
c© 2006 by Koushik Sen. All rights reserved.

SCALABLE AUTOMATED METHODS FOR

DYNAMIC PROGRAM ANALYSIS

BY

KOUSHIK SEN

B.Tech., Indian Institute of Technology at Kanpur, 1999

M.S., University of Illinois at Urbana Champaign, 2003

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois

Abstract

Testing using manually generated test cases is the primary technique used in industry to improve

reliability of software—in fact, such ad hoc testing accounts for over half of the typical cost of

software development. We propose new methods for systematically and automatically testing

sequential and concurrent programs. The methods are based on three new techniques: concolic

testing, race-detection and flipping, and predictive monitoring. Concolic testing combines concrete

and symbolic testing to avoid redundant test cases as well as false warnings. Concolic testing can

catch generic errors such as assertion violations, uncaught exceptions, and segmentation faults.

Large real-world programs are almost always concurrent. Because of the inherent non-

determinism of such programs, testing is notoriously hard. We extend concolic testing with a

method called race-detection and flipping, which provides ways of reducing, often exponentially,

the exploration space for concolic testing. This combined method provides the first technique to

effectively test concurrent programs with complex data inputs.

Concolic testing may also be combined with formal specifications by using runtime monitors.

Runtime monitors are small software units which are synthesized automatically from the formal

specification for the software and weaved into the code to dynamically check if the specification is

violated. For multi-threaded concurrent programs, we developed a novel technique which allows

efficient predictive monitoring to enable the detection of a violation by observing some related, but

possibly bug-free execution of a concurrent program. Predictive monitoring dramatically improves

the efficiency of testing.

Based on the above methods we have developed tools for testing both C and Java programs. We

have used the tools to find bugs in several real-world software systems including SGLIB, a popular

C data structure library used in a commercial tool, implementations of the Needham-Schroeder

protocol and the TMN protocol, the scheduler of Honeywell’s DEOS real-time operating system,

and the Sun Microsystems’ JDK 1.4 collection framework.

iii

To my parents and my wife.

iv

Acknowledgment

First I would like to thank my advisor Gul Agha. His exemplary guidance, his far reaching vision,

and his depth and breadth of knowledge has facilitated me to become a researcher. He gave me full

freedom and unconditional support to explore and develop diverse ideas throughout my graduate

education. The best way for me to express my gratitude towards him is to try to become what he

has been to me: teacher, mentor, guide, collaborator, and friend.

I thank José Meseguer for his constant guidance and feedback in my research. My research

has benefited considerably from stimulating discussions with him and from our many years of

collaboration on probabilistic rewriting theories and statistical methods. His classes on automated

software verification introduced me to the whole area of software reliability.

I thank Grigore Roşu for his strong encouragement and guidance in my research. He introduced

me with the notion of scalable and light weight formal methods for improving software quality. This

notion over time shaped the primary theme of my research. His expertise on runtime verification

and scalable formal methods influenced my research on combining ad hoc testing and rigorous

formal methods. His strong collaboration helped me to develop the whole area of predictive runtime

monitoring and decentralized monitoring of distributed systems.

I would like to thank Mahesh Viswanathan for his constant mentoring and guidance over the

last five years. He introduced me to the whole world of model checking and probabilistic methods,

and has always provided me with key insights and whole-hearted support on my research and career

goals. My research on statistical and probabilistic model checking considerably benefited from his

collaboration.

I owe special thanks to Klaus Havelund for mentoring and guiding me from the early stage

of my research career. He introduced me to real-world software problems and strongly motivated

me to start my research career in software reliability. His collaboration considerably benefited my

v

research on runtime monitoring.

I am grateful to Martin Rinard for serving on my dissertation committee, and for his valuable

comments and questions. I would like to thank Allen Goldberg and Howard Barringer for their

strong collaboration in my research on runtime verification.

I am grateful to Patrice Godefroid, Nils Klarlund, and Darko Marinov for their collaboration

on the concolic testing work. I would especially like to mention, Nirman Kumar, Prasanna Thati,

and Abhay Vardhan, with whom I collaborated on many research projects. Special thanks to

Carl Gunter, Michael Greenwald, and Sanjeev Khanna for their collaboration on the verification

of probabilistic security protocols project.

I would like to thank everyone with whom I had interactions—both research and otherwise. Spe-

cially I would like to thank Nadeem Jamali, Sandeep Uttamchandani, Reza Ziaei, Po-Hao Chang,

Myeong-Wuk Jang, YoungMin Kwon, Rajesh Kumar, Timo Latvala, Predrag Tosic, Tom Brown,

Liping Chen, Soham Mazumdar, Sameer Sundresh, Kirill Mechitov, WooYoung Kim, Can Zheng,

Marcelo Bezerra D’Amorim, Sudarshan M. Srinivasan, Rupak Majumdar, Ranjit Jhala, Sumit

Gulwani, Sarfraz Khurshid, Chandrasekhar Boyapati, Tao Xie, Saurabh Sinha, Indranil Gupta, ...

I thank the helpful staff at the Department of Computer Science including Erna Amerman, Barb

Cicone, Shirley Finke, Mary Beth Kelley, and Dana Kennedy and especially Andrea Whitesell.

Finally and foremost, I would like to thank my wife, Aditi, for her unwavering love, support,

and understanding. I thank my parents, whose constant love and encouragement has helped me to

be optimistic even in the most difficult days of my life.

vi

Table of Contents

Acknowledgment . v

Chapter 1 Introduction . 1

1.1 Background . 4

1.2 Outline . 6

Chapter 2 Overview . 7

2.1 Concolic Testing through an Example . 7

2.2 The Race-Detection and Flipping Algorithm through an Example 10

2.3 Predictive Monitoring through an Example . 12

Chapter 3 Programming and Execution Model . 15

3.1 Programming Model . 15

3.2 Execution Model . 19

3.3 Results in Terms of the Execution Model . 31

Chapter 4 Testing Sequential Programs . 32

4.1 Concolic Testing . 33

4.1.1 Logical Input Map . 34

4.1.2 Instrumentation . 35

4.1.3 Concolic Execution . 37

4.1.4 Bounded Depth-First Search . 39

4.1.5 Computing an Input . 43

4.1.6 Approximations for Scalable Symbolic Execution 46

4.2 Data Structure Testing . 47

4.2.1 Generating Inputs with Call Sequences . 47

4.2.2 Solving Data Structure Invariants . 48

4.3 Discussion . 49

4.3.1 Pointer Casting and Arithmetic . 49

4.3.2 Library Functions with Side-Effects . 50

4.3.3 Approximating Symbolic Values by Concrete Values 50

4.3.4 Black-Box Library Functions . 51

4.3.5 Lazy Initialization . 51

4.3.6 Random Initialization . 52

vii

Chapter 5 Testing Concurrent Programs . 54
5.1 The Race-Detection and Flipping Algorithm . 55
5.2 Extending Concolic Testing to Test Concurrent Programs 61

5.2.1 Instrumentation . 62
5.2.2 Controlling the Execution of Threads . 64
5.2.3 Computing a Schedule and an Input . 68

5.3 Extending Concolic Testing with the Race-detection and Flipping Algorithm 68
5.4 A Further Optimization . 72
5.5 Discussion . 73

Chapter 6 Predictive Monitoring of Concurrent Programs 74
6.1 Monitors for Safety Properties . 76
6.2 Relevant Causality . 79

6.2.1 Vector Clock Algorithm for Relevant Causality 80
6.3 Runtime Model Generation and Predictive Monitoring 81

6.3.1 Multi-Threaded Computation Lattice . 81
6.3.2 Level by Level Analysis of the Computation Lattice 87
6.3.3 Causality Cone Heuristic . 91

Chapter 7 Implementation and Case Studies . 94
7.1 Implementation . 94

7.1.1 Program Instrumentation . 94
7.1.2 Utility Functions . 96

7.2 Experimental Evaluation . 97
7.2.1 Data Structures of CUTE . 97
7.2.2 SGLIB Library . 98
7.2.3 Java 1.4 Collection Library . 100
7.2.4 NASA’s Java Pathfinder’s Case Studies . 105
7.2.5 Needham-Schroeder Protocol . 105
7.2.6 TMN Protocol . 106

Chapter 8 Related Work . 107
8.1 Testing Sequential Programs . 107
8.2 Testing Concurrent Programs . 108
8.3 Runtime Verification . 110

Chapter 9 Conclusion . 112
9.1 Summary . 112
9.2 Discussion . 115

9.2.1 Scalability . 115
9.2.2 Program Verification . 118

References . 120

Biography . 129

viii

Chapter 1

Introduction

Software pervades every aspect of our life: businesses, financial services, medical services, com-

munication systems, entertainment, and education are invariably dependent on software. With

this increasing dependency on software, we expect software to be reliable, robust, safe, and secure.

Unfortunately, at the present time the reliability of day-to-day software is questionable. In fact,

NIST estimated in 2002 that software failures cost the US economy alone about $59.5 billion every

year, and that improvements in software testing infrastructure might save one-third of this cost.

Testing remains the primary way to improve reliability of software. Billions of dollars are spent

on testing in the software industry, as testing usually accounts for more than half the cost of

software development. In spite of its success in both commercial and open-source software, testing

suffers from at least four limitations. First, the primary method of generating test inputs is manual.

Automated test input generation techniques, which are less widely-used, have limitations: random

testing can only detect a few bugs; symbolic execution based testing, which is more exhaustive,

depends on automated theorem proving techniques and hence limited by the power of underlying

theorem prover. Second, testing becomes notoriously hard for large concurrent programs due to

the inherent non-determinism in such programs. Third, testing is ad hoc: the translation of the

specification into program assertions is mostly done manually. Finally, testing can find bugs in a

program; however, it cannot prove a program correct.

