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Abstract

Learning-based testing (LBT) can ensure software quality without a formal documentation
or maintained specification of the system under test. For this purpose, an automaton
learning algorithm is the key component to automatically generate efficient test cases for
black-box systems. In the present report, Angluin’s automaton learning algorithm L*
and the extension called L* Mealy are examined and evaluated in the application area of
learning-based software testing. The purpose of this work is to evaluate the applicability of
the L* algorithm for learning real-life software and to describe constraints of this approach.
To achieve this, a framework to test the L* implementation on various deterministic finite
automata (DFAs) was written and an adaptation called L* Mealy was integrated into
the learning-based testing platform LBTest. To follow the learning process, the queries
that the learner needs to perform on the system to learn are tracked and measured. The
main results of this thesis are that (1.) L* shows a near-linear learning trend in the state
space size of the DFAs for easy-to-learn automata, (2.) even for hard-to-learn DFAs the
algorithm performs better than the theoretical predictions imply, (3.) L* Mealy shows a
polynomial growth on the membership queries during the learning process and (4.) during
the learning process L* and L* Mealy rarely built a hypothesis which makes L* Mealy
inefficient for LBT.
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1. Introduction

As automated systems grow in size (see for example [DR08]) and penetrate our daily life
starting with simple gadgets and growing into highly safety critical applications, such as
car controllers, both testing time and efforts grow rapidly. Although these systems are
capable of facilitating our life, without profound confidence in their reliability the actual
execution might range from unsatisfying to dangerous — e.g. in an automotive ABS sys-
tem. Additionally, the occasional lack of a formal and maintained specification for existing
software — not to speak of opaque hardware components — challenges machine and ex-
haustive human-based testing. Therefore, there is a need for intelligent and especially
automated testing that copes with a variety of different systems thus, avoiding error-prone
manual evaluation.

The idea of automated learning-based black-box testing, as described by Meinke et al.
[MNS12], is impressive because of the minimal logical efforts it takes developers to verify
the system under test (SUT) even without a complete specification [NP10]. In order to
automatically generate test cases, a learning algorithm can be applied to a reactive system.
Reactive systems are especially suited for an automated testing approach and have been
the subject of research for decades. Among these systems are for instance sensor-reactor
machines, control units, web services and various communication protocols. The most
distinguishing property is that these programs continuously execute on a set of input
values and publish their results using outputs. To be applicable for automated learning,
the SUT must be able to read sequences of input values and to eventually signal the
outcome of execution using a sequence of output values.

There are various ways of modelling reactive systems such as deterministic finite automata
(DFA) [Sip06], Mealy automata [Mea55] or Kripke structures as explained in [SB04]. Chap-
ter 2 will cover the preliminaries needed for this report and describes the automata that
were used. As first shown by Dana Angluin in [Ang87] using machine-learning techniques,
it is possible to fully learn a DFA in polynomial time without knowing the actual represen-
tation by actively asking questions to an oracle. This approach is called the L* algorithm
and will be described in Section 2.1. As many reactive systems go beyond binary in- and
output data a DFA presentation thereof might not be adequate. To solve this problem a
Mealy automaton, as defined in [Mea55], can be introduced. Both vectors of input values
and output values can be handled with only minor adaptations to the L* algorithm —
then called the L* Mealy algorithm which will be described in Section 2.2. Finally, a
practically useful approach to automated learning-based testing called LBTest, which will
be described in Section 2.3 and was discussed by Meinke and Sindhu in [MS13], made use
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4 1. Introduction

of the automata-learning algorithm L* Mealy to derive efficient test cases for the SUT.
Thus, it will be demonstrated that LBTest is able to learn any executable reactive sys-
tem — regarded as a black box — and automatically test it without the need for formal
documentation.

The purpose of this thesis is to collect and analyse empirical data on the performance
of the L* learning algorithm and to discuss the observations with a specific focus on the
theoretically deduced performance predictions made by Angluin [Ang87]. Furthermore,
the applicability of the L* Mealy algorithm in learning-based testing ought to be assessed
using case studies.

The structure of this report is as follows. In Chapter 2 the learning algorithms L* and
L* Mealy will be introduced and the approach of LBTest will be explained. Chapter 3
will investigate the implemented testing framework for L* and the integration of L* Mealy
into LBTest. In Chapter 4 the evaluation will be conducted and the gathered data will
be presented. Chapter 5 will discuss the observational results and possible optimizations.
Finally, Chapter 6 will give conclusions and possible directions for further research.
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2. Foundations and related work

To understand this work, it is essential to be familiar with formal languages, prefixes and
suffixes as covered by Rozenberg and Salomaa [RS09]. Further elementary knowledge,
such as Nerode’s right congruence and equivalence classes, specific to the area of automata
theory is presented by Berg et al. [Ber+03].

Narendra and Thathachar [NT74] define a learning system by the ability to improve the
behaviour with time towards an eventual purpose. In the case of L* and L* Mealy, the
goal is behavioural equivalence between the learned automaton and the initially unknown
automaton. Therefore, the learner actively experiments with the automaton output to
detect equivalence classes in the input sequences. The learning algorithms can generate a
hypothetical automaton from these equivalence classes as shown in [Ber+03].

To apprehend the learning process it is necessary to know how a system can be represented
as an automaton. There are various possibilities of which a deterministic finite automaton
(DFA) is the most basic. Sipser [Sip06] defines a DFA thus:

ADFA = (Q, δ, q0, F ). (2.1)

Q is a set of states, δ : Q× Σ→ Q is a transition function that maps a state qcurrent ∈ Q
and a symbol a ∈ Σ from an alphabet to the next state qnext ∈ Q, q0 ∈ Q is the start state
and F ⊆ Q the set of all accepting states.

Since DFAs are very simplistic models of computation, Mealy [Mea55] defined a more
general automaton model thus:

AMealy = (Q,Σ,Ω, δ, λ, q0, F ). (2.2)

The main extensions in this model are the set of output symbols Ω and the output function
λ : Q×Σ→ Ω which maps each state q ∈ Q and each symbol ain ∈ Σ to an output symbol
aout ∈ Ω.

2.1. The L* algorithm

In machine learning theory one differentiates between active and passive learners. While
active learning involves using queries to retrieve observations, passive learning is applied to
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6 2. Foundations and related work

an existing set of labelled data. It was proven by Gold [Gol78] in 1978 that the latter ap-
proach is NP-hard. Therefore, it was a huge breakthrough when Dana Angluin introduced
the active L* learner [Ang87] and formally deduced its polynomial runtime in 1987. Ever
since, her algorithm has been used as a paramount example in teaching machine learning.

The purpose of Angluin’s L* algorithm is to gather enough knowledge about an unknown
DFA to formulate a hypothetical representation of it from the observed behaviour. It is
capable of deciding itself what additional data it requires to fully learn another system and
to fetch the information through a clearly defined interface from an external representation.
The L* algorithm as described by Angluin [Ang87], Chen [Che13] and Berg et al. [Ber+03]
consists of several components depicted in Figure 2.1 which interact in order to resolve the
structure of an initially unknown deterministic finite automaton.

Figure 2.1.: Components of the L* Algorithm

Components

(1) A learner that controls the learning progress by deciding which questions to ask the
teacher (2).

(2) A teacher that responds to the informational needs of the learner with data from
the SUT (3).

(3) An SUT that can be represented by an automaton.

(4) An observation table that holds all the information that the learner (1) has about
the SUT so far. If the learner finishes, it must be possible to create a behaviourally
equivalent system to the SUT from the data.

The learner is the core component that controls the learning progress and decides what
to investigate. Assuming that an unknown system can be modelled as a DFA A =
(Q, δ, q0, F ), the learner L∗ identifies the accepted language L(A). The actual learning
is a simple mapping of strings from the input alphabet Σ to {0, 1} depending on whether
the automaton A accepts (1) or rejects (0) the input strings. The automaton accepts an
input sequence of symbols if the resulting state qres according to the transition function
δ is an accepting state qres ∈ F . In theoretical terms, the learner’s task is to identify
all equivalence classes of input strings Σ∗. This can be achieved using properties of the
Nerode right congruence and is explained in depth by Berg et al. [Ber+03].

