
First-Order Transitive Closure Axiomatization
via Iterative Invariant Injections

Aboubakr Achraf El Ghazi, Mana Taghdiri, and Mihai Herda

Karlsruhe Institute of Technology, Germany
{elghazi,mana.taghdiri,herda}@kit.edu

Abstract. This paper presents an approach for proving the validity
of first-order relational formulas that involve transitive closure. Given
a formula F that includes the transitive closure of a relation R, our
approach can deduce a complete (pure) first-order axiomatization of the
paths of R that occur in F . Such axiomatization enables full automated
verification of F using an automatic theorem prover like Z3. This is
done via an iterative detection and injection of R-invariants —invariant
formulas with respect to R-transitions in the context of F . This paper
presents a proof for the correctness of the approach, and reports on its
application to non-trivial Alloy benchmarks.

Keywords: First-order relational logic, Transitive closure, Axiomatiza-
tion, Specification, Verification, Alloy, SMT solving.

1 Introduction

Many computational problems, especially those that encode manipulations of
linked data structures, can be efficiently specified in a relational first-order logic.
Alloy [16] is a popular such language that has been successfully used for spec-
ifying and checking several different systems for different purposes at both the
design and implementation level (see e.g. [5, 17, 24, 26]). The transitive closure
(TC) operator is a crucial, powerful tool for encoding structure-rich systems.

While the Alloy Analyzer can efficiently check Alloy specifications within a
bounded scope, their full verification is a long-standing challenge. This is espe-
cially due to the known difficulty of reasoning about transitive closure —adding
transitive closure even to very tame logics makes them undecidable [15]. Due to
this undecidability, most attempts to verify the correctness of Alloy specifications
are based on interactive theorem proving (e.g. [1, 12,25]).

In our previous work [8], we proposed to verify Alloy specifications by first
trying a fully automatic proof engine before switching to interactive theorem
proving. The automatic engine, described in [9], relies on an efficient, semi-
satisfiable1 translation of Alloy into the satisfiability modulo theories (SMT)
language, and is able to automatically provide (full) proofs of some non-trivial
Alloy specifications. Given the increasing capability of SMT solvers in handling

1 If the result is unsatisfiable, the input is unsatisfiable too.

2 A. A. El Ghazi et al.

quantifiers [4, 13, 14], the success of our automatic engine is not surprising at
a first glance. However, given the fact that some of the proofs required tran-
sitive closure which causes undecidability, the success was thought-provoking.
Since transitive closure is not expressible in pure first-order logic, in [9], we used
an integer-based axiomatization. Although such axiomatization guaranties TC-
satisfiability —any model of the axiomatisation is a TC model— it is not gener-
ally sufficient for refuting proof obligations; one still needs the integer induction
(IND) principle. The latter claim roots in our experiments with Kelloy [25], an
interactive proof engine for Alloy specifications. We observed that most speci-
fications that require the transitive closure theory, need the IND principle and
have to be proven manually.

In this paper, we investigate the following questions: (1) when can the integer
based axiomatization of TC refute proof obligations without requiring the IND
principle? (2) for the logic fragment of question 1, can one use an integer-free
axiomatization? and (3) to refute a proof obligation outside the fragment of
question 1, what kind of integer-free axiomatization can be used?

Let F be a refutable first-order relational formula in which the semantics of
all symbols except for transitive closure are precisely encoded, and the transi-
tive closure of a relation R is encoded by an uninterpreted binary relation tcR.
To answer questions (1) and (2), we use a pure first-order, weak axiomatization
(WTC) which constrains tcR to a transitive relation containing R but not the
smallest one. We prove that WTC is complete for any negative transitive clo-
sure occurrence in the clause normal form (CNF) of F . Therefore, if the solver
(falsely) reports F as satisfiable modulo WTC, it is only because of positive tran-
sitive closure occurrences. To extend the WTC fragment and to answer question
(3), we introduce a technique which automatically detects relevant invariants
about the paths of tcR and adds them as additional assumptions to F . If any of
such invariants cause contradiction, F has been refuted and the process stops.
Otherwise, more invariants will be detected and added to F .

We applied our technique to a total of 20 Alloy benchmarks known to be
valid, all of which require the transitive closure theory for their proof. Out of
the 20 benchmarks 18 were successfully proven correct fully automatically using
our invariant detection technique.

2 Background

Let Σ = (Typ,v,Fun, α) be a typed signature consisting of a set of type symbols
Typ that always includes boolean (Bool) and integer (Int) types, a partial order
v over Typ, a set of function symbols Fun2, and a typing function α : Fun →
Typ+ that gives the type of each function symbol, i.e. α(f) = (T1, . . . , Tn) iff
f : T1×· · ·×Tn−1 → Tn. If Tn = Bool , function f can also be called a predicate
and the notation f ⊆ T1× · · ·×Tn−1 can be used alternatively. We assume that

2 Certain interpreted functions (e.g. equality and logical connectives) are always in-
cluded and denoted in infix notation.

TC Axiomatization via Invariant Injections 3

for each type T ∈ Typ, there exists an infinite set of variables of type T denoted
by VarT . Variable sets are mutually disjoint and their union is denoted by Var .

Terms of the logic are built recursively from variables in Var , function sym-
bols in Fun and quantifiers. The type of a term is determined recursively based
on the types of its variables and functions. Function symbols with arity 0 are
constants, and denoted by the set Con. Terms without variables are ground
terms, and denoted by Gr . The notation t[x1, . . . , xn] denotes that the variables
x1, . . . , xn (for short x1:n) occur in t. For two terms t and s and a variable x,
the notation t[s/x] denotes the result of substituting s for x in t. We use t[S] for
applying a set of substitutions S when the substitution order does not matter.

