
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Automated Software Analysis Group, Institute of Theoretical Informatics

www.kit.edu

Static Program Checking

Alloy Engine

Jun.-prof. Mana Taghdiri

Thursday – May 15, 2014

Automatic Program Checking2

Alloy Analysis

Terminology notes
Alloy solves a model and produces an instance (solution)

Alloy model = collection of constraints in Alloy
Alloy instance = assignment of symbolic values to Alloy variables

In literature, these terms are used differently
Problem = collection of constraints

Model = assignment of symbolic values to variables used in the constraints

Automatic Program Checking3

Alloy Analysis

Alloy problem

Automatic analysis is the biggest advantage of Alloy
An instance finder (model finder)

As a simulator:

As a checker (same mechanism, why?)

Constantly used while a model is being developed

Automatic Program Checking4

Scope-complete analysis

Alloy logic is undecidable
Why?

What are some of its decidable subsets?

Automatic Program Checking5

Scope-complete analysis

Alloy logic is undecidable
Why?
What are some of its decidable subsets?

Monadic first-order (no relations of arity higher than 1)

A particular ordering of quantifiers (prefixes of the form [all]2[some]*)

Relational calculus (with the join operator) is undecidable

Can produce an undecidable combination of quantifiers

Analysis is performed w.r.t. a scope
A multi-dimensional space of test cases

Is separate from the model itself

Small scope hypothesis
Most bugs have small counterexamples

Automatic Program Checking6

Alloy analysis performed via boolean SAT

Alloy Analyzer is like a compiler
Translates F.O. relational formulas to boolean formulas

Uses an off-the-shelf SAT solver to solve the boolean formula

Clarifications
Example of an FO relational formula?

Example of a boolean formula?

What is a SAT problem?

Automatic Program Checking7

Alloy analysis steps

Initial conversions

Translation to a boolean formula

Conversion to conjunctive normal form

Solving using an off-the-shelf SAT solver

Reconstructing an Alloy solution

Automatic Program Checking8

Alloy analysis steps

Initial conversions

Translation to a boolean formula

Conversion to conjunctive normal form

Solving using an off-the-shelf SAT solver

Reconstructing an Alloy solution

Automatic Program Checking9

Initial conversions

Negation normal form (NNF)
Only elementary formulas are negated

Push the negation inwards as much as possible
using de Morgan’s law

Example
 not (all x: X | some y: Y | x.r = y) ?

 some x: X | all y: Y | not x.r = y

Automatic Program Checking10

Handling quantifiers

Universal
Ground out the quantifier

Example:
 all x: S | F where S = {S0, S1, S2} ?

Automatic Program Checking11

Handling quantifiers

Universal
Ground out the quantifier

Example:
 all x: S | F where S = {S0, S1, S2} ?

 F[S0/x] and F[S1/x] and F[S2/x]

Existential
Similar approach

 some x: S | F where S = {S0, S1, S2} ?

Automatic Program Checking12

Handling quantifiers

Universal
Ground out the quantifier

Example:
 all x: S | F where S = {S0, S1, S2} ?

 F[S0/x] and F[S1/x] and F[S2/x]

Existential
Similar approach

 some x: S | F where S = {S0, S1, S2} ?

 F[S0/x] or F[S1/x] or F[S2/x]

Skolemization: Replaces the bound variable by a fresh free variable
 (sx: S) and F[sx/x]

Why correct?

Automatic Program Checking13

Skolemization

Why better?
Better performance

This is exactly what the SAT solver is for

Witness generation
A value for the quantified var that makes the body of the formula true

In the disjunction case, since x doesn’t appear, it is not clear which disjunct is
true when an instance is found
Free vars are named as predName_varName in Alloy

What about nested quantifiers?
 all x: S | some y : T | F

Automatic Program Checking14

Skolemization

Why better?
Better performance

This is exactly what the SAT solver is for

Witness generation
A value for the quantified var that makes the body of the formula true

In the disjunction case, since x doesn’t appear, it is not clear which disjunct is
true when an instance is found
Free vars are named as predName_varName in Alloy

What about nested quantifiers?
 all x: S | some y : T | F

 (sy: S -> one T) and (all x: S | F[x.sy/y])

Introduces a fresh function

Automatic Program Checking15

Alloy analysis steps

Initial conversions

Translation to a boolean formula

Conversion to conjunctive normal form

Solving using an off-the-shelf SAT solver

Reconstructing an Alloy solution

Automatic Program Checking16

Translation to boolean

The proof obligation is reduced to a proposition using the scope
information

Satisfiability-preserving with respect to the scope
A relational formula R has a solution within a scope of s if and only if the
boolean formula Translate(R, s) has a solution

Automatic Program Checking17

Translation to boolean

Represent relations by bit vectors
A unary relation r: A (signature, scalar, etc.)