As the learner itself does not possess any knowledge about the structure of the unknown
system, it has to retrieve information by creating queries for missing data and sending
them to a teacher T . After all, the teacher component knows the internal structure of the
system that should be learned — i.e. it knows A. Thus, the learner is capable of asking
questions to the teacher in order to gather data on the unknown system without revealing
the structure at any point:

Queries

Aut(Σ) is defined as the set of all DFAs (see Definition 2.1) with input alphabet Σ.

6



2.1. The L* algorithm 7

(i) Membership queries QM : Σ∗ → {0, 1} :
The learner L∗ may ask the teacher T to perform a test run on A to check for a
given string x if x ∈ L(A) then T replies with 1 or if x 6∈ L(A) then T replies with
0. Using QM , the learner can build a data structure from which it can derive A.

(ii) Equivalence queries QE : Aut(Σ)→ Σ∗ ∪ {true} :
The learner L∗ may ask the teacher T to check whether the current learning out-
come A′ ∈ Aut(Σ) from the set of all possible outcomes Aut(Σ) is equivalent to the
hidden automaton A. As the learner performs a series of membership queries it fills
in missing knowledge and becomes confident about the correctness of the learned
data. Thus, it assembles a DFA A′ from previously gathered data and requests an
equivalence check. The learner performs the equivalence check as described by Nor-
ton [Nor09] on A′ and A. If it yields a counterexample QE(A′) = c ∈ Σ∗ to the
equivalence of A′ such that c ∈ L(A)∧c 6∈ L(A′) or c 6∈ L(A)∧c ∈ L(A′), the teacher
returns c and the learner incorporates it which can then trigger further membership
queries. Should no such c exist (QE(A′) = true), the L∗ algorithm has successfully
learned A.
In this role, the teacher acts as an oracle because it has to know the representation
of A to perform the equivalence check. Consequently, this approach does not work
with black-box testing.

To direct the learner’s progress Angluin defines two properties in [Ang87] that L* should
validate the gathered data against. If one of the properties does not hold against the
observations so far, further membership queries are needed to inspect a certain area of the
hidden automaton.

Observation table properties

(a) An observation table is defined as complete if for each state in the hypothesis and
each symbol from the alphabet Σ there is a clearly determined next state in the
transition function δ. A complete table ensures that the learner can construct a
DFA with a well-defined transition function δ — i.e. there is a transition from each
state for each symbol.

(b) An observation table is defined as consistent if all strings in the same equivalence
class that start in one state result in the same target state for transitions using
any symbol s ∈ Σ. The consistency property ensures that the learner differentiates
between the learned equivalence classes and splits them if any discrepancy is detected
in the hypothesised right congruence of input strings from Σ∗.

In conclusion, the table properties determine which membership queries the learner is
supposed to perform. Once the observations are complete and consistent the learner can
create a hypothesis about the DFA which can be assured to be a connected graph with all
equivalence classes that L* could derive. This automaton is then handed to the learner
for an equivalence check with the correct DFA using an equivalence query. For a formal
definition of consistency and completeness see Section 3.1.3.

The result of repeating this procedure until an equivalence query does not return a coun-
terexample, is an algorithm that learns arbitrary DFAs in polynomial time [Ang87]:

O(m|Σ||Q|2), (2.3)

where m is the length of the longest counterexample returned by the teacher, Σ is the
input alphabet and Q is the set of states of the DFA to be learned. The L* algorithm is an
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8 2. Foundations and related work

example of a complete learner which means that the emphasis is on terminating with the
final result rather than producing many intermediate incremental results. Section 4.1.1 will
show how the algorithm successfully learns an exemplary initially unknown automaton.

2.2. The L* Mealy algorithm

In practice software output goes beyond the binary values of 1 (true) and 0 (false) that the
deterministic finite automata can cope with. Thus, complex systems require another more
practical representation for modelling such as the previously introduced Mealy automaton.
Mealy automata are able to process arbitrary and discretionary input vectors, processes
the values and return arbitrary and discretionary output vectors.

The L* Mealy algorithm, as described by Niese [Nie03], is an adaptation of Angluin’s
L* algorithm as previously introduced in Section 2.1. The main difference is that the
system is represented as a more general Mealy automaton. The algorithmic concepts
remain whereas the data structures change. The observations in L* Mealy are vectors but
are treated similar to the binary information in L*. The components exchange the data
in a slightly different way which is based on the Definition 2.2 of the Mealy automaton
AMealy = (Q,Σ,Ω, δ, λ, q0, F ).

Queries

Mealy(Σ,Ω) is defined as the set of all Mealy automata with input alphabet Σ and output
alphabet Ω.

(i) Membership queries QM : Σ∗ → Ω∗ :
As opposed to membership queries in L* the learner queries the informational needs
to a teacher that uses a Mealy automaton as representation of the hidden system.
Thus, each response is a vector o ∈ Ω∗.

(ii) Equivalence queries QE : Mealy(Σ,Ω)→ Σ∗ ∪ {true} :
The only difference to the equivalence queries in L* is the format of the learner’s
hypothesis A′Mealy ∈Mealy(Σ,Ω) which is a Mealy automaton. The counterexample
QE(A′Mealy) = c ∈ Σ∗ ∪ {true} is processed in the same way as L* would do it.

In contrast to the queries, the completeness 2.1.(a) and the consistency property 2.1.(b)
are specified in the same way as for L*. Using this advanced approach, it is possible to
learn automata of real-life complexity as the next section shows.

2.3. LBTest

There are various algorithms and tools that can be applied to learning-based testing as
discussed by Sindhu [Sin13]. This report focusses on the LBTest tool [MS13] which uses
black-box learning in order to automatically test software components. It builds upon the
early work on automata learning, model checking and testing with a particular focus on
L* by Groce et al. [GPY06]. As opposed to the previous learning algorithms in Section 2.2
and Section 2.1 that had a representation of the actual system at hand, LBTest learns the
software without knowledge of its structure. The learning-based testing (LBT) approach,
as described by Meinke et al. [MNS12], uses a set of requirements to validate the given
software against, a specification of discrete input and output variables and their types.
Thus, LBT can be easily integrated into the software development cycle or can be applied
to a finished system without any knowledge of the internal structure apart from a tiny
input and output interface. Conceivably, the software specification could be automati-
cally generated during the development stage and the software user requirements could
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2.3. LBTest 9

be mechanically translated from a textual project description. This makes LBT a smooth
approach to ensure software quality.

In Figure 2.2 the architecture of LBTest with adaptations from [MS13] is depicted.

Figure 2.2.: The architecture of the LBTest software in which the learning algorithm is
embedded

Architecture

The core components of the LBTest architecture are:

(1) A model checker as described in [GA07] which can formally validate a given model
against a specification (which in the case of LBTest is a temporal logic). Using a
hypothesis about the learner and a set of rules for validation, the model checker can
generate efficient test cases for the SUT as counterexamples to requirements.

(2) The user requirements are used by the model checker to validate a given system.
These logical rules are highly expressive and can state behavioural requirements of
a system.

(3) The learning algorithm is able to discover the internal structure of the SUT (4). For
this purpose, the L* Mealy algorithm, as introduced in Section 2.2, will be used in
this work.

(4) The system under test is a black-box software or hardware component that should
be tested against some requirements (see (2)). The learning algorithm e.g. L* Mealy
might need to discretise the input and output vectors of the SUT. For this purpose
a communication wrapper is needed around the SUT.

(5) A random input generator can generate random test cases for the SUT for stochastic
equivalence checking.

(6) An oracle compares the results of the SUT to the expected values by the learner’s
hypothesis. Should an inconsistency arise, the learner is given a counterexample
to the hypothesis and has to incorporate it. If the SUT does not comply with the
intended behaviour, the oracle can return warnings or errors that indicate a problem
in the SUT.

(7) A stochastic equivalence checker is used to compare a learned system to the actual
system (4). It is able to guarantee the equivalence of the two automata with some
probability.

