AT

Karlsruhe Institute of Technology

Static Program Checking

Bounded Verification — Jalloy

Automated Software Analysis Group, Institute of Theoretical Informatics

Jun.-prof. Mana Taghdiri

June 5, 2014

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

AT

stitute of Technology

Modeling dynamic behavior in Alloy

® Dynamic attributes
® Those parts of the model that change in the lifetime of the system

® E.g. the spanning tree algorithm
® Whether a node of the graph is already in the tree or not

® Alloy has no built-in notion of “state” or “time”
® Provides flexibility
® Users can pick the right formulation, and the most intuitive one

® Some common idioms

® Local state
® Global state

Static Program Checking

AT

stitute of Technology

Global vs. local state

® Alloy is a side-effect free declarative language.
® Cannot say that time advances (or state changes)

® Instead, we define an order over all time ticks (or states) in order to talk
about the order in which events happen.

® In local-state models, history is local to objects, but in global-state
models, state is a snapshot of the whole system at each time

® Local-state: parent: Node - Time - lone Node
® Global-state: parent: State > Node - lone Node

® By shifting the time notion, in local-state models, we can maintain all the
attributes of an entity in a single place, i.e. the declaration of that entity.

B Global state distinguishes between static and dynamic attributes
® A state can be added on top of an existing model of static attributes
® Separation of concerns

® Local-state modeling results in better modularity.
® Simpler? More intuitive?

Static Program Checking

Jalloy — problem statement A\‘(IT

stitute of Technology

® Checking deep user-defined properties of object-oriented code

® Properties are about the functionality of the code:
® Pre-condition => post-condition
® Include linked data structures
® Can get arbitrarily complex

® Most tools target “temporal safety properties”
® Represented by a finite state machine

® Good for checking properties that describe event sequences
® Example? Lock acquire/release

Static Program Checking

AT

stitute of Technology

Jalloy

® Inputs
® A Java procedure (method)
® A description of pre and post conditions — property — (in Alloy)
® Finite bounds (number of objects, loop iterations)

® Outputs
® A sound bug (no false alarms)

Static Program Checking

AT

stitute of Technology

Other verification tools for structural properties

® Verification tools
® Prove that the code is correct

® Examples
® Shape analysis (TVLA)
® Theorem proving (KeY)

® Scalability is a big problem
® A lot of annotations should be provided by the user

® Bounded verification
® Look for a bug statically — lack of bug is not conclusive
® Examples
® Based on Alloy (Jalloy, Forge, Karun)
® Based on SMT (InspectJ)
® Based on Simplify (ESC/Java)
® Scale better than verification
® Amount of user-provided annotations depends on the tool

Static Program Checking

Karlsruhe Institute of Technology

General approach

® Translate the code to a logical formula (¢)

® Translate the property to a logical formula (p)

® Use a constraint solveron (c A 7p)

® Any satisfying solution is a code execution violating the property

Either translate the code precisely, or ..

property

ﬂ

Static Program Checking

KIT

u
M o d u I a rl ty Karlsruhe Institute of Technology

® Replace a procedure with its specification

® Assume-guarantee (done bottom up)
® Makes the technique scale better
® (like a divide-and-conquer approach)

property

spec A/-\Aspec

spec J ‘spec\ spec spec! I\Aspec
spec ! spec spec M Spec !pec !spec !.spec

Static Program Checking

AT

stitute of Technology

Modularity

® The user must provide all these intermediate specifications

@ Costly for users:
® Proportional to the size of code
® ESC/Java: annotations can be 10% of the implementation size
® Hob: annotations can be 40% of the implementation size

® Jalloy is modular
® Can substitute specifications for procedures
® But, doesn’t have to
® [f no specifications provided, inlines procedure calls

Static Program Checking

10

Jalloy architecture

I Alloy

ava source Specification
Alloy
FOL

©
Propositional

Logic

Y SAT solver
CNF

Karlsruhe Institute of Technology

;

ounterexample

Trace
A

Satisfying
Assignment

Static Program Checking

stitute of Technology

Jalloy’s algorithm A\‘(IT

B Uses a 3 step translation:
® From code to an Alloy formula
® From Alloy to propositional logic
® From propositional logic to CNF
® A SAT solver solves the generated CNF
® A solution is a counterexample to the property being checked

