
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Automated Software Analysis Group, Institute of Theoretical Informatics

www.kit.edu

Static Program Checking
Specification Inference

Jun.-prof. Dr. Mana Taghdiri

Monday – July 10, 2014

Static Program Checking 2

Statistical justification

   Only reports those invariants that are statistically justified
   Not the ones that happen to be true by chance

   Depends on the set of values obtained at a program point
   Example 1:

   In an entire test suite, a program point was executed only 3 times with x =
7, -42, 22

   The invariants x != 0, x <= 22, x >= -42 will be generated
   Example 2:

   For 0 < y < 10, 0 < z < 10, given 3 pairs <y, z>, the invariant y != z can be
inferred.

   Might be more reliable if true for 10000 pairs
   Solution?

Static Program Checking 3

Statistical justification

   Only reports those invariants that are statistically justified
   Not the ones that happen to be true by chance

   Depends on the set of values obtained at a program point
   Example 1:

   In an entire test suite, a program point was executed only 3 times with x =
7, -42, 22

   The invariants x != 0, x <= 22, x >= -42 will be generated
   Example 2:

   For 0 < y < 10, 0 < z < 10, given 3 pairs <y, z>, the invariant y != z can be
inferred.

   Might be more reliable if true for 10000 pairs
   Solution 1:

   Ask for a better test suite
   But how to generate an ideal test suite?

Static Program Checking 4

Statistical justification

   Daikon’s solution:
   For each detected invariant, it computes the probability that the invariant

might appear by chance in a random input
   If the probability is less than a user-provided threshold, then property is not

just by chance, and is reported
   It assumes a distribution and performs a statistical analysis
   Because actual distribution of variable values is unknown, the computed

probability is not absolute, but the exact value is not so important; the
order of magnitude is important

   Daikon uses uniform distribution of values, not a guarantee, but a good
measure

   User’s threshold must be very low.
   Because Daikon checks for millions of invariants

Static Program Checking 5

Statistical justification

   Daikon has a probability computation for each invariant
   Example

   Suppose variable x takes values in a range with size r (based on our
samples) containing 0

   We have s sample values of x
   Suppose in all samples x != 0
   Probability of this invariant?

Static Program Checking 6

Statistical justification

   Daikon has a probability computation for each invariant
   Example

   Suppose variable x takes values in a range with size r (based on our
samples) containing 0

   Suppose in all samples x != 0
   Assuming uniform distribution, probability of x != 0 in one sample = 1 – 1/r
   Given s sample values of x, probability = (1 – 1/r)s

   If this probability is less than the threshold, then report the invariant
   More precisely:

   In an entire test suite, a point was executed only 3 times with x = 7, -42, 22
   The invariants x != 0, x <= 22, x >= -42 will be generated
   Probability of nonzero = (1 – 1/65)3 = 0.94
   So x != 0 will not be reported

Static Program Checking 7

Statistical justification

   The statistical heuristic is not a guarantee. So Daikon also outputs the
number of values (samples) that support an invariant, so the user can
decide

   Problematic case: repeated values
   A variable is not changed in a loop, but recorded repeatedly at the loop

entry
   Then number of samples is artificially high
   We don’t like properties derived based on that

Static Program Checking 8

Example revisited – add array elements

•  Instrumentation at the program entry, the loop head, and program exit.
•  Ran on 100 randomly-generated arrays of length 7-13 with elements
from -100 to 100.

Static Program Checking 9

Example – add array elements

Static Program Checking 10

Example – add array elements

•  additional invariants if we don’t eliminate repeated values

•  these invariants are reported for the loop, but nowhere else in the code,
although B doesn’t change in the program

Static Program Checking 11

Repeated values – solutions

   Always:
   Every sample should be counted, no matter what

   Changed value:
   A sample is considered if its value is different from last time this program

point was examined (doesn’t account for recomputations that result in the
same value)

   Assignment:
   Sample contributes to confidence computation if variable has been

assigned since last time seen at this program point. (implemented in
Daikon) – takes engineering effort to implement

   Random:
   If value has changed, then consider it. Otherwise, consider it with a

probability of ½

Static Program Checking 12

Statistical confidence – bottom line

   An invariant is reported if:
   There are enough samples that contribute to computing confidence (based

on the picked strategy)
   The computed confidence is higher than the user-specified threshold

Static Program Checking 13

Comparable variables – example

Unconstrained: all scalars (array elements, indices, addresses)

Source type: (i, elements of b) (s, n)

Coerced: same as unconstrained

Lackwit: ?