In this dissertation, we partly address these problems by developing systematic and automated

testing methods for sequential and concurrent programs.

We first focus on sequential programs that can get data inputs from their environments. We

assume that the behavior of such a program depends solely on the input that it gets from its external

environment—for a given input the behavior of the program is deterministic. We have developed a

novel method to systematically and automatically test sequential programs. The method is called

1

concolic testing. Concolic testing combines concrete and symbolic execution to generate test inputs

that enable a program to explore all the distinct feasible execution paths of a programs at most

once, while avoiding redundant test inputs as well as false warnings. Since concolic testing tries

to explore all possible execution paths of a program, it can catch generic errors such as assertion

violations, uncaught exceptions, segmentation faults, and so on.

Large real-world programs are almost invariably concurrent. In concurrent programs, several

threads or actors or processes execute concurrently communicating with each other either through

shared memory or message passing. Testing concurrent programs is notoriously hard because of the

exponentially large number of possible interleavings of concurrent events that the execution of such

programs generate. We have extended concolic testing with a new technique called race-detection

and flipping which provides ways of dramatically reducing the exploration space for shared memory

concurrent programs. In particular, the extended method uses the concrete execution of concolic

testing to compute the causality relation, an abstract relation, between the events in a concurrent

execution. Two executions of a concurrent program are said to be equivalent if they exhibit the

same events and the events are related by the same causality relation. We use the computed

causality relation to provide a novel technique for exploring non-equivalent (with respect to the

causality relation) execution paths of a concurrent program. The extended testing method can

catch concurrency related generic errors such as data races and deadlocks, in addition to generic

errors such as assertion violations, uncaught exceptions, and segmentation faults. This extension

provides the first technique to effectively and systematically test concurrent programs with complex

data inputs. Because our testing method is designed to explore execution paths of a concurrent

program, we term the method Explicit Path Model Checking.

Errors in a program may not be always generic: they may be due to the violation of the

functional requirement of the program, for example, requirements that are provided in a formal

functional specification of the program. To test a program against its formal specification, we

combine concolic testing with runtime monitoring. Runtime monitors are small software units

which are synthesized automatically from a formal specification for the program and weaved into

the code to dynamically check if the specification is violated.

While applying concolic testing combined with runtime monitoring to concurrent multi-threaded

2

programs, we observed that exploring only non-equivalent execution paths is not sufficient for

catching violations of temporal properties—a temporal property may be simultaneously satisfied

and violated by two different equivalent execution paths. Therefore, to test a temporal specification

against a program, we need to explore and monitor all possible execution paths of the program.

Unfortunately, it has been shown that the number of possible execution paths of a concurrent

program can be exponentially larger than the number of non-equivalent paths. This makes runtime

monitoring of all execution paths of even a relatively simple concurrent program impractical.

To address this difficulty, we have developed a novel technique for predictive monitoring of

concurrent programs. In this technique we generate, from an observed execution path, all its

equivalent execution paths and represent them compactly as an abstract model called a computation

lattice. We show that monitoring of temporal properties on this model can be done efficiently. Since

this technique enables us to predict violations of properties in non-observed execution paths without

re-executing the program, we call the technique predictive monitoring. Observe that predictive

monitoring can predict and monitor all execution paths equivalent to a given execution path; we

still need concolic testing extended with race-detection and flipping to explore all non-equivalent

execution paths.

Based on the above methods we have developed tools for testing both C and Java programs.

The testing tool for C is called CUTE; CUTE can only handle sequential C programs. The testing

tool for Java is called jCUTE; jCUTE can test multi-threaded Java programs. Both CUTE and

jCUTE can find generic errors. For Java, we have also implemented the predictive monitoring

method in jCUTE. We have used CUTE and jCUTE to find bugs in several real-world software

systems. CUTE found two previously unknown errors—a segmentation fault and an infinite loop—

in SGLIB, a popular C data structure library used in a commercial software. Using jCUTE, we

tested the thread-safe Java Collection framework provided with the Sun Microsystems’ Java 1.4.

Surprisingly, we discovered several data races, deadlocks, uncaught exceptions, and an infinite

loop in this widely used library. All of these are concurrency related potential bugs. In addition,

jCUTE found a previously known subtle time-partitioning error in the Honeywell’s DEOS real-time

operating system developed for use in small business aircraft. jCUTE detected well-known security

attacks in a concurrent implementation of the Needham-Schroeder and the TMN protocols.

3

Figure 1.1: The ‘Big Picture’

1.1 Background

We describe the ‘big picture’ and how this dissertation fits in the big picture. A large fraction

of the research in software engineering and programming languages is devoted to the problem of

building reliable software. The research can be broadly classified into five overlapping categories

(see Figure 1.1) as follows.

• Safe Programming Languages and Type Systems: The goal of research in this area is to develop

programs using programming constructs and type systems that ensure that the developed

programs are free from certain classes of bugs such as memory errors, information leaks,

data races, deadlocks, etc. The limitations of these approaches is that they cannot guarantee

that a program is free from all kinds of bugs. Moreover, sophisticated type systems make

programming a harder task.

• Static Analysis: The methods developed by research in this area help to find bugs in programs

by statically analyzing the source code of a program. Methods in this area include automated

theorem proving, pointer analysis, software model checking based on predicate abstraction

4

and refinement, and so on. Software reliability methods based on static analyses are often

conservative, resulting in false notification of errors.

• Dynamic Analysis: Dynamic analysis relies on the runtime information obtained from an

actual execution of a program. Various techniques based on dynamic program analyses in-

clude automated testing, runtime verification, explicit state model checking, and so on. Since

dynamic analysis based methods detect bugs by observing the actual execution of a program,

the bugs inferred are often real bugs. Unfortunately, since dynamic program analyses based

methods analyze a single execution of program, they cannot discover all bugs.

• Model Checking: Model checking methods aim to prove that a program meets it formal

specification. They include methods based on both static analyses and dynamic analyses.

The main limitation of model checking methods is that they do not scale for large programs

as the state space to be explored in such methods becomes enormous.

• Model Based Software Development and Analysis: The research in this area is based on

the philosophy that the development of software should begin with the design of a formal

model. Although this is a rigorous and systematic method of developing software, the cost

and expertise required for developing software using this paradigm is often large. This often

limits the applicability of the paradigm to safety critical systems.

The work presented in this dissertation falls under the category of dynamic program analysis.

We believe in the philosophy that we can catch real bugs by actually executing a program. However,

dynamic analysis means that we are restricted to information that is observed in an execution. We

try to remove this limitation in a scalable way by directing a program to execute in all possible

ways. Moreover, we develop methods that can, by observing a successful execution, predict bugs

with certainty in other unobserved executions. In a broader sense, this thesis makes dynamic

program analysis more systematic and rigorous; in other words, the thesis bridges some of the gap

between model checking and testing.

5

1.2 Outline

The rest of the dissertation is organized as follows. In Chapter 2, we give an overview of our testing

algorithms using simple examples. We use three different examples to introduce concolic testing,

race-detection and flipping, and predictive monitoring.

In Chapter 3, to simplify the description of our testing algorithms, we introduce a simple

imperative shared-memory multi-threaded programming language, called Scil. Most features of

common high level imperative programming languages such as C and Java can be translated into

Scil. We then formalize the execution paths of a program written in Scil in terms of a partial

order relation called the causality relation and show how the causality relation can be tracked at

runtime using dynamic vector clocks.

In Chapters 4, we describe our testing algorithm for the sequential fragment of Scil. The

method is called concolic testing. We discuss the various advantages of concolic testing over tradi-

tional symbolic testing.

In Chapter 5, we extend concolic testing with race-detection and flipping to test a concurrent

program written in Scil. We first describe a simple inefficient testing algorithm in which we use bi-

nary semaphores to effectively control the execution of threads. Then we modify the algorithm with

the race-detection and flipping technique to improve the efficiency of testing concurrent programs.

Finally, we suggest a further optimization of the testing algorithm.

In Chapter 6, we introduce predictive monitoring. We start this chapter by briefly introducing

non-deterministic finite automata as monitors for temporal specifications. We then describe an

algorithm for constructing an abstract computation model, called computation lattice, by observing

a concurrent execution path. We show that monitoring of a non-deterministic finite automata on a

computation lattice can be done efficiently and on-the-fly. Finally, we propose a heuristics, called

causality cone heuristics, to make predictive monitoring more effective.

In Chapter 7, we describe the implementation of the testing methods in two tools CUTE and

jCUTE for testing C and Java programs, respectively. We then report our experience on applying

these tools on some real-world programs. In Chapter 8, we briefly review the literature related to

the work in this dissertation.

6

Chapter 2

Overview

We give an overview of concolic testing, the race-detection and flipping algorithm, and predictive

monitoring through a sequence of simple examples. The examples used to describe each of the

three methods are different from each other. This is done to keep the examples simple and relevant

to the methods they illustrate. We introduce concolic testing through a simple sequential program

containing an error statement which may be executed for some input. The example is used to show

how concolic testing generates test inputs one by one so that the program is directed to execute

the error statement. The second example is a simple shared-memory multi-threaded program also

containing an error statement. We use this example to describe how concolic testing is extended

with the race-detection and flipping algorithm. The third example is another simple shared-memory

multi-threaded program, which is required to obey a given temporal specification. The example

illustrate the use of predictive monitoring to catch temporal specification violations.

2.1 Concolic Testing through an Example

In concolic testing, our goal is to generate data inputs that would exercise all the feasible execution

paths of a sequential program. We first describe the essential idea behind concolic testing and then

use an example to illustrate it.

Our algorithm for concolic testing uses concrete values as well as symbolic values for the inputs,

and executes a program both concretely and symbolically. The symbolic execution is similar to the

traditional symbolic execution [55], except that the algorithm follows the path that the concrete

execution takes. During the course of the execution, it collects the constraints over the symbolic

values at each branch point (i.e., the symbolic constraints). At the end of the execution, the

algorithm has computed a sequence of symbolic constraints corresponding to each branch point.

