Towards a Tool Environment
for Model-Based Testing with AsmL

Mike Barnett, Wolfgang Grieskamp, Lev Nachmanson,
Wolfram Schulte, Nikolai Tillmann, and Margus Veanes

Microsoft Research, Foundations of Software Engineering, Redmond, USA
fse@microsoft.com

Abstract. We present work on a tool environment for model-based testing with
the Abstract State Machine Language (AsmL). Our environment supports semi-
automatic parameter generation, call sequence generation and conformance
testing. We outline the usage of the environment by an example, discuss its un-
derlying technologies, and report on some applications conducted in the Micro-
soft environment.

1 Introduction

Over the last two decades, the area of formal software modeling has been extensively
explored, developing various methods, notations and tools. Formal specification lan-
guages like VDM, Z, B, CSP, ASM etc. have been developed and applied to numer-
ous problems. Verification technology has had success in certain areas, in particular if
based on model checking. However, in spite of promising results, a widely expected
break-through of these technologies has not yet appeared.

The goal of our group at Microsoft Research is to bring rigorous, formal modeling
to praxis, trying to avoid (suspected) obstacles of earlier approaches to formal model-
ing. We have developed the Abstract State Machine Language (AsmL), an executable
modeling language based on the ASM paradigm [1] and fully integrated into the
NET framework and Microsoft development environment.

One important application we see for AsmL is automated testing. A huge amount
of work is spent on testing in Microsoft’s and other companies’ product cycle today.
Models not only enhance understanding what a product is supposed to do and how its
architecture is designed, but enable one to semi-automatically derive test scenarios at
an early development stage where coding has not yet finished. Given manually or
automatically generated test scenarios, formal models can be used to automate the test
oracle. A great advantage of model-based testing is seen in its adaptability: during the
product cycle, various versions of the product are published at milestones, each of
which requires thorough testing. Whereas manual test suites and harnesses are hard to
adapt to the variations of the product, a model makes this work easier.

We have developed an integrated tool environment for model-based testing with
AsmL. This environment comprehends the following technologies:

A. Petrenko and A. Ulrich (Eds.): FATES 2003, LNCS 2931, pp. 252-266, 2004.
© Springer-Verlag Berlin Heidelberg 2004



Towards a Tool Environment for Model-Based Testing with AsmL 253

— Parameter generation for providing method calls with parameter sets;

— FSM generation for deriving a finite state machine from a (potentially infinite)
abstract state machine;

— Sequence generation for deriving test sequences from the FSM;

— Runtime Verification for testing whether an implementation performs conforming
to the model.

Our environment realizes a semi-automatic approach, requiring a user to annotate
models with information for generating parameters and call sequences, and to config-
ure bindings between model and implementation for conformance testing. This anno-
tation process is supported by a GUI. The approach is novel, to the best of our knowl-
edge, in its combination as well as in many of its ingredients. In this paper, we will
discuss the environment’s methodology and underlying implementation by a walk-
through of an example.

2 The Abstract State Machine Language

Space constraints prevent us from giving a systematic introduction to AsmL; instead
we rely on the readers’ intuitive understanding of the language as used in the exam-
ples. AsmL is a fusion of the Abstract State Machine paradigm and the .NET com-
mon language runtime type system. From a specification language viewpoint, one
finds the usual concepts of earlier specification languages like VDM or Z. The lan-
guage has sets, finite mappings and other high level data types with convenient and
mathematically-oriented notations (e.g., comprehensions). From the .NET integration
viewpoint, AsmL has all the ingredients of a .NET language, namely interfaces, struc-
tures, classes, enumerations, methods, delegates, properties and events. The close
embedding into .NET allows AsmL to interoperate with any other .NET language and
the framework: AsmL models can call out into frameworks and AsmL models can be
called and referred to from other .NET languages, up to the level that e.g. an AsmL
interface (with specification parts) can be implemented by a .NET language, enabling
checking that the interface contract is obeyed [3].

The most unique feature of AsmL is its foundation on Abstract State Machines
(ASM) [1]. An ASM is a state machine that in each step computes a set of updates of
the machine's variables. Upon the completion of a step, all updates are "fired" (com-
mitted) simultaneously; until that happens, updates are not visible, supporting a side-
effect free view on the computation inside a step. The computation of an update set
can be complex, and the numbers of updates calculated is not statically bound. Con-
trol flow of the ASM is described in AsmL in a programmatic, textual way: there are
constructs for parallel composition, sequencing of steps, non-deterministic (more
exactly, random) choice, loops, and exceptions. On an exception, all updates are
rolled back, enabling atomic transactions to be built from many sub-steps.