® Jalloy came out at the time of Alloy 3

® Alloy had no well-defined API
®m Jalloy had to produce Alloy files and parse them using the Alloy Analyzer

® Many optimizations were absent from Alloy
® Alloy 3 is overall much slower than Alloy 4

® (Alloy 4 has a very well-written engine API: Kodkod)

1 Static Program Checking

12

KIT

mgm
S c a I a b I I Ity Karlsruhe Institute of Technology

® Two possible approaches

® Top-down:
® Look at the constraint solver as a black box
® Optimize the process to scale to larger code
® Examples: Forge, Karun
® Bottom-up:
® Develop an efficient, domain-specific constraint solver
® Example: Jalloy

® Jalloy employs a set of optimizations for all translation levels

® Suitable in the context of code analysis
® For Java - Alloy (Java fields are dynamic attributes)
® For Alloy - Propositional logic (Java fields are functional relations)
® For Propositional logic > CNF (for functional relations)

® The size of the generated CNF reduced exponentially
W Better analysis time
® Scales to larger programs

Static Program Checking

KIT

Modeling the heap

® Relational vs. scalar variables
® Relational requires an expressive logic
® Relational can support expressing data structure properties

® reachability
® Acyclicity

® Example:

class ListElem {
int val;
ListElem next;

}

class List {
ListElem first;

13 Static Program Checking

Modeling field updates — Local state — example

Swaps the tails of the two given linked lists

class ListElem {
int val;
ListElem next;

}

class List {
ListElem first;
static void swapTail(List 1, List m){
if (1.first '= null && m.first != null) {
ListElem temp = l.first.next;
l.first.next = m.first.next;
m.first.next = temp;

}
}
}

14

KIT

Karlsruhe Institute of Technology

Static Program Checking

KIT

Local state — example
sig Time {}

class ListElem { sig LI'S;'_E'em ; -
:) val: Time = one int,
1ot val; next: Time - lone ListElem
ListElem next;)

}

class List { sig List {
ListElem first; first: Time - lone ListElem

}

15 Static Program Checking

KIT

Local state — example

static void swapTail(List 1, List m){
if (1.first !'= null && m.first != null) {
ListElem temp = l.first.next;
l.first.next = m.first.next;
m.first.next = temp;

}
}

| {0 = initial time
pred swapTail(l, m: List, t0, t1, t2: Time) {

<'—\ t2 = final time
(some L.first[t0]) && (some m.first[t0]) => {
let temp = Lfirst[tO].next[t0] | {

|.first[t0].next[t1] = m.first[t0].next[t0] <I:: t1 = time after first field update
all o: ListElem-l1.first[t0] | o.next[t1] = 0.next[t0]

all o: ListElem | o.val[t1] = o.val[tO] :|»

all o: List | o.first[t1] = o.first[tO]
... Il mfirst.next = temp

}

} else
t2=10

16 Static Program Checking

KIT

Local/global state modeling

® Frame conditions are necessary
® We can’t leave the fields unconstrained
® Frame conditions say which values stay the same
® Writing those can be tedious
® Every time a field is updated, one must say that other fields stay the same
® Almost every single program statement requires a new state

® The scope of “state” or “time” is in the order of hundreds for a small Java
method

® All relations that have “state” or “time” as a column become huge
® Alloy can’t handle this

® Good for hand-written Alloy models where the number of states is small

Static Program Checking

AT

stitute of Technology

Jalloy translation of Java to Alloy

®m After each statement, only duplicate the relation that was modified
® Don't allow any other changes

| Steps:
® Build a computation graph
® Introduce correctly-named variables
® Encode data flow
® Encode control flow

Static Program Checking

Jalloy — example

class ListElem {
int val;
ListElem next;
}
class List {
ListElem first;
static void swapTail(List 1, List m){
if (1.first != null
1 &% m.first !'= null) {
ListElem temp = l.first.next;

o

2 l.first.next = m.first.next;
3 m.first.next = temp;
4 }

}}

19

KIT

Karlsruhe Institute of Technology

|, m, first, next, val : pre-state
ret, first’, next’, val’ : post-state

Property:
acyclic(l, first, next) and
acyclic(m, first, next) implies
acyclic(l, first’, next’) and
acyclic(m, first’, next’)

Is this property valid?

