.3.4)



10 2. Approach

integer arithmetic to properly instance it. Order is always declared for a Signature.
We define a function ord which maps each element of a signature to an integer.
We also define a function at which stands for ”element at given position”. at maps
each Signature and integer to an element. We also define that two elements at the
same position must be equal, so every ordering in RelSMT is total. The operations
next, previous, max, min and cardinality are defined in terms of at and ord. Their
definitions are listed in (6.4).

An ordering in RelSMT is a bijection of Signature-elements and integers. We dis-
tinguish the cases of finite Signatures and possibly infinite signatures. Since this
distinction is not supported in Alloy, we let the user declare finite signatures by
command line switch. If a signature is a-priori assumed to be finite, we define the
functions for maximum and cardinality. If the user has made not declared finiteness,
no assumption is made. We feel that this is a sensible default, because the prob-
lems that we examined make that assumption as well, i.e. they model ”real-world”
systems which are typically finite.

In application, the decision whether a Signature should be finite, is left to the solver.
If RelSMT encounters an ordered Signature, it will generate the supported functions
and guard them with the uninterpreted function finite. If the solver finds that (finite
A) should be true, functions like (last A) will have defined values. For example,
the function last is defined as ∅ if the Signature is not finite, and denoting the last
element of an ordered Signature if finite.

The assumption that signatures are infinite in general would also cause issues with
satisfiable problems. Problems arise, if none of its instances was finitely describable
or Z3 fails to find a finite description. Consider a problem which is known to be sat
and the only satisfying instance has an infinite domain. If Z3 attempts to find an
instance satisfying this problem, it has to interpret this infinite domain. Since Z3
can only find interpretations which are finitely describable, it may not be able to
solve the problem.

2.3 Baseline problem: FileSystem/oneParent

We examine the baseline problem line by line. The problem describes a simple file
system with files and folders (or“directories”). Also, all the objects in the file system
share a common interface.

The basis for a file system is the file system object. From a programming perspective,
this is like an interface or an abstract class. The keyword abstract means that the
subsets of FSO for a full partition. sig declares a “signature”, which is just another
word for “set” or “unary relation”.

abstract sig FSO {

The following line declares the binary relation parent ⊆ (FSO × Dir). It is con-
strained by the keyword lone so that each FSO can have at most one corresponding
Dir. From the programmers perspective, this relation behaves like a nullable refer-
ence to a single folder.



2.3. Baseline problem: FileSystem/oneParent 11

parent: lone Dir
}

These two lines declare files and folders. The keyword extend constrains the two
signatures to be subsets of FSO.

sig File extends FSO {}
sig Dir extends FSO {

This line declares the relation entries ⊆ (Dir × FSO). The keyword set removes
any constraints from the codomain. It meanst that the join expression Dir.entries
behaves like a set.

entries: set FSO
}

This line declares the signature Root, which will be constrained to a single atom
later on.

sig Root extends Dir {}

The keyword fact declares a block of arbitrary constraints. They are assumptions
about the problem.

fact {

There can only be a single atom in the signature Root.

one Root

The Root is not in the domain of parent. The right-hand expression of no yields
the empty set.

no Root.parent

The following line means that all file systems objects can only be either the root
or a descendant of the root. ˆentries denotes the transitive closure of entries. So
FSO is constrained in the following way: The whole signature FSO contains Root,
unified with the transitive closure where the domain is (in) Root.

FSO = Root + Root.^entries

If a file system object is in the entries of a directory, the objects’ parent must be
this directory, for all file system objects o and directories d.



12 2. Approach

all o: FSO, d: Dir | o in d.entries => o.parent = d

entries is the transposition of parent.

entries = ~parent
}

The keyword assert denotes the theorem which is up for evaluation. From our point
of view, this is the verification condition of the examined problem.

assert oneParent {

The binary operator − is the set difference. The oneParent problem verifies that
each file system object o has exactly one parent, except for the root.

all o: FSO-Root | one o.parent
}

The keyword check is a command to the Alloy Analyzer to find a counter-example.
It gives the name of the assertion oneParent and the scope 8.

check oneParent for 8



3. COM: ‘theorem 1’  a case report

3.1 Overview

In order to verify our theory, we wanted to explore the concept on a single sufficiently
interesting problem. We have selected a theorem of the Component Object Model
for this purpose. At the same time, the theorem is complex in terms of syntax and,
for its real-world application, is easy enough for a student to understand and prove
by hand. In our case, a proof could be found within two work days1.

The Component Object Model (COM) is a specification of “an infrastructure for
the creation, operation, and management of components”[16]. The problem has
been subject to several years of analysis and its theorems are widely believed to be
correct. In our attempt for a structured search we contribute our own proof (see
6.2) for the first theorem of the benchmark suite. The full Alloy problem is printed
in appendix (6.1).