7

We call the conjunction of these constraints a path constraint. Observe that all input values that

satisfy a given path constraint will explore the same execution path.

The algorithm first generates a random input. Then the algorithm does the following in a

loop: it executes the code with the generated input. At the same time the algorithm computes the

symbolic constraints. It backtracks and generates a new input and executes the program again.

The algorithm repeats these steps until it has explored all possible distinct execution paths using

a depth first search strategy. The choice of a new input is made as follows: The algorithm picks a

constraint from the symbolic constraints that were collected along the execution path and negates

the constraint to define a new path constraint. The algorithm then finds, if possible, some concrete

values that satisfy the new path constraint. These values are used as input for the next execution.

A complication arises from the fact that for some symbolic constraints, our constraint solver

may not be powerful enough to compute concrete values that satisfy the constraints. To address

this difficulty, such symbolic constraints are simplified by replacing some of the symbolic values with

concrete values. 1

We use a simple example to illustrate how our tool CUTE performs concolic testing. Consider

the C function testme shown in Figure 2.1. The variables p and x in this function receive input

from the external environment. (A program gets input using the expression input(). Observe

that input() captures the various functions through which a program may receive data from its

external environment.) Note that, p is a pointer, and thus the input includes the memory graph

reachable from that pointer. In this example, the graph is a list of cell allocation units. The

function testme has an error that can be reached given some specific values of the input.

For the example function testme, CUTE first non-randomly generates NULL for p and randomly

generates 236 for x, respectively. Figure 2.1 shows this input to testme. As a result, the first

execution of testme takes the then branch of the first if statement and the else branch of the

second if. Let p0 and x0 be the symbolic values of p and x, respectively, at the beginning of the

execution. CUTE collects the constraints from the predicates of the branches executed in this path:

x0 > 0 (for the then branch of the first if) and p0 = NULL (for the else branch of the second if).

1Because of this, our algorithm is complete only if given an oracle that can solve all constraints in a program, and
the length and the number of paths is finite. Note that because the algorithm does concrete executions, it is sound,
i.e. all bugs it infers are real.

8

typedef struct cell {
int v;

struct cell *next;

} cell;

int

f(int v) {
return 2*v + 1;

}

int testme() {
cell * p = input();

int x = input();

if (x > 0)

if (p != NULL)

if (f(x) == p->v)

if (p->next == p)

ERROR;

return 0;

}

Input 1:

p
x

236NULL

Input 3:

p
x

 3 1

NULL

Input 4:

p
x

 3 1

Input 2:

p
x

634 236

NULL

Figure 2.1: A Simple Sequential Program and the Inputs that CUTE Generates

The constraint sequence 〈x0 > 0, p0 = NULL〉 is called a path constraint.

CUTE next solves the path constraint 〈x0 > 0, p0 6= NULL〉, obtained by negating the last

constraint, to drive the next execution along an alternative path. The solution that CUTE proposes

is {p0 7→ non-NULL, x0 7→ 236} which requires that CUTE make p point to an allocated cell that

introduces two new components, p->v and p->next, to the reachable graph. Accordingly, CUTE

randomly generates 634 for p->v and non-randomly generates NULL for p->next, respectively, for

the next execution. In the second execution, testme takes the then branch of the first and the

second if statement and the else branch of the third if statement. For this execution, CUTE

generates the path constraint 〈x0 > 0, p0 6= NULL, 2 · x0 + 1 6= v0〉, where p0, v0, n0, and x0 are the

symbolic values of p, p->v, p->next, and x, respectively. Note that CUTE computes the expression

2 · x0 + 1 (corresponding to the execution of f) through an inter-procedural, dynamic tracking of

symbolic expressions.

CUTE next solves the path constraint 〈x0 > 0, p0 6= NULL, 2 ·x0 +1 = v0〉, obtained by negating

the last constraint and generates Input 3 from Figure 2.1 for the next execution. Note that the

specific value of x0 has changed, but the value remains in the same equivalence class with respect

9

to the predicate where it appears, namely x0 > 0. On Input 3, testme takes the then branch of

the first three if statements and the else branch of the fourth if statement. CUTE generates

the path constraint 〈x0 > 0, p0 6= NULL, 2 · x0 + 1 = v0, p0 6= n0〉. This path constraint includes

dynamically obtained constraints on pointers. CUTE handles constraints on pointers, but requires

no static alias analysis. To drive the program along an alternative path in the next execution,

CUTE solves the constraints 〈x0 > 0, p0 6= NULL, 2 · x0 + 1 = v0, p0 = n0〉 and generates Input 4

from Figure 2.1. On this input, the fourth execution of testme reveals the error in the code.

2.2 The Race-Detection and Flipping Algorithm through an

Example

For shared-memory multi-threaded programs, we extend concolic testing with the race-detection

and flipping algorithm. In the extension, our goal is to generate thread schedules as well as data

inputs that would exercise all non-equivalent executions paths of a shared-memory multi-threaded

program. Apart from collecting symbolic constraints, the algorithm computes the race condition

between various events in the execution of a program, where, informally, an event represents the

execution of a statement in the program by a thread. We say that two events are in a race if they

are the events of different threads, they access (i.e. read, write, lock, or unlock) the same memory

location without holding a common lock, and the order of the happening of the events can be

permuted by changing the schedule of the threads. The race conditions are computed by analyzing

the concrete execution of the program with the help of dynamic vector clocks for multi-threaded

programs introduced in Chapter 3.

The extended algorithm first generates a random input and a schedule which specifies the order

of the execution of threads. Then the algorithm does the following in a loop: it executes the code

with the generated input and the schedule. At the same time the algorithm computes the race

conditions between various events as well as the symbolic constraints. It backtracks and generates

a new schedule or a new input and executes the program again. It continues until it has explored

all possible distinct execution paths using a depth-first search strategy. The choice of new inputs

and schedules is made in one of the following two ways:

10

x is a shared variable

z = input();

Thread t1

1: x = 3;

Thread t2

1: x = 2;

2: if (2*z + 1 == x)

3: ERROR;

Figure 2.2: A Simple Shared-Memory Multi-Threaded Program

1. The algorithm picks a constraint from the symbolic constraints that were collected along the

execution path and negates the constraint to define a new path constraint. The algorithm

then finds, if possible, some concrete values that satisfy the new path constraint. These values

are used as input for the next execution.

2. The algorithm picks two events which are in a race and generates a new schedule that at the

point where the first event happened, the execution of the thread involved in the first event

is postponed or delayed as much as possible. This ensures that the events involved in the

race get flipped or re-ordered when the program is executed with the new schedule. The new

schedule is used for the next execution.

We illustrate how jCUTE performs concolic testing along with race-detection and flipping using

the sample program P in Figure 2.2. The program has two threads t1 and t2, a shared integer

variable x, and an integer variable z which receives an input from the external environment at the

beginning of the program. Each statement in the program is labeled. The program reaches the

ERROR statement in thread t2 if the input to the program is 1 (i.e., z gets the value 1) and if the

program executes the statements in the following order: (t2, 1)(t1, 1)(t2, 2)(t2, 3), where each event,

represented by a tuple of the form (t, l), in the sequence denotes that the thread t executes the

statement labeled l.

jCUTE first generates a random input for z and executes P with a default schedule. Without

loss of generality, the default schedule always picks the thread which is enabled and which has

11

the lowest index. Thus, the first execution of P is (t1, 1)(t2, 1)(t2, 2). Let z0 be the symbolic

value of z at the beginning of the execution. jCUTE collects the constraints from the predicates

of the branches executed in this path. For this execution, jCUTE generates the path constraint

〈2∗z0 +1! = 2〉. jCUTE also decides that there is a race condition between the first and the second

event because both the events access the same variable x in different threads without holding a

common lock and one of the accesses is a write of x.

Following the depth-first search strategy, jCUTE picks the only constraint 2∗z0+1! = 2, negates

it, and tries to solve the negated constraint 2 ∗ z0 +1 = 2. This has no solution. Therefore, jCUTE

backtracks and generates a schedule such that the next execution becomes (t2, 1)(t2, 2)(t1, 1) (here

the thread involved in the first event of the race in the previous execution is delayed as much as

possible). This execution re-orders the events involved in the race in the previous execution.

During the above execution, jCUTE generates the path constraint 〈2∗z0+1! = 2〉 and computes

that there is a race between the second and the third events. Since the negated constraint 2∗z0+1 =

2 cannot be solved, jCUTE backtracks and generates a schedule such that the next execution

becomes (t2, 1)(t1, 1)(t2, 2). This execution re-orders the events involved in the race in the previous

execution.

In the above execution, jCUTE generates the path constraint 〈2 ∗ z0 + 1! = 3〉. jCUTE solves

the negated constraint 2 ∗ z0 + 1 = 3 to obtain z0 = 1. In the next execution, it follows the same

schedule as the previous execution. However, jCUTE starts the execution with the input variable

z set to 1 which is the value of z that jCUTE computed by solving the constraint. The resultant

execution becomes (t2, 1)(t1, 1)(t2, 2)(t2, 3) which hits the ERROR statement of the program.

