(]}

Karlsruhe Institute of Technology

Static Program Checking

Invariant detection — Daikon

Automated Software Analysis Group, Institute of Theoretical Informatics

Jun.-prof. Dr. Mana Taghdiri

Monday — July 3, 2014

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Invariants A\‘(IT

stitute of Technology

® What is an invariant?
® A property that is true at a particular program point or points

® Like the ones written as assert statements, rep invariants, pre/post
conditions

® Having an explicit invariant simplifies

® Coding

® Verification, Testing

® Optimization

® Maintenance

® Understanding data structures, algorithms, program operations
® All programmers have invariants in mind when coding

® An idea of how the system in intended to be used

® How the data structures are laid out
® But, invariants are usually absent from the code

® Automatic invariant detection recovers what programmer had in mind

Static Program Checking

IT

Automatic invariant detection

® Can be done statically

® One approach is abstract interpretation (will see an example in the next
class)

® Houdini

Generates rep invariants, pre/post conditions

But not assert statements in the middle of the code
Generates all possible candidate invariants

Refutes the invalid ones by iteratively calling ESC/Java
The invariants are not guaranteed to be sound

But, they are true in all executions that ESC checks

Static Program Checking

Daikon

AT

stitute of Technology

® Uses a dynamic approach

Based on a set of program traces

Executes a test suite

Captures variable values at program points of interest

An invariant detector determines which properties hold for variables
Runs very quickly on large programs

® The quality of the output depends on the comprehensiveness of the
test suite

® Daikon infers “likely” invariants
® Experiments show that test suites found in practice are adequate

Static Program Checking

AT

stitute of Technology

Quality of test suite

® Invariants generated by Daikon can be used to enhance the suite

® The programmer sees the invariants that are true so far, but shouldn’t hold
in general, and can come up with other test cases

W Test suites that are good for finding bugs are not necessarily good for
detecting invariants:

® In bug finding, for efficiency, every statement is covered a minimal number
of times

® In invariant detection, we need multiple executions of a statement to
generalize the values (statistical support)

Static Program Checking

High level architecture

Original Instrumented
program program

= =

—

! Instrument

IT

Karlsruhe Institute of Technology

o —
Run | database Delect
invariants

Tes! suite ||

Static Program Checking

IT

I h a s e s Karlsruhe Institute of Technology

® Program instrumentation
® Tells which variables to watch at what program points

® The inference step

® Tests possible invariants against values captured for instrumented
variables
® Reported properties are the ones that
®m Are satisfied over all the values of a variable
® Are statistically justified
® Are not over unrelated variables
® Are not implied by other reported invariants

Static Program Checking

IT

Institute of Technology

Invariant detection

® The execution of an instrumented program stores the values of all
variables at an interesting program point

W Suppose X, Y, and z are in scope at a watched point
® We test all invariants (constructed from a template library) on x, y, z
® All unary invariants checked for x, y, and z
® All binary invariants checked for <x, y>, <x, z>, and <y, z>
® All ternary invariants checked for <x, y, z>
W [t stops at ternary tuples
® Each invariant is checked on each trace
® The check is over concrete values — no theorem proving, etc. — is cheap

W If any trace violates the invariant, it is not a correct invariant

Static Program Checking

IT

Exa m p I e _— i n c re m e nt Karlsruhe Institute of Technology

int inc(int *x, int y) _
*X 4=y Watched point: end of the procedure
return *x;
(orig(x), orig(*x), orig(y), X, *xX, y, return)
(4026527180, 2, 1, 4026527180, 3, 1, 3)
(4026527180, 3, 1, 4026527180, 4, 1, G)
{ 146204, 13, 1, 146204, 14, 1, 14)
(4026527180, 4, 1, 4026527180, 5, 1, 5)
{ 146204, 14, 1, 146204, 15, 1, 15)
(4026527180, 5, 1, 4026527180, 6, 1, 6)
(4026527180, 6, 1, 4026527180, 7, 1, 7)

What are some potential invariants?

Static Program Checking

10

Example — increment

int inc(int *x, int y)

-

*X += y;
return *x;

orig(x),

4026527180,
4026527180,
146204,
4026527180,
146204,
4026527180,
4026527180,

orig(*x),

2)
3?
13,
4’
14,
5)
6?

Watched point: end of procedure

orig(y), X, *X, Yy, return
1, 4026527180, 3, 1, 3
1, 4026527180, 4, 1, 4
1, 146204, 14, 1, 14
1, 4026527180, 5, 1, 5)
1, 146204, 15, 1, 15
1, 4026527180, 6, 1, 6
1, 4026527180, 7, 1, 7

S

S S S S S S S

IT

Karlsruhe Institute of Technology

Invariants: x = orig(x), y = orig(y) = 1, *x = orig(*x) + 1, and return = *x

Static Program Checking

AT

stitute of Technology

Sample invariant templates

® For any variable
® Constant value: x = a
® Uninitialized: x = uninit (x is never set)
® Small value set: x \in {a, b, c}
® For single numeric variable
® Rangelimit: x>=a,x<=b
® Nonzero:x!=0
® Modulus: xmod b = a
® For two numeric variables
® Linear relationship:y=ax+Db
® Ordering comparison: x <y, x <=y, x!=y, ..
® Functions: y = fn(x) (e.g. fn = absolute value, negation, bitwise complement)
® All single-variable invariants over (x+y)