AsmL supports meta-modeling which allows a programmatic exploration of the
non-determinism in the model and dealing with state as a first-class citizen (i.e., the
current state is accessible as a normal value that can be manipulated just as any other



254  Mike Barnett et al.

data value). This allows us to realize various state exploration algorithms for AsmL
models, including explicit state model-checking and in particular test generation and
test evaluation.

AsmL documents are given in XML and/or in Word and can be compiled from
Visual Studio .NET or from Word; the AsmL source is embedded in special
tags/styles. Conversion between XML and Word (for a well-defined subset of styles)
is available. This paper is itself a valid AsmL document; it is fed directly into the
AsmL system for executing the formal parts it contains or for working with the AsmL
test environment.

3 Example: Web Shop

Throughout this paper, we will use as an example a simplified model of a web shop.
Our web shop allows clients to order gifts like flowers or perfume using the common
shopping cart metaphor. Real-world details are heavily abstracted in this example to
make it comprehensible (we should emphasize at this point that our approach scales
to richer examples; see Sect. O for applications in the Microsoft environment).
The web shop’s items are introduced below:
enum Item
Flowers
Perfume

const prices as Map of Item to Integer =
{ Flowers -> 30, Perfume -> 20 }

A shopping cart is represented as a bag (multi-set) of items:

type Cart = Bag of Item

A client to the web shop is described by the class below. A client has an identifier
and a session state, given by its shopping cart. If the client is not in a session the cart
is null (The type T? in AsmL denotes a type where null is an allowed value; by de-
fault, types in AsmL do not contain null):

class Client
const id as String
var cart as Cart? = null

override ToString() as String?
return id

The state of the web shop model is given by a set of clients:

var clients as Set of Client = {}

We now define the actions of the clients. A client can be constructed in which case
he is added to the set clients; a client can enter the shop (if he is not in a session),
can add an item to his cart (if he is in a session), or remove an item (if he is in a ses-
sion and the item is on his cart). Finally, a client can checkout, obtaining the bill and
ending his session (In this simplified model, the client can only leave the shop by

paying):



Towards a Tool Environment for Model-Based Testing with AsmL 255

class Client
Client (id as String)
require not exists client in clients
where client.id = id
add me to clients

EnterShop ()
require cart = null
cart := Bag of Item()

AddToCart (item as Item)

require cart <> null

cart := cart.Include(item)
RemoveFromCart (item as Item)

require cart <> null and then item in cart

cart := cart.Exclude (item)
Checkout () as Integer
require cart <> null and then cart.Size > 0
var bill as Integer = 0
step foreach item in cart
bill := bill + prices(item)
step
cart := null

return bill

4 FSM and Sequence Generation

The AsmL tool environment allows generating a finite state machine from models
such as that for the web shop. From the FSM, call sequence can be generated using
standard techniques [4]. The FSM is generated by exploring the state space of the
model in a similar way an explicit-state model-checker works [5]. Starting at the
initial state, enabled actions are fired, leading to a set of successor states, from where
the exploration is continued. An action hereby is a shared or an instance based
method; parameters to this method (including the instance object if necessary) are
provided by a configurable parameter generator (see Sect. 0) An action is enabled if
the method’s precondition (require) is true in the current state.

Various ways are available to prune the exploration. Pruning is strictly necessary
for infinite models (like the one for the web shop where a client could add items
again and again to the cart). But pruning might be also required for large finite mod-
els in order to focus on certain test purposes. The AsmL environment provides a col-
lection of different pruning techniques; the most important are:

— State abstraction: state abstractions map a concrete state to an abstract state. Ex-
ploration stops when a state is reached whose abstract equivalent has already been
seen.

— Filters: a filter allows excluding certain states from exploration; only those states
that pass the filter are considered for continuation during exploration.

— Model coverage: a percentage of model branch coverage can be given; exploration
stops when this coverage is reached.

