
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Automated Software Analysis Group, Institute of Theoretical Informatics

www.kit.edu

Static Program Checking
Invariant detection – Daikon

Jun.-prof. Dr. Mana Taghdiri

Monday – July 3, 2014

Static Program Checking 2

Invariants

   What is an invariant?

   A property that is true at a particular program point or points

   Like the ones written as assert statements, rep invariants, pre/post

conditions

   Having an explicit invariant simplifies

   Coding

   Verification, Testing

   Optimization

   Maintenance

   Understanding data structures, algorithms, program operations

   All programmers have invariants in mind when coding

   An idea of how the system in intended to be used

   How the data structures are laid out

   But, invariants are usually absent from the code

   Automatic invariant detection recovers what programmer had in mind

Static Program Checking 3

Automatic invariant detection

   Can be done statically

   One approach is abstract interpretation (will see an example in the next

class)

   Houdini

   Generates rep invariants, pre/post conditions

   But not assert statements in the middle of the code

   Generates all possible candidate invariants

   Refutes the invalid ones by iteratively calling ESC/Java

   The invariants are not guaranteed to be sound

   But, they are true in all executions that ESC checks

Static Program Checking 4

Daikon

   Uses a dynamic approach

   Based on a set of program traces

   Executes a test suite

   Captures variable values at program points of interest

   An invariant detector determines which properties hold for variables

   Runs very quickly on large programs

   The quality of the output depends on the comprehensiveness of the
test suite

   Daikon infers “likely” invariants

   Experiments show that test suites found in practice are adequate

Static Program Checking 5

Quality of test suite

   Invariants generated by Daikon can be used to enhance the suite

   The programmer sees the invariants that are true so far, but shouldn’t hold

in general, and can come up with other test cases

   Test suites that are good for finding bugs are not necessarily good for
detecting invariants:

   In bug finding, for efficiency, every statement is covered a minimal number

of times

   In invariant detection, we need multiple executions of a statement to

generalize the values (statistical support)

Static Program Checking 6

High level architecture

Static Program Checking 7

Phases

   Program instrumentation

   Tells which variables to watch at what program points

   The inference step

   Tests possible invariants against values captured for instrumented

variables

   Reported properties are the ones that

   Are satisfied over all the values of a variable

   Are statistically justified

   Are not over unrelated variables

   Are not implied by other reported invariants

Static Program Checking 8

Invariant detection

   The execution of an instrumented program stores the values of all
variables at an interesting program point

   Suppose x, y, and z are in scope at a watched point

   We test all invariants (constructed from a template library) on x, y, z

   All unary invariants checked for x, y, and z

   All binary invariants checked for <x, y>, <x, z>, and <y, z>

   All ternary invariants checked for <x, y, z>

   It stops at ternary tuples

   Each invariant is checked on each trace

   The check is over concrete values – no theorem proving, etc. – is cheap

   If any trace violates the invariant, it is not a correct invariant

Static Program Checking 9

Example – increment

Watched point: end of the procedure

What are some potential invariants?

Static Program Checking 10

Example – increment

Watched point: end of procedure

Invariants: x = orig(x), y = orig(y) = 1, ∗x = orig(∗x) + 1, and return = ∗x

Static Program Checking 11

Sample invariant templates

   For any variable

   Constant value: x = a

   Uninitialized: x = uninit (x is never set)

   Small value set: x \in {a, b, c}

   For single numeric variable

   Range limit: x >= a, x <= b

   Nonzero: x != 0

   Modulus: x mod b = a

   For two numeric variables

   Linear relationship: y = ax + b

   Ordering comparison: x < y, x <= y, x != y, ..

   Functions: y = fn(x) (e.g. fn = absolute value, negation, bitwise complement)

   All single-variable invariants over (x+y)

Static Program Checking 12

Sample invariant templates

   For 3 numeric variables

   Linear relationship: z = ax + by + c

   Functions: z = fn(x, y) (e.g. fn = min, max, multiplication, and, etc.)

   For a sequence variable (array)

   Range: min and max of the sequence: a <= x[i] <= b

   Element ordering: elements are non-decreasing, equal, non-increasing

   For two sequences

   Linear relationship elementwise: y = ax + b

   Subsequence: x is a subsequence of y

   Reversal: x is the reverse of y

   For a sequence and a numeric variable

   Membership: i \in s

Static Program Checking 13

How to instantiate the templates?

   Linear relationships like x = ay + bz + c with a, b, c unknown

   is instantiated by picking 3 tuples of values and computing a, b, c

   x = a (mod b)

   is done by computing greatest common divisor of (x1 – x2) to get b (for

different values x1 and x2 of x)

   x < b

   is computed by updating b as more samples are seen

   Example?

Static Program Checking 14

Why these invariants?

   Based on users’ programming and specification experience

   The list is built incrementally over time

   Not only added more invariants, but also removed the less useful ones

   Again, more invariants means longer runtime

   Users can add their own general and domain-specific invariants

   Domain-specific: if a data structure is a tree

Static Program Checking 15

Output

   Functional invariants

   Depends only on the code for a particular data structure or function

   The invariant is universally true for any use of that entity

   Usage properties

   Result from specific usage of a data structure or function

   Depend on the context of use and the test suite

   Is this a true distinction?

