
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Automated Software Analysis Group, Institute of Theoretical Informatics

www.kit.edu

Static Program Checking
Bounded Verification – Other Ideas

Juniorprof. Dr. Mana Taghdiri

Thursday – June 26, 2014

Static Program Checking 2

Incremental bounded verification

   Problems of bounded verification:

   The formulas generated for non-trivial programs are complex

   They often choke the solver

   When the solver times out, there’s no feedback (on coverage of the analysis or
likelihood of correctness)

   Solution:

   Divide the program into several sub-programs

   Check the property in each sub-program

   Hopefully each sub-program generates a smaller sub-formula

   Approach:

   Can partition the program based on control flow

   Or based on data flow (variable definitions)

Static Program Checking 3

Program partitioning

   Proposed for bounded executions

   Loops are unrolled

   Partition the set of program paths to multiple subsets:

   Then, instead of checking

   We can check

Static Program Checking 4

Partitioning based on control flow

   Splitting algorithm is based on vertices of the computation graph

   Given a vertex, construct two subgraphs

   Go-through subgraph

   Bypass subgraph

   Rationale

   Number of branches is a heuristic metric for complexity

   Pick a vertex that results in subgraphs with fewer branches

   The splitting can be done recursively as much as desired

Static Program Checking 5

Example

class IntList {
 Entry header;
 class Entry {
 int value;
 Entry next;
 };

 boolean contains(int key) {
 Entry e = this.header;
 while (e != null) {
 if (e.value == key)
 return true;
 e = e.next;
 }
 return false;
 }
}

Static Program Checking 6

Example after two loop unrollings

Static Program Checking 7

Partition based on node 11

Gray: branch converted to assume
Black: removed statements

Static Program Checking 8

Partition based on node 11

Gray: branch converted to assume
Black: removed statements

Static Program Checking 9

Data flow partitioning

   Control-flow partitioning

   Is limited to syntactical structure of program

   Doesn’t exploit program semantics

   Data-flow partitioning is based on variable-definitions

   Fewer definitions of a variable result in fewer intermediate variables

   Thus, reduces the number of frame conditions encoding data flow

   Thus, there are fewer variables in the resulting formula

   (uses a Jalloy-like translation of code)

   Pick a variable in the computation graph

   Split the graph into multiple subgraphs s.t. each subgraph has at most one

definition for that variable, that can reach the exit statement

   The definition of this variable is different in each subgraph

Static Program Checking 10

Example after two loop unrollings

Definition set of this = {}
Definition set of key = {}
Definition set of return = {4, 8, 11}
Definition set of e = {1, 5, 9}
All of these definitions can reach the exit statement

Static Program Checking 11

Splitting based on “e”

Now we have exactly one definition of e (line 1)
(doesn’t include 5 or 9)
Set the branch conditions s.t. unwanted nodes are not visited

Static Program Checking 12

Splitting based on “e”

Again exactly one definition of e reaches exit (line 5)
(1 or 9 can’t reach the exit)

Static Program Checking 13

Splitting based on “e”

Only the definition in line 9 reaches exit

Static Program Checking 14

Discussion

   Limited experiments done so far

   Substantial speedup in higher scopes (around 6, 7)

   Two rounds of splitting

   Small speedup when the complexity of the specification is more than
the code formula

   The benefit will be reduced by the overhead of multiple checking

   Because sub-graphs are independent, they can be checked in parallel

Static Program Checking 15

ESC/Java

   Extended Static Checker for Java

   Finds common programming errors (not a prover!)