Formulas are boolean terms. A formula is atomic if it is a function application,
i.e. f(t1:n), and the top-level function f is not a logical connective. A literal is an
atomic formula or its negation. A clause is a disjunction of literals. A formula F
is in clause normal form (CNF) if it is a conjunction of clauses C1∧· · ·∧Cn, where
each Ci is quantifier-free and its variables are implicitly universally quantified.
We view CNF formulas as sets of clauses and clauses as sets of literals.

We extend our first-order logic to a relational one by introducing two distinct
types Rel and Tuple, and a binary predicate ∈ ⊆ Tuple × Rel that represent
relations, tuples, and the membership predicate respectively. We use ar : Rel ∪
Tuple → N to denote the arity of relations and tuples. Unary relations are called
sets and unary tuples are called atoms. We use R ⊆ T1×· · ·×Tn to denote that
R is an n-ary relation, and that the ith element of every tuple in R is of type Ti.

Constant relations form basic relational expressions3. Complex relational ex-
pressions are built using the usual relational operators. Particularly, the join
R � S of two relational expressions R and S is a relational expression Q of arity
n := ar(R) + ar(S) − 2, such that (a1:n) ∈ Q iff there exists an atom a where
(a1:ar(R)−1, a) ∈ R and (a, aar(R):n) ∈ S; the transitive closure R+ of a binary
relation R is the smallest transitive relation containing R; the restriction R|S of
a relational expression R and a set of tuples S of arity ar(R) is a relational ex-
pression Q such that Q = R∩S. For a binary relation R, an R-path is a sequence
of atoms a1:n where n ≥ 2 and (ai, ai+1) ∈ R for 1 ≤ i < n. An R-path of length
n = 2 is an R-step. An R-path may not list the intermediate atoms explicitly.
That is, (a, b) ∈ R+ is also an R-path. For an R-path p we use pu to denote its
tuple and ps and pe to denote its start and end boundaries respectively.

Let |M |T denote the universe of all semantical values of a type T ∈ Typ. A
model M for a signature Σ is a pair (|M |,M) where |M | is a class of universes
defined as {|M |T | T ∈ Typ} such that if Ti v Tj , then |M |Ti ⊆ |M |Tj , and
M is an interpretation that maps every function f : T1 × .. × Tn−1 → Tn to
an interpretation M(f) : |M |T1 × . . . × |M |Tn−1 → |M |Tn and every variable
x : T to a value in |M |T . For a relation R, we write M(R) as a shorthand for
{u | M(∈ (u,R))}. By default, |M |Bool = {true, false} and |M |Int = Z. The
interpretation M(t) of a term t is defined recursively using the rule M(f(t1:n)) =
M(f)(M(t1), . . . ,M(tn)) for a function symbol f . Satisfaction, denoted byM |=
ϕ, for a modelM and a formula ϕ is defined as usual (see elsewhere [11, p. 80]).

3 Conventionally, relational terms are called relational expressions.

4 A. A. El Ghazi et al.

F : (1) h1 �mark = ∅
(2) h0 � ref ⊆ h1 � ref
(3) ∀n.¬((root, n) ∈ tcH�ref (h1)) ∨ n ∈ h2 �mark
(4) h1 � ref ⊆ h2 � ref
(5) ∀n.¬(n /∈ h2 �mark) ∨ n � (h3 � ref) = ∅
(6) ∀n.¬(n ∈ h2 �mark) ∨ n � (h3 � ref) = n � (h2 � ref)
(7) (root, live) ∈ tcH�ref (h0)
(8) live � (h0 � ref) 6⊆ live � (h3 � ref)

WTC : (9) ∀h.h � ref ⊆ tcH�ref (h)
(10) ∀h.Transitive(tcH�ref (h))

Essential R-path p:
(root, live) ∈ tcH�ref (h0)

Path invariant for p:
n ∈ h2 �mark

(b)

F ′ :
F ∧WTC ∧
∀x. (root, x) ∈ tcH�ref (h0)→ x ∈ h2 �mark

(c)
(a)

Fig. 1: Example. (a) Original formula and a weak transitive closure theory, (b)
a difficult R-path in F and its invariant, (c) augmented formula.

A theory T is a set of deductively closed formulas. A class of models ω induces
a theory Th(ω), namely the theory of all formulas ϕ where M |= ϕ and M∈ ω
—the resulting set is deductively closed by definition. We use T g

f to denote the
theory which agrees with T except for the interpretations M of f , where it is
interpreted the same way as M(g). A T -model M is a model that satisfies all
formulas of T . Especially, a formula ϕ is satisfiable modulo a theory T if there
exists a T -model M where M |= ϕ, for short M |=T ϕ.

Let Ax be the finite set of axioms for all the interpreted symbols of Fun
except transitive closure. Only sub-theories of the theory built by the deductive
closure Cl(Ax) of Ax are considered here. For the transitive closure R+, we
introduce a fresh uninterpreted binary relation tcR.

3 Example

Figure 1(a) gives a relational first-order formula F in CNF form —lines cor-
respond to clauses. Symbols h0 to h3 are constants of type H that repre-
sents the system state; root and live are two constants of type Obj that rep-
resents objects; mark ⊆ H × Obj represents the marked objects in each state;
ref ⊆ H × Obj × Obj represents references between objects in each state; and
tcH�ref : H → Obj × Obj is a function that maps each state h to a binary
relation tcH�ref (h) ⊆ Obj × Obj which aims at representing the transitive clo-
sure of the relation h � ref . The last two lines (WTC) give a weak semantics for
tcH�ref (h). They constrain it to be transitive and to include the base relation,
but not necessarily the smallest such relation. F gives the negated proof obliga-
tion of a safety property of an extremely simplified version of mark-and-sweep
algorithm. The state transition (h0–h1) resets all the marks (Lines 1-2), (h1–h2)
marks objects reachable from root (Lines 3-4), and (h2–h3) sweeps references of
non-marked objects (Lines 5-6). The safety property is negated, thus it checks if
in the final state, there is a live object that was originally reachable from root
in the beginning state (Line 7), but some of its references have been swept (Line
8).