The syntactic complexity of the “theorem 1” problem is very high compared to our
baseline, “filesystem”. In this case, complexity means “many different constructs”.
The COM benchmark contains several interesting concepts:

• There are three primary signatures and two sub-signatures representing IDs,
interfaces and components;

• The ternary relation “qi”2 relating two Interfaces by means of an ID;

• Equivalence among interfaces defined by reflexivity, symmetry and transitivity;

• A fact using transitive closure to express “aggregation” among components

An excerpt (fig. 3.1) from the model shows how the central signature Interface. The
definition contains the relation qi as well as two other important declaration. The
relation iidsKnown constrains the domain of qi and reaches constrains the range
of qi.

1That means that the total time spent on the proof was approximately 16 hours.
2This relation models the “query interface” function.



14 3. COM: ‘theorem 1’  a case report

sig IID {}
sig Interface {
qi : IID -> lone Interface,
iids : set IID,
iidsKnown : set IID,
reaches : set Interface

}
fact {
all i: Interface |

(i.iidsKnown = i.qi.Interface) and
(i.reaches = IID.(i.qi))

}

Figure 3.1: The basic signatures of COM: the interface and its query function qi.

The semantic complexity is within a manageable scope. The proof for this theorem
has multiple steps3, including a case distinction. Therefore, the theorem is not
trivial. However, no induction is needed to prove the theorem. This makes it
manageable for an automated theorem prover.

The model is primarily concerned with nested structures. It contains five theorems
which claim properties about reachability (1), the hiding interfaces (2, 4a) and the
equality of components (3, 4b). During the case study we examine only the first
theorem:

“Theorem 1 says that for any legal component, the identifiers known
to any interface of that component are all the identifiers of the com-
ponent. In other words, every interface identifier of a component is
accessible from every interface of that component.” [16]

assert Theorem1 {
all c: LegalComponent | all i: c.interfaces | i.iidsKnown = c.iids

}

Figure 3.2: Verification condition of COM:theorem 1: “Every iid a component ex-
ports is known to all its interfaces.“

The theorem claims that two differently constructed sets hold the same elements.
The sets are i.iidsKnown, IDs known to an interface, and c.iids, the IDs which are
registered with a component. The benchmark contains facts that easily show that
c.iids is a subset of c.iids, but the other way around has to be inferred. During our
study we could easily show that a proof for i.iidsKnown ⊆ c.iids is easily found by
Z3, but not the other way around.

3Shorter proofs exist, because the Alloy Analyzer is able solve the problem using fewer facts
than we have used in our proof. However, we did not find any shorter proofs.



3.2. How we tried to find lemmas in a systematic way 15

3.2 How we tried to find lemmas in a systematic way

For lack of a better starting point, we used a hand-written proof4. This road-map
lays out the strategy to our analysis:

1. Write a proof of the theorem inside the check-command’s assertion by hand.

2. For each step S of the proof, write down all the assumptions, including the
facts from the benchmark and all previous steps. Keep the proof-steps {R}
separated5 from the facts {F}.

3. Let the current step be S, the previous step be R and the facts be {F}. To
verify an inference step {F,R} ` S, set up Alloy with a benchmark consisting
of facts {F,R} and check {S}. To verify a material equivalence6 R⇔ S, set up
Alloy with a benchmark consisting of facts {F} and check ¬{R, S}. To verify
a corollary ` S (which follows directly from the facts) set up a benchmark
consisting of facts {F} and check {S}.

4. If Alloy finds no counter-examples, proceed.

5. Invoke Alloy2RelSMT and check the result with Z3.

6. Z3 should return UNSAT. If does not finish at all, the step is too hard. If the
step can be expressed in a general form, it may be a candidate for a lemma.

7. Write a lemma for each step in RelSMT if possible. Start with the corollaries.
Add it to the RelSMT theory.

8. Go to 5.

9. For each step S repeat 3 but replace R with its preceding step R′. The result
of this step shows if Z3 is able to ’skip’ steps in the proof.

The author found that the distinction between hard and easy steps did not yield the
expected results. A step being “hard” does not predict the need for a lemma. A step
being “not hard” does not predict the solver’s ability to solve several such steps in
a row. In fact, most of the steps previously identified as “hard” were solvable after
“minifiying” the benchmark (see 3.3.5). Four lemmas were written for steps that
were solvable in step 5. One of them turned out to be useful and is discussed later.

3.3 Observations

3.3.1 What did work, what didn’t?

As a proof strategy we choose proof by contradiction. The verification condition
(VC) posits the relational equality of two sets (expressions with arity 1). We make
a case distinction and get two paths in the proof, both of which must be led to a
contradiction. We will call them the “hard” path expression (3.3) and the ”easy”
path expression.