The definition of the queries is consistent with the definition of the queries used by L*
Mealy in Section 2.2. However, they trigger different actions in the LBTest tool. Compared
to the previous setup, in which a teacher could simply look into the hidden system (for
further reference this will be called white-box learning), the SUT is a black-box.

9



10 2. Foundations and related work

Queries

(i) Membership queries QM : Σ∗ → Ω∗ :
These are performed by invoking the SUT with the current vector of input values
i ∈ Σ∗ and retrieving the output values o ∈ Ω∗ as a result. Since the input is
handled externally by the SUT (4), this process can be considerably time-consuming
depending on the complexity of the SUT.

(ii) Equivalence queries QE : Mealy(Σ,Ω)→ Σ∗ ∪ {true} :
Equivalence queries cannot be answered by a teacher as in 2.1.(ii) because the in-
ternal structure of the SUT is hidden. Instead stochastic equivalence checking is
used and the counterexamples come from the random input generator in the LBTest
environment. Once the learner has created a complete and consistent set of ob-
servations using membership queries, a hypothesis A′Mealy ∈ Mealy(Σ,Ω) that is
represented as a Mealy automaton is generated from the data. The model checker
(1) then validates the automaton against the specified requirements (2). If any flaw
is detected, the model checker generates a test case QE(A′Mealy) = c ∈ Σ∗ for the
SUT (4). Thereafter, the oracle (6) is able to compare the assumed results cass ∈ Ω∗

from the hypothesis with the actual values ccorr ∈ Ω∗ from the test run. Should a
discrepancy cacc 6= ccorr arise, the hypothesis was wrong and then the test case c is
used as a counterexample for the learner. If cacc = ccorr, LBTest found an incon-
sistency between the requirements and the SUT which returns a failure and aborts
the execution. On the other hand, if the model checker cannot find any invalid se-
quence c to the hypothesis A′Mealy, the random input generator (5) is consulted. It
will iteratively generate a random test sequence which will then be used to stochas-
tically check the equivalence between the hypothesis automaton and the SUT. If
the stochastic equivalence checker (7) considers the hypothesis to be approximately
probably correct QE(A′Mealy) = true, no additional counterexamples are needed —
i.e. the learning is finished without contradicting the correctness of the given system
so it is likely to coincide with the requirements.

This approach to learning-based testing was evaluated on several case studies in [Fen+13]
which demonstrated that LBTest successfully detected errors in the software using an
incremental learner described in [MS11].

10



3. Implementation

In this chapter, the implementation of the L* algorithm in an evaluation environment will
be described in Section 3.1. Additionally, Section 3.2 will explain the integration of L*
Mealy into the LBTest software.

3.1. Evaluation framework for L*

In order to evaluate the properties of Angluin’s L* algorithm, the following components
were created in software as shown in Figure 3.1

Figure 3.1.: The implemented framework to evaluate the L* algorithm

Framework components

(1) The L* learner (see Section 3.1.3) implements the L* algorithm with the previously
introduced properties and queries.

(2) The teacher (see Section 3.1.2) is a component that has access to the DFA that the
learner should understand and that answers the informational needs of the learner
without revealing the actual representation.

(3) An equivalence checker compares the learner’s hypothesis against the, to the learner
unknown, DFA.

(4) A random DFA generator (see Section 3.1.1) generates DFAs in a random manner.
This component only serves as a utility for the evaluation.

11



12 3. Implementation

3.1.1. Random DFA generator

A random DFA generator was constructed to generate fully connected DFAs. It takes as
inputs the input alphabet Σ, the percentage of accepting states and the total number of
states. It uses a straight-forward implementation that randomly finds following states for
each symbol in the alphabet and for each state, connects these states, randomly assigns
accepting states, makes a random state to the initial state and finally checks whether a
fully connected graph was created. If the DFA had unreachable states, these would not
have affected the behaviour. Thus, these DFAs would be behaviourally equivalent to an
automaton with fewer states which could inadvertently bias the measured state space size.
To ensure a fully-connected graph a breadth-first search [SM08] checks whether all states
can be reached from the initial state using strings generated from the alphabet. If a graph
is not connected, it is discarded and the generator repeatedly tries to find a valid connected
DFA.

The generated automata have to be mutually different in order to obtain sound data from
the measurements. Consequently, the generator neglects all DFAs that are structurally
equal to a previously evaluated DFA within one run. Therefore, each automaton is assigned
a signature that textually comprises the transition function δ and the accepting states F .
Thereafter, the string hash values can be rapidly compared to detect duplicates. This
approach does not exclude behaviourally equivalent DFAs that are not equal because
minimizing the generated automata is time-consuming and might not represent software
in practice.

3.1.2. The Teacher

The role of the teacher, as described in Section 2.1, is to answer membership and equiva-
lence queries regarding the actual DFA.

1. Membership queries QM (x) are executed on the underlying automaton. Depending
on the final state of the DFA after the symbol sequence is executed, the response is
either accept or reject.

2. Equivalence queries QE(A′) trigger an equivalence check between the learned DFA A′

and the hidden DFA A. In this case a symmetric difference c ∈ L(A)⊕L(A′) ∈ Σ∗ of
the combined DFAs is checked to determine the equivalence as explained in [Nor09].
As the L* algorithm is proven to learn the minimal equivalent DFA (see [Ang87]) the
hypothesis of the learner can directly be compared to an initially minimized version of
the actual DFA. A breadth-first search algorithm described in [SM08] then traverses
the graph to find a path to an accepting state and returns it as soon as it finds one
— i.e. it finds the shortest accepting path. If any path — i.e. sequence of input
symbols — is found, the learner inferred a wrong hypothesis. Thus, the shortest path
— either a false positive example from the actual DFA or a false negative example
from the proposed DFA — is returned as a counterexample c for the learner. Since
the teacher therefore always returns the shortest counterexample c or true if no path
was found, the length m of counterexamples grows linearly in the state space size
n = |Q| of the DFA and thus m ∼ n (i.e. m proportional to n) as shown in [Ber+03].
The total number of equivalence queries is constrained by the worst case number of
observation table entries which Angluin [Ang87] proofed to be (k+1)(n+m(n−1))n
where k = |Σ| is the alphabet size.

Thus, the L* learner finishes learning in the worst case with a polynomial number
in |Σ| and |Q| of membership queries:

O((|Σ|+ 1)(|Q|+m(|Q| − 1))|Q|) = O(|Σ||Q|3) (3.1)

12



3.1. Evaluation framework for L* 13

ε a

ε 0 1
a 0 0
aa 0 0

ε · b 0 0
a · b 0 1
aa · a 1 0
aa · b 0 1

Table 3.1.: Example observation table with Σ = {a, b}, S = {ε, a}, RED = {ε, a, aa} and
BLUE = {b, ab, aaa, aab}

3.1.3. The Learner

The learner acts upon a table data structure containing all previous observations, as shown
in Figure 3.1, that can be separated into a BLUE and a RED part as suggested in
[Ber+03]. The RED part contains all equivalence classes that are supposed to represent
states in the generated hypothesis DFA. The BLUE table contains information about
all successor states to which a transition from a state in RED could arrive BLUE =
(RED · Σ) \ RED. The observation table is two-dimensional with prefix strings p ∈
RED∪BLUE ⊆ Σ∗ in one dimension and suffix strings s ∈ S ⊆ Σ∗ in the other dimension.
A row in the observation table can be defined as a function row : Σ∗ → {0, 1}∗ that maps
prefixes to the corresponding rows. Similarly, an entry in the observation table is a function
entry : Σ∗×Σ∗ → {0, 1} that uniquely identifies an observation with a prefix and a suffix.
Table 3.1 shows an example of an observation table.

(1) As described in 2.1.(a), the completeness property is vital to creating a valid DFA
because the transition function δ requires a successor state for each state and symbol
input. Formally the following statement applies:

∀p1 ∈ BLUE : ∃p2 ∈ RED : row(p1) = row(p2) (3.2)

If there is no such p2 ∈ RED, prefix p1 is added to RED and all successor states
a ∈ Σ, p1 · a are added to BLUE. The observation table depicted in Table 3.1 is
not complete because for prefix aaa the following takes effect @p ∈ RED : row(p) =
row(aaa).