2.3 Predictive Monitoring through an Example

Concolic testing extended with the race-detection and flipping algorithm tries to explore all non-

equivalent execution paths of a program. As such this method can catch generic errors such

as assertion violations, uncaught exceptions, data races, and deadlocks. However, sometime we

may also want to test a program against a formal specification, rather than hunting for generic

errors. A trivial way to enable concolic testing to test a program against a formal specification

would be to combine it with runtime monitoring. Unfortunately, if our program is a shared-

12

Initially x = 0 and y = 0

z = input();

Thread t1

1: if (z == 100) {
2: x = 4;

3: } else {
4: x = 5;}

Thread t2

1: y = 2;

Figure 2.3: Another Simple Shared-Memory Multi-Threaded Program

memory multi-threaded program, and if our specification is some safety formula in a temporal

logic, then the combination of concolic testing and runtime monitoring might miss violations of

the specification. This is because a temporal safety property may be simultaneously satisfied and

violated by two different execution paths that are equivalent. Since concolic testing extended with

the race-detection and flipping algorithm explores non-equivalent execution paths, the combined

method may miss violations of a temporal property.

To illustrate the above mentioned limitation, consider the simple multi-threaded program in

Figure 2.3. The method of concolic testing extended with the race-detection and flipping algorithm

would explore two non-equivalent execution paths of the program, namely (t1, 1)(t1, 3)(t1, 4)(t2, 1)

and (t1, 1)(t1, 2)(t2, 1). Since the program cannot exhibit any other non-equivalent execution path,

concolic testing will stop after exploring the two paths.

Suppose we want to test the program against the temporal property ‘‘Always x is greater

than equal to y,’’ also written as �(x ≥ y) in linear temporal logic. Both the executions

explored by concolic testing do not violate the property because none of the executions reach

a state where x is less than y. However, there exists two other execution paths, namely

(t2, 1)(t1, 1)(t1, 3)(t1, 4) and (t2, 1)(t1, 1)(t1, 2) each of which violates the property. Unfortunately,

concolic testing would not explore these paths as each one of them is equivalent to some already

explored path.

One way to address this problem is to generate a runtime monitor which simply checks if x

is greater than y. The monitor is then inserted into the code through instrumentation so that

whenever x or y is updated the monitor check is invoked. The instrumented program is given in

Figure 2.4.

13

Initially x = 0 and y = 0

z = input();

Thread t1

1: if (z == 100){
2: x = 4;

3: assert(x >= y);

4: } else {
5: x = 5;

6: assert(x >= y);}

Thread t2

1: y = 2;

2: assert(x >= y);

Figure 2.4: Instrumented Program

If we apply concolic testing to the instrumented program in Figure 2.4, eight distinct execution

paths of the program will be explored and a violation of the property will be reported. Note that

this simple solution results in the exploration of considerably large number of execution paths

compared to the number of paths explored by concolic testing of the original program.

We have developed predictive monitoring to test shared-memory multi-threaded programs ef-

ficiently. In predictive monitoring for each execution path explored by concolic testing, we infer

other equivalent execution paths statically without re-executing the program for each such equiv-

alent path. All the equivalent execution paths corresponding to an observed execution path are

then monitored against the temporal property efficiently.

For example, consider the execution path (t1, 1)(t1, 3)(t1, 4)(t2, 1) explored by concolic testing

of the original program. Since there is no causal connection between any event of the thread t1

and the event of the thread t2, we can permute the event from the thread t2 with any event from

thread t1. This allows us to construct an alternate feasible execution path (t2, 1)(t1, 1)(t1, 3)(t1, 4)

equivalent to the observed execution path. This alternate path violates the temporal property.

Thus by combining concolic testing with predictive monitoring, we have detected the violation of

the temporal property by executing the program exactly twice.

14

Chapter 3

Programming and Execution Model

We introduce a simple shared-memory multi-threaded programming language called Scil. In the

subsequent chapters, we use this programming language to describe our testing algorithms. To

simplify the description of our testing algorithms, we keep Scil free from function calls, function

definitions, and other high-level programming features. In Chapter 7, we briefly discuss how we

handle function calls found in general imperative languages. In the multi-threaded fragment of

Scil, we do not include concurrency primitives such as wait, notify, or join. This is again done to

simplify the exposition. Our implementation for Java handles all these primitives. In Section 3.2,

we define a partial order relation, called the causality relation, to abstract the concurrent execution

of a program. We describe a novel dynamic vector clock algorithm that keeps track of this causality

relation at runtime. We use the partial order abstraction of a concurrent execution to describe the

race-flipping and detection algorithm in Chapter 5 and the predictive monitoring algorithm in

Chapter 6. Finally, in Section 3.3, we use the execution model to formally state the problems that

we solve in the subsequent chapters.

3.1 Programming Model

In order to simplify the description of our testing methods, we define a simple shared-memory

multi-threaded imperative language, Scil (Figure 3.1). A Scil program is a set of threads that

are executed concurrently, where each thread executes a sequence of statements. Note that each

statement in a program is labeled. Threads in a program communicate by acquiring and releasing

locks and by accessing (i.e., by reading or writing) shared memory locations.

A Scil program may receive data inputs from its environment. Observe that the availability of

an input earlier than its use does not affect an execution. Without loss of generality, we assume that

15

P ::=Stmt∗

Stmt ::= l : S
S ::= v ← lv | ∗lv ← lv | lv ← e | if p goto l′

| fork(l) | lock(&v) | unlock(&v) | START | HALT | ERROR
e ::= v | &v | ∗lv | c | lv | lv op lv | input()

where op ∈ {+,−, /, ∗, %, . . .}, v is a shared variable,
lv is a variable local to a thread, c is a constant

p ::= lv = lv | lv 6= lv | lv < lv | lv ≤ lv | lv ≥ lv | lv > lv

Figure 3.1: Syntax of Scil

all such inputs are available from the beginning of an execution; again this assumption simplifies

the description of our algorithm.

We now informally describe the semantics of Scil. Consider a Scil program P . The execution

of a thread terminates when it executes a HALT or an ERROR statement. START represents the first

statement of a program under test. CUTE uses the CIL framework [68] to convert more complex

statements (with no function calls) into this simplified form by introducing temporary variables.

Some examples of converting complex code snippets into Scil code1 is given in Table 3.1. Details

of handling of function calls using a symbolic stack are discussed in Section 7.1.

During the execution of a Scil program, a single thread, namely tmain, starts by executing the

first statement of the program. This thread tmain is comparable to the main thread in Java. The

initial thread tmain or any subsequently created thread in the program can create new threads by

calling the statement fork(l), where l is the label of the statement to be executed by the newly

created thread of the program.

A Scil program gets input using the expression input(). Observe that input() captures the

various functions through which a program in Java may receive data from its external environment.

A program may have two kinds of variables: variables local to a thread (denoted by lv) and

variables shared among threads (denoted by v). The expression &v denotes the address of the

variable v, and ∗v denotes the value of the address stored in v. Note that associated with each

address is a value that is either a primitive value or another memory address (i.e., pointer) and a

1In the converted code, we do not label every statement as required by Scil. This is done to keep the converted
code relatively clean.

16

Original Code Transformed Code

**v = 3;
t1 = *v; //t1 is a new variable

*t1 = 3;

p[i] = q[j];

t1 = p + i; //t1 is a new variable

t2 = q + j; //t2 is a new variable

*t2 = *t1;

assert(x > 0);

x = 10;

if (x > 10) goto L;

ERROR;

L: x = 10;

if (x > 0) {
x = 1;

} else {
x = -1;

}
y = x + y;

if (x <= 0) goto L1;

x = 1;

if (true) goto L2;

L1: x = -1;

L2: y = x + y;

switch (c) {
case 1:

x = x + 1;

break;

case 2:

x = x - 1;

break;

default:

x = 0;

break;

}
x = x + c;

if (c != 1) goto L1;

x = x + 1;

if (true) goto L3;

L1: if (c != 2) goto L2;

x = x - 1;

if (true) goto L3;

L2: x =0;

L3: x = x + c;

sum = i = 0;

while (i < 10) {
sum = sum + i;

i++;

}
i = sum;

sum = 0;

i = 0;

L1: if (i >= 10) goto L2;

sum = sum + i;

i = i + 1;

if (true) goto L1;

L2: i = sum;

Table 3.1: Examples of Converting Code Snippets Involving High-Level Programming Constructs
to Scil

17

execute program(P)
while there is an enabled thread

tcurrent = Non-deterministically pick a thread from the set of enabled threads;
execute the next statement of thread tcurrent;

if there is an active thread
print “Found deadlock”;

Figure 3.2: Default Scheduler for Scil

given statement can have at most one shared variable access (i.e. read, write, lock, or unlock).

A program supports mutual exclusion by using locks: lock(&v) denotes the acquisition of the

lock on the shared variable v and unlock(&v) denotes the release of the same. A thread suspends

its execution if it tries to acquire a lock which is already acquired by another thread. Normal

execution of the thread resumes when the lock is released by the other thread. We assume that

the acquire and release of locks take place in a nested fashion as in Java. Locks are assumed to be

re-entrant : if a thread already holds a lock on a shared variable, then an acquire of the lock on

the same variable by the same thread does not deadlock. When a thread executes HALT or ERROR,

all the locks held by the thread are released. For technical simplicity, we assume that the set of

memory locations that can be locked or unlocked is disjoint from the set of memory locations that

can be read or write.

The semantics of a program in the language is given using a scheduler. The scheduler runs in

a loop (see Figure 3.2). We use the term schedule to refer to the sequence of choices of threads

made by the scheduler during an execution. We assume that each execution of a program under

test terminates.

On executing a statement lock(&v), a thread waits if the lock v is already held by another

thread. Otherwise, the thread acquires the lock and continues its execution. A lock v already held

by a thread t is released when t executes a statement of the form unlock(&v). Initially, the thread

tmain is enabled. A thread is said to be active if it has been created and it has not already executed

a HALT or an ERROR statement. A thread is said to be enabled if it is active and it is not waiting to

acquire a lock.

The execution of a statement of the form fork(l) creates a new thread, makes it active, and sets

18

the program counter of the newly created thread to l. The loop of the scheduler terminates when

the set of enabled threads is empty. The termination of the scheduler indicates either the normal

termination of a program execution when the set of active threads is empty, or a deadlock state

when the set of active threads is non-empty.