   Compile-time checker

   Catches more errors than a typical type checker

   Examples:

   Null dereference, array out of bound, type cast error

   Examples of concurrent problems:

   Race conditions

   Deadlocks

   Can also check user-defined design decisions (pre/post conditions)

   Based on

   Verification-condition generation

   Automatic theorem proving

   Uses its own annotation language

Static Program Checking 16

ESC/Java features

   ESC/Java is modular

   Operates on one procedure at a time

   Advantage: scalability

   Disadvantage: user-provided annotations

   Is more lightweight than a full verification tool

   Annotations are smaller

   Has to make a trade-off between

   Missed errors (unsoundness)

   False alarms (incompleteness)

   Annotation overhead

   performance

Static Program Checking 17

Running ESC/Java – example

Static Program Checking 18

Running ESC/Java – example

Static Program Checking 19

Running ESC/Java – example

1 needs a pre-condition for constructor (or fixing the code)

Static Program Checking 20

Running ESC/Java – example

2 and 4 are there because elements is not private
– making it private doesn’t remove warnings
– ESC can’t check all methods to ensure elements is not assigned null
– (it’s modular)

Static Program Checking 21

Running ESC/Java – example

3 is because other code might mutate size

Static Program Checking 22

Running ESC/Java – example

Even with the invariant,
it complains about index too large (line 15)

Static Program Checking 23

Running ESC/Java – example

Last warning: procedure can be called
when bag is empty (size = 0)

Static Program Checking 24

Running ESC/Java – example – 2nd run

Line 26 is the old line 20.
Size may become negative

Static Program Checking 25

Running ESC/Java – example – 3rd run

After all the fixes, no more
warnings are reported.

Static Program Checking 26

What did we learn

   Warnings resulted in

   One pre-condition (inputs != null)

   Two rep invariants (on size and elements)

   Two bug fixes (wrong index range, missing case of empty bag)

   Using pre-conditions:

   When checking a procedure foo, assumes that its pre-conditions hold

   When encountering a call to foo, checks whether the pre-conditions hold

or not

   Using object invariants (rep invariants):

   Assumes that they hold in the pre-state

   Checks whether they hold in the post-state or not

Static Program Checking 27

Architecture

Static Program Checking 28

Front-end

   Generates abstract syntax tree (AST)

   Generates type-specific background predicate

   A formula in first-order logic

   Generated for every class whose routines are to be checked

   Encodes information about types and fields that routines use

   Example: for a final class T

   All S :: S <:T => S = T

Static Program Checking 29

Translation

   Generates Dijkstra’s guarded commands (GC)

   Insert commands of the form assert E (E is a boolean expression)

   Ideal translation of a procedure R is to get a guarded command G s.t.

   If there is a way that R starts from a state satisfying its precondition and
behave erroneously (violate post conditions), G has at least one execution
that starts in a state satisfying the precondition and then violates some
assertion

   If there is no way that R can start from a state satisfying its precondition
and then behave erroneously, then G has no execution that starts in a
state satisfying the precondition and then violates some assertion

   ESC Translation is neither sound nor complete

   Neither of the above conditions holds

Static Program Checking 30

Translation

   Sources of inaccuracy:

   Modularity

   replacing calls with specs (usually under-specifications). We may report a bug
that is not feasible in the code

   Especially for ESC/Java, the specs are lightweight, supposed to encode only
as much as needed for analysis

   Overflow

   We ignore arithmetic overflows. We may miss errors

   Loops

   unroll them (misses errors that need more iterations)

   asking for loop invariants is unrealistic for practical code

   default is one unrolling, but user can provide more

Static Program Checking 31

VC generation

   Generates verification conditions for each guarded command G

   Is a predicate in first-order logic that holds for exactly those program states

from which no execution of the command G goes wrong.

   Computation similar to computing weakest pre-conditions + optimizations

to avoid exponential blow-up

   An execution of a guarded command is said to “go wrong” if control
reaches a subcommand of the form assert E when E is false

Static Program Checking 32

Thorem proving

   Uses Simplify

   Solves

   UBP: universal background predicate

   BP: type-specific background predicate

   VCR: verification condition for procedure R

   Universal background predicate

   Encodes facts about the semantics of Java

   E.g. that the subtype relation is reflexive, anti-symmetric, and transitive

Static Program Checking 33

Post-processing

   Takes the theorem prover’s output and generates warnings when
proofs fail

   Simplify allows for

   Labeled constraints

   Can track back the source context corresponding to each constraint

   Since the formulas are in FOL (undecidable), the runtime of simplify is
limited by some threshold

   It might report something as a bug that could’ve been proved in longer

time

   (more false warnings)

Static Program Checking 34

Annotation language

   Similar to JML, but small differences

   JML is intended for full specification of programs

   ESC/Java is intended for lightweight specifications

   So small syntactic and semantic differences

   Cost:

   Mostly small annotations (argument non-null, etc.)

