
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Automated Software Analysis Group, Institute of Theoretical Informatics

www.kit.edu

Static Program Checking
Bounded Verification – Jalloy

Jun.-prof. Mana Taghdiri

June 5, 2014

Static Program Checking 2

Modeling dynamic behavior in Alloy

!   Dynamic attributes
!   Those parts of the model that change in the lifetime of the system
!   E.g. the spanning tree algorithm

!   Whether a node of the graph is already in the tree or not

!   Alloy has no built-in notion of “state” or “time”
!   Provides flexibility
!   Users can pick the right formulation, and the most intuitive one

!   Some common idioms
!   Local state
!   Global state

Static Program Checking 3

Global vs. local state

!   Alloy is a side-effect free declarative language.
!   Cannot say that time advances (or state changes)
!   Instead, we define an order over all time ticks (or states) in order to talk

about the order in which events happen.
!   In local-state models, history is local to objects, but in global-state

models, state is a snapshot of the whole system at each time
!   Local-state: parent: Node Time lone Node
!   Global-state: parent: State Node lone Node
!   By shifting the time notion, in local-state models, we can maintain all the

attributes of an entity in a single place, i.e. the declaration of that entity.
!   Global state distinguishes between static and dynamic attributes

!   A state can be added on top of an existing model of static attributes
!   Separation of concerns

!   Local-state modeling results in better modularity.
!   Simpler? More intuitive?

Static Program Checking 4

Jalloy – problem statement

!   Checking deep user-defined properties of object-oriented code

!   Properties are about the functionality of the code:
!   Pre-condition => post-condition
!   Include linked data structures

!   Can get arbitrarily complex

!   Most tools target “temporal safety properties”
!   Represented by a finite state machine
!   Good for checking properties that describe event sequences
!   Example? Lock acquire/release

Static Program Checking 5

Jalloy

!   Inputs
!   A Java procedure (method)
!   A description of pre and post conditions – property – (in Alloy)
!   Finite bounds (number of objects, loop iterations)

!   Outputs
!   A sound bug (no false alarms)

Static Program Checking 6

Other verification tools for structural properties

!   Verification tools
!   Prove that the code is correct
!   Examples

!   Shape analysis (TVLA)
!   Theorem proving (KeY)

!   Scalability is a big problem
!   A lot of annotations should be provided by the user

!   Bounded verification
!   Look for a bug statically – lack of bug is not conclusive
!   Examples

!   Based on Alloy (Jalloy, Forge, Karun)
!   Based on SMT (InspectJ)
!   Based on Simplify (ESC/Java)

!   Scale better than verification
!   Amount of user-provided annotations depends on the tool

Static Program Checking 7

General approach

!   Translate the code to a logical formula (c)
!   Translate the property to a logical formula (p)
!   Use a constraint solver on (c ∧ ¬p)
!   Any satisfying solution is a code execution violating the property

Either translate the code precisely, or ..

property

M

… …

… … … … …

… … … … … … …

Static Program Checking 8

Modularity

!   Replace a procedure with its specification
!   Assume-guarantee (done bottom up)
!   Makes the technique scale better
!   (like a divide-and-conquer approach)

property

M

… …

… … … … …

… … … … … … …

 spec

 spec spec spec spec spec spec spec

 spec spec spec spec spec

 spec

Static Program Checking 9

Modularity

!   The user must provide all these intermediate specifications
!   Costly for users:

!   Proportional to the size of code
!   ESC/Java: annotations can be 10% of the implementation size
!   Hob: annotations can be 40% of the implementation size

!   Jalloy is modular
!   Can substitute specifications for procedures

!   But, doesn’t have to
!   If no specifications provided, inlines procedure calls

Static Program Checking 10

Jalloy architecture

Static Program Checking 11

Jalloy’s algorithm

!   Uses a 3 step translation:
!   From code to an Alloy formula
!   From Alloy to propositional logic
!   From propositional logic to CNF

!   A SAT solver solves the generated CNF
!   A solution is a counterexample to the property being checked

!   Jalloy came out at the time of Alloy 3
!   Alloy had no well-defined API

!   Jalloy had to produce Alloy files and parse them using the Alloy Analyzer
!   Many optimizations were absent from Alloy

!   Alloy 3 is overall much slower than Alloy 4

!   (Alloy 4 has a very well-written engine API: Kodkod)