(2) As introduced in 2.1.(b), consistency is an important property of the observation
table as it also drives the learning process. In the implementation it is checked
according to [Ber+03] and can be formally defined thus:

∃p1, p2 ∈ RED : row(p1) = row(p2)⇒ ∀a ∈ Σ, ∀s ∈ S : entry(p1·a·s) = entry(p2·a·s)
(3.3)

If there is a suffix s ∈ S and a symbol a ∈ Σ such that the property does not hold, the
concatenation a · s is added to the suffixes S. The observation table shown in Table
3.1 is not consistent because row(a) = row(aa) but entry(a · a · ε) 6= entry(aa · a · ε).
ε denotes the empty string.

Formula 3.3 is equivalent to the congruence property on rows described in Formula
3.4.

∃p1, p2 ∈ RED : row(p1) = row(p2)⇒ ∀a ∈ Σ : row(p1 · a) = row(p2 · a) (3.4)

Using these properties, the learning loop can be abstractly described by the following
Algorithm 1.

13



14 3. Implementation

Algorithm 1 L* learning loop to get a complete and consistent hypothesis h

while observations are not consistent or not complete do
while observations are not complete do
xincomplete ← shortest incomplete prefix from BLUE
move xincomplete to RED
add each successor string xs = xincomplete · Σ to BLUE if xs 6∈ BLUE ∪RED
perform membership queries for new unknown table entries

end while
if observations are not consistent then
xinconsistent ← shortest inconsistent suffix from RED
add a new column with xinconsistent to the observation table
gather new unknown table entries in RED from BLUE
perform membership queries for new unknown table entries in BLUE

end if
end while
h← build hypothesis

3.2. Integration of L* Mealy into LBTest

For integration into LBTest, the automaton learner as depicted in Figure 2.2 was im-
plemented using the L* Mealy algorithm previously introduced in Section 2.2. The basic
process of the L* Mealy implementation is equivalent to the learning loop of the L* learner
depicted in Algorithm 1. Only the row and entry function (used for instance for check-
ing the observation table properties) as previously described in Section 3.1.3 have to be
redefined following the structure of a Mealy automaton specified in Formula 2.2:

row : Σ∗ → Ω∗

entry : Σ∗ × Σ∗ → Ω

The screenshot in Figure A.4 was taken during a testing run with the implemented L*
Mealy learner. The LBTest tool measures the number of membership queries, the number
of random test cases, the number of test cases by the model checker and the hypothesis
size.

14



4. Evaluation

This chapter makes use of the previously described implementation of L* and L* Mealy to
generate data from an abstract learning framework (Section 4.1) and from real industrial
software (Section 4.2). All data in this chapter were gathered from executions on a machine
with an Intel R©CoreTMi7-3667U processor with 2.50 GHz clock speed and 4 GB RAM. The
operating system was a 64-bit version of Windows 8.1. All components were written in
Java with the Java Development Kit 7.

4.1. L*

In this section the generated data from the learning framework presented in Section 3.1
will be shown. First, some properties of the underlying randomly generated automata
will be examined in Section 4.1.2. Thereafter, two distinct sets of such automata will be
considered in depth. For both of them different statistically significant data was observed
from the implemented L* Learner and will be described in order to grasp the behaviour
of membership and equivalence queries as introduced in Section 2.1 for different DFAs.
Mutual influences of the two query types will be considered.

4.1.1. Simple case study

This section will present a simple case study to clarify the learning process used by L* using
queries and reasoning about the contents of the observation table. The DFA, as specified
by the graph in Figure 4.1, accepts all strings s ∈ Σ∗,Σ = {a, b} that contain exactly
one b. Thus, the automaton Ahidden = (Q, δ, q0, F ) can be defined using the transitions
from the graph for δ, the sets Q = {zero, one, trash} and F = {one} and the initial state
q0 = zero.

Figure 4.1.: DFA that accepts all strings from the alphabet that contain exactly one ’b’

15



16 4. Evaluation

Learning process

The following sequence shows how the implemented L* algorithm iteratively learns the
automaton Ahidden from a teacher.

(1) First, the L* learner initializes the observation table according to the current al-
phabet. The empty string ε is added to RED and all symbols a ∈ Σ are added to
BLUE. The suffixes are initially set to S = {ε}. Then, all unknown row entries are
resolved using membership queries: QM (ε) = 0, QM (a) = 0, QM (b) = 1. The initial
state of the observation table is shown in Table 4.1a.

(2) Following the learning loop presented in Algorithm 1, each iteration requires to check
the consistency and the completeness properties defined in Definition 3.2. The prefix
b breaks the formula for completeness 3.3 as there is no equal row in RED to the row
that b references. Thus, it has to be moved to RED and successive prefixes {ba, bb}
have to be added to BLUE. The newly added observation table entries have to be
resolved using membership queries. The current state of the observation table is
depicted in Table 4.1b.

(3) The observation table is now complete and consistent. Thus the L* learner builds
a hypothesis A′0 shown in Figure 4.2a from the observation table and performs an
equivalence query QE(A′) = bbb. The counterexample implies that A′0 was not
equivalent to Ahidden. Thus, it has to be incorporated into the observation table.
Therefore, all prefixes and the counterexample are added or moved to RED and all
successive prefixes are added to BLUE if they are not in BLUE ∪RED. After the
membership queries were performed, the state of the observation table is shown in
Table 4.1c.

(4) The learning loop is iterated again because the learning process has not finished with
the incorrect hypothesis A′0. Although the observation table is complete, the suffix
b contradicts the consistency property from Formula 3.2. Thus, it is added to the
suffixes S and the entries of the observation table for the new column have to be
resolved. All entries in RED can be resolved from known values in BLUE, as Table
4.1c shows. The unknown entries in BLUE have to be resolved using membership
queries. The current state of the observation table is shown in Table 4.1d.

(5) The observation table is complete and consistent so another hypothesis A′1, as de-
picted in Figure 4.2b, is built. The equivalence query QE(A′1) = ∅ reveals that
no counterexamples to the correctness of the hypothesis could be found — i.e.
Ahidden ≡ A′1. In total, the L* learner needed 14 membership queries and 2 equiva-
lence queries to learn the DFA Ahidden.

(a) First hypothesis A′
0 (b) Second hypothesis A′

1

Figure 4.2.: Hypotheses from the L* Learner that were generated during the learning pro-
cess of Ahidden as specified by the graph in Figure 4.1

16



4.1. L* 17

ε

ε 0

a 0
b 1

(a) Initial layout of the observation table

ε

ε 0
b 1

a 0
ba 1
bb 0

(b) Observation table after the prefix ’b’ was
moved to RED

ε

ε 0
b 1
bb 0
bbb 0

a 0
ba 1
bba 0
bbba 0
bbbb 0

(c) Observation table after the equivalence
query returned a counterexample

ε b

ε 0 1
b 1 0
bb 0 0
bbb 0 0

a 0 1
ba 1 0
bba 0 0
bbba 0 0
bbbb 0 0

(d) Observation table after the suffix ’b’ was
added to S

Table 4.1.: Observation table updates to correctly learn the DFA from the graph in 4.1

4.1.2. DFA properties

A DFA A = (Q, δ, q0, F ) as previously defined, has different properties which can impact
the behaviour of L∗. In particular, the state space size |Q| of the randomly generated
DFAs that L∗ is supposed to learn, the alphabet size |Σ| and the ratio of accepting states

to total states r := |F |
|Q| can be varied individually to influence the difficulty of learning.

The transition function δ is set up to always have a connected graph — i.e. it does not
contain disconnected states that cannot be reached from the initial state q0.

The ratio of accepting states 0% < r < 100% was measured using fixed values for alphabet
size and state space size and only varying the number of accepting states qacc ∈ F ⊂ Q.
The displayed values are average values calculated from 500 learning outcomes on different
and randomly generated DFAs with the constraint that |Σ| = 10 throughout all program
runs. Figure 4.3a presents the average membership queries and Figure 4.3b shows how the
learner adopts the equivalence queries.