In our previous work [25], we solved such formulas by adding general axioms
about transitive closure. Here, for example, F can be refuted using the subset

TC Axiomatization via Invariant Injections 5

preservation axiom, namely R ⊆ S → R+ ⊆ S+ for binary relations R and
S. The only state transition in F that allows for sweeping object references is
(h2–h3) —Line 5. Since (5) is guarded by the condition that the objects are not
marked at h2, to refute the formula, it is sufficient to show that all live objects
are marked at h2. Applying the above axiom to Lines 2, 4 and using Line 7, we
have (root, live) ∈ tcH�ref (h2) and can easily close the proof. In [25] we collected
more than 100 such transitive closure axioms, proved and added them as further
deduction rules. Although the approach was useful for interactive and semi-
interactive solving, the results of [3] suggest that this approach does not scale
for automatic provers such as SMT solvers. [3] proposes to add these lemmas
only on-demand based on some heuristics. In this paper, we go one step further
and detect and add only the actually needed properties on-the-fly (as opposed
to always include some general properties).

Our new approach refutes F by first solving F ∧WTC using an SMT solver.
In this example, the safety property holds, and thus F must be unsatisfiable.
The solver, however, (falsely) reports F as satisfiable. This is because WTC
only fixes the semantics of negative R-paths in F —those that only appear in
negated literals in CNF; positive R-paths remain as sources of incompleteness
(thus called difficult R-paths). We are interested in those difficult R-paths whose
refutation is mandatory for refuting F (essential R-paths). Fig. 1(a) contains
only one difficult R-path: (root, live) ∈ tcR (Line 7) (denoted by p), and it
is essential since it is a unit clause in F 4. We refute p by searching for some
property ϕ[x], called p-invariants, that (1) holds for all objects reachable from
the beginning of p, namely root, by one R-step —p-step test— and (2) if it
holds for an object x, it holds for all objects reachable from x by one R-step
—R-invariant test. Given a p-invariant ϕ[x], the induction principle allows us to
add the assumption ∀x2.(root, x2) ∈ tcR → ϕ[x2/x] as an additional clause to F
without affecting its validity. If one of the p-invariants is known to not hold for
live (the end object of p), then p is refuted and we are done. Fig. 1(b) shows the
p-invariant which is sufficient to refute our essential R-path. It is the subclause of
clause (3) which passes both p-step and R-invariant tests. Details on the search
procedure for p-invariants are presented in sec. 6. After adding the p-invariant
assumption to F (Fig. 1(c)), the SMT solver reports it as unsatisfiable, and thus
the example has been verified fully automatically.

4 Weak TC Axiomatization and its Fragment

In this section, we discuss a general5, weak, first-order, integer-free axiomatiza-
tion for transitive closure (denoted by WTC) and describe a fragment for which
this is complete. The WTC axioms are given in 1. They constrain the symbol tcR
to be a transitive relation that contains R —denoted by tr(R). Therefore, their
deductive closure Cl(WTC) describes T tr(R)

tcR . Although the WTC is very weak,
there exists a non-trivial fragment for which this axiomatization is complete.

4 In general the test for essential R-paths is not trivial.
5 Independent of the considered formula

6 A. A. El Ghazi et al.

∀x1, x2. (x1, x2) ∈ R→ (x1, x2) ∈ tcR
∀x1, x2, x3. (x1, x2) ∈ tcR ∧ (x2, x3) ∈ tcR → (x1, x3) ∈ tcR (1)

Theorem 1 (WTC complete fragment). Let F be a first-order relational
formula, R and tcR two binary relations, and u a tuple such that the R-path
u ∈ tcR occurs only as negative literal in CNF (F). Then, F is unsatisfiable
modulo T R+

tcR|u iff it is unsatisfiable modulo T tr(R)
tcR|u.

Proof. Let u denote a tuple (a, b) and the R-path (a, b) ∈ tcR be denoted by p.
Assuming that p occurs only as negative literal in CNF (F), we need to prove
that (1) if F is unsatisfiable modulo T tr(R)

tcR|u, then it is unsatisfiable modulo T R+

tcR|u

too, and (2) if F has a T tr(R)
tcR|u-model, it has a T R+

tcR|u-model too. Case (1) is trivial
since R+ ⊆ tr(R). For case (2) we assume thatM is a T tr(R)

tcR|u-model of F . For all
clauses in CNF (F) in which a literal other than ¬p is satisfied, M is especially
a T R+

tcR|u-model because T tr(R)
tcR|u and T R+

tcR|u coincide in symbols other than tcR|u. For
all other clauses C, we can assume that C := ¬p∨Crest andM |= ¬(a, b) ∈ tcR.
Since T tr(R)

tcR = Cl(WTC), M is especially a model for the second WTC axiom
instantiated with a and b;M |= ∀x2. (a, x2) /∈ tcR ∨ (x2, b) /∈ tcR. By induction,
using the first axiom, there is no R-path from a to b in M. Therefore M is a
T R+

tcR|u-model for ¬p and thus for C. ut

In other words, theorem 1 states that if all R-paths in CNF (F) are negative
literals, then WTC is a correct and complete R+-axiomatization of tcR in F .
It describes, therefore, a WTC complete fragment. The fragment conditions are
syntactic and allow categorizing R-paths into easy —with only negative literals
in the CNF (F)— and difficult —otherwise. Hereafter, we denote the set of all
difficult R-paths by DP.

