
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Automated Software Analysis Group, Institute of Theoretical Informatics

www.kit.edu

Static Program Checking
Introduction

Jun.-prof. Dr. Mana Taghdiri

Thursday – April 24, 2014

Static Program Checking 2

Administrative notes

   Lecturer
   Mana (mana.taghdiri@kit.edu, Geb. 50.34, Room 229)
   Office hours by appointment

   Class material
   Recent research papers
   Will practice with the tools whenever possible (bring your laptops)
   Exchange of ideas (the more interactive, the better)

   Exam
   Part of the ‘formal methods’ module
   Oral exam

Static Program Checking 3

Contents Overview

   Class focuses on systematic bug-finding techniques
   Emphasis on cost, practicality, and automation
   Push-button techniques
   In contrast to verification approaches

   E.g. theorem proving

   Announced topics
   Finding bugs in OO programs statically

   As opposed to testing
   Inferring what programs do

   Summaries
   Static techniques

   Invariants
   Static and dynamic techniques

   Iterative analysis via feedback loops

Static Program Checking 4

Approach

   Flexible about the topics
   Will adjust based on your feedback

   If interested in such topics
   Diploma/masters thesis
   student work
   Discussions

   Check out the website regularly
   http://asa.iti.uka.de/
   For the list of references, schedule, and slides

Static Program Checking 5

Traditional testing is not cost-effective

   Zero-tolerance for bugs in safety-critical software
   Air-traffic controllers, medical equipments, automotive industry, etc.

   Pressure to reduce time-to-market

   Testing is easy
   Few first tests reveal many quick bugs
   Tests are usually run automatically and repeatedly

   Testing is incomplete
   Requires domain experts to pinpoint troubling scenarios

   Testing is costly
   Consumes half the total cost of software development
   Microsoft hires one tester for every developer

Static Program Checking 6

Automatic test-case generation

   Exhaustive generation
   Test cases generated for a method based on its pre-condition
   All non-isomorphic test cases up to a certain size
   Runs the code on generated tests and compares against the post-condition
   Either declarative (based on Alloy) or imperative algorithm

   Random generation
   But “feedback-directed”
   Randomly selects which method to call next and its arguments from

available objects
   Executes generated tests and uses the feedback to generate better tests
   Execution results determine whether the input is redundant, illegal, contract-

violating, or useful for generating more inputs

   Automated test generation is a solution, but not our topic!

Static Program Checking 7

Cost vs. confidence

cost

confidence

testing

Static Program Checking 8

Cost vs. confidence

cost

confidence

testing

theorem
proving

Static Program Checking 9

Cost vs. confidence

cost

confidence

testing

theorem
proving

bounded model
checking

Static Program Checking 10

Cost vs. confidence

cost

confidence

testing

theorem
proving

bounded model
checking

bounded
verification

Static Program Checking 11

Cost vs. confidence

cost

confidence

testing

theorem
proving

bounded model
checking

bounded
verification

Static Program Checking 12

Static software checking

   Checks a functionality of the code (property)
   Provided by the user
   Says what the code is supposed to do

   Provides certainty for program correctness (confidence)
   What kind of properties does it check?
   How complete is the analysis?

   Requires efforts from users (cost)
   Code preparations before the analysis?
   User interaction during the analysis?
   Understanding the reported bug?
   False alarms?
   Analysis time?

Static Program Checking 13

Inferring what programs do (Examples)

   Summarization
   Static
   Syntactic specifications in Alloy
   Infers post-conditions based on pre-state values
   Good for OO code
   Based on symbolic execution and abstract interpretation

   Invariant detection (Daikon)
   Dynamic
   A machine learning technique
   Properties that hold at a certain point in the program
   Unsound, but likely
   Runs on a suite of test cases and learns invariants

   Why is invariant detection/summarization important?

Static Program Checking 14

Iterative analysis via feedback loops

Program
behavior Property ?

Static Program Checking 15

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

Static Program Checking 16

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

YES!

Static Program Checking 17

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

YES!

NO …

✖

Static Program Checking 18

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

YES!

NO …

✖

Static Program Checking 19

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

Static Program Checking 20

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

YES!

Static Program Checking 21

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

YES!

NO …

✖

Static Program Checking 22

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

YES!

NO …

✖

Static Program Checking 23

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

✖

Static Program Checking 24

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

YES!
✖

Static Program Checking 25

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

YES!

NO

✖

✖

Counterexample-guided Abstraction Refinement (CEGAR)

Static Program Checking 26

Alloy

   Invented by Daniel Jackson at MIT in 2000
   http://alloy.mit.edu/community/
   Daniel Jackson. Software Abstractions: Logic, Language, and Analysis.

MIT Press. Cambridge, MA. 2012.
   A modeling language
   Declarative

   As opposed to imperative
   Describes the logic of a computation without describing its control flow
   Example

   Sorting
   Common declarative languages

   Regular expressions
   Logic programming (Prolog)
   Functional programming (ML)

Static Program Checking 27

Other modeling languages

   JML, OCL
   Larch

   Developed in 1980s
   Good for concurrent programs and algebraic datatypes
   Based on theorem proving
   Not fully automatic, but good for its time

   Z
   Based on the simple notions of set theory
   But even less analyzable than Larch

   SMV language
   Model checker
   Checked a billion states in seconds with no aid from user – explicit
   Formal methods became fashionable overnight
   Widely used for hardware
   Language not suitable for structure-rich software

Static Program Checking 28

Alloy

   Motivation
   Brings the SMV-like automation to a Z-like language

   For writing succinct and precise descriptions of
   Software systems (design level)

   Pick the right design, implementation follows naturally
   Check properties before committing to code
   Build a model incrementally, simulate and check as you go along

   Program behavior (implementation level)
   Check properties before delivering the software

   Applications
   File system analysis
   Network protocols
   Course scheduler

Static Program Checking 29

Alloy

   Efficient for describing structures
   Network topology
   Program data structures

   Can be analyzed automatically
   Research tool, but very well supported
   Useful library functions, sample models

   Analysis technique
   Nothing like model checkers of that time
   Translates constraints to boolean formulas and uses SAT solver
   Exploits off-the-shelf solvers
   Now model checkers translate to SAT too

   Both as
   Environment for checking correctness by manual modeling
   Engine for checking correctness by automatic modeling

