
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Automated Software Analysis Group, Institute of Theoretical Informatics

www.kit.edu

Static Program Checking
Bounded Verification – Forge

Juniorprof. Dr. Mana Taghdiri

Thursday – June 12, 2014

Static Program Checking 2

Jalloy architecture – review

Static Program Checking 3

Jalloy encoding – example

Swaps the tails of the two given linked lists

Static Program Checking 4

Example – data & control flow constraints

Frame codition

Frame codition

Static Program Checking 5

Forge

   A bounded verification tool following Jalloy

   Requires a bound on the heap

   Requires a bound on loop iterations

   Produces sound counterexamples

   Uses kodkod rather than Alloy Analyzer

   Can handle abstract specifications

   Requires abstraction functions to relate actual code to the abstract spec

Static Program Checking 6

Example – integer set implementation and spec

Static Program Checking 7

Approach

   P(s, s’) represents the translation of code

   S(s, s’) is a user-provided specification

   Find counterexamples by solving P(s, s’) and not S(s, s’)

   If the spec contains abstract data,

   User should provide an abstraction function A(c, a)

   Relates concrete and abstract states

   Must be written for every implementation

   But the specification is written once

   R(c) Representation invariant on concrete representation

   Solve
R(c) and P(c, c’) and A(c, a) and A(c’, a’) and not S(a, a’)

Static Program Checking 8

Forge encoding

   Performs a symbolic execution

   Starts from symbolic constants

   Collects the expressions for all variables and relations

   Collects all loop termination conditions

   Relational view of the heap

   Field dereference becomes relational join

   x.f encoded as (X.F)

   Field update becomes relational override

   x.f = y encoded as (F++(XY))

   Jalloy couldn’t do that due to Alloy 3 inefficiencies

Static Program Checking 9

Swaptail revisited

pred swapTail(l, m, first, next) {
 let c = (l.first = NULL) && (m.first = NULL) |{
 let temp1 = l.first.next |{
 let next1 = next ++ l.first  m.first.next |{
 let next2 = next1 ++ m.first  temp1 |{
 c => next’ = next2
 else next’ = next
 }}}}
}

Static Program Checking 10

Forge encoding

   There are exactly two relations for each field:
 r (in pre-state) and r’ (in post-state)

   No intermediate relations

   The expressions are large with a lot of shared subexpressions

   Kodkod can handle that efficiently

   Null is a proper atom

   <Ai, null> is added to the upper bound of every relation F: A  B

   Type of null is not important – kodkod relations and atoms are untyped

Static Program Checking 11

Integers in Forge

   Forge predefines following relations at the beginning of the analysis

   a relation representing the set of all integers, size = scope(Int)

   inc, a binary relation that totally orders the integers: for all i except the last,

i.inc equals i + 1

   add, a ternary relation mapping the two integer operands to their sum, so

that the addition of i and j can be written j.(i.add)

   Inequalities:

   i > j is encoded as (i in j.ˆ inc)

   Now we can exploit partial instances in Kodkod:

   Pre-compute all values of add, subtract, etc.

   Use those tuples as both the upper and lower bounds of relations

Static Program Checking 12

Discussion

   Hard to compare forge with jalloy

   One uses kodkod, the other Alloy

   Hard to tell where the performance improvement comes from

   Applied to 10 implementations of linked list

   Max scope = 6, loops = 5, for Sun add method takes 20 minutes

   Found 2 errors in JML specifications of add and indexOf

   Found 1 bug in the add method of GNU Trove library (off by one error)

   Smallest scope needed to find these bugs:

   A single loop unrolling

   All but one required scope = 2 and integer bit-width = 3

   One error required scope = 3 and bit-width=4

   Supports small scope hypothesis

Static Program Checking 13

Jforge Experiments

public class LinkedList {
 class ListElem {
 int val;
 ListElem next;
 }
 ListElem first;
 public void swapTail(LinkedList l, LinkedList m) {
 if (l.first != null && m.first != null) {
 ListElem temp = l.first.next;
 l.first.next = m.first.next;
 m.first.next = temp;
 }
 }
}

Static Program Checking 14

Jforge Experiments

   Check that m.first.next in post-state equals l.first.next in pre-state

   Keywords:

   @Ensures(“..”)

   @Requires(“..”)

   @Returns(“..”)

   @old()

   @Modifies(“..”)

   @Invariant(“..”)

   Check that if m and l are acyclic in the pre-state, m is acyclic in the
post-state

Static Program Checking 15

Jforge Experiments – solutions

Check that m.first.next in post-state equals l.first.next in pre-state

@Requires("l != null && m != null")
@Ensures(”
 (l.first != null && m.first != null) => m.first.next = @old(l.first.next)")
@Modifies("l.first.next, m.first.next”)

Remarks:
@Requires(“l.first != null”) states that l.first is not null in the pre-state
@Ensures(“l.first != null”) asserts that l.first is not null in the post-state
@Ensures(“l.first = @old(m.first)”) asserts that l.first in the post-state

equals m.first in the pre-state
@Modifies(“..”) lists all the fields that may be modified by the method

Static Program Checking 16

Jforge Experiments – solutions

Check that if m and l are acyclic in the pre-state, m is acyclic in the post-state

@Requires("l != null && m != null &&
 (all x: m.first.*next | x !in x.^next) && (all x: l.first.*next | x !in x.^next)”)
@Ensures("all x: m.first.*next | x !in x.^next")
@Modifies("l.first.next, m.first.next")

OR
@Requires("l != null && m != null”)
@Ensures(”@old((all x: m.first.*next | x !in x.^next) &&
 (all x: l.first.*next | x !in x.^next)) =>
 (all x: m.first.*next | x !in x.^next)")
@Modifies("l.first.next, m.first.next")

Static Program Checking 17

Jforge Experiments – specfield

public boolean contains(int x) {
 ListElem p = this.first;
 while (p != null) {
 if (p.val == x) return true;
 p = p.next;
 }
 return false;
}

Write the spec once without abstract specification and once by using
@SpecField(“values: set int from this.first | this.values = ..”

Static Program Checking 18

Solution

@Ensures(“return = (x in this.first.*next.val)")

OR
@Returns(“x in this.first.*next.val”)

OR
@SpecField(
 ”values: set int from this.first | (this.values = this.first.*next.val)")
@Ensures(“return = (x in this.values)")