[r1, r2, .., rn] where

ri is a boolean variable and n = scope(A)

(a vector)

A binary relation r: A -> B
[r11 r12 .. r1n, r21 r22 .. r2n, .., rm1 rm2 .. rmn] where

rij is a boolean variable and n = scope(B) and m = scope(A)

(an m*n matrix)

All relational operations are performed on these matrices

Operations are done bottom up on the abstract syntax tree (AST)

When we get to the root, we are left with a single boolean formula

Automatic Program Checking18

Translation to boolean

r : A -> B , s : A -> B

r + s

Automatic Program Checking19

Translation to boolean

r : A -> B , s : A -> B

r + s
A matrix of (rij or sij)

r & s

Automatic Program Checking20

Translation to boolean

r : A -> B , s : A -> B

r + s
A matrix of (rij or sij)

r & s
A matrix of (rij and sij)

r.s

Automatic Program Checking21

Translation to boolean

r : A -> B , s : A -> B

r + s
A matrix of (rij or sij)

r & s
A matrix of (rij and sij)

r.s
Matrix multiplication

r in s

Automatic Program Checking22

Translation to boolean

r : A -> B , s : A -> B

r + s
A matrix of (rij or sij)

r & s
A matrix of (rij and sij)

r.s
Matrix multiplication

r in s
A formula of and { (rij implies sij) }

r = s

Automatic Program Checking23

Translation to boolean

r : A -> B , s : A -> B

r + s
A matrix of (rij or sij)

r & s
A matrix of (rij and sij)

r.s
Matrix multiplication

r in s
A formula of and { (rij implies sij) }

r = s
A formula of and { (rij implies sij) and (sij implies rij) }

Automatic Program Checking24

Example

not (x.r = y)

x : A and scope(A) = 2

y : B and scope(B) = 2

r : A -> B

How does the AST look like?

What is the order of translation?

What is the final boolean formula?

Automatic Program Checking25

Alloy analysis steps

Initial conversions

Translation to a boolean formula

Conversion to conjunctive normal form

Solving using an off-the-shelf SAT solver

Reconstructing an Alloy solution

Automatic Program Checking26

Conversion to CNF

Conjunctive normal form (CNF)
A conjunction of clauses

A clause is a disjunction of literals

A literal is a variable or the negation of a variable

Example:
 (a or b or c) and (!a or b or d) and (!b or !c or !d)

 a: true, b: true, c: false

Standard conversion technique

CNF is the standard input language of all SAT solvers
Enables Alloy to treat SAT solvers as a black box

Can always plug in the SAT solver of your own choice

Automatic Program Checking27

Alloy analysis steps

Initial conversions

Translation to a boolean formula

Conversion to conjunctive normal form

Solving using an off-the-shelf SAT solver

Reconstructing an Alloy solution

Automatic Program Checking28

SAT solving

Complexity?
2-SAT is polynomial

3-SAT is NP-complete

DPLL SAT solvers

Recent developments
Annual SAT competitions

Extra features: unsat core, MaxSAT, SAT Modulo Theories

Automatic Program Checking29

DPLL algorithm

function DPLL(p: Boolean formula): boolean {

if p contains an empty clause
return false;

if all variables are assigned
return true;

for every unit clause c in p
p = unit-propagate(c, p);

for every literal l that is pure in p
p = pure-literal-assign(l, p);

l = choose-literal(p);

return DPLL(p and l) or DPLL(p and not l);

}

Automatic Program Checking30

DPLL algorithm – example

(a !b !c)

(b)

(c !b d)

(a c)

(!c !b !d)

Automatic Program Checking31

DPLL algorithm – example

(a !b !c) (a !c)

(b)

(c !b d) (c d)

(a c) (a c)

(!c !b !d) (!c !d)

Unit clause: b = true

Automatic Program Checking32

DPLL algorithm – example

(a !b !c) (a !c)

(b)

(c !b d) (c d) (c d)

(a c) (a c)

(!c !b !d) (!c !d) (!c !d)

Unit clause: b = true

Pure literal: a = true

Automatic Program Checking33

DPLL algorithm – example

(a !b !c) (a !c)