Static Program Checking 12

Scalability

!   Two possible approaches
!   Top-down:

!   Look at the constraint solver as a black box
!   Optimize the process to scale to larger code
!   Examples: Forge, Karun

!   Bottom-up:
!   Develop an efficient, domain-specific constraint solver
!   Example: Jalloy

!   Jalloy employs a set of optimizations for all translation levels
!   Suitable in the context of code analysis

!   For Java Alloy (Java fields are dynamic attributes)
!   For Alloy Propositional logic (Java fields are functional relations)
!   For Propositional logic CNF (for functional relations)

!   The size of the generated CNF reduced exponentially
!   Better analysis time
!   Scales to larger programs

Static Program Checking 13

Modeling the heap

!   Relational vs. scalar variables
!   Relational requires an expressive logic
!   Relational can support expressing data structure properties

!   reachability
!   Acyclicity

!   Example:

Static Program Checking 14

Modeling field updates – Local state – example

Swaps the tails of the two given linked lists

Static Program Checking 15

Local state – example

sig Time {}
sig ListElem {
 val: Time one int,
 next: Time lone ListElem
}

sig List {
 first: Time lone ListElem
}

Static Program Checking 16

Local state – example

pred swapTail(l, m: List, t0, t1, t2: Time) {
 (some l.first[t0]) && (some m.first[t0]) => {
 let temp = l.first[t0].next[t0] | {
 l.first[t0].next[t1] = m.first[t0].next[t0]
 all o: ListElem-l.first[t0] | o.next[t1] = o.next[t0]
 all o: ListElem | o.val[t1] = o.val[t0]
 all o: List | o.first[t1] = o.first[t0]
 … // m.first.next = temp
 }
 } else
 t2 = t0
}

t0 = initial time
t2 = final time

Null modeled as empty value

t1 = time after first field update

Frame conditions

Static Program Checking 17

Local/global state modeling

!   Frame conditions are necessary
!   We can’t leave the fields unconstrained
!   Frame conditions say which values stay the same
!   Writing those can be tedious

!   Every time a field is updated, one must say that other fields stay the same

!   Almost every single program statement requires a new state
!   The scope of “state” or “time” is in the order of hundreds for a small Java

method
!   All relations that have “state” or “time” as a column become huge
!   Alloy can’t handle this

!   Good for hand-written Alloy models where the number of states is small

Static Program Checking 18

Jalloy translation of Java to Alloy

!   After each statement, only duplicate the relation that was modified
!   Don’t allow any other changes

!   Steps:
!   Build a computation graph
!   Introduce correctly-named variables
!   Encode data flow
!   Encode control flow

Static Program Checking 19

Jalloy – example

l, m, first, next, val : pre-state
ret, first’, next’, val’ : post-state

Property:
 acyclic(l, first, next) and
 acyclic(m, first, next) implies
 acyclic(l, first’, next’) and
 acyclic(m, first’, next’)

Is this property valid?

Static Program Checking 20

Jalloy counterexample

Static Program Checking 21

Computation graph

  Is a CFG with unrolled loops:
  Is a DAG
  Nodes = program points
  Edges = stmts and conditions

Static Program Checking 22

Single static assignment (SSA)

!   SSA makes dataflow information explicit
!   Usually used for compiler optimizations
!   In every assignment to a variable v, it generates a fresh name for v
!   Every time v is used, it is obvious which v it is.

Static Program Checking 23

Jalloy’s renamings

!   Same as SSA
!   Not only for variables, but also for fields (relations)

!   No use of phi function
!   At each branch reuse the names.
!   Before the join point, constrain the shorter path s.t. variable name at the

end of longer path = variable name at the end of shorter path

Static Program Checking 24

Example – swap tails

Static Program Checking 25

Encoding control flow

!   The Alloy model includes a boolean variable for every edge of the
computation graph.
!   An edge from node 0 to node 1 is modeled by variable E01
!   The value of this variable is true if and only if the edge is traversed

Static Program Checking 26

Encoding data flow
!   For every edge, express how relations are changed along that edge

Frame codition

Frame codition

Static Program Checking 27

Loop unrolling

{ …
 stmt1;
 while (cond) {
 stmt2;
 }
 stmt3;
 …
}

{ …
 stmt1;
 if (cond) {
 stmt2;
 if (cond) {
 stmt2;
 }
 }
 assume (!cond);
 stmt3;
 …
}

Jalloy only checks those executions that don’t go over the
loop more that the specified bound.