The figures both display a local minimum for the number of queries needed to learn the
underlying DFAs with approximately 50% ratio of accepting states. Due to the compara-
tively small number of computationally expensive membership queries, Section 4.1.3 refers
to automata with r ≈ 50% as ”easy-to-learn”. In contrast, Section 4.1.4 deals with the
situation of hard-to-learn DFAs with an accepting state ratio of r ≈ 1% which is close to
the global maximum.

4.1.3. Easy-to-learn automata

In this section, the behaviour of the L* learner will empirically be analysed with the fixed
accepting ratio of r = 50% for the DFAs (which the previous section referred to as easy-
to-learn automata). To get a general overview over the learner’s behaviour, Figure 4.4
depicts the number of membership queries as a function of the alphabet size |Σ| and the
state space size |Q| of the learned DFAs. The data was gathered from the previously

17



18 4. Evaluation

(a) Membership queries

(b) Equivalence queries

Figure 4.3.: Behaviour of learning queries for different ratios r of accepting states to total
states

18



4.1. L* 19

|Σ| ≤ 50

|Q| ≤ 30 100
30 < |Q| ≤ 75 500
75 < |Q| ≤ 100 1000
100 < |Q| 100

Table 4.2.: Number of test runs used to evaluate the L* learner with DFAs of different
state and alphabet sizes

described learning framework running the learner on similar adjustments for the randomly
generated automata. For each value the generator constructed multiple DFAs with the
same |Σ|, |Q| and r but different transition functions δ and different sets of accepting states
F . After the L* algorithm successfully learned the DFAs, the arithmetical average of all
values was used to generate the charts. The parameters were constrained to |Σ| ≤ 50 and
|Q| ≤ 100 for most of the executions. Within this range, Table 4.2 shows the number of
test runs for each evaluation. For bigger state sets, a higher number of executions reduce
the impact of random deviations from the mean value. For DFAs with |Q| > 100, fewer
runs were performed because learning these is very time-consuming. For those charts that
contain trend lines, the corresponding approximated functions and the values1 of R2 are
included.

Figure 4.4.: Average membership queries to correctly learn DFAs of different alphabet and
state space sizes with r = 50%

While the data for the membership queries was being collected, the number of equivalence
queries needed by L* could be measured at the same time. Thus, the method and the
parameters remain as for the previously explained chart in Figure 4.4. The following
Figure 4.5 shows the number of equivalence queries as a function of |Q| for the test data.

To get a feeling for the behaviour of the previously presented graph in Figure 4.6 showing

1The coefficient of determination 0 ≤ R2 ≤ 1 indicates how well the measured data points correlate with
a statistical model (here the regression function). R2 = 1 means that the regression function perfectly
describes the observed data and lower values imply a less suited approximation. Formally it can be
denoted thus: R2 := 1 − sres

stot
, where sres is the residual sum of squares and stot is the total sum of

squares.
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20 4. Evaluation

how the number of equivalence queries relates to the state space size, higher values for |Q|
were used for learning. The procedure remaining the same as before, the average values
from 100 test runs were acquired for a greater steps between the measurements of up to
|Q| = 300.

The chart in Figure 4.7 shows another aspect of L* learning which is the number of
equivalence queries as a function of the alphabet size |Σ|.

To describe the data in more detail, Figure 4.8 shows the same data as the initial Figure
4.4 — i.e. it displays the exact same data so the setup and the constraints are the same.
Additionally, suitable trend lines were added to conveniently grasp the overall behaviour
of the number of membership queries as a function of |Q|.

Two data sets were extracted to acquire data for the individual behaviour of the number
of membership queries as a function of the states |Q|. As before in Figure 4.6, the analysed
range was extended to gather data of the behaviour for higher values of |Q|. Figure 4.9a
shows the results for |Σ| = 10 and Figure 4.9b for |Σ| = 20. To observe the number
of membership queries as a function of the alphabet size, the data from Figure 4.5 was
narrowed down to focus on the trends of |Σ| in Figure 4.10. Finally, the previously gathered
data on the number of equivalence queries and membership queries from the test runs is
combined in Figure 4.11 as a function of the state space size and in Figure 4.12 as a
function of the alphabet size to grasp how many consecutive membership queries it takes
in average until the L* learner performs an equivalence query.

4.1.4. Hard-to-learn automata

As in the previous section, different DFAs were randomly generated to evaluate the L*
Learner using the implemented learning framework described in Section 3.1. The empirical
methods were the same but the ratio r of the number of accepting states |F | to the number
of total states |Q| was set to r = 1%. Thus, following the terminology from Section
4.1.2 these DFAs are hard-to-learn — i.e. they require more queries by the learner than
automata with equal state and alphabet size but a balanced ratio as depicted in Figure
4.3.

First, the data on membership queries is shown in both dimensions, similar to the previous
Section 4.1.3, the number of states and the alphabet size. As before, the learning runs
were executed repeatedly on similarly formed DFAs. All depicted data in this section is the
average result of 100 single learning outcomes. To understand the behaviour of the number
of equivalence queries the charts in Figure 4.14 and Figure 4.16 show the correlation to
|Q| and |Σ|. A broader scale of the evaluation parameters can be seen in Figure 4.15 and
both examples from Figure 4.17.

In Figure 4.18 and Figure 4.19 the three-dimensional data from Figure 4.13 is broken down.
Eventually, the collective data on the number of membership queries and equivalence
queries is correlated in Figure 4.20 and Figure 4.21 as functions of the state space size and
the alphabet size.

4.2. L* Mealy

To evaluate the performance of the L* adaptation L* Mealy in practice, two embedded
software applications from industry were tested with LBTest. First, a smaller application
called Cruise Controller 4.2.1 and then the bigger application Break-By-Wire 4.2.2 was
evaluated. Both examples are thoroughly described by Feng et al. [Fen+13] and could be
tested in LBTest with the algorithmic implementation of L* Mealy by courtesy of Volvo
AB.

20



4.2. L* Mealy 21

Figure 4.5.: Average equivalence queries to correctly learn DFAs of different state space
sizes with r = 50%

Figure 4.6.: Average equivalence queries to correctly learn DFAs of different state space
sizes |Q| for selected alphabet sizes |Σ| on a broader scale than Figure 4.5 with
r = 50%

21



22 4. Evaluation

Figure 4.7.: Average equivalence queries to correctly learn DFAs of different alphabet sizes
|Σ| with r = 50%

Figure 4.8.: Average membership queries to correctly learn DFAs of different state space
sizes with r = 50%
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(a) |Σ| = 10

(b) |Σ| = 20

Figure 4.9.: Single graphs of the average membership queries to correctly learn DFAs of
different state space sizes for selected alphabet sizes with r = 50%
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Figure 4.10.: Average membership queries to correctly learn DFAs of different alphabet
sizes with r = 50%

Figure 4.11.: Average membership queries the learner asks before it performs an equiva-
lence query with r = 50%

24
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Figure 4.12.: Average membership queries the learner asks before it performs an equiva-
lence query with r = 50%

Figure 4.13.: Average membership queries to correctly learn DFAs of different alphabet
and state space sizes with r = 1%
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Figure 4.14.: Average equivalence queries to correctly learn DFAs of different state space
sizes with r = 1%

Figure 4.15.: Average equivalence queries to correctly learn DFAs of different state space
sizes |Q| for selected alphabet sizes |Σ| on a broader scale than Figure 4.14
with r = 1%

26
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4.2.1. Cruise Controller

Cruise control is a system that automatically maintains and regulates the speed of a vehicle.
The software requirement against which LBTest tested the application is specified in Table
4.3.
The L* Mealy algorithm successfully learned the Cruise Controller (CC) software with
only one equivalence query as the screenshot in Figure A.1 shows. The generated correct
hypothesis with the structure of a Mealy automaton can be seen in Figure A.3. The
LBTest tool yielded the data in Table 4.4 for the test run. In comparison, the same SUT
was tested with an incremental learner [MS11], [NP10] as depicted in Figure A.2. The
results thereof are collected in Table 4.5.