4Appendix (6.2)
5”Seperate” as in thinking about them as two different kinds of steps.
6The expression ’R holds if and only if S holds’



16 3. COM: ‘theorem 1’  a case report

(A2) assume ∃c ∈ LegalComponent | ∃i ∈ c.interfaces | c.iids 6⊆ i.iidsKnown

Figure 3.3: The “hard” path expression.

The solver can derive all the steps for the easy path directly from the model without
any additional lemmas. These “simpler” steps follow by term substitution from the
model and do not require interpretation of the model. However, the steps are not
sufficient to disprove the false assumption.

The “hard” steps do not easily follow from the facts alone. To obtain these steps,
we used relational reasoning and set theory.

3.3.2 The lemma we found and how effective it was

When exploring this problem, it wasn’t clear what a lemma should express. A first
idea was to daisy-chain the steps of the hand-written proof together by lemmas and
hope that the solver could somehow end up with the same conclusion as we did.
This turned out as not being very effective. The solver is pretty good when it comes
to this type of approach. In fact, this is probably how Z3 proved the easy path,
by substituting compatible expressions from one term for another. Examining the
steps of the proof, we noticed that the hard steps involved reasoning beyond the
syntax. Specifically, we used the relationship between set inclusion and the join
operator, which had not been a part of RelSMT until we wrote down the corollary
and included it as a lemma. This kind of rational could not be expressed with a
daisy-chain.

We dubbed this corollary ‘step 45’7 (fig. 3.4). with reference to the step in the proof
(6.2) where we introduced it. The lemma itself is provable by the solver and an
appropriate benchmark for this proof is included in appendix 6.5.

After appropriate modification 8, this corollary was identified as the only needed
lemma for this theorem. It states that given a relation and its subset (e.g. ∈ Rel1),
the results of joining each with the same expression (e.g. ∈ Rel2) must be subset
as well.

∀ a,A ∈ Rel1, R ∈ Rel2 | (a ⊆ A)⇒ ( a.R ⊆ A.R )

Figure 3.4: Step 45, the lemma for COM: ’theorem 1’

3.3.3 What we learned and how to write a lemma

Solving the hard parts can get very cumbersome. In early trials we set up Z3 to
prove that one ”hard” step follows from another. We observed that showing this for
consecutive steps is possible, but takes a long time and uses a lot of memory.

7There are also other lemmas which were found by chance. An initially wrong approach to the
proof yielded many different steps that could easily be“daisy-chained”with lemmas. Although they
occasionally seemed to have an effect on other problems, those observations were not reproducible
and are therefore not included.

8See 3.3.5 on the exclusion of facts



3.3. Observations 17

A different approach: Ground terms

When the Z3 solver attempts to refute a given quantified formula, it starts by fitting
ground terms against the expression [11]. If the proposition contradicts a ground
term, the solver stops. If no match can be found, it begins instancing quantifiers
with its ground terms and checks the theorem again. It will continue this cycle, until
a contradiction has been found.

The author has learned during that a hand-written proof should reflect this behavior.
For E-Matching-based solvers like Z3, CVC3 and CVC4, such a proof could reveal
more useful lemmas than the ex-falso proof shown in this paper. A lemma should
be written in such a way that instancing it with a ground term yields a step in the
proof. However, this idea is not explored in this work.

3.3.4 The effects of equality representation on performance

During our manual proof, we split the verification condition into two inclusions to
show equality. This is the textbook-approach taught in many first-semester lectures
on set theory.

Since our theory did not initially have the concept of mutual inclusion, the solver had
no starting point to follow our proof. For the purposes of discovery, we changed the
verification-condition from an equality-expression to a mutual inclusion. This alone
did not have any visible effect, so we tried to find other equalities which did. We
found such equality at “line 41”9 from COM: ‘theorem1’, the fact where the domain
of ‘qi’ is defined. The line itself does not affect the problem in terms of validity and
is not used in our proof. However, it does have an effect on performance. Changing
both the VC and “line 41” enabled Z3 to come to a conclusion for the first time
during this study.

fact {
all i: Interface |

(i.iidsKnown = i.qi.Interface) and // this is line 41
(i.reaches = IID.(i.qi))

}

Figure 3.5: “line 41” and its surrounding context

These observations led to the design decision for expressing equalities as mutual
inclusions by default. However, always using mutual inclusions does not produce
the same results. Generally speaking, it increases the runtime for all problems. We
also found that changing all the operators does not reproduce the results from above,
even with timeout limits of an hour and above.

3.3.5 How the exclusion of certain facts sped up the solution

When exploring, we usually did not work with the whole benchmark. Many of the
facts are irrelevant to the theorem which we are trying to prove. We selected facts

9Due to difficulties in document management, this is just a denomination, not an actual line
number.

10Spurious result.