What happens to a for-loop with a fixed iteration number?

Static Program Checking 28

Program constructs

!   Method calls
!   If a specification is provided, it will be used. Otherwise, the method is

inlined
!   Object allocation

!   x = new Type();
!   (x = T0) and (T0 !in usedType0) and (usedType1 = useType0 + T0)

!   Dynamic dispatch
!   The actual type of an atom (representing an object) is determined by set

membership test in Alloy
!   Dynamic dispatch becomes a switch statement

!   Arrays and integers
!   Very limited support – due to Alloy’s limited support for numbers

!   Java API
!   Common library classes and methods are manually specified in Alloy

Static Program Checking 29

Discussions

!   Advantages of this translation:
!   No explicit state atoms,

!   Instead of v: Time Type, and v[t1], we have v1
!   Smaller CNF

!   Local/global state replicates all relations after every statement
!   Small frame conditions

!   They only concern the field being updated. Other fields can never be changed

!   Treatment of null:
!   Null is represented by empty set

!   Can’t express sets containing null (for the java set data structure)
!   Null can be represented by a special atom of each type

!   Makes relations bigger by one
!   Type hierarchy becomes hard to manage

Static Program Checking 30

From Alloy to propositional logic – review

!   Represent relations by bit vectors
!   A unary relation r: A (signature, scalar, etc.)

 [r1 r2 .. rn] where
 ri is a boolean variable and n = scope(A)
 (a vector)

!   A binary relation r: A B
 [r11 r12 .. r1n, r21 r22 .. r2n, .., rm1 rm2 .. rmn] where
 rij is a boolean variable and n = scope(B) and m = scope(A)
 (an m*n matrix)

!   All relational operations are performed on these matrices
!   Operations are done bottom up on the abstract syntax tree (AST)
!   When we get to the root, we are left with a single boolean formula

Static Program Checking 31

Alloy to boolean – review

r : A B , s : A B

!   r + s
!   A matrix of (rij or sij)

!   r & s
!   A matrix of (rij and sij)

!   r.s
!   Matrix multiplication

!   r in s
!   A formula of and { (rij implies sij) }

!   r = s
!   A formula of and { (rij implies sij) and (sij implies rij) }

Static Program Checking 32

From Alloy to CNF – Jalloy optimizations

!   Fields declared in programs are functional
!   They map each (non-null) object to exactly one object (including null)
!   Can be modeled more efficiently and thus, reduce the CNF size

!   Reducing the size of CNF is not necessarily good
!   The behavior of the SAT solver depends on the structure of the formula

rather than its size
!   Symmetry-breaking in Alloy adds more clauses to the boolean formula

!   However,
!   State-of-the-art solvers can handle formulas up to a certain size, beyond

that, in most cases, requires either too long or too much memory
!   But still experiments are needed to see Jalloy CNF reductions are good or

not

Static Program Checking 33

Representing functional relations

!   Default of Alloy: represent relations by bit vectors
!   A binary relation r: A B, scope = 3 (+null = 4 columns)

 [r00 r01 r02 r03, r10 r11 r12 r13, r20 r21 r22 r23]
 (rij = true => <ai, bj> in r)

!   For a functional relation, in each row, exactly one boolean variable will be
true

!   Optimization: a logarithmic representation suffices
!   Encode the index of that one atom in binary form
!   [r00 r01, r10 r11, r20 r21]
!   After a solution is found, read the values of the variables of each row as a

binary number:
!   r00 = false, r01 = false (00) => <a0, b0> in r
!   r00 = false, r01 = true (01) => <a0, b1> in r
!   r00 = true, r01 = false (10) => <a0, b2> in r
!   r00 = true, r01 = true (11) => <a0, b3> in r

Static Program Checking 34

Field dereference

!   In Java (Alloy): x.f = y
!   x, y scalar
!   f functional relation

!   x and y represented by (log n) bits, f by n(log n) bits
!   x = [x1 x2 .. xk], f = [f11 f12 ..f1k, .., fn1 fn2 fnk]

!   Construct 1*n representation of x
!   [!x1∧!x2∧..∧!xk !x1∧!x2∧..∧xk …], call this [A1 A2 .. An]