Static Program Checking 14

Comparable variables – example

Unconstrained: all scalars (array elements, indices, addresses)

Source type: (i, elements of b) (s, n)

Coerced: same as unconstrained

Lackwit: (i, n) (s, elements of b)
 ** if b[i] > 0, then i <= s, but this can’t be inferred by lackwit types
 ** doesn’t occur much in practice

Static Program Checking 15

Experimental results – comparable vars

Gives average number of variables to which each variable is comparable, and
the ratios between each method and the unconstrained method

Static Program Checking 16

Experimental results – effect on invariants

Percentage of total and binary invariants reported, and time to compute all
invariants, compared to unconstrained comparability

Qualitative analysis of invariants:
Those not reported by Lackwit are all irrelevant for common programming tasks
Example: other techniques produce x < y (for char * pointers) – not useful

Static Program Checking 17

How to handle data structures?

   Sample invariants:

Static Program Checking 18

Data structure invariants

   Pointers are difficult only for recursive data structures where the system
may have to traverse arbitrarily many links
   O.w. a pointer is just a record with two fields (address, and content)

   Invariants are
   Local: true in objects with a fixed distance from the current variable

   node.left.parent = node
   The instrumenter records object fields up to a certain specified depth

   Global: involves an arbitrary-size collection of objects
   mytree is sorted
   num < size(myList)
   Must explicitly represent the collection

Static Program Checking 19

How to handle data structures?

   Linearization
   Instrumented code traverses data structures and records them explicitly as

arrays in program traces
   Example invariant: mytree is sorted

Static Program Checking 20

linearization

   Linearization involves
   Selecting a root

   Current program variables
   Determining a field for traversing the data structure

   Fields that point to objects of the same type (next)
   If there are multiple options (e.g. prev), then makes multiple arrays
   Also for combinations of fields

   (in-order, pre-order and post-order of left and right in a tree)
   Selecting which fields of the visited objects should be written in trace file

   Fields with non-recursive types are written out
   Also records special attributes

   Is cyclic, is a DAG, is a tree
   This kind of information must be discovered by instrumenter. Is lost after

linearization

Static Program Checking 21

Conditional invariants
   Many important invariants are not universal

   p.left.value < p.right.value is true if p, p.right and p.left are non null
   If arg < 0 then result = -arg else result = arg (absolute value)
   If x \in orig(list) then size(list) = size(orig(list)) – 1 (list deletion)

Static Program Checking 22

Conditional invariants
   Many important invariants are not universal

   p.left.value < p.right.value is true if p, p.right and p.left are non null
   If arg < 0 then result = -arg else result = arg (absolute value)
   If x \in orig(list) then size(list) = size(orig(list)) – 1 (list deletion)

Static Program Checking 23

Trace splitting

   What predicates to use for splitting?
   How many of the split candidates to use?
   How to combine them?
   Example

   For two splitting predicates p and q, there are at least 13 potential
subparts of data trace:

Static Program Checking 24

Trace splitting

   What predicates to use for splitting?
   How many of the split candidates to use?
   How to combine them?
   Example

   For two splitting predicates p and q, there are at least 13 potential
subparts of data trace:
   Whole trace (condition true)
   Four subtraces (p, !p, q, !q)
   Eight subtraces (p & q, !(p & q), p & !q, !(p & !q),
   !p & q, !(!p & q), !p & !q, !(!p & !q)

   Daikon uses single-level splitting
   True, and p, !p, q, !q

Static Program Checking 25

Splitting policy

   A static analysis policy:
   splitting conditions based on analysis of the program’s source code
   Daikon currently implements this policy
   Uses conditions used for branches in program

   (if statements and pure boolean member functions)