description and PLTL

Requirement 1
If the cruise mode is enabled in the vehicle and the gas is pressed, the
mode should be disengaged.
G(mode = cruise ∧ input = gas→ X(mode = disengaged))

Table 4.3.: Specification of the the requirement of the Cruise Controller application in
plain English and propositional linear temporal logic (PLTL) as denoted in the
received software specification and described by Meinke and Sindhu [MS13]

#EQ #MQ hypothesis size # random tests # model checker tests time (in sec)

1 41 8 0 0 0

Table 4.4.: Results of LBTest testing the Cruise Controller using the integrated L* Mealy
learner for Requirement 1

#EQ #MQ hypothesis size # random tests # model checker tests time (in sec)

1 5 3 0 0 0
2 10 5 0 0 0.24
3 15 5 0 0 0.41
4 20 6 0 0 0.50
5 25 7 0 1 0.58
6 34 8 0 2 0.67
7 39 8 0 2 0.78
8 44 8 0 2 0.87

Table 4.5.: Results of LBTest testing the Cruise Controller using an incremental learner
for Requirement 1

4.2.2. Break-By-Wire

The Break-By-Wire (BBW) software is a real-time embedded vehicle application developed
by Volvo Technology AB. Its purpose is to compute the brake torque at each wheel from
sensor data.
As the BBW application uses floating point numbers and the L* Mealy learner can only
deal with discrete input and output vectors, a wrapper was written that specifies a limited
number of intervals for required parameters. LBTest was set up to test the BBW software
with three different wrappers for three specific requirements as specified in Table 4.6.
Figure 4.22a and Table 4.7 comprise the data from the LBTest tool for the first requirement,
Figure 4.22b and Table 4.8 for the second and Figure 4.22c and Table 4.9 for the third.
Equally, Figure 4.23a, Figure 4.23b and Figure 4.23c present the results for the number of
equivalence queries. The ratio between membership and equivalence queries is depicted in
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28 4. Evaluation

Figure 4.24. None of the test runs resulted in a fully learned system, though the given data
is descriptive for the learning process and indicates the trend of the learner’s operations.
For requirements 1, 2 and 3 it was possible to track 29, 40 and 20 iterations of the L*
Mealy learning loop presented in Algorithm 1.

description and PLTL

Requirement 1
If the brake pedal is pressed and the wheel speed (e.g., the front right
wheel) is greater than zero, the value of brake torque enforced on the
wheel by the corresponding ABS component will eventually be greater
than 0.
G(in = brake → F (wheel = wheelRotateFR → torque =
torqueOnFR))

Requirement 2
If the brake pedal is pressed and the actual speed of the vehicle is larger
than 10 km/h and the slippage sensor shows that a wheel is slipping, this
implies that the corresponding brake torque at the wheel should be 0.
G((slip = slipFR ∧ speed = vehicleMove ∧ in = brake) → torque 6=
torqueOnFR)

Requirement 3
If both the brake and gas pedals are pressed, the actual vehicle speed shall
be decreased.
G(in = accbrake→ X(speed = vehicleDecreased))

Table 4.6.: Specification of the requirements of the Break-By-Wire application in plain
English and propositional linear temporal logic (PLTL) taken from [Fen+13]

#EQ #MQ hypothesis size # random tests # model checker tests time (in sec)

1 101 10 1 0 0.54
2 2826 159 2 1 11.38
3 4709 217 2 2 19.31
4 30275 810 2 3 159.80

learning not finished (manually aborted after 75 minutes)

Table 4.7.: Results of LBTest testing the BBW software using an L* Mealy learner for
Requirement 1

#EQ #MQ hypothesis size # random tests # model checker tests time (in sec)

1 4 1 0 0 0
2 387 76 1 1 2.52
3 3019 267 1 2 19.36
4 34060 1251 1 3 303.48
5 55390 1660 1 4 572.35

learning not finished (manually aborted after 60 minutes)

Table 4.8.: Results of LBTest testing the BBW software using an L* Mealy learner for
Requirement 2
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Figure 4.16.: Average equivalence queries to correctly learn DFAs of different alphabet
sizes |Σ| with r = 1%

#EQ #MQ hypothesis size # random tests # model checker tests time (in sec)

1 13 3 0 0 0
2 79 9 1 0 0.52
3 1349 77 2 0 3.23
4 21261 741 5 0 67.89

learning not finished (manually aborted after 60 minutes)

Table 4.9.: Results of LBTest testing the BBW software using an L* Mealy learner for
Requirement 3
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(a) |Σ| = 10

(b) |Σ| = 20

Figure 4.17.: Single graphs of the average membership queries to correctly learn DFAs of
different state space sizes for selected alphabet sizes with r = 1%
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Figure 4.18.: Average membership queries to correctly learn DFAs of different state space
sizes with r = 1%

Figure 4.19.: Average membership queries to correctly learn DFAs of different alphabet
sizes with r = 1%
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Figure 4.20.: Average membership queries the learner asks before it performs an equiva-
lence query with r = 1%

Figure 4.21.: Average membership queries the learner asks before it performs an equiva-
lence query with r = 1%
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(a) Requirement 1

(b) Requirement 2

(c) Requirement 3

Figure 4.22.: Graphs for the number of membership queries after each iteration of the
learning loop in Algorithm 1 for different requirements (they show the data
gathered during the executions that were previously described in Table 4.9,
Table 4.9 and Table 4.9)
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(a) Requirement 1 (b) Requirement 2

(c) Requirement 3

Figure 4.23.: Graphs for the number of equivalence queries after each iteration of the learn-
ing loop in Algorithm 1 for different requirements (they show the data gath-
ered during the executions that were previously described in Table 4.9, Table
4.9 and Table 4.9)
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(a) Requirement 1

(b) Requirement 2

(c) Requirement 3

Figure 4.24.: Graphs for the number of membership queries per equivalence query after
each iteration of the learning loop in Algorithm 1 for different requirements
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5. Discussion

Angluin’s L* algorithm gives the possibility to learn a hidden DFA, but the teacher has to
have knowledge about the internal structure of the automaton. With an extension using
the L* Mealy adaptation, the approach could be applied to the more general problem of
black-box testing. First, the results of the performance of L* in the implemented framework
will be discussed in Section 5.1 and then they will be compared to the performance of L*
Mealy using the two case studies in Section 5.2.

5.1. Practical evaluation of Angluin’s L* algorithm

The L* results will be discussed in two sections. First, equivalence queries will be consid-
ered in Section 5.1.2 and then membership queries in Section 5.1.3. As shown in [Ber+03],
the feasibly testable value ranges of state and alphabet sizes in this report can cover a
variety of simple and advanced transition systems e.g. communication protocols.

To better describe the empirical behaviour of the L* learner, this section denotes the
typically observed number of membership queries as L∗MQ as a function of the alphabet
size |Σ| and the state space size |Q| of the DFA that should be learned. The mean number
of equivalence queries is similarly defined as L∗EQ. It can be formalised thus:

L∗MQ, L
∗
EQ : N× N→ R (5.1)

5.1.1. Correctness of the L* algorithm implementation

The example in Section 4.1.1 shows that Angluin’s L* algorithm successfully learns an
initially unknown DFA.
The implementation contained assertions on the upper bound of the number of membership
and equivalence queries deduced by Angluin [Ang87]. All executions were in full agreement
with them. Furthermore, no membership query was performed twice and the observation
table was always complete and consistent before building a new hypothesis. Each learning
process terminated with a learned DFA that was behaviourally equivalent to the initially
unknown DFA. Moreover, the data on the number of membership queries for easy-to-
learn DFAs presented in Section 4.1.3 coincides with the evaluation results by Berg et al.
[Ber+03]. Both, the trend lines for the number of membership queries as a function of
the state size and the overall value range match the data from the implemented learning
framework. Furthermore, the findings from several models by Howar [How12] show the
same order of magnitude as the presented data.
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5.1.2. Equivalence queries