We illustrate the FSM generation for the web shop example. First we have to pro-

vide suitable definitions for the parameter domains of the actions. The actions of
interest here are the client constructor and the instance methods of a client for enter-



256  Mike Barnett et al.

ing a shop, adding and removing items, and checking out. The parameters required
are identifiers for clients, client objects and items. For the first one we provide a
given set of names like a, b, c and so on. For the client object domain it is natural to
actually use the model variable cTients itself: it provides in each state the set of
clients created so far. For the items, finally, we use the domain as given by the enu-
meration. We discuss the configuration of parameter domains in greater detail in the
next section. For now it is important to note that the configured parameter domains
can depend on the dynamic state of the model. Thus, as clients are created, the do-
main for the instance parameter of client domains, given by the model variable
clients, grows.

Once we have configured parameter domains, we define the variables and actions
of the state machine, and add a so-called abstraction property for pruning the state
exploration. The state abstraction properties group the concrete states into equiva-
lence classes; exploration is stopped if we see a concrete state for which an equivalent
one has been already seen before.

Finding the right abstraction property is a creative task and requires experience and
trial and error. If the purpose of the generated FSM is to create scenarios for adding
and removing two different items by just one client the following property does fine:

property SomeItemsInCart as Set of (Bag of Item)?
get return
{ (if client.cart <> null then

client.cart * Bag{Flowers, Perfume}
else null) | client in clients }

This property maps the state space of the model into a set of carts, for each client
one cart in the set; it does not distinguish from which client the cart comes. Each cart
in turn is pruned to not contain more than one Flowers and one Perfume item (we
use multi-set intersection for this purpose: for example, {a,a,b} * {a} = {a}).

Here, we want to further prune to state space by filtering out states with more than
one client. We use the following filter:

property AtMostOneClient as Boolean
get return Size(clients)<=1

The complete configuration for the web shop is shown in the screenshot in Figure
1. The domains part of the configuration contains annotations of model elements for
parameter domains. The state machine part contains annotations for variables and
actions of the state machine as well as the abstraction property.

Given this configuration, we generate an FSM as shown in Figure 2. Only one cli-
ent will be created in this FSM, since our abstraction property does not distinguish
from which client a cart comes (and hence if a second client enters the shop, no dif-
ference is seen in the abstract state to the first client). In the FSM, S3 is associated
with the state where the client’s cart is empty, S4 where the client has Perfume on
his cart, S5 where he has Flowers on his cart, and S6 where he has both. Among
these states, various transitions exist, adding and removing items.

From an FSM as shown we generate test sequences using the well-known FSM
traversal techniques (we use a variation of the transition tour method based on an
algorithm from [6]). For the shown FSM we get a single traversal with 19 steps.



Towards a Tool Environment for Model-Based Testing with AsmL 257

webshop.asmlt - Asml Test Generator
File Edit “iew Run Options Help
IFSM ] TestSuile] Confarmance Test]

+ Project
= Damaing
= Tupes
class Client = clients
enum ltem = enum of Application. tem
tepe String = ["a"."b","c".""d"]
+- Methods
-1 State Machine
-I- Yariables
wvar Chent.cart as Bag of ltem
war clients as Set of Client
—I- Actions
conztructor Client. Client(String) as Client
Client. EnterShopl)
Client.AddT aCart(|bem)
Client. RemoveFromCart(ltem)
Client. Checkout(] as Integer
Action Groups
Auiliaries
-1+ Properties
SomeltemslnCart
=I- Filkers
AttostOneClient
Promaters
+- Conformance Bindingz

Building project succeeded.

Fig. 1. Configuration

The simple example of the web shop can produce much richer FSMs. The follow-
ing property allows for more items: each client can buy up to two flowers and two
perfume sets:

property MoreltemsInCart as Set of (Bag of Item)?
get let maxItems = Bag({
Flowers,Flowers,Perfume,Perfume}
return { if client.cart <> null
client.cart * maxItems
else null
| client in clients }

The FSM generated from this abstraction property and a filter that restricts the
number of clients to 4 consists of around 900 relevant transitions (transitions leading
to a new state under the abstraction); 6000 transitions have been tried out to find these
transitions, and the construction time was around 4 minutes with a maximal memory
footprint of 110 MB. Indeed, such an FSM is not feasible to visualize as a whole;
however, with the methodology we are proposing one first tries out with a smaller
abstract state space to understand the abstraction and then scale up parameters for the
actual generated FSM and test suite.