   Because Daikon operates on test suites, it cannot distinguish between

these classes

   Programmers cannot distinguish the two easily either because a sound

pre-condition may be true only because the callers respect that

Static Program Checking 16

Experiments – rediscovery of formal specs

   Daikon can distinguish between

   Preconditions (hold at beginning of a procedure)

   Post-conditions (hold at the exit point of a procedure)

   Rep invariants (hold both at the entry and the exit points of all procedures)

   Loop invariants (hold at the beginning of each iteration of a loop)

   Daikon was applied to a set of textbook programs with formal pre/post
conditions and loop invariants

   All programs are small

   Examples: searching, sorting, etc.

   Formal spec was removed from the programs

   A simple test suite was built

   Daikon reported all those formal properties

Static Program Checking 17

Example – add array elements

•  Instrumentation at the program entry, the loop head, and program exit.

•  Ran on 100 randomly-generated arrays of length 7-13 with elements from
-100 to 100.

Static Program Checking 18

Example – add array elements

•  Entry invariants = preconditions
•  The invariant N = size(B) is
important, but missing from the hand-
written spec

•  Exit invariant = post-condition
•  S = sum(B) is important
•  No side effects on B and N

• Loop invariant:
•  S = sum(B[0..I-1])

•  Invariants give info about the test
suite: N in [7..13] that can be used to
improve the suite

Boxes represent the invariants that give the original formal spec

Static Program Checking 19

Application – program modification

   A case where inferred invariants were of substantial assistance to
programmers

   “Replace” program:

   Takes as input, a string, a regular expression and a replacement string

   Outputs the input string with all occurrences of the regular expression

changed to the replacement string

   Is 563 LOC with 21 procedures in C

   No comments or documentation

   Decided to extend the language of the regular expression

   Ran the code on 100 tests randomly selected from a suite

   Daikon produced invariants at the entry and exit of each procedure

   Two programmers started changing the program

   Used invariants to make sure they understood the code correctly

   They found a bug in the original code, represented by an unexpected invariant

   Used Daikon on the changed code and compared the new invariants with the

old ones to ensure lack of unintended changes

Static Program Checking 20

Improving invariants

   Just applying the templates doesn’t produce the desired invariants, and
produces some unnecessary ones

   An invariant is relevant if it helps a programmer in his task

   The notion is highly dependent on Daikon’s developers experience

   To improve the relevance of reported invariants:

   To add desired invariants

   Add implicit values

   Exploit unused polymorphism

   To eliminate undesired invariants

   Perform statistical confidence checks

   Suppress redundant invariants

   Limit which variables are compared to each other

Static Program Checking 21

1. Implicit values

   Some properties may be over entities not explicitly stored in program
variables

   Size of a data structure

   Largest value of a data structure

   Cyclicity of a data structure

   Daikon introduces “derived” variables to represent such entities

   They are introduced at inference stage because their value can be

determined from any trace

   So then ordinary invariant detection can report relationships involving

these entities

   But

   May slow down Daikon because now we have many more potential
invariants

   Inevitably, it increases the number of irrelevant invariants reported

Static Program Checking 22

Implicit values

   Derived variables for a sequence s (array)

   Length: size(s)

   Extreme elements: s[0], s[1], s[size(s)-1], s[size(s)-2]

   To accommodate for header nodes, etc.

   For numeric sequence s

   Sum: sum(s)

   Minimum element: min(s)

   Maximum element: max(s)

   For a sequence s and a numeric variable I

   S[i], s[i-1]

   Subsequence: s[0..i], s[0..i-1]

   For procedure invocations:

   Number of calls in this trace so far

   User can add new derived variables

Static Program Checking 23

A few points

   Introducing new derived variables can be done recursively

   a  size(a), then b, size(a)  b[size(a)-1]

   Default recursion depth is set to 2

   Derived vars are introduced if previous invariants show they’re sensible

   This requires interleaving invariant detection and variable derivation

   Introducing derived vars first and then invariant detection doesn’t work

   Derived variables are not introduced until invariants are computed over

existing variables

   Example for a sequence s,

   Size(s) is introduced first, invariants are computed, then more sequence-based
vars may be generated

   If j >= size(s), then we won’t create derived variable a[j]

   Tautologies are not reported

   i = size(s[0..i-1])

   Any time two vars are shown equal, one is canonically chosen and the
other one is dropped from the set of variables

Static Program Checking 24

Example revisited – add array elements

Boxes represent the invariants that give the original formal spec

Static Program Checking 25

2. Polymorphism elimination

   What is the difference between polymorphism and generics?

   Variables declared as any polymorphic type (base class) usually
contain a single type at runtime

   A polymorphic list can be used for a list of integers

   We like to infer invariants like list is sorted, but is not defined for list(object)

   Daikon uses the declared type (base type)

   Because instrumentation is done up-front statically

   That’s when we decide what to monitor

   But can’t examine fields specific to the runtime type

Static Program Checking 26

Polymorphism elimination

   Two-pass solution

   First pass watches base-class fields, object id, its runtime class

   If Daikon detects invariants over the run-time class (e.g. if o != null then

o.class = a specific class), then the user can add a comment with a more
specific refined type

   A second pass of instrumentation and invariant detection works on the
refined type. Accesses fields of that type.

   Sound if program runs over the same inputs, and is deterministic

   Ow, exceptions might be thrown during code runs, and Daikon catches them

Static Program Checking 27

Example

For recursive fields (e.g. next),
variable header.closure(next)
is all objects reachable from
header.

A field of a set of objects gives
the set of values for that field
in all objects

