Static Program Checking

Invariant detection – Daikon

Jun.-prof. Dr. Mana Taghdiri

Monday – July 3, 2014
Invariants

What is an invariant?
- A property that is true at a particular program point or points
- Like the ones written as assert statements, rep invariants, pre/post conditions

Having an explicit invariant simplifies
- Coding
- Verification, Testing
- Optimization
- Maintenance
- Understanding data structures, algorithms, program operations

All programmers have invariants in mind when coding
- An idea of how the system in intended to be used
- How the data structures are laid out

But, invariants are usually absent from the code
- Automatic invariant detection recovers what programmer had in mind
Automatic invariant detection

- Can be done **statically**
 - One approach is **abstract interpretation** (will see an example in the next class)

- Houdini
 - Generates rep invariants, pre/post conditions
 - But not assert statements in the middle of the code
 - Generates all possible candidate invariants
 - Refutes the invalid ones by iteratively calling ESC/Java
 - The invariants are not guaranteed to be sound
 - But, they are true in all executions that ESC checks
Daikon

- Uses a dynamic approach
 - Based on a set of program traces
 - Executes a test suite
 - Captures variable values at program points of interest
 - An invariant detector determines which properties hold for variables
 - Runs very quickly on large programs

- The quality of the output depends on the comprehensiveness of the test suite
 - Daikon infers “likely” invariants
 - Experiments show that test suites found in practice are adequate
Quality of test suite

- Invariants generated by Daikon can be used to enhance the suite
 - The programmer sees the invariants that are true so far, but shouldn’t hold in general, and can come up with other test cases

- Test suites that are good for finding bugs are not necessarily good for detecting invariants:
 - In bug finding, for efficiency, every statement is covered a minimal number of times
 - In invariant detection, we need multiple executions of a statement to generalize the values (statistical support)
High level architecture
Phases

- Program instrumentation
 - Tells which variables to watch at what program points

- The inference step
 - Tests possible invariants against values captured for instrumented variables
 - Reported properties are the ones that
 - Are satisfied over all the values of a variable
 - Are statistically justified
 - Are not over unrelated variables
 - Are not implied by other reported invariants
Invariant detection

- The execution of an instrumented program stores the values of all variables at an interesting program point.

- Suppose x, y, and z are in scope at a watched point.

- We test all invariants (constructed from a template library) on x, y, z.
 - All unary invariants checked for x, y, and z.
 - All binary invariants checked for <x, y>, <x, z>, and <y, z>.
 - All ternary invariants checked for <x, y, z>.
 - It stops at ternary tuples.

- Each invariant is checked on each trace.
 - The check is over concrete values – no theorem proving, etc. – is cheap.
 - If any trace violates the invariant, it is not a correct invariant.
Example – increment

```c
int inc(int *x, int y)
    *x += y;
    return *x;
```

Watched point: end of the procedure

<table>
<thead>
<tr>
<th>orig(x)</th>
<th>orig(*x)</th>
<th>orig(y)</th>
<th>x</th>
<th>*x</th>
<th>y</th>
<th>return</th>
</tr>
</thead>
<tbody>
<tr>
<td>4026527180</td>
<td>2</td>
<td>1</td>
<td>4026527180</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4026527180</td>
<td>3</td>
<td>1</td>
<td>4026527180</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>146204</td>
<td>13</td>
<td>1</td>
<td>146204</td>
<td>14</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>4026527180</td>
<td>4</td>
<td>1</td>
<td>4026527180</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>146204</td>
<td>14</td>
<td>1</td>
<td>146204</td>
<td>15</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>4026527180</td>
<td>5</td>
<td>1</td>
<td>4026527180</td>
<td>6</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>4026527180</td>
<td>6</td>
<td>1</td>
<td>4026527180</td>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

What are some potential invariants?
Example – increment

```c
int inc(int *x, int y)
    *x += y;
    return *x;
```