258  Mike Barnett et al.

webshop.asmit - AsmL Test Generator, EJEJE|

File Edit Yiew Run Options Help
Config® FSM ]TastSuite] EnnfnrmanceTesl]

Client("¢"}c

. EnterShopi)
o.Checkont()/20
c.LddToCarPerfime)

¢ RemoveFromCart(Perfurne) c.Checkout()50

o.Checkout{)30

¢ AddToCart(Flowers

c.AddToCart{Flowers) ¢ RemoveFromCart(Flowers) c.RemoveFromCart(Flowers)

c.LddToCartiPerfime)

FSM generation: 20 tranzitions tried, 13 relevant

Fig. 2. Generated FSM

5 Parameter Generation

The AsmL test environment uses a parameter generator based on access driven filter-
ing (ADF) which is an enhancement of an existing framework called Korat [7]. ADF
can generate values of recursive value types and object graphs. Given a predicate and
a domain configuration, ADF generates all non-isomorphic valid inputs whereby an
input is regarded as valid if the predicate holds. The domain configuration contains
descriptions of finite sets as the domains of basic types, and information about how to
generate objects of class types and elements of value types, and imposes bounds on
the size of the generated input. The domain configuration classifies the domain of
each type into one of the following three categories.

— Defined Domain: A defined domain is given by an arbitrary AsmL expression
which is evaluated in the scope of the model. It can depend on the dynamic state of
the model.

— Inherited Domain: An inherited domain is composed of domains as they are for
other types. That is, an inherited domain just refers to one or more types, and the
union of the domains of these types constitutes the inherited domain. A typical ap-
plication of inherited domains is abstract types. The domain of those types is natu-
rally the union of the domains of all of its subtypes.



Towards a Tool Environment for Model-Based Testing with AsmL 259

— Generated Domain: The domain of a class or value type will be generated by
ADF. ADF must be given a domain configuration for each field of the type in one
of the three ways described here. A bound on the maximal number of ob-
jects/elements of the type in a single input can be imposed. Finally, each field is
assigned a cost; all assignments to fields in a given input are summed up to com-
pute the cost of this input. The predicate is configured to have a maximal cost.

ADF exhaustively finds all valid inputs which are within the bounds imposed by
the domain configuration. To this end, ADF considers the parameters of the predicate
and the fields of generated domains as free variables. ADF executes the predicate
with an input which initially only consists of the parameters of the predicate as free
variables. Whenever the execution of the predicate accesses a free variable, then ADF
will instantiate this variable by choosing an object or value that is allowed by the
domain configuration (thus the name access driven filtering). If the bounds imposed
by the domain configuration are exceeded or the predicate returns false, then this
assignment of the free variables is discarded. Otherwise, if the predicate returns true,
any instantiations for the remaining free variables can be chosen to create a valid
input. By exhaustively exploring all choices that are possible when instantiating free
variables ADF will find all valid inputs within the given bounds.

Two kinds of bounds are imposed on generated domains by the domain configura-
tion.

— A maximal number of objects/elements of a single type: No input will contain
more objects/different elements of a single type. This is an effective bound if only
a small number of generated domains are involved.

— As an extension to Korat, a maximal accumulated cost along field accesses is
maintained. The intuition behind this bound is that one often wants to generate
asymmetric inputs which tend to be more complex only in certain areas. In this
case, one would assign low costs to fields which lead to the desired complex areas,
and high costs to fields which lead to areas which should not be considered. ADF
stops the generation of bigger inputs when the accumulated costs exceed a given
maximal cost.

As an example of ADF’s usage, suppose our web shop allows inputting search queries
which are simple boolean expressions over string literals. These can be defined in
AsmL as below (where an AsmL structure is a value type which allows recursion):

abstract structure Query

structure Literal extends Query
literal as String

structure Conjunction extends Query
left as Query
right as Query

structure Disjunction extends Query
left as Query
right as Query

Suppose we want to generate those queries as parameter inputs which are in dis-
junctive normal form. We define a filter predicate as below:



260  Mike Barnett et al.

queries.asmlt - AsmL Test Generator
File Edit Wiew Fun  Options  Help
fCanfia’| FsM | Tests |
- Project "~
El- Damains
Bl Types
- structure Conjunction = <generated; MaxCount=2; >
i Canjunction left as Query = <config of structure Application. Query:
Conjunction.right az Query = <config of structure Application. Query:
& structure Digjunction = <generated; MasCount=1; >
i Digjunction.left as Query = <config of stucture Application. Juery>
Dizjunction.ight az Queny = <config of stucture Application. Querny:
El- structure Literal = <generated; MaxCount=2; »
.. Literal fteral as Strinig = <config of tepe Asml. Stings
- ghiucture Query = <config of structure dpplication, Literal structure Applica
- type Shing = <initial walue af> {"a""b"}
- Methods
B 155 hallowDHF[Query] az Boolean: require <method precondition: w
< ?