   A special values policy:
   compares a variable to preselected values chosen

   Statically (such as null, zero, or literals in the source code) or

   A policy based on exceptions to detect invariants:
   tracks variable values that violate potential invariants, rather than

immediately discarding the falsified invariant
   If the number of falsifying samples is moderate, those samples can be

separately processed, resulting in a nearly-true invariant plus an invariant
over the exceptions

   A programmer-directed policy:
   allows a user to select splitting conditions a priori

Static Program Checking 26

Experiments on data structures

Redundant (implied) invariant detection was not implemented for this experiment

Static Program Checking 27

Experiments on data structures

These are all textbook data structures, so we know the exact set of invariants

Static Program Checking 28

Sample invariants

Static Program Checking 29

Final words

   Experiments show the invariants are
   Accurate, useful, and efficient to generate

   Scalability
   Even relatively small test suites are enough for detecting good invariants

   Ease of use
   Still uses a lot of memory (internal data structures)
   Usability can be improved (to cope with all generated invariants)

Static Program Checking 30

Static summary computation

   Summaries specify how a procedure behaves
   Computed in the Alloy language
   Are safe (sound) abstractions

   It is guaranteed that the summaries account for all procedure executions

   This summarization technique
   Is fully automatic
   Requires absolutely no annotations/guidance/additional information from

the user

   Goal: cost-effectiveness
   The summarization must be fast

   Is used as a small phase of a bigger bug finding technique
   Is linear in the size of the code

   Accuracy is not so important
   Produces as accurate summaries as possible using a lightweight technique

Static Program Checking 31

Syntactic summaries

   Summarize the behavior of a procedure as a symbolic relationship
between pre and post states

   Summaries are declarative formulas in a subset of Alloy
   Doesn’t include quantifiers
   Doesn’t include set comprehension

   Provide both an upper and a lower bound on the final values of fields,
return value, and allocated objects

   The result can sometimes be precise

 relational expr ⊆ field’/variable’ ⊆ relational expr

 field’/variable’ = relational expr

Static Program Checking 32

Example – Precise Spec

Job nullifyMove(Entry e1, Entry e2) {

 e1.job = e2.job;

 e2.job = null;

 return e1.job;

}

Static Program Checking 33

Example – Precise Spec

job’ = job ++ (e1 → e2.job) ++ (e2 → null)

$ret = e1.(job ++ (e1 → e2.job) ++ (e2 → null))

relational
override

Job nullifyMove(Entry e1, Entry e2) {

 e1.job = e2.job;

 e2.job = null;

 return e1.job;

}

The summary is correct even
when e1 and e2 are aliased.

Static Program Checking 34

Example – Imprecise Spec

$ret ⊆ e.*next

$ret ⊇ ∅

Entry findFirst(Entry e, int n) {
 Entry c = e;
 while ((c != null) && (c.job.predsNum != n)) {
 c = c.next;
 }
 return c;
}

Return value is reachable from e

In a list of jobs, returns the first one with n predecessors

Static Program Checking 35

Example – Imprecise Spec

$ret ⊆ (e.*next & (null + f.d))

$ret ⊇ ∅

Entry findFirst(Entry e, int n) {
 Entry c = e;
 while ((c != null) && (c.job. predsNum != n)) {
 c = c.next;
 }
 return c;
}

c.f != d

Return value is reachable from e
And it is either null, or its f field
equals d

Static Program Checking 36

Example – Imprecise Spec

$ret ⊆ (e.*next & (null + job.predsNum.n))

$ret ⊇ ∅

Entry findFirst(Entry e, int n) {
 Entry c = e;
 while ((c != null) && (c.job. predsNum != n)) {
 c = c.next;
 }
 return c;
}

Return value is reachable from e
And it is either null, or its
job.predsNum field equals n

Why is this imprecise?