3.2 Execution Model

Let us consider a program P . The execution of each statement in P is an event. Note that a

statement may involve access to a shared memory location. We represent an event as (t, l, a),

where l is the label of the statement executed by thread t and a is the type of shared memory

access in the statement. If the execution of the statement accesses a shared memory location, then

a = r if the access is a read, a = w if the access is a write, a = l if the access is a lock, and a = u if

the access is an unlock; otherwise, a = ⊥. If the execution of a fork statement labeled l by a thread

t creates a new thread t′, then we get two events: (t, l,⊥) representing the fork event on the thread

t and (t′,⊥,⊥) representing the creation of the new thread. Thus the event (t′,⊥,⊥) represents

the first event of any newly created thread t′. We use the term access to represent a read, a write,

a lock, or an unlock of a shared memory location. We use the term update to represent a write, a

lock, or an unlock of a shared memory location. We call an event

• a fork event, if the event is of the form (t, l,⊥) and l is the label of a fork statement,

• a new thread event, if the event is of the form (t,⊥,⊥),

• a read, a write, a lock, an unlock, an access, or an update event, if the event reads, writes,

locks, unlocks, accesses, or updates a memory location, respectively,

• an internal event, if the event is not a fork event, a new thread event, or an access event.

An execution of P can be seen as a sequence of events. We call such a sequence an execution path.

Note that the execution of P on several inputs may result in the same execution path. Let Ex(P)

be the set of all feasible execution paths exhibited by the program P on all possible inputs and all

possible choices by the scheduler.

19

Figure 3.3: Time increases from left to right. e3 ‖ e10, e9 l e4, e10 6le5, e3 l e12, e1 6le10, e1 4 e10,
e1 4 e12, e1 C e9, e3 C e4, e3 m e12, etc.

If we view each event in an execution path as a node, then Ex(P) can be seen as a tree. Such

a tree is called the computation tree of a program. The goal of our testing method for concurrent

programs is to systematically explore a minimum possible subset of the execution paths of Ex(P)

such that if a statement of P is reachable by a thread for some input and some schedule, the

subset must contain an execution path in which that statement is executed. To achieve this, we

abstract an execution path in terms of a partial order relation called causal relation. Any partial

order represents a set of equivalent execution paths. In our testing algorithm, the goal is to exactly

explore one execution path corresponding to each partial order. However, in the actual algorithm,

we are able to guarantee that at least one—not at most one—execution path corresponding to each

partial order is explored if a program has no data input (see Chapter 5 for a discussion on the effect

of data input). We next define the various binary relations that we use to define a partial order.

In an execution path τ ∈ Ex(P), any two events e = (ti, li, ai) and e′ = (tj , lj , aj) appearing in

τ are sequentially related (denoted by eC e′) iff:

1. e = e′, or

2. ti = tj and e appears before e′ in τ , or

3. ti 6= tj , ti created the thread tj , and e appears before e′′ in τ , where e′′ is the fork event on

ti creating the thread tj , or

4. there exists an event e′′ in τ such that eC e′′ and e′′ C e′.

Thus C is a partial order relation. We say e m e′ iff e 6 e′ and e′ 6 e.

In an execution path τ ∈ Ex(P), any two events e = (ti, li, ai) and e′ = (tj , lj , aj) appearing in

τ are shared-memory access precedence related (denoted by e <m e′) iff:

20

1. e appears before e′ in τ , and

2. e and e′ both access the same memory location m, and

3. one of them is an update of m.

In the above definition, it is worth remembering that the memory locations that can be locked or

unlocked are disjoint from the memory locations that can be read or write. Therefore, if e <m e′

and e (or e′) is a lock or unlock of m, then the e′ (or e) is also a lock or unlock of m. Similarly, if

e <m e′ and e (or e′) is a write of m, then the e′ (or e) is a read or write of m.

Given the definition of the sequential relation and the shared-memory access precedence relation,

we can define another relation, called causal relation, as follows. In an execution path τ ∈ Ex(P),

any two events e = (ti, li, ai) and e′ = (tj , lj , aj) appearing in τ are causally related (denoted by

e 4 e′) iff:

1. eC e′, or

2. e <m e′ for some shared-memory location m, or

3. there exists e′′ such that e 4 e′′ and e′′ 4 e′.

The causal relation is a partial-order relation. We say that e ‖ e′ iff e 64 e′ and e′ 64 e. If e 4 e′,

then we say e causally precedes e′.

We next define a relation l, called race relation, that captures the race condition between two

events. We say that any two events e = (ti, li, ai) and e′ = (tj , lj , aj) are race related (denoted by

e l e′) iff

1. e m e′,

2. if e is a lock event and e′′ is the corresponding unlock event, then e′′ <m e′ and there exists

no e1 such that e1 6= e′′, e1 6= e′, e′′ 4 e1, and e1 4 e′, and

3. if e is a read or a write event, then e <m e′ and there exists no e1 such that e1 6= e, e1 6= e′,

e 4 e1, and e1 4 e′.

21

If two events in an execution path are related by l, then there exists an immediate race (data race

or lock race) between the two events. Therefore, we call l a race relation.

Figure 3.3 gives an example of the various relations defined above.

Given two execution paths τ and τ ′ in Ex(P), we say that τ and τ ′ are causally equivalent,

denoted by τ ≡4 τ ′, iff τ and τ ′ have the same set of events and they are linearizations of the same

4 relation. We use [τ]≡4
to denote the set of all executions in Ex that are equivalent to τ .

We define a representative set of executions REx ⊆ Ex as the set that contains exactly one

candidate from each equivalence class [τ]≡4
for all τ ∈ Ex. Formally, REx is a set such that

following properties hold:

1. REx ⊆ Ex,

2. Ex =
⋃

τ∈REx[τ]≡4
, and

3. for all τ, τ ′ ∈ REx, it is the case that τ 6≡4 τ ′.

The following result shows that a systematic and automatic exploration of each element in REx

is sufficient for testing.

Proposition 1. If a statement is reachable in a program P for some input and schedule, then there

exists a τ ∈ REx such that the statement is executed in τ .

The proof of this proposition is straight-forward. If a statement is reachable then there exists

an execution τ in Ex such that the execution τ executes the statement. By the definition of ≡4,

any execution in [τ]≡4
executes the statement. Hence, the execution in REx that is equivalent to τ

executes the statement.

Dynamic Vector Clock

The causal relation between the events in an execution can be tracked efficiently at runtime using

dynamic vector clocks (DVC). Dynamic vector clocks, which respect the fact that two reads can

be permuted, extend the standard vector clocks [30] found in message passing systems. A dynamic

vector clock V : T → N, where T is the set of threads that are present in the execution. We

call such a map a dynamic vector clock (DVC) because its partiality reflects the intuition that

22

threads are dynamically created and destroyed. However, in order to simplify the exposition and

the implementation, we represent each DVC V as a total map, where V (t) = 0 whenever V is not

defined on thread t (i.e., if t has not been created).

We associate a DVC with every thread t and denote it by Vt. Moreover, we associate two

DVCs V a
m and V w

m with every shared memory m; we call the former access DVC and the latter

update DVC. For any two maps V and V ′, we say that V ≤ V ′ if and only if V (t) ≤ V ′(t) for all

t ∈ T . We say that V 6= V ′ if and only if V 6≤ V ′ and V ′ 6≤ V . max{V, V ′} is the DVC with

max{V, V ′}(t) = max{V (t), V ′(t)} for each t ∈ T .

At the beginning of an execution, all vector clocks associated with threads and memory locations

are empty. Whenever a thread t with current DVC Vt generates an event e, the following algorithm

A is executed:

1. If e is not a fork event or a new thread event, then Vt(t)← Vt(t) + 1.

2. If e is a read of a shared memory location m then

Vt ← max{Vt, V
w
m }

V a
m ← max{V a

m, Vt}

3. If e is a write, lock, or unlock of a shared memory location m then

V w
m ← V a

m ← Vt ← max{V a
m, Vt}

4. If e is a fork event and if t′ is the newly created thread then

Vt′ ← Vt

Vt(t)← Vt(t) + 1

Vt′(t
′)← Vt′(t

′) + 1

We call the algorithm A the dynamic vector clock algorithm. If e is an event of thread t, then we

use V {e} to denote the DVC of t after the event e, V {e}wm to denote the DVC V w
m after the event

e, and V {e}am to denote the DVC V a
m after the event e. If e is an event of thread t, then the event

in thread t that happened immediately before e is denoted by prev(e). Similarly, if e is an event of

thread t, then the event in thread t that happened immediately after e is denoted by next(e).

In an execution, if we update the DVCs according to A, we want to show that the causality

relation is tracked by the dynamic vector clocks, i.e., For any two events e and e′, e 4 e′ iff

23

V {e} ≤ V {e′}. In order to prove this result, we first introduce some definitions and then state and

prove the following four lemmas.

Let us fix an arbitrary but fixed execution path τ . Let Et be the set of events of t in τ . Let T

be the set of all threads created in τ . Let E = ∪t∈T Et. We use ei
t to denote the ith event of the

thread t in C. Given an event e ∈ E, we define (e], (e]t, (e]
a
m, (e]wm as follows.

• (e] = {e′ | e′ ∈ E and e′ 4 e},

• (e]t = Et ∩ (e],

• (e]am = {e′′ | e′′ 4 e′and e′ is an access of m and e′ is equal to or appears before e in the sequence τ},

and

• (e]wm = {e′′ | e′′ 4 e′and e′ is an update of m and e′ is equal to or appears before e in the sequence τ}.

For any E′ ⊆ E, we use |E′|t to denote |E′ ∩ Et|. We say that a set E′ ⊆ E is a monotonic set if

and only if the following fact holds: if ek
t ∈ E′, then ei

t ∈ E′ for all 1 ≤ i ≤ k.