Parameter test suite generation: done, [28 tried, 76 found, 51 by vanation, 3 actual mas-

Fig. 3. Domain Definitions

IsShallowDNF (query as Query) as Boolean
match query
g as Conjunction:
return not g.left is Disjunction and then
not g.right is Disjunction
g as Disjunction:
return IsShallowDNF (g.left) and then
IsShallowDNF (g.right)
g as Literal:
return true

Since ADF inductively generates input by instantiating free variables in already
generated input, the shallow DNF test as above is sufficient for generating a tree
which is in full DNF.

Our test environment allows annotating the configuration for parameter generation
with a GUIL. Domains can be defined on a per-type base, per-field/parameter base, or
per-method base. For the query example, the configuration is given in Figure 3.

The super-type Query inherits its domain from the union of the configuration of its
sub-types (the full definition is not displayed because of window size). The sub-types
are generated using ADF, where the recursive fields point back to the configuration
of the Query super-type. The recursion causes no problem because the input size is
bounded; we allow 2 instances for literals and conjunctions, and 1 instance for dis-
junction. The run of the parameter generator results in 76 parameter combinations
which are of the obvious shape.



Towards a Tool Environment for Model-Based Testing with AsmL. 261
6 Conformance Testing

The AsmL test environment allows interactively configuring bindings between a
model and an implementation, instrumenting the model as a test oracle. The imple-
mentation can be given as any managed .NET assembly, written in any of the .NET
languages. A wizard supports the binding of model classes and methods with imple-
mentation classes and methods by signature matching.

To enable conformance testing, the implementation assemblies are rewritten on the
intermediate code level inserting callbacks for monitored methods to the runtime
verification engine. This engine is able to deal with non-determinism in the model by
maintaining a set of admissible model behaviors. Each time a monitored method is
called in the implementation, its parameters and output result will be propagated to
the conformance test manager. On each of the currently possible model states, the
according model method will be called. If the method contains nondeterministic be-
havior, several resulting states can arise. The resulting states of those calls which
produce a conformant output constitute the set of next model states. If this set be-
comes empty, the conformance test fails. In addition to comparing just method re-
sults, a predicate which relates the model and implementation state can be employed,
which may prune the state-space evolution earlier than by just observing method
return values.

The problem of relating object identities is dealt with as follows. A mapping from
model to associated implementation objects is maintained. Whenever a monitored
implementation returns an object, the according model method’s returned object must
either map to exactly that object in the mapping, or no entry in the mapping exists, in
which case one is created. One can think of this mechanism as letting object identities
in the model being distinct logical variables which are "bound" with the associated
object identities of the implementation.

7 Discussion and Conclusion

We presented aspects of a first version of an integrated environment for model-based
testing with AsmL and illustrated its use by an example. The environment combines
and refines the techniques for parameter generation, FSM generation, call sequence
generation, and conformance testing in a novel way. We conclude with discussing
applications, related work, and future work.

7.1 Applications

Though the AsmL test environment is still in a prototypical stage, it has been applied
in several non-trivial projects at Microsoft.

— The parameter generator has been used for testing an implementation of the XPath
language. The stateless model of XPath used for that purpose consists of around 33
pages. More than a million tests have been generated, out of which the system
identified 120 test cases which already resulted in 90% model code branch cover-



262  Mike Barnett et al.

age. To achieve full model code branch coverage the test engineer added 10 tests
manually. The recovery of the manual test cases was easy since the system tracks
branches which haven’t been covered.

— The FSM and sequence generator has been used for testing web-services protocols,
among them reliable messaging (RM). The model for RM consists of around 40
pages. The FSM generator produces a machine with around 1500 transitions out of
30000 possible in a couple of minutes, simulating various kinds of wire failure and
recovery operations.

— Within the few months of its introduction, the AsmL test environment has gained
considerable interest in the model-based testing community at Microsoft. Model-
based testing using finite state machine models are in use at Microsoft for quite
some time (a couple of hundred people are registered for the internal mailing list,
to give an impression). The more powerful approach provided by AsmL is investi-
gated by many of these users, and we expect a couple of new applications in the
near future.