Static Program Checking

AT

stitute of Technology

Jalloy counterexample

pre state post state
[m / m

@O0 D
—@) @

20 Static Program Checking

Computation graph

Lfirst !=null &&

m.first != null

temp = Lfirst.next

l.first.next = m.first.next

m.first.next = temp

snull ||
== null

Lfirst =
m.fir

21

KIT

Karlsruhe Institute of Technology

v" Is a CFG with unrolled loops:
v Is a DAG

v Nodes = program points

v Edges = stmts and conditions

Static Program Checking

Single static assignment (SSA) A\‘(IT

stitute of Technology

B SSA makes dataflow information explicit

® Usually used for compiler optimizations

® In every assignment to a variable v, it generates a fresh name for v
® Everytime v is used, it is obvious which v it is.

if (o > 0) if (n0 > 0)

n =n+ 1 - nil =n0 + 1

n3 = 2*n2

22 Static Program Checking

KIT

Jalloy’s renamings

B Same as SSA

® Not only for variables, but also for fields (relations)
® No use of phi function

® At each branch reuse the names.

W Before the join point, constrain the shorter path s.t. variable name at the
end of longer path = variable name at the end of shorter path

23 Static Program Checking

24

Example — swap tails

10.firstO == null I
mO.first0 == nu

templ = tempO
next2 = next0

10.firstO !'= null &&
m0Q.firstO != null

templ =10.first0.next0

©

10.firstO.next] = mO.first0.next0

©

m0.first0.next2 = temp1

ST

Karlsruhe Institute of Technology

Static Program Checking

KIT

Encoding control flow

® The Alloy model includes a boolean variable for every edge of the
computation graph.
® An edge from node O to node 1 is modeled by variable EO1
® The value of this variable is true if and only if the edge is traversed

10.firstO == null ||
10.firstO != null &&

m0.first) == nu
m0.first0 != null E 01 || E_04 &&
CD E_01 => E_12 &%
temp] = temp0 temp1 = 10.first0.next0 E_12 => E_23 &&
next2 = next0 C2> E_23 => E_34

10.first0.next]l = mO.first0.next0

©

m0.first0.next2 = temp1

25 Static Program Checking

KIT

Encoding data flow
W For every edge, express how relations are changed along that edge

0

10.firstO == null ||
10.firstO != null &&

mO.firstO == nu
mO.firstO != null
1
templ = tempO temp1l = 10.firstO.nextO
next2 = nextO 2

10.firstO.nextl = mO.firstO.nextO

mO.firstO.next2 = temp1

4

E_01 => some 10.first0 && some mO.firstO

E_04 => no 10.first0 || no mO0.firstO

E_12 => templ = 10.first0.nextO

E_23 => 10.firstO.nextl = m0.first0.next0 &&

Frame codition all o: ListElem - 10.first0 | o.nextl = o.nextO
E_34 => m0.first0.next2 = templ &&

Frame codition all o:ListElem-mO.firstO | o.next2 = o.nextl

N
o

Static Program Checking

Loop unrolling

{..

stmt1;
while (cond) {
stmt2;

}
stmt3;

KIT

Karlsruhe Institute of Technology

stmt1;
if (cond) {
stmt2;
if (cond) {
stmt2;
}
}

assume (!cond);
stmt3;

}

Jalloy only checks those executions that don’t go over the
loop more that the specified bound.

What happens to a for-loop with a fixed iteration number?