Lemma 2. Given an event e, (e], (e]wm, and (e]am are monotonic sets.

Proof. Follows from the definition of (e], (e]wm, and (e]am and the fact that ei
t 4 ek

t , for all 1 ≤ i ≤

k.

Lemma 3. Given any two monotonic sets E′ ⊆ E and E′′ ⊆ E and a thread t ∈ T , |E′ ∪ E′′|t =

max(|E′|t, |E′′|t).

Proof. Let
⋃

1≤i≤k′{ei
t} be the set E′∩Et and

⋃
1≤i≤k′′{ei

t} be the set E′′∩Et. Then (E′∪E′′)∩Et

is the set
⋃

1≤i≤k{e
i
t}, where k = max (k′, k′′). Since |E′|t = k′, |E′′|t = k′′, and |E′ ∪ E′′|t = k, we

have |E′ ∪ E′′|t = max (|E′|t, |E′′|t).

Lemma 4. Let ek
t be an event in τ and let el

t′ be the event that appears immediately before ek
t in

τ . Then the following holds.

(1) If ek
t is a read of a memory location m, then

(a) (ek
t] = (ek−1

t] ∪ {ek
t } ∪ (el

t′]
w
m,

24

(b) (ek
t]

a
m = (ek

t] ∪ (el
t′]

a
m,

(c) (ek
t]

a
m′ = (el

t′]
a
m′, for m′ 6= m,

(d) (ek
t]

w
m′ = (el

t′]
w
m′, for any m′.

(2) If ek
t is a write, lock, or unlock of a memory location m, then

(a) (ek
t] = (ek−1

t] ∪ {ek
t } ∪ (el

t′]
a
m,

(b) (ek
t]

a
m = (ek

t],

(c) (ek
t]

w
m = (ek

t],

(d) (ek
t]

a
m′ = (el

t′]
a
m′, for m′ 6= m,

(e) (ek
t]

w
m′ = (el

t′]
w
m′, for m′ 6= m.

(3) If ek
t is an internal event, then

(a) (ek
t] = (ek

t−1] ∪ {e
k
t },

(b) (ek
t]

a
m′ = (el

t′]
a
m′, for any m′,

(c) (ek
t]

w
m′ = (el

t′]
w
m′, for any m′.

(4) If ek
t is a fork event, then

(a) (ek
t] = (ek−1

t] ∪ {ek
t },

(b) (ek
t]

a
m′ = (el

t′]
a
m′, for any m′,

(c) (ek
t]

w
m′ = (el

t′]
w
m′, for any m′.

(5) If ek
t is a new thread event, then

(a) (ek
t] = (ek′−1

t′′
] ∪ {ek

t }, where ek′

t′′ is the fork event that created the thread t,

(b) (ek
t]

a
m′ = (el

t′]
a
m′, for any m′,

(c) (ek
t]

w
m′ = (el

t′]
w
m′, for any m′.

Proof. (1) (a) Let E′ = (ek−1
t] ∪ {ek

t } ∪ (el
t′]

w
m. We want to prove (ek

t] ⊆ E′. Let e ∈ (ek
t]. Since

ek
t is read of m, by the definition of 4 one of the following must hold:

• e = ek
t . In this case e ∈ {ek

t } ⊆ E′.

25

• e 4 ek−1
t . In this case e ∈ (ek−1

t] ⊆ E′.

• e 4 e′, where e′ <m ek
t . By the definition of <m, e′ is a write of m and e′ appears

before or equals to el
t′ . This implies (e′] ⊆ (el

t′]
w
m. Therefore, e ∈ (el

t′]
w
m ⊆ E′.

Hence, (ek
t] ⊆ E′.

We want to prove E′ ⊆ (ek
t]. Let e ∈ E′. Then one of the following must hold:

• e ∈ (ek−1
t]. Since ek−1

t 4 ek
t , (ek−1

t] ⊆ (ek
t]. Therefore, e ∈ (ek

t].

• e = ek
t . In this case, e ∈ (ek

t].

• e ∈ (el
t′]

w
m. Then by the definition of (el

t′]
w
m, there is a e′ such that e′ is a write2 of m,

(e′] ⊆ (el
t′]

w
m, and e 4 e′. Since ek

t is a read of m, e′ <m ek
t . This implies that e′ 4 ek

t

which implies e ∈ (ek
t].

Hence, E′ ⊆ (ek
t].

(b) Let E′ = (ek
t] ∪ (el

t′]
a
m. We want to prove that (ek

t]
a
m ⊆ E′. Let e ∈ (ek

t]
a
m. Then there are

two cases:

• e 4 ek
t , in this case e ∈ (ek

t], or

• e 4 e′, where e′ is an access of m and appears before ek
t . This implies e′ ∈ (el

t′]
a
m.

Therefore, e ∈ (el
t′]

a
m.

Hence, (ek
t]

a
m ⊆ E′.

We want to prove that E′ ⊆ (ek
t]

a
m. Let e ∈ E′. Then one of the following must hold:

• e ∈ (ek
t]. Since ek

t is a read of m, (ek
t] ⊆ (ek

t]
a
m. Therefore, e ∈ (ek

t]
a
m.

• e ∈ (el
t′]

a
m. Since el

t′ appears before ek
t , (el

t′]
a
m ⊆ (ek

t]
a
m. Therefore, e ∈ (ek

t]
a
m.

Hence E′ ⊆ (ek
t]

a
m.

(c) Since ek
t is not accessing m′, (ek

t]
a
m′ = (el

t′]
a
m′ follows from the definitions of (ek

t]
a
m′ and

(el
t′]

a
m′ .

(d) Since ek
t is not updating m′, (ek

t]
w
m′ = (el

t′]
w
m′ follows from the definitions of (ek

t]
w
m′ and

(el
t′]

w
m′ .

2Since e
k

t reads m, m can only be read or write in τ . This is because we assume that the memory locations that
can be locked or unlocked are disjoint from the memory locations that can be read or write.

26

(2) (a) Let E′ = (ek−1
t] ∪ {ek

t } ∪ (el
t′]

a
m. We want to prove (ek

t] ⊆ E′. Let e ∈ (ek
t]. Since ek

t is an

update of m, by the definition of 4 one of the following must hold:

• e = ek
t . In this case e ∈ {ek

t } ⊆ E′.

• e 4 ek−1
t . In this case e ∈ (ek−1

t] ⊆ E′.

• e 4 e′, where e′ <m ek
t . By the definition of <m, e′ is an access of m and e′ appears

before or equals to el
t′ . This implies (e′] ⊆ (el

t′]
a
m. Therefore, e ∈ (el

t′]
a
m ⊆ E′.

Hence, (ek
t] ⊆ E′.

We want to prove E′ ⊆ (ek
t]. Let e ∈ E′. Then one of the following must hold:

• e ∈ (ek−1
t]. Since ek−1

t 4 ek
t , (ek−1

t] ⊆ (ek
t]. Therefore, e ∈ (ek

t].

• e = ek
t . In this case, e ∈ (ek

t].

• e ∈ (el
t′]

a
m. Then by the definition of (el

t′]
a
m, there is a e′ such that e′ is an access of

m, (e′] ⊆ (el
t′]

a
m, and e 4 e′. Since ek

t is an update of m, e′ <m ek
t . This implies that

e′ 4 ek
t which implies e ∈ (ek

t].

Hence, E′ ⊆ (ek
t].

(b) We want to prove (ek
t]

a
m = (ek

t]. Let e ∈ (ek
t]

a
m. Therefore, e 4 e′ where e′ accesses m

and appears before or equals to ek
t . Since ek

t is an update of m, by the definition of <m,

e′ <m ek
t . Therefore, e 4 ek

t or e ∈ (ek
t].

Let e ∈ (ek
t]. Since ek

t is an update of m, by the definition of (ek
t]

a
t , (ek

t] ⊆ (ek
t]

a
m. Therefore,

e ∈ (ek
t].

(c) We want to prove (ek
t]

w
m = (ek

t]. Let e ∈ (ek
t]

w
m. Therefore, e 4 e′ where e′ updates m

and appears before or equals to ek
t . Since ek

t is an update of m, by the definition of <m,

e′ <m ek
t . Therefore, e 4 ek

t or e ∈ (ek
t].

Let e ∈ (ek
t]. Since ek

t is an update of m, by the definition of (ek
t]

w
t , (ek

t] ⊆ (ek
t]

w
m. Therefore,

e ∈ (ek
t].

(d) Since ek
t is not accessing m′, (ek

t]
a
m′ = (el

t′]
a
m′ follows from the definitions of (ek

t]
a
m′ and

(el
t′]

a
m′ .

(e) Since ek
t is not updating m′, (ek

t]
w
m′ = (el

t′]
w
m′ follows from the definitions of (ek

t]
w
m′ and

(el
t′]

w
m′ .

27

(3) (a) Since each (ek
t−1] ⊆ (ek

t] and {ek
t } ⊆ (ek

t], (ek
t−1] ∪ {e

k
t } ⊆ (ek

t]. Let e ∈ (ek
t]. Since ek

t

accesses no shared memory location, there are two cases to consider here: e = ek
t or

e 4 ek
t−1. In either case, e ∈ (ek

t−1] ∪ {e
k
t }. Hence, (ek

t] ⊆ (ek
t−1] ∪ {e

k
t }.

(b) Since ek
t is not accessing m′, (ek

t]
a
m′ = (el

t′]
a
m′ follows from the definitions of (ek

t]
a
m′ and

(el
t′]

a
m′ .

(c) Since ek
t is not updating m′, (ek

t]
w
m′ = (el

t′]
w
m′ follows from the definitions of (ek

t]
w
m′ and

(el
t′]

w
m′ .