18 3. COM: ‘theorem 1’  a case report

”line 41” as built-in ”line 41” with relational equality

VC as built-in timeout (5 m) timeout (5 m)

VC as split into two
clauses of mutual inclu-
sion

timeout (5 m) unsat (31 s)

VC as a single clause
with relational equality

timeout (5 m) unsat10 (25 s)

Table 3.1: Effects of relational equality on single expressions

at random and removed them from the problem. If Alloy’s finding of the smaller
problem was consistent, we used it. However, we did not remove any facts that were
used in the proof, whether they had been relevant or not.

This led to some interesting observations. For one, the problem now terminates, if
the VC is expressed as a mutual inclusion. It also terminates, if there is a lemma
which allows the rewrite of the equality operator as a mutual inclusion.

From the viewpoint of a logic problem, this resembles proving only the assertion’s
core. At this stage of the exploration, it is good enough to work with the core alone.
The problems which were modified in this way, are called ”minified” and marked
with an asterisk *.



4. Experiments

4.1 Verifying our approach

To verify the effectiveness of our approach, we design an experiment with several
steps. Unfortunately, this experiment turned out to be too ambitious for the avail-
able time. Therefore, only “Theorem1” was properly analyzed and will be evaluated.

In each step, we translate a particular set of well-known problems and run the
resulting verification condition with the Z3-solver. The response of Z3 is the result
of the step and may be“sat”, “unsat”or“unknown”1. We then choose a problem with
unknown result and try to find general lemmas about our operators which lead Z3 to
yield the correct response. After adding the new lemmas to RelSMT we begin a new
step and translate all problems again and determine if the changes to the lemmas
carried over to other problems. Our initial problem will be the check “oneParent” of
the model “FileSystem”.

“FileSystem” encodes a simple, abstract file system found in modern operating sys-
tems. It asserts some basic properties about the system’s consistency and is suitable
used for teaching Alloy. The check “oneParent” asserts that every file system ob-
ject, except for the root, has exactly one parent object that is its parent. “someDir”
asserts that directories exist and “fileInDir” every file is inside a directory. “Mark-
sweepGC” is a model for the basic mark and sweep garbage collection algorithm.
“Soundness1” asserts that the algorithm leaves marked objects untouched. “Sound-
ness2” verifies that no object is both marked and unreachable. “Completeness” is
the property that all objects that have not been marked are unreachable as well.

All problems have been taken from the Alloy book [15] and the sample library. None
of the chosen problems can be solved without lemmas. We use this list of problems
for our experiment:

1For the purpose of this experiment, the result “unknown” also includes time-out.



20 4. Experiments

Problem Description Check N o

FileSystem Model of a generic file system
oneParent 1

someDir 2

fileInDir 3

MarksweepGC
Model of mark and sweep
garbage collection

Completeness 4

Soundness1 5

Soundness2 6

COM
COM interface and aggregation
mechanism

Theorem1 7

Theorem2 8

Theorem3 9

Theorem4a 10

Theorem4b 11

4.1.1 Baseline for our experiments

The baseline test (table 4.1) is the starting point of the experiment. Whenever a
new lemma is introduced, its effectiveness is measured relative to this test. This
basic set of lemmas contains one lemma which deals with transitive closure and a
family of lemmas pertaining to the join-Operation (fig. 4.1).

As you can see in table 4.1, there are two problems that we can solve using only the
baseline: FileSystem/oneParent and MarksweepGC/Soundness1. The lemmas were
developed for oneParent, but they also affect Soundness1. We had hoped to observe
this behavior during other iterations as well. If a lemma causes this effect, we say
the lemma ‘generalizes’ to other problems.

; weak lemma 1 for transClos about the second-last ’middle element’
(assert (!
(forall ((a1 Atom)(a3 Atom)(R Rel2)) (=>
(in_2 a1 a3 (transClos R))
(exists ((a2 Atom)) (in_2 a2 a3 R))))

:named lemma6816308a ))

; 2. lemma for join_1x2. direction: in to join
(assert (!
(forall ((a1 Atom)(a0 Atom)(r Rel2)) (=>
(in_2 a1 a0 r)
(in_1 a0 (join_1x2 (a2r_1 a1) r))))

:named lemma6ec6a62 ))

Figure 4.1: Two exemplary lemmas from the baseline problem.

2Minified version of the original problem. See (3.3.5).



4.1. Verifying our approach 21

Problem Check N o Result Time/Timeout

FileSystem
oneParent 1 unsat 0.01

someDir 2 - 550.00

fileInDir 3 - 550.00

MarksweepGC
Completeness 4 - 550.00

Soundness1 5 unsat 0.09

Soundness2 6 - 550.00

COM
Theorem1*2 7 - 550.00

Theorem2 8 - 550.00

Theorem3 9 - 550.00

Theorem4a 10 - 550.00

Theorem4b 11 - 550.00

Table 4.1: Baseline results for the Alloy problems

4.1.2 First iteration: Extending with lemma found for COM:
theorem1

The lemma for “step 45”(3.4) had no visible effect on any other problem. Compared
to the baseline, only theorem1 is now solved. We can say that this lemma did not
generalize.