Static Program Checking

Sample invariant templates A\‘(IT

® For 3 numeric variables

® Linear relationship: z=ax + by + ¢

® Functions: z = fn(x, y) (e.g. fn = min, max, multiplication, and, etc.)
® For a sequence variable (array)

® Range: min and max of the sequence: a <= x][i] <=b

® Element ordering: elements are non-decreasing, equal, non-increasing
® For two sequences

® Linear relationship elementwise: y =ax + b

® Subsequence: x is a subsequence of y

® Reversal: x is the reverse of y
® For a sequence and a numeric variable

® Membership:ilins

Static Program Checking

AT

stitute of Technology

How to instantiate the templates?

® Linear relationships like x = ay + bz + ¢ with a, b, ¢ unknown
® is instantiated by picking 3 tuples of values and computing a, b, ¢
® x=a(modDb)
® is done by computing greatest common divisor of (x1 — x2) to get b (for
different values x1 and x2 of x)

B x<b
® is computed by updating b as more samples are seen

® Example?

Static Program Checking

IT

Why these invariants?

® Based on users’ programming and specification experience
® The list is built incrementally over time
® Not only added more invariants, but also removed the less useful ones

® Again, more invariants means longer runtime

® Users can add their own general and domain-specific invariants
® Domain-specific: if a data structure is a tree

14 Static Program Checking

stitute of Technology

Output A\‘(IT

® Functional invariants
® Depends only on the code for a particular data structure or function
® The invariant is universally true for any use of that entity
® Usage properties
® Result from specific usage of a data structure or function
® Depend on the context of use and the test suite

® |[s this a true distinction?

® Because Daikon operates on test suites, it cannot distinguish between
these classes

® Programmers cannot distinguish the two easily either because a sound
pre-condition may be true only because the callers respect that

15 Static Program Checking

Experiments — rediscovery of formal specs A\‘(IT

® Daikon can distinguish between
® Preconditions (hold at beginning of a procedure)
® Post-conditions (hold at the exit point of a procedure)
® Rep invariants (hold both at the entry and the exit points of all procedures)
® Loop invariants (hold at the beginning of each iteration of a loop)

® Daikon was applied to a set of textbook programs with formal pre/post
conditions and loop invariants

® All programs are small
® Examples: searching, sorting, etc.

® Formal spec was removed from the programs
® A simple test suite was built
® Daikon reported all those formal properties

16 Static Program Checking

AT

stitute of Technology

Example — add array elements

1,8 :=0,0;
doi#n—

i,8:=1+ 1,5+ b[i]
od

Precondition: n > 0
Postcondition: s = (>.j: 0 <j < n:blj])
Loop invariant: 0 <i<nands=(2 j:0<j<i:bl))

* Instrumentation at the program entry, the loop head, and program exit.

* Ran on 100 randomly-generated arrays of length 7-13 with elements from
-100 to 100.

Static Program Checking

Example — add array elements

15.1.1:::ENTER 100 samples
N = size(B) (7 values)
N in [7..13]] (7 values)
B (100 values)

All elements in [-100..100] (200 values)

15.1.1:: :EXIT 100 samples
N=1I=orig(N) = size(B) (7 values)
B = orig(B) (100 values)
S = sum(B) (96 values)
N in [7..13] (7 values)
B (100 values)

All elements in [-100..100] (200 values)

15.1.1:::L0O0P 1107 samples
N = size(B) (7 values)
S = sun(B[0..I-1]) | (452 values)
N in [7..13] (7 values)
I in [0..13] | (14 values)
I<=N (77 values)
B (100 values)
All elements in [-100..100] (200 values)
B[0..I-1] (985 values)

All elements in [-100..100] (200 values)

IT

Karlsruhe Institute of Technology

 Entry invariants = preconditions

* The invariant N = size(B) is
important, but missing from the hand-
written spec

* Exit invariant = post-condition
* S = sum(B) is important
* No side effects on B and N

*Loop invariant:
* S = sum(BJ[0..1-1])

* Invariants give info about the test

suite: N in [7..13] that can be used to
improve the suite

Boxes represent the invariants that give the original formal spec

18

Static Program Checking

IT

Application — program modification

® A case where inferred invariants were of substantial assistance to
programmers
® “Replace” program:
® Takes as input, a string, a regular expression and a replacement string

® Outputs the input string with all occurrences of the regular expression
changed to the replacement string

Is 563 LOC with 21 procedures in C

No comments or documentation

Decided to extend the language of the regular expression

Ran the code on 100 tests randomly selected from a suite

Daikon produced invariants at the entry and exit of each procedure

Two programmers started changing the program
® Used invariants to make sure they understood the code correctly
® They found a bug in the original code, represented by an unexpected invariant

