
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Automated Software Analysis Group, Institute of Theoretical Informatics

www.kit.edu

Static Program Checking
Introduction

Jun.-prof. Dr. Mana Taghdiri

Thursday – April 24, 2014

Static Program Checking 2

Administrative notes

   Lecturer

   Mana (mana.taghdiri@kit.edu, Geb. 50.34, Room 229)

   Office hours by appointment

   Class material

   Recent research papers

   Will practice with the tools whenever possible (bring your laptops)

   Exchange of ideas (the more interactive, the better)

   Exam

   Part of the ‘formal methods’ module

   Oral exam

Static Program Checking 3

Contents Overview

   Class focuses on systematic bug-finding techniques

   Emphasis on cost, practicality, and automation

   Push-button techniques

   In contrast to verification approaches

   E.g. theorem proving

   Announced topics

   Finding bugs in OO programs statically

   As opposed to testing

   Inferring what programs do

   Summaries

   Static techniques

   Invariants

   Static and dynamic techniques

   Iterative analysis via feedback loops

Static Program Checking 4

Approach

   Flexible about the topics

   Will adjust based on your feedback

   If interested in such topics

   Diploma/masters thesis

   student work

   Discussions

   Check out the website regularly

   http://asa.iti.uka.de/

   For the list of references, schedule, and slides

Static Program Checking 5

Traditional testing is not cost-effective

   Zero-tolerance for bugs in safety-critical software

   Air-traffic controllers, medical equipments, automotive industry, etc.

   Pressure to reduce time-to-market

   Testing is easy

   Few first tests reveal many quick bugs

   Tests are usually run automatically and repeatedly

   Testing is incomplete

   Requires domain experts to pinpoint troubling scenarios

   Testing is costly

   Consumes half the total cost of software development

   Microsoft hires one tester for every developer

Static Program Checking 6

Automatic test-case generation

   Exhaustive generation

   Test cases generated for a method based on its pre-condition

   All non-isomorphic test cases up to a certain size

   Runs the code on generated tests and compares against the post-condition

   Either declarative (based on Alloy) or imperative algorithm

   Random generation

   But “feedback-directed”

   Randomly selects which method to call next and its arguments from

available objects

   Executes generated tests and uses the feedback to generate better tests

   Execution results determine whether the input is redundant, illegal, contract-

violating, or useful for generating more inputs

   Automated test generation is a solution, but not our topic!

Static Program Checking 7

Cost vs. confidence

cost

confidence

testing

Static Program Checking 8

Cost vs. confidence

cost

confidence

testing

theorem
proving

Static Program Checking 9

Cost vs. confidence

cost

confidence

testing

theorem
proving

bounded model
checking

Static Program Checking 10

Cost vs. confidence

cost

confidence

testing

theorem
proving

bounded model
checking

bounded
verification

Static Program Checking 11

Cost vs. confidence

cost

confidence

testing

theorem
proving

bounded model
checking

bounded
verification

Static Program Checking 12

Static software checking

   Checks a functionality of the code (property)

   Provided by the user

   Says what the code is supposed to do

   Provides certainty for program correctness (confidence)

   What kind of properties does it check?

   How complete is the analysis?

   Requires efforts from users (cost)

   Code preparations before the analysis?

   User interaction during the analysis?

   Understanding the reported bug?

   False alarms?

   Analysis time?

Static Program Checking 13

Inferring what programs do (Examples)

   Summarization

   Static

   Syntactic specifications in Alloy

   Infers post-conditions based on pre-state values

   Good for OO code

   Based on symbolic execution and abstract interpretation

   Invariant detection (Daikon)

   Dynamic

   A machine learning technique

   Properties that hold at a certain point in the program

   Unsound, but likely

   Runs on a suite of test cases and learns invariants

   Why is invariant detection/summarization important?

Static Program Checking 14

Iterative analysis via feedback loops

Program
behavior Property ?

Static Program Checking 15

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

Static Program Checking 16

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

YES! 

Static Program Checking 17

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

YES! 

NO …

✖

Static Program Checking 18

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

YES! 

NO …

✖

Static Program Checking 19

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

Static Program Checking 20

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

YES! 

Static Program Checking 21

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

YES! 

NO …

✖

Static Program Checking 22

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

YES! 

NO …

✖

Static Program Checking 23

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

✖

Static Program Checking 24

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

YES! 
✖

Static Program Checking 25

Abstract behavior

Iterative analysis via feedback loops

Program
behavior Property ?

✖

YES! 

NO

✖

✖ 

Counterexample-guided Abstraction Refinement (CEGAR)

Static Program Checking 26

Alloy

   Invented by Daniel Jackson at MIT in 2000

   http://alloy.mit.edu/community/

   Daniel Jackson. Software Abstractions: Logic, Language, and Analysis.

MIT Press. Cambridge, MA. 2012.

   A modeling language

   Declarative

   As opposed to imperative

   Describes the logic of a computation without describing its control flow

   Example

   Sorting

   Common declarative languages

   Regular expressions

   Logic programming (Prolog)

   Functional programming (ML)

Static Program Checking 27

Other modeling languages

   JML, OCL

   Larch

   Developed in 1980s

   Good for concurrent programs and algebraic datatypes

   Based on theorem proving

   Not fully automatic, but good for its time

   Z

   Based on the simple notions of set theory

   But even less analyzable than Larch

   SMV language

   Model checker

   Checked a billion states in seconds with no aid from user – explicit

   Formal methods became fashionable overnight

   Widely used for hardware

   Language not suitable for structure-rich software

Static Program Checking 28

Alloy

   Motivation

   Brings the SMV-like automation to a Z-like language

   For writing succinct and precise descriptions of

   Software systems (design level)

   Pick the right design, implementation follows naturally

   Check properties before committing to code

   Build a model incrementally, simulate and check as you go along

   Program behavior (implementation level)

   Check properties before delivering the software

   Applications

   File system analysis

   Network protocols

   Course scheduler

Static Program Checking 29

Alloy

   Efficient for describing structures

   Network topology

   Program data structures

   Can be analyzed automatically

   Research tool, but very well supported

   Useful library functions, sample models

   Analysis technique

   Nothing like model checkers of that time

   Translates constraints to boolean formulas and uses SAT solver

   Exploits off-the-shelf solvers

   Now model checkers translate to SAT too

   Both as

   Environment for checking correctness by manual modeling

   Engine for checking correctness by automatic modeling