Problem Check N o Result Time/Timeout

FileSystem
oneParent 1 unsat 0.01

someDir 2 - 550.00

fileInDir 3 - 550.00

MarksweepGC
Completeness 4 - 550.00

Soundness1 5 unsat 0.07

Soundness2 6 - 550.00

COM
Theorem1* 7 unsat 5.00

Theorem2 8 - 550.00

Theorem3 9 - 550.00

Theorem4a 10 - 550.00

Theorem4b 11 - 550.00

Table 4.2: Results for the Alloy problems after adding the lemma found for COM:
theorem1.

4.1.3 More iterations

We did not have the time to evaluate any problems besides oneParent and theorem1.
The experiment was designed for up to ten iterations. We felt that this number was
large enough to observe lemmas found in one problem affecting another. However,
every iteration includes writing a proof by hand, finding a lemma within the proof
and testing the new lemma against the other problems. Therefore, the majority of



22 4. Experiments

the problems remains not evaluated. They are listed for the sake of accuracy and
completeness.



5. Evaluation

5.1 Conclusion
In the current paper we attempted to show that using an abstract theory with a
SMT-solver is possible. We found that this abstract theory was not very powerful
if left in an unrefined state. There were few examples which were solvable without
modification. We needed lemmas to make the usage of our theory feasible. These
allowed the solver to take shortcuts in its search to find a proof quickly. However,
we could not show that our approach was generally applicable. In order to proceed
with our experiments, it was necessary to strip the examined problems to their core.

The clauses which we removed during preparation consisted more or less of large
quantified formulas. We therefore suspect that adding all-quantified clauses to a
problem can lead to issues, even in the presence of shortcuts. We suggest that the
approach presented in this paper will not be enough. We expect that the step of
adding lemmas should be followed by another step of subsuming lemmas. This may
be necessary until solvers get rapidly better at finding unsatisfiable subsets.

Furthermore, we introduce a method for finding new lemmas in a structured way.
We posit that this method can be used to “teach” previously unsolvable proof steps
to the solver. In our case study the solver succeeded by using the lemma found with
this method. Therefore we suggest that this method may be used to explore new
lemmas. The question remains whether its benefit outweighs its significant cost.

We had hoped to show that our lemmas generalize across multiple problems. So
far, only the ones for our baseline test applied to more than one problem. The
systematically found lemma did not apply to any other.

During our research, we briefly examined the possibility of extending our translation
to other Alloy features. We introduced an application for Alloy problems that uses
the module for ordered sets, but did not examine it.

5.2 Secondary finding
During the development of our tools, there were some obstacles to overcome. Since
it is not feasible to attach a debugger to Z3, we had to find other ways of showing



24 5. Evaluation

intermediate results. This attempt on extracting cores from the solver is submitted
for the benefit of the reader.

5.2.1 On constructing cores

Lemmas should be shortcuts for the solver to reach a finding. This finding does
not necessarily mean just sat or unsat. We have observed a scenario where adding
lemmas helped constructing a core. We started with a set of unsatisfiable clauses
{c1..cn} which the solver identified as unsat. However, the solver did not succeed in
constructing a core1. After adding four lemmas c(n+1)..c(n+4) to the set, the solver
managed to produce a core in a timely manner.

To our surprise, the core consisted only of clauses from the original set {c1..cn}. So,
despite helping the solver reach a conclusion, the lemmas did not have an actual
influence on the solver’s conclusion.

During a third run, we removed all clauses which were not part of the core. This
resulted in a set cr..cs[1 < r < s < n], which did not include our new lemmas. The
solver managed both to find these clauses unsat and to produce a core. This goes to
show that adding lemmas to the original problem helped the solver identify ”irrele-
vant”clauses. By removing the clauses which were not part of the core, we effectively
saved the solver the trouble of dealing with them.

5.3 Future work

We would like to extend our translation system even further. At the moment, only
core features of Alloy are supported. Especially set comprehensions are not, though
it should be possible, as shown in [17] for Spec]. It should be interesting to implement
these for SMT and examine their behavior.

We continue to hold the expectation that lemmas can generalize across problems.
Since only very few examples were examined during this work, we have no basis to
reject this expectation. Further research should examine a larger set of problems
with respect to single lemmas. Likewise, our systematic method for finding these
has not been tested on more than the one example and needs empirical examination.

While expanding to a larger set of examples, the negative impacts of additional
lemmas should also be considered. Some lemmas are costly in terms of memory
and runtime, thus a system for selecting appropriate lemmas may be needed. For
example, given sufficient experimentation time, this system could be devised by
testing all permutations of applicable lemmas.