(b)

(c !b d) (c d) (c d)

(a c) (a c)

(!c !b !d) (!c !d) (!c !d) (!d)

Unit clause: b = true

Pure literal: a = true

Choose : c = true

Automatic Program Checking34

DPLL algorithm – example

(a !b !c) (a !c)

(b)

(c !b d) (c d) (c d)

(a c) (a c)

(!c !b !d) (!c !d) (!c !d) (!d)

Unit clause: b = true

Pure literal: a = true

Choose : c = true

Unit clause: d = false

Automatic Program Checking35

Alloy analysis steps

Initial conversions

Translation to a boolean formula

Conversion to conjunctive normal form

Solving using an off-the-shelf SAT solver

Reconstructing an Alloy solution

Automatic Program Checking36

Backward translation

If the SAT solver finds no solution,
Alloy reports no solutions exist

If the SAT solver finds a solution
Alloy constructs an Alloy solution based on the boolean solution

Generates symbolic values for variables

If the boolean variable rij = true then the symbolic pair <Ai, Bj> is included in r

Revisit the example
not (x.r = y)

What if x and y are singletons?

Automatic Program Checking37

Alloy Analysis

How big is the search space for a scope of 3?

Automatic Program Checking38

Alloy Analysis

How big is the search space for a scope of 3?
– A binary relation contributes 9 bits to the state

● This implies 29 states (512)

– A tiny model with only 4 binary relations:

● 236 (over a billion) states

How does Alloy compute transitive closure?

Automatic Program Checking39

Alloy Analysis

How big is the search space for a scope of 3?
– A binary relation contributes 9 bits to the state

● This implies 29 states (512)

– A tiny model with only 4 binary relations:

● 236 (over a billion) states

How does Alloy compute transitive closure?
– Can’t do fixpoint computation statically

– Computes join n-1 times – by powers of two

● Why sufficient?

Automatic Program Checking40

Symmetry breaking

Every Alloy model has a natural symmetry
Alloy atoms are uninterpreted

Alloy doesn’t allow the user to constrain an atom explicitly

So, all atoms of a basic type are interchangeable

Take an instance and just permute the atoms

Divide the set of all instances to equivalence classes
Two instances are in the same class if they are permutations of each other

Each property either holds for all of them or doesn’t for none of them

Example?

Symmetry breaking is to ensure that only “one” solution in each
equivalence class is considered

Automatic Program Checking41

Symmetry breaking

Helps the performance when equivalence classes are large

Done by generating more constraints to pass to the SAT solver
These are called symmetry-breaking predicates

Alloy’s symmetry breaking isn’t perfect in theory, but very useful in
practice

To eliminate all-but-one solution of each class, will need too many
constraints that damage the solver’s performance

Automatic Program Checking42

Example Example

A unary relation r defined over a signature of scope k has k+1
equivalence classes

Based on the number of elements in r

A = [a0, a1, a2]
000 (good),

001 (good), 010 (bad), 100 (bad),

011 (good), 101 (bad), 110 (bad),

111 (good)

Good: [a0] <= [a1] <= [a2] (lexicographic order)

Boolean predicate for [a0] <= [a1] is (!a0 or a1)

Example

A unary relation r defined over a signature of scope k has k+1
equivalence classes

Based on the number of elements in r

A = [a0, a1, a2]
000 (good),

001 (good), 010 (bad), 100 (bad),

011 (good), 101 (bad), 110 (bad),

111 (good)

Good: [a0] <= [a1] <= [a2] (lexicographic order)

Boolean predicate for [a0] <= [a1] is (!a0 or a1)

Automatic Program Checking43

Example

A unary relation r defined over a signature of scope k has k+1
equivalence classes

Based on the number of elements in r

A = [a0, a1, a2]
000 (good),

001 (good), 010 (bad), 100 (bad),

011 (good), 101 (bad), 110 (bad),

111 (good)

Good: [a0] <= [a1] <= [a2] (lexicographic order)

Boolean predicate for [a0] <= [a1] is (!a0 or a1)

B = [b0, b1, b2], r: A->B = [v0 v1 v2, v3 v4 v5, v6 v7 v8]
Lexicographic order of A: [v0v1v2] <= [v3v4v5] <= [v6v7v8]

Lexicographic order of B: [v0v3v6] <= [v1v4v7] <= [v2v5v8]