27

Static Program Checking

AT

stitute of Technology

Program constructs

® Method calls
® |[f a specification is provided, it will be used. Otherwise, the method is
inlined
® Object allocation
® x=new Type();
® (x=T0)and (TO lin usedType0) and (usedType1 = useTypeO + TO)
® Dynamic dispatch

® The actual type of an atom (representing an object) is determined by set
membership test in Alloy

® Dynamic dispatch becomes a switch statement

® Arrays and integers
® Very limited support — due to Alloy’s limited support for numbers

W Java API
® Common library classes and methods are manually specified in Alloy

Static Program Checking

29

KIT

u u
D I s c u s s I o n s Karlsruhe Institute of Technology

® Advantages of this translation:
® No explicit state atoms,
® Instead of v: Time = Type, and v[t1], we have v1
® Smaller CNF
® Local/global state replicates all relations after every statement
® Small frame conditions
® They only concern the field being updated. Other fields can never be changed

® Treatment of null:
® Null is represented by empty set
® Can’t express sets containing null (for the java set data structure)
® Null can be represented by a special atom of each type

® Makes relations bigger by one
® Type hierarchy becomes hard to manage

Static Program Checking

From Alloy to propositional logic — review A\‘(IT

® Represent relations by bit vectors

® A unary relation r: A (signature, scalar, etc.)
[ryry.. 1] Where
. is a boolean variable and n = scope(A)
(a vector)

® Abinary relationr: A> B
[F11 12 - T4 Toq Too o Topy ooy Tepq T2 -+] WhHere
r; s a boolean variable and n = scope(B) and m = scope(A)
(an m*n matrix)

® All relational operations are performed on these matrices
® Operations are done bottom up on the abstract syntax tree (AST)
® When we get to the root, we are left with a single boolean formula

30 Static Program Checking

31

Alloy to boolean — review

rr-A->B , s: A—>B

W r+s
® A matrix of (r; or s;)
mr&s
® A matrix of (rij and sij)
W rs
® Matrix multiplication
Wrins
® A formula of and { (rij implies sij) }
W r=s
® A formula of and { (r; implies s;) and (s;; implies r;) }

AT

stitute of Technology

Static Program Checking

AT

stitute of Technology

From Alloy to CNF - Jalloy optimizations

® Fields declared in programs are functional
® They map each (non-null) object to exactly one object (including null)
® Can be modeled more efficiently and thus, reduce the CNF size

® Reducing the size of CNF is not necessarily good

® The behavior of the SAT solver depends on the structure of the formula
rather than its size

® Symmetry-breaking in Alloy adds more clauses to the boolean formula

® However,

®m State-of-the-art solvers can handle formulas up to a certain size, beyond
that, in most cases, requires either too long or too much memory

® But still experiments are needed to see Jalloy CNF reductions are good or
not

32 Static Program Checking

33

Representing functional relations \‘(IT

® Default of Alloy: represent relations by bit vectors
® A binary relation r: A > B, scope = 3 (+null = 4 columns)
[Fo0 To1 To2 To3s M0 M1 F12 M35 20 21 22 T3l
(r = true => <a, b>inr)
® For a functional relation, in each row, exactly one boolean variable will be
true

® Optimization: a logarithmic representation suffices

® Encode the index of that one atom in binary form

W [rog Mogs Mo 115 Moo F24]

® After a solution is found, read the values of the variables of each row as a
binary number:

= false, ry, = false (00) => <a0, bO>inr
= false, ry, =true (01) =><al, b1>inr
ryo = true, ry, = false (10) =><al, b2>inr
loo = true, ry; =true (11) =><a0, b3>inr

Static Program Checking

AT

stitute of Technology

Field dereference

® In Java (Alloy): x.f=y
W X, yscalar
® f functional relation
® x and y represented by (log n) bits, f by n(log n) bits
B X=X Xy . X, F=1[F1q Fio o T on Toq Tro T
® Construct 1*n representation of x
B [IXAXGALAIX IGAXGALAX L., call this [A A, LA
® x.f=yis given by
AR AR AL AfSY)
A=Y ALY A LA SY)
_ I
AR AT AL AT S YY)

Static Program Checking

Summary A\‘(IT

stitute of Technology

® Jalloy optimizations
® Reduced the size of the final CNF dramatically
® Can check the code in a higher scope with more loop iterations

® Jalloy applications
® Red-black tree
® A garbage collection algorithm
® A method in Jalloy implementation

® Looks like the analyzed method in each case is around 50LOC
® But very data structure intensive

® The first tool ever that used Alloy for static program analysis!