(4) The proof is similar to the previous case.

(5) (a) Let E′ = (ek′−1
t′′]∪ {ek

t }. We want to prove (ek
t] ⊆ E′. Let e ∈ (ek

t]. By the definition of 4

one of the following must hold:

• e = ek
t . This implies that e ∈ {ek

t } ⊆ E′.

• e 4 e′, where e′ is any event of t′′ and e′ appears before ek′

t′′ . Therefore, e′ = ei
t′′ for

1 ≤ i ≤ k′ − 1. This implies that e 4 ek′−1
t′′ or e ∈ (ek′−1

t′′].

Hence, (ek
t] ⊆ (ek′−1

t′′] ∪ {ek
t }.

We want to prove E′ ⊆ (ek
t]. Let e ∈ E′. Then one of the following must hold:

• e = ek
t . Therefore, e ∈ (ek

t].

• e ∈ (ek′−1
t′′

]. In this case (ek′−1
t′′

]C ek
t , e 4 (ek

t].

Hence, (ek′−1
t′′] ∪ {ek

t } ⊆ (ek
t].

(b) Since ek
t is not accessing m′, (ek

t]
a
m′ = (el

t′]
a
m′ follows from the definitions of (ek

t]
a
m′ and

(el
t′]

a
m′ .

(c) Since ek
t is not updating m′, (ek

t]
w
m′ = (el

t′]
w
m′ follows from the definitions of (ek

t]
w
m′ and

(el
t′]

w
m′ .

Lemma 5. For any event e in τ , for any t ∈ T , and for any shared memory location m, the

following holds:

(1) V {e}(t) = |(e]|t,

28

(2) V {e}wm(t) = |(e]wm|t, and

(3) V {e}am(t) = |(e]am|t.

Proof. Let τ = e1e2 . . . en. We prove this by induction. The lemma clearly holds for e1. Let

us assume that the lemma holds for all ei, where 1 ≤ i ≤ p < n. We need to show that it

also holds for ep+1. The equalities (1), (2), and (3) follows from the various cases of Lemma 4

and the algorithm A. In the following we show it for one case. The equalities for the remaining

cases can be derived in a similar way. Let ep+1 = ek
t and ek

t be a read event of m. By (1)(a)

of Lemma 4, for any t′′ ∈ T , |(ek
t]|t′′ = |(ek−1

t] ∪ {ek
t } ∪ (el

t′]
w
m|t′′ . Since ek

t 6∈ (ek−1
t] and ek

t 6∈

(el
t′]

w
m, we have |(ek

t]|t′′ = |(ek−1
t] ∪ (el

t′]
w
m|t′′ + 1. Therefore, by Lemma 2 and Lemma 3, we have

|(ek
t]|t′′ = max (|(ek−1

t]|t′′ , |(e
l
t′]

w
m|t′′)+1 = max (V {ek−1

t }(t′′), V {el
t′}

w
m(t′′))+1. By the algorithm A,

V {ek
t }(t

′′) = max (V {ek−1
t }(t′′), V {el

t′}
w
m(t′′)) + 1. Therefore, V {ek

t }(t
′′) = |(ek

t]|t′′ .

Now we are ready to prove the following theorem.

Theorem 6. For any two events e and e′, e 4 e′ iff V {e} ≤ V {e′}.

Proof. Let us assume that e 4 e′. This implies that (e] ⊆ (e′]. Since each of (e] and (e′] are

monotonic sets, for all t ∈ T , we have (e]t ⊆ (e′]t. This implies |(e]|t ≤ |(e′]|t. Therefore, by (1) of

Lemma 5, we have V {e}(t) ≤ V {e′}(t), for all t ∈ T . In other words, V {e} ≤ V {e′}.

Sequential Vector Clock

The sequential relation between the events in an execution can be tracked efficiently at runtime

using sequential vector clocks (SVC). A sequential vector clock VS : T → N, where T is the set of

threads that are present in the execution. We call such a map a sequential vector clock (SVC).

Such a map can be partial because threads are created dynamically at runtime. To simplify the

exposition and the implementation, we assume that each SVC VS is a total map, where VS (t) = 0

whenever VS is not defined on thread t.

We associate a SVC with every thread t and denote it by VS t. At the beginning of an execution,

all sequential vector clocks associated with threads are empty. Whenever a thread t with current

SVC VS t generates an event e, the following algorithm A∫ is executed:

29

1. If e is not a fork event or a new thread event, then VS t(t)← VS t(t) + 1.

2. If e is a fork event and if t′ is the newly created thread then

VS t′ ← VS t

VS t(t)← VS t(t) + 1

VS t′(t
′)← VS t′(t

′) + 1

The algorithm A∫ is called the sequential vector clock algorithm. We can associate a SVC with

every event e, denoted by VS e as follows. If e is executed by t and if VS t is the vector clock of t

just after the event e, then VS e = VS t.

In an execution, if we update the SVCs according to A∫ , then the following theorem holds:

Theorem 7. For any two events e and e′, eC e′ iff VSe ≤ VSe′.

The proof of this theorem is a special case of the proof of Theorem 6, where we assume each

access event as an internal event.

Theorem 8. For any two event e and e′, if the following holds:

1. V {e} 6= V {prev(e′)} given that prev(e′) exists, and

2. V {next(e)} 6= V {e′} given that next(e) exists, and

3. V {e} ≤ V {e′}, and

4. VSe 6= VSe′.

then

• if each of e and e′ is a read or a write event, then e l e′,

• if e is an unlock event and e′ is a lock event, then e′′ l e′, where e′′ is the lock event corre-

sponding to e.

The proof follows from the definition of l, Theorem 6, and Theorem 7.

30

3.3 Results in Terms of the Execution Model

In Chapter 4, we describe concolic testing which tries to explore all paths in Ex(P) for a sequential

program P . Note that for a sequential program P , Ex(P) = REx(P). However, for shared-memory

multi-threaded programs, REx(P) ⊆ Ex(P). In Chapter 5, we extend concolic testing with the

race-detection and flipping algorithm. The extended method tries to explore all paths in a superset

of REx(P) and a small subset of Ex(P). As such the method would not explore all the paths

in an equivalence class [τ]≡4
. However, if we have a formal temporal specification, then it is

possible that one path in [τ]≡4
satisfies the specification and another path in [τ]≡4

violates the

specification. Therefore, monitoring the execution paths explored by concolic testing extended with

race-detection and flipping may not be sufficient to find a violation of the formal specification. To

eliminate this limitation, we describe predictive monitoring in Chapter 6. Predictive monitoring

enables us to use an execution path τ to monitor all paths in [τ]≡4
without re-executing each of

these paths.

31

Chapter 4

Testing Sequential Programs

In this chapter, we present concolic testing,1 a novel automatic and systematic technique for testing

sequential programs. Concolic testing automates the exploration of feasible execution paths of

sequential programs. Our technique repeatedly generates inputs that make the code under test

execute different paths. The process continues until the code executes all different feasible paths

(up to a given length). Our technique uses a symbolic execution; unlike the traditional testing

techniques based on symbolic execution or static analysis [24, 118, 75, 115, 10, 14, 73, 22], our

technique tightly couples the concrete and symbolic executions of the code under test. Specifically,

our technique simultaneously runs both concrete and symbolic executions such that each of them

gets feedback from the other. We call this technique concolic testing, as it uses a cooperative

CONCrete and symbOLIC execution.

Our technique work as follows. Given a program to test, our technique generates concrete inputs

one by one. After generating each input, the program is executed on that input simultaneously

both concretely and symbolically. The symbolic execution follows the path taken by the concrete

execution and maintains a symbolic state and generates symbolic path constraints. The information

collected by the concrete-execution guided symbolic execution is then used to generate an input

for the next execution that will lead the program through an execution path that was not explored

before by the program. This process continues until all different feasible paths are executed exactly

once.

We have implemented our technique in two publicly available tools, called CUTE (concolic

Unit Testing Engine) and jCUTE, for testing C and Java programs respectively. jCUTE also

implements the race-detection and flipping algorithm described in Chapter 5. In the rest of the

1This work is done partly in collaboration with Gul Agha, Patrice Godefroid, Nils Klarlund, and Darko Marinov.
Part of this work appeared in [41, 87, 86].

32

chapter we will only refer to C programs and CUTE. Note the same principles are also applicable

to sequential Java programs. For C programs, the basic testing unit can be either one function

or a small number of related functions or the whole program. Such testing units can have pointer

inputs, and thus the inputs consist not only of primitive values but of the whole memory graphs.

The symbolic execution in CUTE builds constraints on pointer variables (pointer constraints) and

primitive variables (arithmetic constraints), unlike some previous techniques that use only concrete

values for pointers [41, 115, 118]. We have developed a novel solver for both arithmetic constraints

and pointer constraints, which enables CUTE to generate memory graphs as inputs to the code

under test. Our solver exploits the domain of this particular problem to efficiently generate inputs

that are similar to the previous inputs. CUTE can also generate complex data structures, either

through function sequences or from the code for data structure invariants (Section 4.2).

The rest of the chapter is organized as follows. In Section 4.1, we describe the various com-

ponents of concolic testing. We show how to apply concolic testing to test data structures in

Section 4.2. Finally, we conclude the chapter by discussing the advantages of concolic testing over

the existing methods.

4.1 Concolic Testing

We describe the details of concolic testing for sequential programs written in Scil. To restrict a

Scil program to be sequential, we disallow the use of the concurrency primitives fork(l), lock(v),

unlock(v). Because of this restriction, a Scil program is always single-threaded and all the variables

and memory locations are local to the initial thread tmain. The simplified syntax of a restricted

Scil program is given in Figure 4.1.