Invariants: \(x = \text{orig}(x) \), \(y = \text{orig}(y) = 1 \), \(*x = \text{orig}(*x) + 1 \), and \(\text{return} = *x \)
Sample invariant templates

- For any variable
 - Constant value: \(x = a \)
 - Uninitialized: \(x = \text{uninit} \) (\(x \) is never set)
 - Small value set: \(x \in \{a, b, c\} \)

- For single numeric variable
 - Range limit: \(x \geq a, x \leq b \)
 - Nonzero: \(x \neq 0 \)
 - Modulus: \(x \mod b = a \)

- For two numeric variables
 - Linear relationship: \(y = ax + b \)
 - Ordering comparison: \(x < y, x \leq y, x \neq y, .. \)
 - Functions: \(y = \text{fn}(x) \) (e.g. \(\text{fn} = \text{absolute value, negation, bitwise complement} \))
 - All single-variable invariants over \((x+y)\)
Sample invariant templates

- For 3 numeric variables
 - Linear relationship: \(z = ax + by + c \)
 - Functions: \(z = fn(x, y) \) (e.g. \(fn = \text{min, max, multiplication, and, etc.} \))

- For a sequence variable (array)
 - Range: min and max of the sequence: \(a \leq x[i] \leq b \)
 - Element ordering: elements are non-decreasing, equal, non-increasing

- For two sequences
 - Linear relationship elementwise: \(y = ax + b \)
 - Subsequence: \(x \) is a subsequence of \(y \)
 - Reversal: \(x \) is the reverse of \(y \)

- For a sequence and a numeric variable
 - Membership: \(i \in s \)
How to instantiate the templates?

- Linear relationships like $x = ay + bz + c$ with a, b, c unknown
 - is instantiated by picking 3 tuples of values and computing a, b, c
- $x = a \pmod{b}$
 - is done by computing greatest common divisor of $(x_1 - x_2)$ to get b (for different values x_1 and x_2 of x)
- $x < b$
 - is computed by updating b as more samples are seen

- Example?
Why these invariants?

- Based on users’ programming and specification experience
- The list is built incrementally over time
- Not only added more invariants, but also removed the less useful ones

- Again, more invariants means longer runtime

- Users can add their own general and domain-specific invariants
 - Domain-specific: if a data structure is a tree
Output

- Functional invariants
 - Depends only on the code for a particular data structure or function
 - The invariant is universally true for any use of that entity

- Usage properties
 - Result from specific usage of a data structure or function
 - Depend on the context of use and the test suite

- Is this a true distinction?
 - Because Daikon operates on test suites, it cannot distinguish between these classes
 - Programmers cannot distinguish the two easily either because a sound pre-condition may be true only because the callers respect that
Experiments – rediscovery of formal specs

- Daikon can distinguish between:
 - Preconditions (hold at beginning of a procedure)
 - Post-conditions (hold at the exit point of a procedure)
 - Rep invariants (hold both at the entry and the exit points of all procedures)
 - Loop invariants (hold at the beginning of each iteration of a loop)

- Daikon was applied to a set of textbook programs with formal pre/post conditions and loop invariants:
 - All programs are small
 - Examples: searching, sorting, etc.
 - Formal spec was removed from the programs
 - A simple test suite was built
 - Daikon reported all those formal properties
Example – add array elements

\[i, s := 0, 0; \]
\[\text{do } i \neq n \rightarrow \]
\[\quad i, s := i + 1, s + b[i] \]
\[\text{od} \]

Precondition: \(n \geq 0 \)
Postcondition: \(s = (\sum j: 0 \leq j < n : b[j]) \)
Loop invariant: \(0 \leq i \leq n \) and \(s = (\sum j: 0 \leq j < i : b[j]) \)

• Instrumentation at the program entry, the loop head, and program exit.