As shown in Equation 3.1, one might expect polynomial growth1 in the number qMQ(|Q|) :=
L∗MQ(|Q|, c) ∈ O(|Q|3), c ∈ N of membership queries that the L* learner needs on average
to fully understand the hidden DFA as a function of the state space size |Q|. Nevertheless,
Figure 4.8 indicates that on randomly generated DFAs with r ≈ 50% a roughly linear be-
haviour can be observed for different alphabet sizes |Σ|. If Figure 4.5, Figure 4.14, Figure
4.6 and Figure 4.15 are used as a reference, it is possible to explain how the data relates
in this case. The number qEQ(|Q|) := L∗EQ(|Q|, c), c ∈ N of equivalence queries seems
to grow logarithmically in proportion to |Q|. Angluin formally proved in [Ang87] that
there will be at most |Q|−1 counterexamples to the consecutive hypothesis of the learner.
Thus, including the last correct equivalence query one obtains qEQ(|Q|) ≤ |Q|. In practice,
however, the average results from Figure 4.6 distinctly show that qEQ(|Q|) ∈ O(ln(|Q|)).
Obviously, as the whole, the learner is able to differentiate between the correct equiva-
lence classes much faster than in the worst case scenario in which the teacher can find a
counterexample to each new equivalence class.

Apparently, the alphabet size does not contribute to the number of equivalence queries.
Figure 4.7 and Figure 4.16 show that for fixed state space sizes aEQ(|Σ|) := L∗EQ(c, |Σ|), c ∈
N stays constant while |Σ| grows — i.e. the number of equivalence queries is independent
of the alphabet size. This is counter-intuitive because a higher number of symbols entails
a more complex representation of the automata and thus, more information to learn for
the L* algorithm. This behaviour might be attributed to the properties of the observation
table. On the one hand, the learner needs to observe more behaviour. On the other hand,
the learner only performs an equivalence query if the observation table is complete and
consistent. With more symbols in Σ, this results in more membership queries to accomplish
the properties. However, an in-depth investigation is needed, to fully understand this
behaviour of aEQ.

5.1.3. Membership queries

The previous section shows that in practice the L* learner performs fewer equivalence
queries on the teacher’s hidden DFA than expected. With fewer equivalence queries in gen-
eral, a considerable number of membership queries can be saved. For instance, fewer equiv-
alence queries implies fewer counterexamples and this entails fewer membership queries for
partial counterexamples and consequent successive states. Indeed, Figure 4.8 and Figure
4.18 do not show the theoretical worst-case behaviour which, following Angluin’s remarks
[Ang87], should be qMQ(|Q|) ∈ O(|Q|3). Instead, Figure 4.8 indicates that for r = 50%
the number of membership queries grows nearly linearly — qEQ(|Q|) ∼ |Q|. The inserted
polynomial trend lines in Figure 4.9 (see also the approximated cubical functions next to
these charts) put the weight on the linear term whereas the quadratic and the cubical
term are nearly eliminated. The global minimum of the acceptance ratio, as introduced in
Section 4.1.2, of about r = 50%, as depicted in Figure 4.3a, highlights this dramatic dif-
ference between the empirically observed average membership queries and the theoretical
worst case. If the number of accepting states |F | is approximately equal to the number of
rejecting states |Q\F | of the DFA, the learner detects the various equivalence classes faster
with the consistency (as introduced in Section 2.1) checks. Assuming that |F | � |Q \ F |,
there is a high probability that, given a symbol in any state of a hypothetical acceptor,
the automaton ends up in a rejecting state — i.e. the learning progresses only slowly or
by counterexamples as the observation table is very likely consistent. For r = 50%, the

1The big O notation is used in this report to denote an upper bound of the given mathematical function
f(x) and is defined as follows: f(x) ∈ O(g(x)) :⇔ ∃c ∈ R, c > 0 : ∃x0 ∈ R, x0 > 0 : ∀x ∈ R, x > x0 :
|f(x)| < c · |g(x)|.
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opposite takes effect: |F | ≈ |Q\F |. Thus, there is a higher chance to find an inconsistency
in the observation table at any time which drives the learner on without the need for many
counterexamples.

At the extreme limit of the ratio realm, such as for r = 1%, the membership queries
needed to fully learn the DFAs rise, as previously argued. For instance, Figure 4.18 with
r = 1% shows distinct differences to Figure 4.8 although all other conditions are equal. As
a matter of fact, Figure 4.17b and Figure 4.17a show that for r = 1% the quadratic term
prevails in the trend lines. Thus, the depicted data is dominated by polynomial growth.

Independent of r and for aMQ(|Σ|) := L∗MQ(c, |Σ|), c ∈ N, both Figure 4.19 and Figure 4.10
support the insight that aMQ(|Σ|) ∼ |Σ| as theoretically predicted by Angluin [Ang87].

Overall, the practical evaluation shows that the learning time of L*, which is determined
by qEQ and aMQ, is better than the theoretical worst-case shown in Equation 3.1. For
easy-to-learn DFAs (see Section 4.1.3), the empirical results indicate L∗MQ(|Q|, |Σ|) ∈
O(|Σ||Q|) and L∗EQ(|Q|, |Σ|) ∈ O(ln(|Q|)) in the average case and for hard-to-learn au-

tomata L∗MQ(|Q|, |Σ|) ∈ O(|Σ||Q|2) and L∗EQ(|Q|, |Σ|) ∈ O(|Q|).

5.1.4. Membership queries per equivalence query

This section will discuss the coherence of membership and equivalence queries to better
understand the behaviour of the L* learner. As a sequence of membership queries is always
followed by an equivalence query, the average number of membership queries between two
consecutive equivalence queries (from now on called ρ) is an informative ratio.

Both evaluations, the one for easy-to-learn DFAs and the one for hard-to-learn DFAs,
show a linear trend in the growth of ρ as a function of the state and the alphabet size. For
r = 50% Figure 4.11 and Figure 4.12 show this correlation and for r = 1% Figure 4.20 and
Figure 4.12 indicate the same. The linear trends are implications of the behaviour of the
queries as discussed in Section 5.1.2 and Section 5.1.3. The numbers of membership queries
aMQr=50%

(|Σ|) and aMQr=1%
(|Σ|) grow linearly with the alphabet size |Σ|. Additionally, the

numbers of equivalence queries aEQr=50%
and aEQr=1%

stay constant. Thus, ρr=50% ∼ |Σ|
and ρr=1% ∼ |Σ|. The flattening trends of qEQr=50%

and qEQr=1%
as functions of the state

space size compensate for the continuously increasing slope of the membership queries.

It can be concluded that equivalence queries are very rare in the learning process in contrast
to membership queries. As both return valuable information about the automata to be
learned, this imbalance slows down the algorithm with increasing complexity and learning
difficulty of the DFAs.

5.2. Case studies with L* Mealy

In this section, the applicability of L* Mealy in the case studies with the Cruise Con-
troller application in Section 5.2.1 and the Break-By-Wire software in Section 5.2.2 will
be discussed. Therefore, the observed data from Section 4.2 will be used.

5.2.1. Cruise Controller

The successful learning-based testing run of the Cruise Controller application shows the
applicability of complete learning algorithms in the LBTest scenario. As a matter of fact,
the L* Mealy algorithm was able to learn the SUT with the first hypothesis as Table
4.4 shows. With slightly less membership queries than the incremental learner (compare
Table 4.4 and Table 4.5) and far less learning time, the L* Mealy learner seems to be
better suited for LBT than the incremental learner. This is only true because of the small
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size of the system (see the full Mealy automaton in Figure A.3). Section 5.2.2 discusses
the results for a bigger case study. The data from Table 4.4 indicates that CC can be
represented by a Mealy automaton with |Σ| = 5, |Q| = 8. Compared to the L* results in
Figure 4.4, the required number of membership queries and equivalence queries was even
below the average values for easy-to-learn — i.e. r = 50% — DFAs of similar complexity.
That implies an especially well-suited case study for complete learning.