1By definition, the core of a set of clauses is the smallest unsatisfiable subset. However, Z3 does
not guarantee to find the minimal subset; hence we say ’a core’ and not ’the core’.



6. Appendix

6.1 COM: theorem 1

This is the full Alloy problem for “COM: theorem1” as we evaluated it during the
experiment. The comments mark the lines where we removed or modified lines in
the original benchmark.

module exploration/com1_minified

sig IID {}

sig Interface {
qi : IID -> /* lone */ Interface,
iids : set IID,
iidsKnown : IID,
reaches : Interface

}

fact { all i :Interface |
// line intentionally left blank

(i.reaches = IID.(i.qi)) // reaches = ran[qi]
}

sig Component {
interfaces : set Interface,
iids : set IID,
identity : interfaces,

}

fact IdentityAxiom {
some unknown : IID | all c : Component |
all i : c.interfaces | unknown.(i.qi) = c.identity

}



26 6. Appendix

fact ComponentProps {
all c : Component | c.iids = c.interfaces.iids

}

sig LegalInterface extends Interface { }
fact { all i : LegalInterface | all x : i.iidsKnown | x in x.(i.qi).iids}

sig LegalComponent extends Component { }
fact { LegalComponent.interfaces in LegalInterface }

fact Symmetry { all i, j : LegalInterface | j in i.reaches => i.iids in j.iidsKnown }

fact Reflexivity { all i : LegalInterface | i.iids in i.iidsKnown }
fact Transitivity { all i, j : LegalInterface | j in i.reaches => j.iidsKnown in i.iidsKnown }
// removed the fact for aggregation

assert Theorem1 {
all c: LegalComponent | all i: c.interfaces | c.iids = i.iidsKnown
}

check Theorem1 for 5 expect 0

6.2 Proof for COM: theorem 1

The following proof was used to find a suitable lemma for theorem 1. The numbers
in front of the steps are arbitrary. The formulas are written in Alloy. The steps be-
ginning with ”some” usually follow from one or more previous steps. Steps beginning
with ”all” are taken directly from the benchmark or derived from the benchmark.

Proof outline for disproving the first case:
(((((A1 ∧ 8)⇔ 9) ∧ 10 ∧ (11⇒ 12))⇒ 13) ∧ 14)⇔ 15 ⊥

Proof outline for disproving the second case:
((A2 ∧ 14)⇔ 42) ∧ 45)⇒ 43)⇔ 44 ⊥ 38

theorem all c: LegalComponent | all i: c.interfaces | i.iidsKnown = c.iids

1 assume some c: LegalComponent | some i: c.interfaces | i.iidsKnown != c.iids

2 some c: LegalComponent | some i: c.interfaces | (i.iidsKnown not in c.iids) or (c.iids
not in i.iidsKnown)

3 some c: LegalComponent | some i: c.interfaces
| (some o: i.iidsKnown | o not in c.iids)
or (some o : c.iids | o not in i.iidsKnown)

case-by-case:

case A1 ... (o in i.iidsKnown), based on 3

A1 assume some c: LegalComponent | some i: c.interfaces |
(some o: i.iidsKnown | o not in c.iids)



6.3. Selected axioms of RelSMT 27

8 all i : LegalInterface | all x : i.iidsKnown | x in x.(i.qi).iids

9 some c: LegalComponent | some i: c.interfaces | some o: i.iidsKnown | o in
o.(i.qi).iids and o not in c.iids

10 all i : c.interfaces | all x : IID | x.(i.qi) in c.interfaces

11 sig Interface { iidsKnown : IID }
12 all c: LegalComponent | all i : c.interfaces |

all o : i.iidsKnown | (o in IID)

13 some c: LegalComponent | some i: c.interfaces |
(some o: (c.interfaces).iids | o not in c.iids)

14 all c : Component | c.iids = c.interfaces.iids

15 some c: LegalComponent | some i: c.interfaces |
(some o: (c.interfaces).iids | o not in (c.interfaces).iids)  

�

case A2 ... (o in c.iids), based on 2

A2 assume some c: LegalComponent | some i: c.interfaces |
c.iids not in i.iidsKnown

14 all c : Component | c.iids = c.interfaces.iids

45 all c: Component| all i:c.interfaces | i.iids in c.interfaces.iids

42 some c: LegalComponent |
some i: c.interfaces | c.interfaces.iids not in i.iidsKnown

43 some c: LegalComponent | some i: c.interfaces | i.iids not in i.iidsKnown

44 some i: LegalInterface | i.iids not in i.iidsKnown

38 all i: LegalInterface | i.iids in i.iidsKnown  44

�

�

6.3 Selected axioms of RelSMT

Following is a list of axioms written in SMT. They are all declared with respect to
the function in1 and in2, which are uninterpreted. These axioms are generated by
examining the arity and operations of the input expressions. Each axiom is placed
into an assertion and decorated with a :named directive. The assert commands are
omitted here.