5 R-Invariants for Axiomatizing Difficult R-Paths

This section introduces R-invariants as a means for providing a transitive closure
axiomatisation that is context-complete, i.e. complete with respect to the context
in which the transitive closure is used. This axiomatisation handles difficult R-
paths, those for which the weak axiomatisation is not complete, and thus provides
a proof possibility for formulas beyond the WTC-fragment described in Sec. 4.

Definition 1 (Essential difficult R-paths). Let R be a binary relation and
F be a refutable first-order relational formula modulo T R+

tcR. Then, a difficult R-
path p ∈ DP is essential —for refuting F— if there exists a model M where
∀p′ ∈ DP \ p. M(tcR|p′u) = M(R+|p′u), M(tcR|pu

) = M(tr(R)|pu
) and M |= F .

The set of all essential (difficult) R-paths is denoted by EDP.

Definition 1 describes difficult R-paths that require further axiomatization
in order to refute F . The definition condition, however, requires a complete
axiomatization of difficult R-paths, which is in fact our ultimate goal. Therefore,
we will later give a practical heuristic to check for essential R-paths.

TC Axiomatization via Invariant Injections 7

Definition 2 (R-invariant). Let F be a first-order formula and R a binary
relation. Then, a formula ϕ[x] is a forward (resp. backward) R-invariant with
respect to x, F and a theory T if

F |=T ∀x1, x2. ϕ[x1/x] ∧ (x1, x2)d ∈ R→ ϕ[x2/x]

for d = 1 (resp. d = −1) , where (x1, x2)−1 = (x2, x1).

Definition 3 (p-invariant). Let F be a first-order formula, R a binary relation
and p an R-path of the form (a, b) ∈ tcR. Then, a forward (resp. backward) R-
invariant formula ϕ[x] is forward (resp. backward) p-invariant with respect to x,
F and a theory T if a (resp. b) is ground and

F |=T ∀x2. (a, x2)−d ∈ R→ ϕ[x2/x]

for d = 1 (resp. d = −1).

When using def. 3 and 2, we may skip mentioning x, F and T when clear
from the context. Unless explicitly stated, the forward definitions are meant.

Definition 4 (TC induction schema). The first-order relational version of
the induction axiom, denoted by INDr, is a schema of axioms which states that
for any closed first-order formula ϕ[z1, z2], containing variables z1 and z2, the
following hold:

[∀x1:2. (x1, x2) ∈ R→ ϕ[x1/z1, x2/z2] ∧ (2)

∀x1:3. ϕ[x1/z1, x2/z2] ∧ (x1, x2) ∈ tcR ∧ (x2, x3) ∈ R→ ϕ[x1/z1, x3/z2]] (3)

→ [∀x1:2. (x1, x2) ∈ R+ → ϕ[x1/z1, x2/z2]] (4)

For any refutable formula F modulo T R+

tcR|pu
that contains an essential R-

path p of the form (a, b) ∈ tcR, we would like to claim the existence of a p-
invariant formula ϕ, such that (∀x.(a, x) ∈ tcR → ϕ) ∧ F is refutable modulo
T tr(R)

tcR|pu
. We found it difficult to prove this claim using a T R+

tcR theory, especially
since any refutation proof of F has to be considered in a second-order proof
system. Instead, we consider the T ind

tcR theory, which consists of the extension of
T tr(R)

tcR with our induction schema for transitive closure (def. 4). This is indeed a
restriction, since T ind

tcR only covers a recursively-enumerable set of properties —
similar argument as in [19]. This is comparable to the gap between the first- and
second-order Peano axiomatization of arithmetic (cf. [2, page 1133]). In practice,
however, it imposes no restriction to the proof power and this is the common
practice in literature (cf. [1, 25]).

Theorem 2 (Main theorem). Let R be a binary relation, F a first-order re-
lational formula and p a difficult R-path of the form (a, b) ∈ tcR in a clause C of
F . If F is refutable modulo T ind

tcR|a,b but satisfiable modulo T tr(R)
tcR|a,b, then there exists

a p-invariant ϕ[x] w.r.t. x, F \ C and T tr(R)
tcR|a,b, such that

F \ C |=T tr(R)
tcR|a,b
¬ϕ[b/x] and (5)

(∀x2. (a, x2) ∈ tcR → ϕ[x2/x]) ∧ F is refutable modulo T tr(R)
tcR|a,b. (6)

8 A. A. El Ghazi et al.

Proof. Without lost of generality, we can assume that T tr(R)
tcR|a,b differs from T ind

tcR|a,b

only in the interpretation of tcR|(a,b), and p only occurs in C. Therefore, F \ C
must be satisfiable modulo T ind

tcR|a,b. This means that since F is refutable modulo
T ind

tcR|a,b but satisfiable modulo T tr(R)
tcR|a,b, for each T ind

tcR|a,b-model M of F \ C, M |=
(a, b) /∈ tcR, which in turn means F \ C |=T ind

tcR|a,b
(a, b) /∈ tcR.

Let us further consider a proof object pr (e.g. in sequent style) for F \
C |=T ind

tcR|a,b
(a, b) /∈ tcR, then the set of all formulas IP of all essential INDrapplications

in pr is non-empty. Let Γ := {φi[x1, x2] := ∀x1, x2. (x1, x2) ∈ tcR → ϕi(x1, x2) |
ϕi ∈ IP}. Since IP contains all formulas of all essential INDrapplications in pr,
we can conclude that Γ, F \C |=T tr(R)

tcR|a,b
(a, b) /∈ tcR. Note, that a proof pr′ of the

last sequent does not contain any INDrapplication, but have to make use of Γ
in order to close, since F \ C 6|=T ind

tcR|a,b
(a, b) /∈ tcR . Therefore, we can assume,

w.l.o.g. the existence of a formula ψ[x1, x2] where F \ C |=T tr(R)
tcR|a,b

¬ψ(a, b) and

Γ,¬ψ(a, b) |=T tr(R)
tcR|a,b

(a, b) /∈ tcR. Because of the form of the formulas in Γ , there

must exist a φi ∈ Γ where Γ,¬ψ(a, b) |=T tr(R)
tcR|a,b
¬ϕi(a, b). Having this, (a, b) /∈ tcR

can be directly concluded from φi —left to right. Note that this argument will al-
ready work if we only had the instantiation of x1 in φi with a. Now we construct
ϕ[x2] := ϕi[a/x1] and prove that ϕ fulfills all the conditions of the theorem.