5.2.2. Break-By-Wire

The BBW case study shows how different communication wrappers for the SUT can mask
out certain parts of the system that are not relevant to the currently tested requirement.
Thus, the three introduced requirements involve observing the SUT in three different ways.
Therefore, particular parts can be individually learned with different emerging models. As
opposed to the test of the Cruise Controller, the learning-based testing approach seems
to backfire for the L* Mealy learner because none of the three executions actually finished
the learning process within an hour so they were manually aborted after the learning loop
in Algorithm 1 seemed to not have been iterated any more. Since the testing is done in
parallel to the learning, this is not ultimately true because the generated hypotheses were
used for test case generation and none of these yielded an error or warning. Although,
the confidence about the accuracy of the system is not as high as for a correctly learned
hypothesis model.

Membership queries

Internally, the BBW program processes input data with a delay and uses feedback input
data from earlier time slices to compute the output data. As a Mealy automaton cannot
specifically cope with a time dimension, this has to be compensated by adding further
states. Thus, the Mealy automaton model grows dramatically during the attempt to fully
learn the SUT as the Table 4.7, Table 4.8 and Table 4.9 show with the hypothesis size.
Figure 4.22 show that the number of membership queries, resulting from the learning
loop depicted in Algorithm 1, grows polynomially with the number of iterations. For
example, this can be explained with the consistency property from Formula 3.3 and the
implementation thereof 3.1.3.(2). For a single new suffix s ∈ S, the learner has to request
|BLUE| values using membership queries.

Equivalence queries

It becomes evident that complete learning does not make much use of the learning envi-
ronment in LBTest. Looking at the data in Table 4.7, the L* Mealy learner rarely makes
use of equivalence queries. The properties that guide the learner to internally resolve
which input sequences are important (described in Section 2.1) are the reasons for this
behaviour. For instance, Table 4.7 shows that the model checker cannot find any contra-
dictory test sequences leaving it to the random test generator to find a counterexample to
the learner’s hypothesis. These counterexamples are not guaranteed to be minimal (since
they are randomly chosen) as in the previous section thus, extending the learning time
following Formula 2.1. As the learner only consults the model checker very rarely, it is
possible that the learner explores a known equivalence class instead of discovering new
ones via the valuable information from the counterexamples that can be integrated much
faster than lengthy internal investigations. The charts in Figure 4.23 indicate that the L*
Mealy learner stays with increasing frequency in the learning loop instead of performing
an equivalence query. This effect becomes most evident for requirement 3, seen in Figure
4.23c, which also has the steepest slope in the number of membership queries.
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Membership queries per equivalence query

The Figure 4.24 implies a polynomial increase in the number of membership queries per
equivalence query which is most distinct in the graph in Figure 4.24c. This behaviour can
easily be deduced from the previous discussion of the individual trends of the number of
membership queries and the number of equivalence queries. It demonstrates the issue that
the learner only builds few hypotheses.

5.3. Possible optimizations

The implementation of both L* and L* Mealy can be optimized to further reduce the num-
ber of queries and the total learning time. According to profiled learning runs, it was most
time-consuming to check the observation table against the consistency and completeness
property. Instead of globally validating Formula 3.2 and Formula 3.3, only those local
prefixes could be checked for which the conditions (for example a new observation was
inserted) have changed.

The data in the observation table of the implemented L* learner occupies up to O(|Q|4)
bits in the memory according to Formula 3.1 and Angluin’s conclusions in [Ang87]. The
L* Mealy learner needs even more space because of the output vectors compared with
the binary output used in L*. Thus, especially for big automata, the operations on the
observation table heavily influence the run time of the learners. Therefore, the learning
process can be accelerated with optimized data structures and fewer table lookups — e.g.
making use of caching, hashing of input sequences or referencing values instead of copying
them between tables.

The learning time could be reduced if it was possible to steer the setup and tear down
process of the SUT. In that case, sequences with equal prefixes would not require a full
restart of the SUT. This can for instance be achieved with a more complex wrapper for
the SUT that forwards more information from the execution. An approach to reducing the
number of membership queries might be to enhance the quality of the counterexamples
from the teacher so that the learner gets as much information on the model as possible. It
is conceivable to introduce a measure of sufficient equivalence between the hypotheses and
the model that should be learned as proposed by Berg et al. [Ber+03]. This suggestion
relaxes the strictness of a complete learner and might save many queries and execution
time.
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6. Conclusion

In this work, a working implementation of the two automata learning algorithms L* and
L* Mealy was accomplished. A simple example in Section 4.1.1 demonstrated that learning
a model without knowledge of the actual representation is possible. Empirical data from
the L* evaluation framework was helpful to understand the behaviour of the learner for
varying alphabet and state space sizes. This information was also essential to grasp the
structure of the black-box software in the case studies. The integration of L* Mealy into the
learning-based testing environment LBTest helped to assess the feasibility of a complete
learner in the area of learning-based testing.

L*

The conducted empirical study, as presented in Section 4.1 and discussed in Section 5.1,
indicates a much better practical performance than the theoretically implied run time in
Formula 2.1. The main findings drawn from the evaluation framework for Angluin’s L*
algorithm are listed below:

1. The more the accepting states ration, as defined in Section 4.1, deviates from 50%
the more queries are needed to fully learn the DFA.

2. The essential measured parameter, that determines the learning time, is the number
of membership queries.

3. The number of equivalence queries as a function of the state space size is bounded
by a linear function and, in case of easy-to-learn automata, grows logarithmically.

4. Counterintuively, the alphabet size of the randomly generated DFAs does not con-
tribute to the growth in the number of membership queries.

5. The L* algorithm converges nearly linearly in the state space size against a correct
hypothesis in case of an easy-to-learn automaton.

6. Even for hard-to-learn DFAs the number of membership queries seems to be bound
by O(|Σ||Q|2) in the average case rather than O(|Σ||Q|3).

7. The number of membership queries per equivalence query grows linearly as a function
of the alphabet and the state space size.
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L* Mealy

With the integration of the L* Mealy algorithm into LBTest and its evaluation using the
Cruise Controller application, it was demonstrated that complete learning algorithms can
be successfully applied to learning-based testing.

The case study Break-By-Wire software clearly demonstrated that the algorithm does
not scale for larger applications. The results showed a polynomial growth in the number
of membership queries during the learning process which lead to very slow learning as
they have to be executed on an external system with potentially exhaustive executions.
As discussed for L*, the growing gap between the number of equivalence queries and the
number of membership queries leads to time-consuming calculations in LBT. Hence, a clear
drawback of a complete learner is the inability to make extensive use of the model checker
using the hypotheses from equivalence queries like the inbuilt IKL incremental learner
that repeatedly checks back on it. Overall, the L* Mealy algorithm is not well-suited for
learning-based testing.

Limitations

More industrially used software components would have made it possible to generalize
conventional behaviour of the L* Mealy algorithm in LBT. If there had been more time
for this research, the statements could have been substantiated with empirical data from
extreme range values for the state and the alphabet size. Additionally, an evaluation
framework for the L* Mealy algorithm similar to the present implementation of L* would
have been implemented to confirm the observations in LBTest.

Perspectives

Further research needs to be devoted to both minimizing the number of membership
queries in order to more quickly differentiate between the required equivalence classes
of input vector sequences and incorporating information from the model checker that has
access to descriptive model requirements. With this combination, learning-based testing
would become applicable to bigger software applications. Additionally, the structure of
the modelled systems has to be studied with a specific focus on the difficulty for a learner
to distinguish between equivalence classes to apply further optimizations.
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Appendix

A. LBTest

Figure A.1.: A screenshot taken after LBTest finished the learning process in the case
study Cruise Controller with the L* Mealy learner

Figure A.2.: A screenshot taken after LBTest finished the learning process in the case
study Cruise Controller with the inbuilt IKL learner
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48 6. Appendix

Figure A.3.: The Mealy automaton of the successfully learned Cruise Controller software
with LBTest using L* Mealy
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Figure A.4.: A screenshot taken while the LBTest tool tests the Break-By-Wire software
against Requirement 3 with the L* Mealy learner
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