7.2 Related Work

Our approach to parameter generation is based on and extends the work found in [7],
which is a later branch of the work of the authors of [8]. Whereas the authors use a
Java data type to describe what they call the "finitization", we use a richer interactive
method for what we call "domain configuration". Other extensions of our approach
include a cost function for the generation of recursive domains and detection of iso-
morphisms for value types.

The conformance testing conducted by our tool environment can be classified as
grey box testing. Traditional FSM based testing techniques with either Mealy or
Moore machines typically amount to black box testing, where the actual states of the
implementation are unobservable. In contrast, our testing approach allows the user to
specify conformance relations connecting the model state to the state of the imple-
mentation, in addition to pure input/output behavior reflected at the API level. In
other words, the tool may be used to perform a limited form of white box testing,
where the limitations depend on what part of the implementation state is accessible (if
no state is accessible, the tool works as well, but may not be able to detect errors as
early as they occur.) This approach is possible due to the intermediate language plat-
form provided by the .NET runtime, which the tool architecture is based on, that
allows binary level access to the state of the implementation.

The basic FSM generation algorithm that is implemented in the test tool has been
significantly extended since its first description in [5]. Test case generation that is
performed on the basis of the generated FSM can be classified as a T-method [13].
We have not considered utilizing more powerful methods, such as U- D- or W-
methods [13] used in pure black box testing.

One of the first automated techniques for extracting FSMs from model-based
specifications for the purpose of test case generation, introduced in [9], is based on a
finite partitioning of the state space of the model using full disjunctive normal forms.
While our partition of the state space is similar to that of the DNF approach, the two



Towards a Tool Environment for Model-Based Testing with AsmL 263

approaches are quite different. Most importantly, the DNF approach employs sym-
bolic techniques while we build the FSM by executing the specification. This enables
us to support the full spectrum of AsmL, including call-outs from the model into
framework code.

In [10] projections on state machines are used to restrict them for a certain test
purpose; also filters on states are used. This is related to our pruning technique of
state exploration, though we never look at the larger FSM but generate the projected
one from the beginning.

In model checking, data abstraction is used to cope with state explosion when the
original model M is too large. Data abstraction groups states of M and produces a
reduced model M, which is analogous to the FSM produced in our test environment
by using properties. However, whereas in model checking operations need to be lifted
to the abstract domain as well, which is the fundamental difficulty there, we still work
with the operations on the concrete data, which can be realized using full AsmL. Due
to efficiency considerations, the standard data abstraction algorithms of model-
checking may yield an over-approximation of M,; see [11]. In contrast, our approach
may yield an under-approximation of the true abstraction, in other words some transi-
tions may be missing, but there are no false transitions, which is important for using
the FSM for test case generation.

In general, model checking techniques have been considered in the context of
ASM based test case generation; in [12] the counter examples of SPIN are considered
as test cases generated from a given ASM and a given property. The technique of
using a model-checker with negated goal-states, and then letting the model-checker
produce a counter-example which can be interpreted as a test sequence to reach this
state, has been proposed by many other authors for automatic test generation. We
believe this approach is highly restricted, on the one hand by the input language re-
strictions most model-checkers have to obey, on the other hand because tailored
search machines for finding tests can be more efficient. For example, a model checker
used to generate tests finds just one test sequence per exploration whereas our ap-
proach finds all test sequences in one exploration of the ASM.

Currently our tool supports the Rural Chinese Postman Tour method to traverse the
generated FSM. For an efficient implementation of the postman tour the tool uses the
algorithm for Maximal Weight Bipartite Matching given in [6]. In general, the test
methodology of the tool is an extension of the FSM approach. The bulk of the work
in this area has dealt with deterministic FSMs. See [4, 13] for comprehensive surveys
and [14] for an overview of the literature. The Extended Finite State Machine
(EFSM) approach has been introduced mainly to cope with the state explosion prob-
lem of the FSM approach. Typically the problem arises when the system to be mod-
eled has variables with values in large, even infinite, domains, for example integers.
In an EFSM, such variables are allowed, and the transitions may depend on and up-
date their values; see [15] [16]. In EFSMs, the control part is finite and is separated
from the data part, which distinguishes them from ASMs. An interesting problem in
our FSM generation algorithm is to fiddle with the properties in order to avoid non-
determinism. This problem is related to the stabilization problem of EFSMs [16]. The
use of input/output FSMs for fault coverage based test case generation is studied in



264  Mike Barnett et al.

[17]. The specification FSMs in [17] are (possibly non-deterministic) Mealy ma-
chines.