Static Program Checking

36

Can we do better than Jalloy?

® How else would you model the Java code in Alloy?

class ListElem {
int val;
ListElem next;
}
class List {
ListElem first;
static void swapTail(List 1, List m){
if (1.first '= null && m.first != null) {
ListElem temp = l.first.next;
l.first.next = m.first.next;
m.first.next = temp;
}
}
}

ST

Karlsruhe Institute of Technology

Static Program Checking

Alloy Analyzer as a backend engine A\‘(IT

® Up until the end of Alloy 3, a clean API, as a standalone linkable piece
of code was never the concern.

® Alloy was a Desktop CAD application where the Analyzer would only parse
the formulas and produce boolean SAT problems

® Tools like Jalloy would generate Alloy text files and feed it to the parser
® Awkward, and

® Slow (these were usually just a single big formula, with no predicate, function,
or let structures)

® Kodkod

® Designed as a plug-in API
® Clean and well-documented Java API
® Kodkod logic is the core subset of the Alloy logic

® Alloy Analyzer 4
® |[s just a parser + kodkod

37 Static Program Checking

Kodkod A\‘(IT

Karlsruhe Institute of Technology

® Designed with focus on partial instances
® What is a partial instance?
® Example: Sudoku

® Alloy doesn’t support partial instance
® Should model them as singleton signatures
® The Analyzer has to re-discover the partial instance, thus slower analysis

W Better sharing detection mechanism
® To avoid duplicate boolean variable generation in e.g. ground out quantifier

® Alloy expressions were internally represented as a tree to simplify the
algorithms

® Orders of magnitude better performance than Alloy 3
® Especially when partial instances involved
® Allows sharing sub-expressions and sub-formulas by a DAG data structure

Static Program Checking

39

Partial instance example — sudoku

A 9x9 table divided into nine 3x3 sub-tables

All rows must contain all numbers 1 to 9

All columns must contain all numbers 1 to 9

All 3x3 sub-tables must contain all numbers 1to0 9
Some cells already have numbers (shaded cells)

1452 |8|9||3|7|6
72|65 (3|18 4|9
9,8 3| 7|64 1|2 5
6 | 1|91|4[2|T7| 5|38
3 7|4 1|58 9|62
25 8396 4|1 7
816 |21|9[4|3||7|5 1
4 1 9| 71|61 [51|[2]|8]3
513 187|269 4

ST

Karlsruhe Institute of Technology

Static Program Checking

Sudoku in Alloy

abstract sig Number { data: Number —> Number }

abstract sig Regionl, Region2, Region3 extends Number {}

one sig N1, N2, N3 extends Regionl {}
one sig N4, N5, N6 extends Region2 {}
one sig N7, N8, N9 extends Region3 {}

pred complete(rows: set Number, cols: set Number) {
Number in cols.(rows.data) }

pred rules() {
all x, y: Number { lone y.(x.data) }

all row: Number { complete(row, Number) }
all col: Number { complete(Number, col) }

complete(Regionl, Regionl)
complete(Regionl, Region2)
complete(Regionl, Region3)
complete(Region2, Regionl)
complete(Region2, Region2)
complete(Region2, Region3)
complete(Region3, Regionl)
complete(Region3, Region2)
complete(Region3, Region3)

}

pred puzzle() {
N1->N1->N1 4 N1->N4->N2 4 N1->N7->N3 4
N2->N2->N2 4 N2->N5->N3 4 N2->N8->N4 4
N3->N3->N3 4 N3->N6->N4 + N3->N9->N5 +
N4—>N1->N6 + N4->N4->N4 + N4->N7->N5 +
N5->N2->N7 -+ N5->N5->N5 4+ N5->N8->N6 -+
N6—>N3->N8 + N6->N6—>N6 + N6—>N9->N7 -+
N7->N1->N8 -+ N7->N4->N9 4 N7->N7->N7 +
N8—>N2->N9 -+ N8—>N5->N1 4+ N8->N8->N8 -+
NG—>N3->N1 + N9—>N6->N2 4+ N9-—>N9->N4 in data

}

pred game() { rules() && puzzle() }

run game

KIT

Karlsruhe Institute of Technology

* The N71-N9 declarations ensure
that any solution contains
exactly nine Number atoms.