• Ran on 100 randomly-generated arrays of length 7-13 with elements from -100 to 100.
Example – add array elements

15.1.1:::ENTER

\[
\begin{align*}
N &= \text{size}(B) \\
N &\in [7..13] \\
B &\quad \text{All elements in } [-100..100]
\end{align*}
\]

100 samples

- Entry invariants = preconditions
- The invariant \(N = \text{size}(B) \) is important, but missing from the handwritten spec

15.1.1:::EXIT

\[
\begin{align*}
N &= I = \text{orig}(N) = \text{size}(B) \\
B &= \text{orig}(B) \\
S &= \text{sum}(B) \\
N &\in [7..13] \\
B &\quad \text{All elements in } [-100..100]
\end{align*}
\]

100 samples

- Exit invariant = post-condition
- \(S = \text{sum}(B) \) is important
- No side effects on \(B \) and \(N \)

15.1.1:::LOOP

\[
\begin{align*}
N &= \text{size}(B) \\
S &= \text{sum}(B[0..I-1]) \\
N &\in [7..13] \\
I &\in [0..13] \\
I &\leq N \\
B &\quad \text{All elements in } [-100..100]
\end{align*}
\]

1107 samples

- Loop invariant:
- \(S = \text{sum}(B[0..I-1]) \)

- Invariants give info about the test suite: \(N \in [7..13] \) that can be used to improve the suite

Boxes represent the invariants that give the original formal spec
Application – program modification

- A case where inferred invariants were of substantial assistance to programmers
- “Replace” program:
 - Takes as input, a string, a regular expression and a replacement string
 - Outputs the input string with all occurrences of the regular expression changed to the replacement string
 - Is 563 LOC with 21 procedures in C
 - No comments or documentation
 - Decided to extend the language of the regular expression
 - Ran the code on 100 tests randomly selected from a suite
 - Daikon produced invariants at the entry and exit of each procedure
- Two programmers started changing the program
 - Used invariants to make sure they understood the code correctly
 - They found a bug in the original code, represented by an unexpected invariant
 - Used Daikon on the changed code and compared the new invariants with the old ones to ensure lack of unintended changes
Improving invariants

- Just applying the templates doesn’t produce the desired invariants, and produces some unnecessary ones
- An invariant is relevant if it helps a programmer in his task
- The notion is highly dependent on Daikon’s developers experience

To improve the relevance of reported invariants:

- To add desired invariants
 - Add implicit values
 - Exploit unused polymorphism
- To eliminate undesired invariants
 - Perform statistical confidence checks
 - Suppress redundant invariants
 - Limit which variables are compared to each other
1. Implicit values

- Some properties may be over entities not explicitly stored in program variables
 - Size of a data structure
 - Largest value of a data structure
 - Cyclicity of a data structure

- Daikon introduces “derived” variables to represent such entities
 - They are introduced at inference stage because their value can be determined from any trace

- So then ordinary invariant detection can report relationships involving these entities

- But
 - May slow down Daikon because now we have many more potential invariants
 - Inevitably, it increases the number of irrelevant invariants reported
Implicit values

- Derived variables for a sequence s (array)
 - Length: size(s)
 - Extreme elements: s[0], s[1], s[size(s)-1], s[size(s)-2]
 - To accommodate for header nodes, etc.

- For numeric sequence s
 - Sum: sum(s)
 - Minimum element: min(s)
 - Maximum element: max(s)

- For a sequence s and a numeric variable I
 - s[i], s[i-1]
 - Subsequence: s[0..i], s[0..i-1]

- For procedure invocations:
 - Number of calls in this trace so far
- User can add new derived variables
A few points

- Introducing new derived variables can be **done recursively**
 - $a \rightarrow \text{size}(a)$, then b, $\text{size}(a) \rightarrow b[\text{size}(a)-1]$
 - Default recursion depth is set to 2

- Derived vars are introduced if previous invariants show they’re sensible
 - This **requires interleaving invariant detection and variable derivation**
 - Introducing derived vars first and then invariant detection doesn’t work
 - Derived variables are not introduced until invariants are computed over existing variables