Static Program Checking 37

scheduled’ ⊆ scheduled + (this.head.*next.job → 0)

scheduled’ ⊇ scheduled - (this.head.*next.job → univ)

Example – Imprecise Spec

void JobList.init() {
 Entry c = this.head;
 while (c != null) {
 c.job.scheduled = 0;
 c = c.next;
 }
}

• The scheduled field of any job
reachable from this list may be
changed to 0

• The scheduled field of all other
jobs remain unchanged

Static Program Checking 38

Approach: abstract interpretation

   Study aspects of the concrete (but more complicated) executions by
looking at corresponding properties of abstract (and simpler)
executions

   Example: for the abstract domain of {(+), (−), (+/−)}
   −1515 ∗ 17 ⇒ −(+) ∗ (+) ⇒ (−) ∗ (+) ⇒ (−)
   −1515 + 17 ⇒ −(+) + (+) ⇒ (−) + (+) ⇒ (+/−)

   Abstract interpretation approximates program behavior by replacing the
concrete domain of computation and its concrete operations with an
abstract domain and abstract operations.

Static Program Checking 39

Value abstractions

Static Program Checking 40

Concretization function

Static Program Checking 41

Abstraction function

Static Program Checking 42

Abstract interpretation

   Consists of
   A concrete domain S, and an abstract domain A
   An abstraction function alpha, and a concretization function gamma
   Alpha and gamma form a Galois connection

   S \in gamma(alpha(S))
   A = alpha(gamma(A))

   Is defined over an ordered set (lattice)
   a partially ordered set where any two elements have a unique least upper

bound (join) and a greatest lower bound (meet)
   Examples:

   The set {1, 2, 3} and the subset relation
   Bounded with a bottom and a top

   The set of natural numbers and the less-than relation
   Unbounded with a bottom

Static Program Checking 43

Technique: Abstract Interpretation

Abstract domain = <Lower bound, Upper bound>

 El, Eu: (Var ∪ Field ∪ Type) → Relational Expr

Partial order

 <El1, Eu1> <El2, Eu2> ⇔
 ∀x, (El1(x) ⊇ El2(x)) ∧ (Eu1(x) ⊆ Eu2(x))

Lattice join

 <El1, Eu1> <El2, Eu2> = < λx. El1(x) & El2(x),
 λx. Eu1(x) + Eu2(x) >

Static Program Checking 44

Approach

   Is an abstract interpretation
   Flow sensitive (order of statements is important)
   Context sensitive (calling context is important)

   Abstract domain
   Relational expressions in Alloy

   Symbolic execution
   Pre-state

   Each type, variable, field is represented by a relation constant
   Execution

   Keeps two expressions for each type, variable, field:
   Lower bound: tuples that occur in all executions (must side-effects)
   Upper bound: tuples that occur in some executions (may side-efffects)

   As the code updates the values, the relational expressions are updated
   Final summary is an over-approximation of the behavior

(lb in x’) and (x’ in ub)

Static Program Checking 45

Example

 1. x.f = y;
 2. if (c == 1)
 3. z.g = y;
 4. else
 5. z.g = x;
 6. end

 0. x, y, z, f, g, c
 1. [f] = f ++ x y

 3. [g] = g ++ z y

 5. [g] = g ++ z x
 6. [g] ⊆ g + z y + z x
 6. [g] ⊇ g – z univ

Static Program Checking 46

Program constructs

   Object allocation
   Allocated objects are represented by fresh unary relations

   Call sites
   Context-sensitive summaries
   Context consists of variables, fields, types whose summaries are accurate
   Generate a template summary for each context of a procedure using

symbolic constants for accessed fields, variables, types
   Instantiate it at each call site using relational expressions of fields,

variables, and types at that point
   Loops

   Use the loops condition to get more precise abstractions of the body
   At the entry point, the relational encoding of the condition is intersected with

expressions for the condition’s variables to remove all tuples that violate the
condition

   Then abstract the body by computing fixpoint
   Then intersect the negation of loop condition with the final values of condition’s

variables

Static Program Checking 47

Widenings:

   x + x.r + .. + x.r(k) in upper bound goes to x.*r
 x & x.r & .. & x.r(k) in lower bound goes to {}

   upper bound with more than n operators goes to univ
 lower bound with more than n operators goes to {}

   (m+1)th allocation of a type goes to
 a symbolic set of objects with unspecified cardinality

   simplification rules to shorten the exprs

Technique: Abstract Interpretation