By instantiating x1 with a in the first and second INDrconditions (2) and (3)
for ϕi[x1, x2], we get directly that ϕ[x2] is a p-invariant w.r.t. x2, F and T R+

tcR|a,b.
For the theorem condition (5), let us assume that F \ C |=T tr(R)

tcR|a,b
ϕi(a, b), then

we get that F \C |=T tr(R)
tcR|a,b

ψ(a, b), which contradicts our earlier results. The last

condition (6) holds since F \C |=T tr(R)
tcR|a,b
¬ψ(a, b) and F \C,ϕ(b) |=T tr(R)

tcR|a,b
ψ(a, b).

ut

Theorem 2 offers a basis for a framework capable of proving the validity
of transitive closure formulas beyond the WTC fragment. Especially, for each
essential R-path p, the theorem guaranties the existence of a p-invariant which
is deducible from F modulo T ind

tcR and can together with F refute p. In the next
section we show how the conditions of the theorem on ϕ can be turned into
practical rules and heuristic algorithms to direct the search for p-invariants.

6 Algorithm for Detecting p-invariants

In order to provide an automatic procedure capable of proving transitive closure
specifications, we present an algorithm which tries to bring the theoretical results
of the previous sections into action. Before discussing the actual algorithm, some
definitions and lemmas are needed.

We first discuss two concepts introduced and used in the last section: (1)
essential R-paths, and (2) R-path isolation, i.e. the consideration of F modulo
(T R+

tcR)tr(R)
tcR|pu

for an R-path p (cf. proof of theorem 2). The latter concept subsumes
the former one and is of particular importance for the automation process. It
allows for detecting essential R-paths and for handling the WTC incompleteness

TC Axiomatization via Invariant Injections 9

for each R-path individually regardless of other paths. However, the second con-
cept requires T R+

tcR which is our actual goal. In order to overcome this, in def. 5,
we introduce the idea of bounded R-paths isolation. Here, an R-path —of an ar-
bitrary length— is replaced with a corresponding R-path of length less equal n,
where n is the isolation confidence and Ri denotes joining R with itself i times.

Definition 5 (n confident R-path isolation). Let R be a binary relation, F
a first-order relational formula, p a difficult R-path in F and n a positive natural
number. Then, the n confident isolation of p in F is

F |np := F [{[u ∈
⋃
i≤n

Ri / u ∈ tcR] | (u ∈ tcR) ∈ DP \ {p}}].

Data: F : Term
Result: Term

1 F ini ← CNF (¬F); F ← F ini; n← 1
2 repeat
3 for p := (ps, pe) ∈ tcR ∈ {p ∈ DP (F ini) | sat(F ini|np)} do
4 for <pg,d> ∈ {<ps,1>, <pe,−1>} do
5 if pg ∈ Gr then
6 F ← pathInv(p, p, pg, F, F

ini, R, d, n)
7 if unsat(F) then
8 return F

9 else
10 x1:n ← V ar(pg)

11 for p′ := (p′s, p
′
e) ∈ {p[a1:n/x1:n] | ai ∈ sufGT 1(xi)} do

12 if sat(F [p′/p]|np′) then

13 p′g ← d ? p′s : p′e
14 F ← pathInv(p, p′, p′g, F, F

ini, R, d, n)

15 if unsat(F) then
16 return F

17 if (∀p′. unsat(F [p′/p]|np′)) ∧ sat(F |np) then

18 Further/General techniques are needed

19 if ∀p : EDP. unsat(F |np) then
20 n← n+ 1

21 until F and n are unchanged;
22 return F

Algorithm 1: Main Procedure

Algorithm 1 shows the main procedure of our approach. Given a refutable
formula F modulo T R+

tcR, it will first detect all essential R-paths by checking the
satisfiability of the n bounded isolation F |np of all difficult R-paths p (line 3). The
isolation confidence n, is only increased if F |np is unsatisfiable for all essential
R-paths in EDP but F is not (lines 19-20).

For each essential R-path p we search for forward p-invariants with respect to
its start boundary ps and backward p-invariants with respect to its end boundary
pe. If the currently handled path boundary, pg, is ground, which corresponds

10 A. A. El Ghazi et al.

Data: p, p′, pg, F, F
ini : Term,R ⊆ T × T, d, n : Int

Result: Term
1 for ϕ[x1:n] ∈ (F ini \ Cp) with pg @− type(xi) do
2 for xi ∈ {x1:n} do
3 F ← concPathInv(ϕ, p, p′, pg, F, F

ini, xi, R, d, n)
4 if unsat(F [p′/p]|np′) then
5 return F

6 return F

Data: ϕ, p, p′, pg, F, F
ini : Term, x : V ar,R ⊆ T × T,

d, n : Int
Result: Term

1 for ϕi[x] ⊆ ϕ do
2 F ← checkPathInv(ϕi, x, pg, F,R, d)
3 if unsat(F [p′/p]|np′) then
4 return F