!   x.f = y is given by
!   A1 => (f11 y1 ∧ f12 y2 ∧ … ∧ f1k yk)
!   A2 => (f21 y1 ∧ f22 y2 ∧ … ∧ f2k yk)
!   …
!   An => (fn1 y1 ∧ fn2 y2 ∧ … ∧ fnk yk)

Static Program Checking 35

Summary

!   Jalloy optimizations
!   Reduced the size of the final CNF dramatically
!   Can check the code in a higher scope with more loop iterations

!   Jalloy applications
!   Red-black tree
!   A garbage collection algorithm
!   A method in Jalloy implementation

!   Looks like the analyzed method in each case is around 50LOC
!   But very data structure intensive

!   The first tool ever that used Alloy for static program analysis!

Static Program Checking 36

Can we do better than Jalloy?

!   How else would you model the Java code in Alloy?

Static Program Checking 37

Alloy Analyzer as a backend engine

!   Up until the end of Alloy 3, a clean API, as a standalone linkable piece
of code was never the concern.
!   Alloy was a Desktop CAD application where the Analyzer would only parse

the formulas and produce boolean SAT problems
!   Tools like Jalloy would generate Alloy text files and feed it to the parser

!   Awkward, and
!   Slow (these were usually just a single big formula, with no predicate, function,

or let structures)

!   Kodkod
!   Designed as a plug-in API
!   Clean and well-documented Java API
!   Kodkod logic is the core subset of the Alloy logic

!   Alloy Analyzer 4
!   Is just a parser + kodkod

Static Program Checking 38

Kodkod

!   Designed with focus on partial instances
!   What is a partial instance?
!   Example: Sudoku
!   Alloy doesn’t support partial instance

!   Should model them as singleton signatures
!   The Analyzer has to re-discover the partial instance, thus slower analysis

!   Better sharing detection mechanism
!   To avoid duplicate boolean variable generation in e.g. ground out quantifier
!   Alloy expressions were internally represented as a tree to simplify the

algorithms
!   Orders of magnitude better performance than Alloy 3

!   Especially when partial instances involved
!   Allows sharing sub-expressions and sub-formulas by a DAG data structure

Static Program Checking 39

Partial instance example – sudoku

!   A 9x9 table divided into nine 3x3 sub-tables
!   All rows must contain all numbers 1 to 9
!   All columns must contain all numbers 1 to 9
!   All 3x3 sub-tables must contain all numbers 1 to 9
!   Some cells already have numbers (shaded cells)

Static Program Checking 40

Sudoku in Alloy

•  The N1-N9 declarations ensure
that any solution contains
exactly nine Number atoms.

•  Field data maps (row, column)
to the number in that cell

•  Because Alloy lacks support for
partial instances, given cells
must be encoded as constraints
on the data field

•  For example, the constraint
N1–>N7–>N3 in data ensures
that the solution maps the cell
(1, 7) to the number 3.

Static Program Checking 41

Kodkod vs. Alloy

!   In Alloy,
!   Relational variables are divided into

!   Signatures (unary relations)
!   Fields (non-unary relations)

!   Signatures form a type hierarchy
!   Signatures are bound by an integer limit and that limits the relations too

!   In kodkod,
!   All relations are interpreted the same
!   All relations are untyped
!   Has none of the Alloy’s syntactic sugar (pred, func, fact)
!   Relations are bound from both above and below by relational constants

!   A fixed set of tuples drawn from a universe of atoms
!   Represent “may” and “must” values

!   Has no parser – no textual input

Static Program Checking 42

Sudoku in Kodkod – parts of the program

•  Universe is a user-provided
Collection of Objects.

•  Each Universe provides a
TupleFactory for creating constants

•  Relations have upper and lower
bound TupleSets

•  Unlike their Alloy equivalents,
these relations are untyped

•  Unlike its Alloy equivalent, the
puzzle method encodes the partial
instance in the Bounds rather than
as constraints

Static Program Checking 43

Kodkod optimizations

!   In kodkod, symmetry breaking is different because
!   Relations are untyped
!   Partial instance makes atoms distinct

!   In kodkod, sharing detection is at the boolean level
!   In Alloy, it is done at the problem level
!   Kodkod uses compact boolean circuits

!   Kodkod is a free open-source API
!   http://alloy.mit.edu/kodkod/

Static Program Checking 44

Kodkod vs. Alloy 3