* Field data maps (row, column)
to the number in that cell

» Because Alloy lacks support for
partial instances, given cells
must be encoded as constraints
on the data field

» For example, the constraint
N1->N7->N3 in data ensures
that the solution maps the cell
(1, 7) to the number 3.

Static Program Checking

41

Kodkod vs. Alloy AT

Karlsruhe Institute of Technology

® [n Alloy,

® Relational variables are divided into
® Signatures (unary relations)
® Fields (non-unary relations)

® Signatures form a type hierarchy

® Signatures are bound by an integer limit and that limits the relations too

® In kodkod,
®m All relations are interpreted the same
® All relations are untyped
® Has none of the Alloy’s syntactic sugar (pred, func, fact)

® Relations are bound from both above and below by relational constants
®m A fixed set of tuples drawn from a universe of atoms
® Represent “may” and “must” values

® Has no parser — no textual input

Static Program Checking

Sudoku in Kodkod — parts of the program
P PTos AT

private final Relation Number = Relation.unary(" Number"); Kerrube Insitute of fechnolooy
private final Relation data = Relation.ternary("data");
private final Relation[] regions = new Relation|] { - Universe is a user-provided

Relation.unary("” Regionl”), Relation.unary(” Region2"),

Relation.unary("” Region3") }; Collection of Objects.

public Bounds puzzle() { « Each Universe provides a

final Set<Integer> atoms = new LinkedHashSet<Integer>(9); TupleFactory for Creating constants
for(int i = 1; i <=9; i++) { atoms.add(i); }

final Universe u = new Universe(atoms); * Relations have upper and lower
final Bounds b = new Bounds(u); bound Tup|eSets

final TupleFactory f = u.factory();

b.boundExactly(Number, f.allOf(1)); * Unlike theerlon equivalents,
b.boundExactly(regions[0], f.setOf(1, 2, 3)); these relations are untyped
b.boundExactly(regions[1], f.setOf(4, 5, 6));

b.boundExactly(regions[2], f.setOf(7, 8, 9));

 Unlike its Alloy equivalent, the
final TupleSet givens = f.noneOf(3); puzzle method encodes the partial

givens.add(f.tuple(1, 1, 1)); instance in the Bounds rather than
givens.add(f.tuple(1, 4, 2));)
as constraints

givens.add(f.tuple(9, 9, 4));
b.bound(data, givens, f.allOf(3));

return b;
} Static Program Checking

43

Kodkod optimizations

® In kodkod, symmetry breaking is different because
® Relations are untyped
® Partial instance makes atoms distinct

® In kodkod, sharing detection is at the boolean level
® In Alloy, it is done at the problem level
® Kodkod uses compact boolean circuits

® Kodkod is a free open-source API
® http://alloy.mit.edu/kodkod/

AT

stitute of Technology

Static Program Checking

44

Kodkod vs. Alloy 3
Sudoku (9 x 9)
solver | time vars | clauses
AA 3 | 11,618 | 44,152
KK 0 1,833 2,398
Ceilings and Floors
scope 6 men, 6 platforms 10 men, 10 platforms
solver | time vars | clauses time vars | clauses
AA 1 2,723 11,704 10 | 9,987 | 46,740
KK 0 1,749 3,289 4 6,477 12,449
Mutex Ordering
scope 30 atoms 45 atoms
solver | time vars | clauses time vars | clauses
AA 65 | 74,818 | 722,236 || > 300 - -
KK 2 | 20,080 | 120,097 15 | 67,695 | 543,597

KIT

Karlsruhe Institute of Technology

Static Program Checking