Conformance testing plays a central role in testing communication protocols where
it is important to have a precise model of the observable behavior of the system. This
has lead to a testing theory based on labeled transition systems. See an overview of
the approach in [18] and an overview of related literature in [19]. Labeled transition
systems are in general nondeterministic. In the LTS approach, verification techniques
can be used to deal with state explosion and to generate test cases. TGV [20] is an
industrial tool that utilizes the LTS approach to generate test cases from SDL specifi-
cations. Fault model based FSM testing methodology has been recently considered
for labeled transition systems as well [21,31].

There are many different groups doing work related to runtime verification. Per-
haps the closest is the JML runtime assertion checking provided for components writ-
ten in Java [22]. Eiffel [23] also provides for the checking of pre- and post-
conditions, but only for components written in Eiffel. There are many similar design-
by-contract tools for Java, such as JIMSAssert [24], iContract [25], Handshake [26],
Jass [27], and JContract [28]. However, all lack any facility for maintaining the state-
space separation between the specification and the implementation. More general
component-oriented work has been done by Edwards [29] to generate wrapper com-
ponents for checking pre- and post-conditions, but cannot handle more general syn-
chronization issues that require model programs.

7.3 Future Work

Several extensions of the AsmL test environment are on the way. High priority on our
agenda is dealing with non-determinism in the model. Though we can handle non-
determinism on the level of runtime verification, the test generator can not deal with
it, not at least because its output, sequences, is not a suitable representation. We are
looking at two different approaches. One promising approach is on-the-fly testing
[30], which in our setting amounts to fusing the FSM generation with conformance
testing. This approach has the advantage that non-determinism of the model is imme-
diately pruned by the decisions of the implementation. However, in our experience
some user groups require the tests as data in their development process. For these
applications, we look at generating DAGs (directed acyclic graphs) instead of se-
quences. Test cases for non-deterministic systems are usually tree structures (as one
form of DAG). A further topic of future work is employing symbolic computation by
means of constraint resolution, lifting restrictions of our approach implied by comput-
ing with ground data.

References

1. Y. Gurevrich, "Evolving Algebras 1993: Lipari Guide," in Specification and Validation
Methods, E. Boerger, Ed.: Oxford University Press, 1995, pp. 9-36.

2. F. o. S. Engineering, "The AsmL Release,",, 2.1.5.9 ed. Redmond: Microsoft Research,
2000-2003.



11.
12.

13.

14.

16.

17.

19.

20.

Towards a Tool Environment for Model-Based Testing with AsmL 265

. M. Barnett and W. Schulte, "Runtime Verification of .NET Contracts," The Journal of
Systems and Software, pp. 199-208, 2002.

. D. Lee and M. Yannakakis, "Principles and methods of testing finite state machines - a
survey," Proceedings of the IEEE, vol. 84, pp. 1090-1123, 1996.

. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes, "Generating Finite State Ma-
chines from Abstract State Machines," in Proceedings of International Symposium on
Software Testing and Analysis (ISSTA 2002). Rome, Italy: IEEE, 2002, pp. 112-22.

. K. Mehlhorn and G. Schaefer, "A Heuristic for Dijkstra's Algorithm with Many Targets
and Its Use in Weighted Matching Algorithms," Lecture Notes in Computer Science, vol.
2161, pp. 242-253, 2001.

. C. Boyapati, S. Khurshid, and D. Marinov, "Korat: Automated Testing Based on Java
Predicates," in Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA 2002). Rome, Italy: IEEE, 2002.

. D. Marinov and S. Khurshid, "TestEra: A Novel Framework for Automated Testing of
Java Programs," presented at Proceedings of ASE-2001: The 16th IEEE Conference on
Automated Software Engineering, Coronado, CA, USA, 2001.

. J. Dick and A. Faivre, "Automating the Generation and Sequencing of Test Cases from
Model-Based Specfications," in FME '93: Industrial Strength, Formal Methods, vol. 670,
Lecture Notes in Computer Science, J. C. P. Woodcock and P. G. Larsen, Eds.: Springer-
Verlag, 1993, pp. 268-284.

. G. Friedman, A. Hartman, K. Nagin, and T. Shiran, "Projected State Machine Coverage

for Software Testing," in Proceedings of the ACM SIGSOFT 2002 International Sympo-

sium on Software Testing and Analysis (ISSTA-02), vol. 27, 4, SOFTWARE

ENGINEERING NOTES, P. G. Frankl, Ed. New York: ACM Press, 2002, pp. 134-143.