5 for ϕ′
i[x] ∈ abst(ϕi, F

ini, x, R, n) do
6 F ← checkPathInv(ϕ′

i, x, pg, F,R, d)
7 if unsat(F [p′/p]|np′) then
8 return F

9 return F

Algorithm 2: pathInv Algorithm 3: concPathInv

Data: ϕ, F : Term, x : V ar,R ⊆ T × T, n : Int
Result: Set < Term >

1 S ← {ϕ}; A← ∅
2 for ϕi ∈ S do
3 for abst ∈ {applicable abstraction rules to ϕi} do
4 A← A ∪ abst(ϕi, x, R, n); S ← S ∪ abst(ϕi, x, R, n)

5 S ← S \ {ϕi}
6 return A

Data: ϕ, t, pg, F : Term,R ⊆ T × T, d : Int
Result: Term

1 begin

2 POini ← ∀x2. (pg, x2)d ∈ R→ ϕ[x2/t]

3 POind ← ϕ[x2/t] ∧ (pg, x2)d ∈ tcR ∧ (x2, x3)d ∈ R
4 POind ← ∀x2, x3. POind → ϕ[x3/t]
5 if unsat(F ∧ ¬POini) ∧ unsat(F ∧ ¬POind) then

6 F ← (∀x2. (pg, x2)d ∈ tcR → ϕ[x2/t]) ∧ F
7 return F

Algorithm 4: abst Algorithm 5: checkPathInv

exactly to the considered case in theorem 2, the search is performed for the
original R-path p by algo. 2. Otherwise, instances of p are used (line 11-12). The
p instances are generated by instantiating the variables of pg with their essential
ground terms of complexity 1 —constants— using a slightly modified version of
the framework in [10]6. The R-path instantiation approach is motivated by the
guess that probably only a small finite set of p instances are refutable.

In algo. 2, each clause ϕ of CNF (F) —after excluding p’s clauses— that
contains a non empty set of variables x1:n of a type compatible to pg is considered
for the p-invariant search, namely with respect to each xi in {xi:n} (line 1-2).
Since all variables in ϕ are universally quantified, ϕ is obviously a p-invariant
with respect to any variable xi, however, we are interested in more concrete forms
of ϕ. This is described in algo. 3, where, each sub clause ϕi that contains xi is
considered a candidate. The actual check for p-invariance is performed in algo. 5.
Depending on weather pg is a start or end boundary, the forward or backward
definition of p-invariants is used respectively. If the p-invariant check fails for
a candidate ϕi, syntactically-driven abstractions are generated and tried (algo.
4). Our abstraction rules are shown in fig. 2. The first rule abstracts a ϕi by
instantiating their variables —xi excluded— with their essential ground terms
of complexity equal to the current calculation round r. The second rule relaxes
positive literals —conclusions— in ϕi by their syntactic consequences in F . The
third rule is only used if a p-invariant candidate passes the p-step test (cf. POini

in algo. 5) but fails in the R-invariant test. It then relaxes unary assumptions

6 The essential ground terms are calculated in rounds with increasing term complexity,
regardless of whether the set is finite or not.

TC Axiomatization via Invariant Injections 11

on a single path boundary such that they hold for all reachable nodes from that
boundary including itself —reachability direction is stated by d. Let’s assume a
clause C in F of the form (a, x2) ∈ R∧φ(a)→ ϕrest[x2] and an R-path p of the
form (a, x2) ∈ tcR. Then, the p-invariant candidate ϕ equal to φ(a)→ ϕrest[x2]
will pass the p-step check using C only. If ϕ does not pass the R-invariant test,
then our third abstraction rule can abstract it such that it passes both tests
using C only.

Abst1 : Variable instantiations with essential ground terms of complexity r, using [10]
Abst2 : ϕ := (l ∨ ϕrest), (¬l ∨ Crest) ∈ CNF (F) =⇒ ϕ ϕ[Crest / l]
Abst3 : ϕ := (¬φ(t)∨ϕrest), t := pg =⇒ ϕ ϕ[(∀x. x = t∨(t, x)d ∈ tcR → φ(x)) / φ(t)]

Fig. 2: Abstraction rules

If, in the case of a non-ground pg, all R-path instances p′ can be refuted but
not the original path p, we directly switch to a more general technique (algo. 1
line 17-18). Basically, the technique is a natural extension of the framework
presented in section 5 to explicitly consider R-paths with non-ground boundaries.
This technique was employed in only one of our benchmarks. Details of the
technique are skipped in the interest of space.

7 Evaluation

We have implemented a prototype version of the procedure described in sec-
tion 6. In the current implementation, we fixed both the isolation confidence
(algo. 1 line 19-20) and the ground term complexity (fig. 2 Abst1) parameters
to 1. To evaluate our technique, we checked 20 Alloy specifications that were
expected to be correct. These benchmarks were taken from the Alloy Analyzer
4.2 distribution and involve transitive closure of varying complexities. In order
to provide a fair evaluation of the technique, we have restricted the considered
benchmarks to those that require the semantics of transitive closure for their
correctness proof.

Since most Alloy benchmarks that involve transitive closure also involve trace
specifications (based on the Alloy ordering library), we developed a reduction of
Alloy trace specifications to transitive closure specifications. That is, we repre-
sent any ordered signature S which forms the base of a trace specification, as
the set first ∪ first � next+ where first denotes the starting atom of the trace
and next ⊆ S × S is a fresh acyclic relation denoting the ordering. If a trace
invariant is known, we divide the original specification to (1) an invariant proof
and (2) an invariant use specification. Such reduction is used for two of our Alloy
benchmarks: addrbooktrace and hotelroom.