Then convert to predicates

Automatic Program Checking44

Symmetry breaking predicates

Preserve the satisfiability of the formula

Are true of at least one solution in each equivalence class

Are true of the smallest possible number of solutions in each equivalence class

Speed up SAT backtracking search by causing a backtrack whenever all
extensions of the current partial variable assignment violate the predicate

Very effective for unsatisfiable formulas
They usually take longer because the whole search space must be considered

Help satisfiable formulas by excluding solutionless regions of search space
But makes hitting a solution harder

Good for enumerating solutions

Automatic Program Checking45

Sharing detection

Grounding out quantified formulas is costly
Ground form can contain shared formulas
Grounding out first, determining identical formulas later is infeasible due to the
size of the ground formula

Sharing detection determines identical expressions and allows them to be
shared before grounding

Shared through a DAG

To avoid multiple boolean formulas for same identical sub-expression

Example
all p:A, q:B | G(p) or H(G(p), q)

(G(A0) or H(G(A0), B0)) and

(G(A0) or H(G(A0), B1)) and

(G(A1) or H(G(A1), B0)) and

(G(A1) or H(G(A1), B1))

G(A0) and G(A1) are shared four times

Automatic Program Checking46

Sharing detection – Template mechanism

Using a template of G(?), sharing can be detected
 Remember a pointer to the graph node of G(A0) and use it while
grounding out the rest of the formula

General algorithm:
Walk the quantified formulas abstract syntax tree (AST) in DFS order

For each node, determine the templates matched by its children, then the
template matched by the node

Either it matches a previously seen template or create a new template

Automatic Program Checking47

Universal quantifiers over finite signatures

Problem occurs when a signature is intended to represent all possible values of an
entity

Contradicts with Alloy semantics

Specially when that signature is used with universal quantifier

Example:
sig Set { elements : set Element } sig Element {}

assert closed {

all s0, s1 : Set | some s2 : Set | s2.elements = s0.elements + s1.elements }

Counterexample:
Set = { (S0), (S1) } Element = {(E0) (E1) } s0 = {(S0)} s1 = {(S1)}

elements = {(S0, E0), (S1, E1)}

Analyzer didn’t populate the signature Set with enough values
Add a generator axiom

fact SetGenerator {

 some s : Set | no s.elements all s: Set, e: Element | some s’: Set | s’.elements = s.elements + e }

Space explosion problem (for scope(Element) = k, needs 2k Sets)

Automatic Program Checking48

Generator axioms

Sometimes the generator axiom requires an infinite number of atoms:

abstract sig List {}

one sig EmptyList extends List {}
sig NonEmptyList extends List {

value : Element,

rest : List }

Generator axiom to populate all lists:

fact ListGenerator {

 all l: List, e: Element | some l’: List | l’.rest = l and l’.value = e }

Unless Element is empty, the axiom makes the model inconsistent, all
assertions vacuously true

Not a good idea to declare lists recursively
Use “set” if the order doesn’t matter

Automatic Program Checking49

Why is Alloy useful then?

Generator axioms are needed for mathematical objects, but not for real problem
domains

Don’t arise very often in practice

Don’t usually say a directory exists for every possible combinations of files!

No problem with existential quantifier:
assert UnionCommutative {

all s0, s1, s2 : Set | s0.elements + s1.elements = s2.elements implies

 s1.elements + s0.elements = s2.elements }

Negated fact contains existential quantifier.. No generator axiom needed

Bottom line:
Finite instance finding may produce spurious counterexamples or vacuously-true
checks in theory

Reference:
Relational analysis of algebraic datatypes, Viktor Kuncak and Daniel Jackson, 2005

	Slide 1
	Alloy Analysis
	Slide 3
	Scope-complete analysis
	Scope-complete analysis
	Alloy analysis performed via boolean SAT
	Alloy analysis steps
	Alloy analysis steps
	Slide 9
	Handling quantifiers
	Handling quantifiers
	Handling quantifiers
	Skolemization
	Skolemization
	Alloy analysis steps
	Translation to boolean
	Translation to boolean
	Translation to boolean
	Translation to boolean
	Translation to boolean
	Translation to boolean
	Translation to boolean
	Translation to boolean
	Example
	Slide 25
	Conversion to CNF
	Slide 27
	SAT solving
	DPLL algorithm
	DPLL algorithm – example
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Backward translation
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Symmetry breaking predicates
	Sharing detection
	Sharing detection – Template mechanism
	Universal quantifiers over finite signatures
	Generator axioms
	Why is Alloy useful then?