; axiom for set product
(forall ((y0 Atom)(x0 Atom)(A Rel1)(B Rel1)) (=

(in_2 x0 y0 (prod_1x1 A B))
(and (in_1 x0 A) (in_1 y0 B))))

; subset axiom for Rel2
(forall ((x Rel2)(y Rel2)) (=

(subset_2 x y)
(forall ((a0 Atom)(a1 Atom)) (=>



28 6. Appendix

(in_2 a0 a1 x)
(in_2 a0 a1 y)))))

; axiom for the operator & (disjoint)
(forall ((A Rel1)(B Rel1)) (=

(disjoint_1 A B)
(forall ((a0 Atom)) (not

(and
(in_1 a0 A)
(in_1 a0 B))))))

; axiom for the operation . (join between a binary and a unary relation)
(forall ((A Rel2)(B Rel1)(y0 Atom)) (=

(in_1 y0 (join_2x1 A B))
(exists ((x Atom)) (and

(in_2 y0 x A)
(in_1 x B)))))

; axiom for ’the expression is empty’
(forall ((a0 Atom)(R Rel1)) (=>

(no_1 R)
(not (in_1 a0 R))))

; axiom for the empty set
(forall ((a Atom)) (not (in_1 a none)))

; axiom for the conversion function for Atoms to binary relation
(forall ((x0 Atom)(x1 Atom)) (and

(in_2 x0 x1 (a2r_2 x0 x1))
(forall ((y0 Atom)(y1 Atom)) (=>

(in_2 y0 y1 (a2r_2 x0 x1))
(and

(= x0 y0)
(= x1 y1))))))

; axiom for the unary operator "lone"
(forall ((X Rel1)) (=

(lone_1 X)
(forall ((a0 Atom)(b0 Atom)) (=>

(and
(in_1 a0 X)
(in_1 b0 X))
(= a0 b0)))))

6.4 Axioms for an ordered signature B

These are the basic axioms for an ordered signature B. The functions at, ord and
finite are generic; other functions are declared for B only.



6.4. Axioms for an ordered signature B 29

;; functions
(declare-fun at (Rel1 Int) Atom)
(declare-fun finite (Rel1) Bool)
(declare-fun ord (Rel1 Atom) Int)
(declare-fun firstB () Rel1)
(declare-fun lastB () Rel1)
(declare-fun nextB () Rel2)
(declare-fun nextsB (Rel1) Rel1)

; axiom for firstB
(= firstB (a2r_1 (at B 1)))

; axiom for ord
(forall ((R Rel1)(a Atom)(b Atom)) (=>

(and
(in_1 a R)
(in_1 b R)
(= (ord R a) (ord R b)))

(= a b)))

; axiom for nextB
(forall ((a Atom)(b Atom)) (=>

(and
(in_1 a B)
(in_1 b B))
(=

(in_2 a b nextB)
(= (ord B b) (+ (ord B a) 1)))))

; axiom for the function ’nexts’ of B
(forall ((e Rel1)) (=>

(subset_1 e B)
(=

(nextsB e)
(join_1x2 e (transClos nextB)))))

; axiom for at (the reverse of ord)
(forall ((R Rel1)(a Atom)) (=>

(in_1 a R)
(= (at R (ord R a)) a)))

; infinite axiom for lastB
(=>

(not (finite B))
(= lastB none))



30 6. Appendix

6.5 Proof listing for the lemma ‘step 45’

Try this proof online at http://rise4fun.com/Z3/vjCn

(set-logic AUFLIA)
(set-option :produce-unsat-cores true)
(set-option :macro-finder true)
;; sorts
(declare-sort Atom)
(declare-sort Rel1)
(declare-sort Rel2)
(declare-fun join_1x2 (Rel1 Rel2) Rel1)
(declare-fun subset_1 (Rel1 Rel1) Bool)

;; funs
(declare-fun in_1 (Atom Rel1) Bool)
(declare-fun in_2 (Atom Atom Rel2) Bool)

;; axioms
(assert (! ; axiom for join_1x2
(forall ((A Rel1)(B Rel2)(y0 Atom)) (=
(in_1 y0 (join_1x2 A B))

(exists ((x Atom)) (and (in_1 x A) (in_2 x y0 B)))))
:named axiomc43ab575 ))
(assert (! ; subset axiom for Rel1
(forall ((x Rel1)(y Rel1)) (=
(subset_1 x y)

(forall ((a0 Atom)) (=> (in_1 a0 x) (in_1 a0 y)))))
:named axiom76d2de83 ))

;; verification condition
; lemma about subsets within joins, from com-theorem1, related to step 45
(assert (!
(not
(forall ((a Rel1)(A Rel1)(R Rel2)) (=>

(subset_1 a A)
(subset_1 (join_1x2 a R) (join_1x2 A R)))))
:named step45 )) ; :named lemma1aecfc94

(check-sat)
;(get-model)
(get-unsat-core)

http://rise4fun.com/Z3/vjCn


Bibliography

[1] AlloyPE: an SMT-based proof engine for Alloy. http://asa.iti.kit.edu/305.php.