12 A. A. El Ghazi et al.

Table 1 shows the experimental results7 performed using Z3 4.3.1 on an In-
tel Xeon, 2.7 GHz, 64GB memory. For each checked benchmark, we collect the
number of R-paths, difficult R-paths, essential R-paths, checked p-invariant can-
didates, proved and injected p-invariants and the total analysis time (in seconds).
Time-out is set to 12 hours for the entire analysis and to 1 minute for each call
to the SMT solver. Out of 20 benchmarks assumed to be valid, 18 were proven
correct by our tool. It should be noted that these benchmarks are absolutely not
trivial. For example, our previous axiomatization using Z3 could not prove any
of the benchmarks with essential R-paths at all (cf. [9]), and although Kelloy
could prove all benchmarks, it required substantial human interactions, even for
the com benchmarks, which do not contains essential R-paths at all (cf. [25]).

A surprising observation is that quite a large number, 13 out of 20, of Al-
loy specifications, that involve transitive closure, do not contain any essential
R-paths, which lets them be effectively in the WTC fragment, although not syn-
tactically. This fully answers our question of why in our earlier investigation [9],
some transitive closure benchmarks could be proven but not others. It shows
that only a very small part of our previous [9] transitive closure axiomatization,
namely the WTC axioms, was actually responsible for the success.

All of the 13 benchmarks with no essential R-paths could be proven fully
automatically in less than 2 seconds using WTC and without the need of any
p-invariant injection. For these examples, according to theorem 1, if the SMT
solver had reported a satisfying model, it would have been a valid one. Out of
the remaining 7 benchmarks containing essential R-paths, our tool could prove
5. The number of injected p-invariants varies between 1, for soundness1, and 159,
for completeness. The number of injected p-invariants is not guaranteed to reflect
the number of needed p-invariants since it depends very much on the ordering
of essential R-paths and CNF clauses. However, it does reflect that for all of our
proven benchmarks except the last two. The benchmarks hotelroom-locking and
javatypes-soundness could not be proven by our tool. For both benchmarks, the
main difficulty lies in the complexity of our generated SMT formulas which makes
them too difficult to solve by Z3. For hotelroom-locking, the proof obligations for
the essential R-path checks could be handled, but none of the p-invariant checks,
whereas for javatypes-soundness every single call of the solver times-out. This
shows the dependency of the current version of our approach on analysable SMT
representations.

8 Related Work

Several approaches have addressed the verification of Alloy specifications in gen-
eral. Due to the undecidability of the Alloy language, most of these approaches
are based on interactive solving. Prioni [1] and Kelloy [25] rely on reasoning in
first-order logic and integer arithmetic, Dynamite [12] chose a reasoning in fork
algebras —a higher-order logic. In all these general approaches the verification of

7 Benchmarks, results and tool are available at http://i12www.ira.uka.de/~elghazi/tcAx_via_p-inv/

http://i12www.ira.uka.de/~elghazi/tcAx_via_p-inv/

TC Axiomatization via Invariant Injections 13

Benchmarks Result All/Dif/Ess Paths Che. p-inv Inj. p-inv Time

addrbook-addIdempotent proved 5 / 2 / 0 0 0 0,08

addrbook-delUndoesAdd proved 5 / 2 / 0 0 0 0,10

addrbooktrace-addIdempotent proved 23 / 17 / 0 0 0 0,25

addrbooktrace-delUndoesAdd proved 20 / 14 / 0 0 0 0,21

addrbooktrace-lookupYields-use proved 22 / 13 / 0 0 0 0,24

grandpa-noSelfFather proved 6 / 3 / 0 0 0 0.09

grandpa-noSelfGrandpa proved 6 / 3 / 0 0 0 0.09

com-theorem1 proved 5 / 2 / 0 0 0 0,18

com-theorem2 proved 5 / 2 / 0 0 0 1.73

com-theorem3 proved 5 / 2 / 0 0 0 0.24

com-theorem4a proved 5 / 2 / 0 0 0 0.25

com-theorem4b proved 5 / 2 / 0 0 0 0.13

filesystem-noDirAliases proved 7 / 4 / 0 0 0 0.12

filesystem-someDir proved 5 / 3 / 1 2 1 0.15

marksweepgc-soundness1 proved 15 / 9 / 1 38 1 9,29

marksweepgc-soundness2 proved 16 / 10 / 2 75 2 5,92

marksweepgc-completeness proved 16 / 8 / 2 1021 159 66,58

addrbooktrace-lookupYields-proof proved 18 / 11 / 2 271 41 79,67

hotelroom-locking timeout 6 / 3 / 1 – – –

javatypes-soundess timeout 116 / 19 / – – – –

Table 1: Evaluation results

transitive closure specifications is in general interactive. In addition to definition
rules, an induction schema is involved either directly or indirectly —for proving
general lemmas.

Closer to our approach, are the works of Nelson [23] and Ami [22]. Nelson
proposes a set of first-order axioms for axiomatizing the reachability between
two objects following a functional relation f . To handle the presence of cycles
he uses a ternary predicate a f−→c b stating that b is reachable from a via arbitrary

f applications, but never going through c. Later works, as in [7,20,21], revisited
and extended Nelson’s ideas. The main problem with such fixed first-order ax-
iomatizations of transitive closure is that it is unlikely that they are complete.
Ami proves in [22] that Nelson’s axioms are not complete even in the functional
setting. More directly, we can provide a very simple refutable formula modulo
transitive closure which is satisfiable in Nelson’ axioms, i.e. a f−→b b∧∀x. f(x) 6= b.

In our approach, however, the f -path from a to b can be easily refuted since
the empty clause —false— is a backward invariant for this path. Ami’s work,
also motivated by Nelson’s work, proposes, instead, three axiom schemas, which
follow from a transitive closure induction schema. This is very similar to our
approach in that the axiom set is not fixed, but generated on-demand. However,
their approach differs significantly from ours in that: (1) only a pure syntactical
notion of difficult R-paths is used (2) only unary predicates and their boolean
combinations are considered as instantiation formulas for the axiom schemas,
(3) the search for instantiation formulas is not R-path directed, (4) no criteria

14 A. A. El Ghazi et al.

for detecting already refuted R-paths is involved, and finally (5) no abstractions
are used, even not variable instantiations.