   40-100 annotations per 1000 LOC (4-10%)

   In the experiments, they were inserted interactively:

   First annotated based on a rough understanding of code

   Then ESC/Java ran, then more annotations added

   Expensive on users

   Prohibitively costly when running ESC on existing codebase

Static Program Checking 35

Program verification

   Construct a logical formula whose solutions are executions of the code
that violate the property (f)

   Now solve (f)

Either translate the code precisely, or ..

property

M

… …

… … … … …

… … … … … … …

Static Program Checking 36

Modular analysis

   Replace a procedure with its specification

   Makes the technique better scalable

   But, is very costly for the user

Ask for user-provided annotations, or..

property

M

… …

… … … … …

… … … … … … …

 spec

 spec spec spec spec spec spec spec

 spec spec spec spec spec

 spec

Static Program Checking 37

   User provides only the top-level property

   This substantially reduces the human cost

Infer intermediate annotations automatically

Specification inference

User-
provided

Automatically
inferred

property

M

… …

… … … … …

… … … … … … …

 spec

 spec spec spec spec spec spec spec

 spec spec spec spec spec

 spec

Static Program Checking 38

ESC/Java annotations

   Simplest annotation-based analysis

   Type checker is a limited program analysis tool

   It is modular and requires type annotations from users

   ESC/Java is like an advanced type checker

   Checks for null-dereference, array bounds, etc.

   So it doesn’t need extensive annotations like full verification

   Still the amount of annotations can be up to 10% of the code size

   Houdini:

   Generates intermediate annotations automatically

Static Program Checking 39

Houdini – Annotation assistant for ESC/Java

  Generating candidates is done by looking at program text
  It uses heuristics about what annotations might be useful
  Example:

  all preconditions of the form argument != null

Static Program Checking 40

Houdini – Annotation assistant for ESC/Java

  To identify incorrect annotations:
  Invoke ESC/Java
  Ignore warnings about runtime errors (e.g. null dereference)
  If there is a warning about an annotation not true at some program point
(e.g. a method’s precondition doesn’t hold at a call site), then remove that
annotation from the candidate set
  Removing one annotation may make others invalid, so repeat until fixpoint

Static Program Checking 41

Algorithm properties

   Remaining annotations are a subset of the initial candidate set

   Are guaranteed to be valid as much as ESC can tell

   They represent a maximal valid subset of the candidate set

   After the check-refute cycle, Houdini runs ESC/Java again

   This identifies potential run-time errors in the new annotated program

   These warnings are output to the user

Static Program Checking 42

Candidate annotations

   Ideally, the initial set must contains “all” possible annotations

   But, the set cannot be too big because of performance

   Following heuristics are based on experiments

   For a field f, we generate the following invariants:

Static Program Checking 43

Generated invariants

   Integral invariants

   Mainly to check array index out of bound

   Comparison operators: <, <=, ==, !=, >=, >

   Comparison expression:

   an integer field declared earlier in the same class

   Or an interesting constant: -1, 0, 1, array dimensions (new int [4])

   Contradicting invariants are no problem (x < 0 and x >= 0)

   One of them gets refuted very fast

   Reference invariants

   To check pointer != null

   Array pointers non-null

   Array elements non-null

   Array elements up to expr (a field or a constant) non-null

   Useful in checking stack implemented by array

Static Program Checking 44

Other annotations

   Candidate pre-conditions

   Comparison of two arguments

   Relating an argument to a field declared in the same class

   Also //@requires false

   Any unrefuted precondition of this form shows the procedure is never called

   To identify dead code

   Candidate post-conditions

   Relate the \result to an argument

   Relate the \result to a field

   Also //@ensures \fresh(\result)

   That result is a newly allocated object

Static Program Checking 45

Experimental results

   Houdini is applied to a few programs of various sizes, up to 36kLOC

   It reduces the number of warnings of ESC/Java substantially