[2] Z3 - guide. http://rise4fun.com/Z3/tutorialcontent/guide, 2012.

[3] Konstantine Arkoudas, Sarfraz Khurshid, Darko Marinov, and Martin Rinard.
Integrating model checking and theorem proving for relational reasoning. In
(RMICS), 2003.

[4] Kelloy. http://asa.iti.kit.edu/306.php.

[5] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Pro-
ceedings of the 23rd international conference on Computer aided verification,
CAV’11, pages 171–177, Berlin, Heidelberg, 2011. Springer-Verlag.

[6] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2010.

[7] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Her-
manns, editors, Proceedings of the 19th International Conference on Computer
Aided Verification (CAV ’07), volume 4590 of Lecture Notes in Computer Sci-
ence, pages 298–302. Springer-Verlag, July 2007. Berlin, Germany.

[8] Paulson L. C Blanchette J., Böhme S. Extending sledgehammer with smt
solvers. In Automated Deduction - CADE-23, volume 6803 of Lecture Notes in
Computer Science, pages 116–130. Springer Berlin Heidelberg, 2011.

[9] Sascha Böhme. Proving Theorems of Higher-Order Logic with SMT Solvers.
PhD thesis, Technische Universität München, 2012.

[10] Greg Nelson David Detlefs and James B. Saxe. Simplify: a theorem prover for
program checking. J. ACM 52(3):365 - 473, 2005.

[11] Leonardo de Moura and Nikolaj Bjørner. Efficient e-matching for smt solvers.
In Proceedings of the 21st international conference on Automated Deduction:
Automated Deduction, CADE-21, pages 183–198, Berlin, Heidelberg, 2007.
Springer-Verlag.

[12] Aboubakr Achraf El Ghazi and Mana Taghdiri. Relational reasoning via SMT
solving. In 17th International Symposium on Formal Methods (FM), pages
133–148, June 2011.



32 Bibliography

[13] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and
Cesare Tinelli. Dpll( t): Fast decision procedures. In CAV, pages 175–188,
2004.

[14] Ulrich Geilmann. Verifying Alloy Models using KeY. Diplomarbeit, Karlsruhe
Institute of Technology, August 2011.

[15] D. Jackson. Software Abstractions: Logic, Language and Analysis. MIT Press,
2006.

[16] Daniel Jackson and Kevin J. Sullivan. Com revisited: tool-assisted modelling
of an architectural framework. In SIGSOFT FSE, pages 149–158, 2000.

[17] K. R. M. Leino and R. Monahan. Reasoning about comprehensions with first-
order SMT. (SAC), pages 615–622, 2009.

[18] M. Moskal, J.  Lopuszański, and J. R. Kiniry. E-matching for fun and profit. In
Electronic Notes in Theoretical Computer Science 198, volume 2, 2008.

[19] Mattias Ulbrich, Ulrich Geilmann, Aboubakr Achraf El Ghazi, and Mana
Taghdiri. A proof assistant for Alloy specifications. In 18th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 422–436, March 2012.

[20] Ulrich Geilmann. Verifying Alloy Models using KeY. Diplomarbeit, Karlsruhe
Institute of Technology, August 2011.

[21] Jan van Eijck. Defining (reflexive) transitive closure on finite models. http:
//homepages.cwi.nl/~jve/papers/08/pdfs/FinTransClosRev.pdf.

http://homepages.cwi.nl/~jve/papers/08/pdfs/FinTransClosRev.pdf
http://homepages.cwi.nl/~jve/papers/08/pdfs/FinTransClosRev.pdf

	0.1 Abstract
	Contents
	1 Introduction
	1.1 Overview
	1.2 An Example
	1.3 Outline
	1.4 Related work
	1.5 Background

	2 Approach
	2.1 Translating Alloy
	2.2 On ordered sets
	2.3 Baseline problem: FileSystem/oneParent

	3 COM: `theorem 1'  a case report
	3.1 Overview
	3.2 How we tried to find lemmas in a systematic way
	3.3 Observations

	4 Experiments
	4.1 Verifying our approach

	5 Evaluation
	5.1 Conclusion
	5.2 Secondary finding
	5.3 Future work

	6 Appendix
	6.1 COM: theorem 1
	6.2 Proof for COM: theorem 1
	6.3 Selected axioms of RelSMT
	6.4 Axioms for an ordered signature B
	6.5 Proof listing for the lemma `step 45'

	Bibliography