Other tools like ACL2 [18], and IsaPlanner [6] are well established in the
automation of general induction schemas, for years. We think that our procedure
and implementation can definitively profit from their ideas, especial their lemma
discovering routine, called lemma calculation, and lemma abstraction ideas.

9 Conclusion

We have presented an approach capable of proving Alloy specifications that in-
volve transitive closure fully automatically. For all transitive closure occurrences
the WTC axiomatization is introduced. In case the Alloy specification includes
neither difficult R-paths —syntactical check— nor essential R-path —semantical
check— we have proved that WTC is a complete axiomatization of transitive
closure and thus the solver result —either sat or unsat— can be trusted. Oth-
erwise, each essential R-path can be handled on its own thanks to our bounded
R-path isolation concept. The incompleteness of WTC is adjusted for an essential
R-path p by a directed detection and injection of p-invariants.

Although in theory our p-invariant detection procedure is guaranteed to ter-
minate, this has little significance in practical terms, as we could observe for
some benchmarks. From both, the conceptual as well as the engineering point
of view, there is plenty room for improvement. This includes (1) the reduction
of redundancy w.r.t. p-invariant candidates, and instantiation of paths and for-
mulas, (2) the introduction of heuristics for the prioritization of paths, clauses,
instantiations and abstractions, and (3) the further, also conceptual, investiga-
tion of essential R-paths with non-ground boundaries. At least for (1) and (2)
we think that we can profit from well established tools in the area of induc-
tion automation like ACL2 [18], and IsaPlanner [6], even though their focus is
different.

References

1. K. Arkoudas, S. Khurshid, D. Marinov, and M. Rinard. Integrating model checking
and theorem proving for relational reasoning. In (RMICS), 2003.

2. Jon Barwise, editor. Handbook of mathematical logic. Number 90 in Studies in logic
and the foundations of mathematics. North-Holland Publ., Amsterdam, 1977.

3. Jonathan Best. Proving Alloy models by introducing an explicit relational theory
in SMT. Studienarbeit, Karlsruhe Institute of Technology, Dec. 2012.

4. M. P. Bonacina, C. L., and L. de Moura. On deciding satisfiability by DPLL and
unsound theorem proving. In CADE, pages 35–50, 2009.

5. G. Dennis, F. Chang, and D. Jackson. Modular verification of code with SAT. In
ISSTA, pages 109–120, 2006.

6. L. Dixon and J. Fleuriot. IsaPlanner: A prototype proof planner in Isabelle. In
CADE, pages 279–283. January 2003.

7. Jan Van Eijck. Defining (reflexive) transitive closure on finite models. 2008.

TC Axiomatization via Invariant Injections 15

8. Aboubakr Achraf El Ghazi, Ulrich Geilmann, Mattias Ulbrich, and Mana Taghdiri.
A dual-engine for early analysis of critical systems. In DSCI, Berlin, 2011.

9. Aboubakr Achraf El Ghazi and Mana Taghdiri. Relational reasoning via SMT
solving. In FM, pages 133–148, June 2011.

10. Aboubakr Achraf El Ghazi, Mattias Ulbrich, Mana Taghdiri, and Mihai Herda.
Reducing the complexity of quantified formulas via variable elimination. In SMT,
pages 87–99, July 2013.

11. Herbert B. Enderton. A mathematical introduction to logic. Academic Press, 1972.
12. Marcelo Frias, Carlos Lopez Pombo, and Mariano Moscato. Alloy Analyzer+PVS

in the analysis and verification of Alloy specifications. In (TACAS), 2007.
13. Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using

satisfiability modulo theories. AMAI, 55(1):101–122, 2009.
14. Y. Ge and L. de Moura. Complete instantiation for quantified formulas in satisfi-

abiliby modulo theories. In CAV, pages 306–320, 2009.
15. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. The boundary

between decidability and undecidability for transitive-closure logics. In Computer
Science Logic, pages 160–174. January 2004.

16. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Apr. 2006.

17. E. Kang and D. Jackson. Formal modeling and analysis of a flash filesystem in
Alloy. In ABZ, 2008.

18. Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

19. Uwe Keller. Some remarks on the definability of transitive closure in first-order
logic and datalog. 2004.

20. Shuvendu K Lahiri and Shaz Qadeer. Verifying properties of well-founded linked
lists. In ACM SIGPLAN Notices, POPL, pages 115–126, New York, 2006. ACM.

21. K. Rustan M. Leino. Recursive object types in a logic of object-oriented programs.
In TOPLAS, pages 170–184. January 1998.

22. T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava, and G. Yorsh. Simu-
lating reachability using first-order logic with applications to verification of linked
data structures. In CADE, pages 99–115. January 2005.

23. Greg Nelson. Verifying reachability invariants of linked structures. In POPL, pages
38–47, New York, 1983. ACM.

24. M. Taghdiri and D. Jackson. A lightweight formal analysis of a multicast key
management scheme. In FORTE, pages 240–256, 2003.

25. Mattias Ulbrich, Ulrich Geilmann, Aboubakr Achraf El Ghazi, and Mana Taghdiri.
A proof assistant for Alloy specifications. In TACAS, pages 422–436, March 2012.

26. Mandana Vaziri-Farahani. Finding bugs in software with a constraint solver. The-
sis, Massachusetts Institute of Technology, 2004.

	 First-Order Transitive Closure Axiomatization via Iterative Invariant Injections