E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking: MIT Press, 1999.

Gargantini, E. Riccobene, and S. Rinzivillo, "Using Spin to Generate tests from ASM

Specifications," presented at Proc. Abstract State Machines 2003, 2003.

D. P. Sidhu and T.-K. Leung, "Formal Methods for Protocol Testing: A Detailed Study,"

IEEE Transactions on Software Engineering, vol. 15, pp. 413-426, 1989.

Petrenko, "Fault Model-Driven Test Derivation from Finite State Models: Annotated

Bibliography," Lecture Notes in Computer Science, vol. 2067, pp. 196-?, 2001.

. Bourhr, R. Dssouli, and E. M. Aboulhamid, "Automatic test generation for EFSM-based

systems," Publication departementale 1043, Departement IRO, Universite de Montreal

August 1996 1996.

K.-T. Cheng and A. S. Krishnakumar, "Automatic generation of functional vectors using

the extended finite state machine model," ACM Transactions on Design Automation of

Electronic Systems., vol. 1, pp. 57-79, 1996.

Petrenko, N. Yevtushenko, and G. v. Bochmann., "Testing deterministic implementations

from nondeterministic FSM specifications," presented at Proc. IFIP TC6 9th International

Workshop on Testing of Communicating Systems, Darmstadt, Germany, 1996.

. J. Tretmans and A. Belinfante, "Automatic testing with formal methods," presented at Eu-

roSTAR'99: 7th European Int. Conference on Software Testing, Analysis & Review, Bar-

celona, Spain, 1999.

E. Brinksma and J. Tretmans, "Testing Transition Systems: An Annotated Bibliography,"

Lecture Notes in Computer Science, vol. 2067, pp. 187-?, 2001.

J. C. Fernandez, C. Jard, T. Jéron, and C. Viho, "An experiment in automatic generation of

test suites for protocols with verification technology," Science of Computer Programming

- Special Issue on COST247, Verification and Validation Methods for Formal Descrip-

tions, vol. 29, pp. 123-146, 1997.



266

21.

22.

23.
24.
25.

26.

27.

28.

29.

30.

31.

Mike Barnett et al.

Petrenko, N. Yevtushenko, and J. L. Huo, "Testing Transition Systems with Input and
Output Testers," presented at Proc. IFIP TC6 9th International Workshop on Testing of
Communicating Systems, Sophia Antipolis, France, 2003.

G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok, "How the design of JML
accomodates both runtime assertion checking and formal verification," Technical Report
TR #03-04 Department of Computer Science, lowa State University March 2003 2003.

B. Meyer, Eiffel: The Language. New York, NY: Prentice Hall, 1992.

M. M. Systems, "JIMSAssert,"., 2002.

R. Kramer, "iContract -- the Java Designs by Contract tool. In Proc. Technology of Ob-
ject-Oriented Languages and Systems," presented at Proc. Technology of Object-Oriented
Languages and Systems, TOOLS 26, Santa Barbara, CA, 1998.

Duncan and U. Hoelzle, "Adding Contracts to Java with Handshake," University of Cali-
fornia, Santa Barbara. Computer Science., Technical Report TRCS98-32, December 9,
1998 1998.

D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim, "Jass - Java with assertions," in
Workshop on Runtime Verification held in conjunction with the 13" onference on Com-
puter Aided Verification, CAV'01, 2001.

P. Corporation, "Using design by contract to automate Java software and component test-
ing,", February 2003 2003.

S. H. Edwards, "A framework for practical, automated black-box testing of component-
based software," Software Testing, Verification and Reliability, vol. 11, 2001.

R. G. d. Vries and J. Tretmans, "On-the-fly conformance testing using Spin," Software
Tools for Technology Transfer, vol. 2, pp. 382-393, 2000.

Q.M. Tan and A. Petrenko, "Test Generation for Specifications Modeled by Input/Output
Automata"”, in Proc. IFIP 11th Int. Conf. on Testing of Communicating Systems,
IWTCS'98, Russia, 1998.



	1 Introduction
	2 The Abstract State Machine Language
	3 Example: Web Shop
	4 FSM and Sequence Generation
	5 Parameter Generation
	6 Conformance Testing
	7 Discussion and Conclusion
	7.1 Applications
	7.2 Related Work
	7.3 Future Work

	References