® Used Daikon on the changed code and compared the new invariants with the
old ones to ensure lack of unintended changes

19 Static Program Checking

IT

Improving invariants

® Just applying the templates doesn’t produce the desired invariants, and
produces some unnecessary ones

® Aninvariant is relevant if it helps a programmer in his task
® The notion is highly dependent on Daikon’s developers experience

® To improve the relevance of reported invariants:
® To add desired invariants
® Add implicit values
® Exploit unused polymorphism
® To eliminate undesired invariants
® Perform statistical confidence checks

® Suppress redundant invariants
® Limit which variables are compared to each other

20 Static Program Checking

AT

stitute of Technology

1. Implicit values

B Some properties may be over entities not explicitly stored in program
variables

® Size of a data structure
® Largest value of a data structure
® Cyclicity of a data structure

® Daikon introduces “derived” variables to represent such entities

® They are introduced at inference stage because their value can be
determined from any trace

® So then ordinary invariant detection can report relationships involving
these entities

® But

® May slow down Daikon because now we have many more potential
invariants

® Inevitably, it increases the number of irrelevant invariants reported

21 Static Program Checking

22

Implicit values

® Derived variables for a sequence s (array)
® Length: size(s)
® Extreme elements: s[0], s[1], s[size(s)-1], s[size(s)-2]
® To accommodate for header nodes, etc.
® For numeric sequence s
® Sum: sum(s)
® Minimum element: min(s)
® Maximum element: max(s)
® For a sequence s and a numeric variable |
® SJi], s[i-1]
® Subsequence: s[0..i], s[0..i-1]
® For procedure invocations:
® Number of calls in this trace so far

® User can add new derived variables

AT

stitute of Technology

Static Program Checking

A few points A\‘(IT

Karlsruhe Institute of Technology

® Introducing new derived variables can be done recursively
® a - size(a), then b, size(a) =2 b[size(a)-1]
® Default recursion depth is set to 2

® Derived vars are introduced if previous invariants show they’re sensible
® This requires interleaving invariant detection and variable derivation

® Introducing derived vars first and then invariant detection doesn’t work

® Derived variables are not introduced until invariants are computed over
existing variables
® Example for a sequence s,

®m Size(s) is introduced first, invariants are computed, then more sequence-based
vars may be generated

m Ifj >=size(s), then we won’t create derived variable alj]
® Tautologies are not reported
® i =size(s[0..i-1])

® Any time two vars are shown equal, one is canonically chosen and the
other one is dropped from the set of variables

23 Static Program Checking

IT

Example revisited — add array elements
15.1.1:::ENTER 100 samples
N = size(B) (7 values)
N in [7..13] | (7 values)
B (100 values)

All elements in [-100..100] (200 values)

156.1.1:::EXIT 100 samples
N =1 = orig(N) = size(B) (7 values)
B = orig(B) (100 values)
S = sum(B) (96 values)
N in [7..13] (7 values)
B (100 values)

All elements in [-100..100] (200 values)

16.1.1:::L0OCP 1107 samples
N = size(B) (7 values)
= sun(B[0..I-1]) | (452 values)
N in [7..13] (7 values)
I in [0..13]| (14 values)
I<=N (77 values)
B (100 values)
All elements in [-100..100] (200 values)
B[0..I-1] (985 values)

All elements in [-100..100] (200 values)

Boxes represent the invariants that give the original formal spec

Static Program Checking

2. Polymorphism elimination A\‘(IT

® What is the difference between polymorphism and generics?

® Variables declared as any polymorphic type (base class) usually
contain a single type at runtime

® A polymorphic list can be used for a list of integers
® We like to infer invariants like list is sorted, but is not defined for list(object)

® Daikon uses the declared type (base type)
® Because instrumentation is done up-front statically
® That's when we decide what to monitor
® But can’t examine fields specific to the runtime type

Static Program Checking

IT

Polymorphism elimination

® Two-pass solution
® First pass watches base-class fields, object id, its runtime class
® [f Daikon detects invariants over the run-time class (e.g. if o != null then
o.class = a specific class), then the user can add a comment with a more
specific refined type
® A second pass of instrumentation and invariant detection works on the
refined type. Accesses fields of that type.
® Sound if program runs over the same inputs, and is deterministic
® Ow, exceptions might be thrown during code runs, and Daikon catches them

26 Static Program Checking

IT

E xa m p I e Karlsruhe Institute of Technology

For recursive fields (e.g. next),

Declarations: .
variable header.closure(next)
s Eot e s s is all objects reachable from
class ListNede { Cbject element;
ListNede next; ... } header.

class MylInteger { int value; ... }

EDSS Couscs A field of a set of objects gives
LinkedList myList = new LinkedList(); the set of values for that field

for (int i=1l; i<«10; i++) . .
ayList.add(new MyInteger(i)); in all objects

LinkedList object invariant reported by Daikon:

header.closure{next).element.vzlue is sorted by <

class ListNede { /erefined_type: Mylntegers/ Cbject element;
ListNede next; ... }

27 Static Program Checking