- Example for a sequence s,
 - $\text{Size}(s)$ is introduced first, invariants are computed, then more sequence-based vars may be generated
 - If $j \geq \text{size}(s)$, then we won’t create derived variable $a[j]$

- Tautologies are not reported
 - $i = \text{size}(s[0..i-1])$

- Any time two vars are shown equal, one is canonically chosen and the other one is dropped from the set of variables
Example revisited – add array elements

15.1.1:::ENTER

N = size(B)

<table>
<thead>
<tr>
<th>N in [7..13]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 samples</td>
</tr>
<tr>
<td>(7 values)</td>
</tr>
<tr>
<td>(100 values)</td>
</tr>
<tr>
<td>(200 values)</td>
</tr>
</tbody>
</table>

B

All elements in [-100..100]

15.1.1:::EXIT

N = I = orig(N) = size(B)

<table>
<thead>
<tr>
<th>B = orig(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 samples</td>
</tr>
<tr>
<td>(7 values)</td>
</tr>
<tr>
<td>(100 values)</td>
</tr>
<tr>
<td>(96 values)</td>
</tr>
<tr>
<td>(7 values)</td>
</tr>
<tr>
<td>(100 values)</td>
</tr>
<tr>
<td>(200 values)</td>
</tr>
</tbody>
</table>

S = sum(B)

N in [7..13]

<table>
<thead>
<tr>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1107 samples</td>
</tr>
<tr>
<td>(7 values)</td>
</tr>
<tr>
<td>(452 values)</td>
</tr>
<tr>
<td>(7 values)</td>
</tr>
<tr>
<td>(14 values)</td>
</tr>
<tr>
<td>(77 values)</td>
</tr>
<tr>
<td>(100 values)</td>
</tr>
<tr>
<td>(200 values)</td>
</tr>
<tr>
<td>(200 values)</td>
</tr>
</tbody>
</table>

15.1.1:::LOOP

N = size(B)

<table>
<thead>
<tr>
<th>S = sum(B[0..I-1])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1107 samples</td>
</tr>
<tr>
<td>(7 values)</td>
</tr>
<tr>
<td>(452 values)</td>
</tr>
<tr>
<td>(7 values)</td>
</tr>
<tr>
<td>(14 values)</td>
</tr>
<tr>
<td>(77 values)</td>
</tr>
<tr>
<td>(100 values)</td>
</tr>
<tr>
<td>(200 values)</td>
</tr>
<tr>
<td>(200 values)</td>
</tr>
</tbody>
</table>

N in [7..13]

<table>
<thead>
<tr>
<th>I in [0..13]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(77 values)</td>
</tr>
<tr>
<td>(100 values)</td>
</tr>
<tr>
<td>(200 values)</td>
</tr>
<tr>
<td>(200 values)</td>
</tr>
</tbody>
</table>

I <= N

B

All elements in [-100..100]

Boxes represent the invariants that give the original formal spec
2. Polymorphism elimination

- What is the difference between polymorphism and generics?

- Variables declared as any polymorphic type (base class) usually contain a single type at runtime
 - A polymorphic list can be used for a list of integers
 - We like to infer invariants like list is sorted, but is not defined for list(object)

- Daikon uses the declared type (base type)
 - Because instrumentation is done up-front statically
 - That’s when we decide what to monitor
 - But can’t examine fields specific to the runtime type
Polymorphism elimination

- Two-pass solution
 - First pass watches base-class fields, object id, its runtime class
 - If Daikon detects invariants over the run-time class (e.g. if o != null then o.class = a specific class), then the user can add a comment with a more specific refined type
 - A second pass of instrumentation and invariant detection works on the refined type. Accesses fields of that type.
 - Sound if program runs over the same inputs, and is deterministic
 - Ow, exceptions might be thrown during code runs, and Daikon catches them
Example

For recursive fields (e.g. next), variable header.closure(next) is all objects reachable from header.

A field of a set of objects gives the set of values for that field in all objects.