We first define the input logical input map that CUTE uses to represent inputs. We present

how CUTE instruments programs and performs concolic execution. We then describe how CUTE

solves the constraints after every execution. We finally discuss the approximations that CUTE

uses for pointer constraints. In the next section, we present how CUTE handles complex data

structures.

To explore execution paths, CUTE first instruments the code under test. CUTE then builds

a logical input map I for the code under test. Such a logical input map can represent a memory

33

P ::=Stmt∗

Stmt ::= l : S
S ::= v ← e | ∗v ← e | if p goto l′

| START | HALT | ERROR
e ::= v | &v | ∗v | c | v op v | input()

where op ∈ {+,−, /, ∗, %, . . .}, v is a variable,
c is a constant

p ::= v = v | v 6= v | v < v | v ≤ v | v ≥ v | v > v

Figure 4.1: Syntax of Sequential Scil

graph in a symbolic way. CUTE then repeatedly runs the instrumented code as follows:

1. It uses the logical input map I to generate a concrete input memory graph for the program

and two symbolic states, one for pointer values and another for primitive values.

2. It runs the code on the concrete input graph, collecting constraints (in terms of the symbolic

values in the symbolic state) that characterize the set of inputs that would take the same

execution path as the current execution path.

3. It negates one of the collected constraints and solves the resulting constraint system to obtain

a new logical input map I ′ that is similar to I but (likely) leads the execution through a

different path. It then sets I = I ′ and repeats the process.

4.1.1 Logical Input Map

CUTE keeps track of input memory graphs as a logical input map I that maps logical addresses to

values that are either logical addresses or primitive values. This map symbolically represents the

input memory graph at the beginning of an execution. The reason that CUTE introduces logical

addresses is that actual concrete addresses of dynamically allocated cells may change in different

executions. Also, the concrete addresses themselves are not necessary to represent memory graphs;

it suffices to know how the cells are connected. Finally, CUTE attempts to make consecutive inputs

similar, and this can be done with logical addresses. If CUTE used the actual physical addresses, it

would depend on malloc and free (to return the same addresses) and more importantly, it would

need to handle destructive updates of the input by the code under test: after CUTE generates one

34

input, the code changes it, and CUTE would need to know what changed to reconstruct the next

input.

Let N be the set of natural numbers and V be the set of all primitive values. Then, I : N →

N ∪ V. The values in the domain and the range of I belonging to the set N represents the logical

addresses. We also assume that each logical address l ∈ N has a type associated with it. A type

can be T * (a pointer of type T) (where T can be primitive type or struct type) or Tp (a primitive

type). The function typeOf (l) returns this type. Let the function sizeOf (T) returns the number of

memory cells that an object of type T uses. If typeOf (l) is T * and I(l) 6=NULL, then the sequence

I(v), . . . , I(v + n− 1) stores the value of the object pointed by the logical address l (each element

in the sequence represents the content of each cell of the object in order), where v = I(l) and

n =sizeOf (T). This representation of a logical input map essentially gives a simple way to serialize

a memory graph.

We illustrate logical inputs on an example. Recall the example Input 3 from Figure 2.1. CUTE

represents this input with the following logical input: 〈3, 1, 3, 0〉, where logical addresses range from

1 to 4. The first value 3 corresponds to the value of p: it points to the location with logical address

3. The second value 1 corresponds to x. The third value corresponds to p->v and the fourth to

p->next (0 represents NULL). This logical input encodes a set of concrete inputs that have the same

underlying graph but reside at different concrete addresses. Similarly, the logical input map for

Input 4 from Figure 2.1 is 〈3, 1, 3, 3〉.

4.1.2 Instrumentation

To test a program P , CUTE tries to explore all execution paths of P . To explore all paths, CUTE

first instruments the program under test. Then, it repeatedly runs the instrumented program P as

follows:

// input: P is the instrumented program to test

// depth is the depth of bounded DFS

run CUTE (P ,depth)

I = []; h = (number of arguments in P) + 1;

35

Before Instrumentation After Instrumentation

// program start global vars A = P = path c = M = [];
l : START global vars i =inputNumber= 0;

l : START

// input l : inputNumber = inputNumber+1;
l : v ← input(); init input(&v, inputNumber);

// input l : inputNumber = inputNumber+1;
l : ∗v ← input(); init input(v, inputNumber);

// assignment l : execute symbolic(&v,“e”);
l : v ← e; v ← e;

// assignment l : execute symbolic(v,“e”);
l : ∗v ← e; ∗v ← e;

// conditional l : evaluate predicate(“p”, p);
l : if (p) goto l if (p) goto l

// normal termination l : compute next input();
l : HALT HALT;

// program error l : print “Found Error with Input ” . I ;
l : ERROR compute next input();

ERROR;

Table 4.1: Code that CUTE’s Instrumentation Adds

completed=false; branch hist=[];

while not completed

execute P

Before starting the execution loop, CUTE initializes the logical input map I to an empty map

and the variable h representing the next available logical address to the number of arguments

to the instrumented program plus one. (CUTE gives a logical address to each argument at the

very beginning.) The integer variable depth specifies the depth in the bounded DFS described in

Section 4.1.4.

Table 4.1 shows the code that CUTE adds during instrumentation. The expressions enclosed in

double quotes (“e”) represent syntactic objects. We describe the instrumentation for function calls

in Section 7.1. In the following section, we describe the various global variables and procedures

that CUTE inserts.

36

4.1.3 Concolic Execution

Recall that a program instrumented by CUTE runs concretely and at the same time performs

symbolic computation through the instrumented function calls. The symbolic execution follows the

path taken by the concrete execution and replaces with the concrete value any symbolic expression

that cannot be handled by our constraint solver.

An instrumented program maintains at the runtime two symbolic states A and P, where Amaps

memory locations to symbolic arithmetic expressions, and P maps memory locations to symbolic

pointer expressions. The symbolic arithmetic expressions in CUTE are linear, i.e. of the form

a1x1 + . . . + anxn + c, where n ≥ 1, each xi is a symbolic variable, each ai is an integer constant,

and c is an integer constant. Note that n must be greater than 0. Otherwise, the expression is

a constant, and CUTE does not keep constant expressions in A, because it keeps A small: if a

symbolic expression is constant, its value can be obtained from the concrete state. The arithmetic

constraints are of the form a1x1 + . . . + anxn + c ./ 0, where ./ ∈ {<, >,≤,≥, =, 6=}. The pointer

expressions are simpler: each is of the form xp, where xp is a symbolic variable, or the constant

NULL. The pointer constraints are of the form x ∼= y or x ∼= NULL, where ∼= ∈ {=, 6=}.

Given any mapM (e.g., A or P), we useM′ =M[m 7→ v] to denote the map that is the same

as M except that M′(m) = v. We use M′ = M−m to denote the map that is the same as M

except that M′(m) is undefined. We say m ∈domain(M) ifM(m) is defined.

Input Initialization using Logical Input Map

Figure 4.2 shows the procedure init input(m, l) that uses the logical input map I to initialize the

memory location m, to update the symbolic states A and P, and to update the input map I with

new mappings.

M maps logical addresses to physical addresses of memory cells already allocated in an execu-

tion, and malloc(n) allocates n fresh cells for an object of size n and returns the addresses of these

cells as a sequence. The global variable h keeps track of the next unused logical address available

for a newly allocated object.

For a logical address l passed as an argument to init input, I(l) can be undefined in two cases:

(1) in the first execution when I is the empty map, and (2) when l is some logical address that

37

// input: m is the physical address to initialize
// l is the corresponding logical address
// modifies h, I,A,P
init input(m, l)

if l 6∈ domain(I)
if (typeOf (∗m) ==pointer to T) ∗m =NULL;
else ∗m =random();
I = I[l 7→ ∗m];

else
v′ = v = I(l);
if (typeOf (v) ==pointer to T)

if (v ∈ domain(M))
∗m = M(v);

else
n = sizeOf (T);
{m1, . . . , mn} =malloc(n);
if (v ==non-NULL)

v′ = h; h = h + n; // h is the next logical address
∗m = m1; I = I[l 7→ v′]; M = M [v 7→ m1];
for j = 1 to n

init input(mj , v
′ + j − 1);

else
∗m = v; I = I[l 7→ v];

// xl is a symbolic variable for logical address l
if (typeOf (m) ==pointer to T) P = P[m 7→ xl];
else A = A[m 7→ xl];

Figure 4.2: Input Initialization

got allocated in the process of initialization. If I(l) is undefined and if typeOf (l) is not a pointer,

then the content of the memory is initialized randomly ; otherwise, if the typeOf (l) is a pointer,

then the contents of l and m are both initialized to NULL. Note that CUTE does not attempt to

generate random pointer graphs but assigns all new pointers to NULL. If typeOf (I(l)) is a pointer

to T (i.e., T*) and M(l) is defined, then we know that the object pointed by the logical address

l is already allocated and we simply initialize the content of m by M(l). Otherwise, we allocate

sufficient physical memory for the object pointed by *m using malloc and initialize them recursively.

In the process, we also allocate logical addresses by incrementing h if necessary.

38

Symbolic Execution

Figure 4.3 shows the pseudo-code for the symbolic manipulations done by the procedure exe-

cute symbolic which is inserted by CUTE in the program under test during instrumentation. The

procedure execute symbolic(m, e) evaluates the expression e symbolically and maps it to the mem-

ory location m in the appropriate symbolic state.

Recall that CUTE replaces a symbolic expression that the CUTE’s constraint solver cannot

handle with the concrete value from the execution. Assume, for instance, that the solver can

solve only linear constraints. In particular, when a symbolic expression becomes non-linear, as in

the multiplication of two non-constant sub-expressions, CUTE simplifies the symbolic expression

by replacing one of the sub-expressions by its current concrete value (see line L in Figure. 4.3).

Similarly, if the statement is for instance v′′ ← v/v′ (see line D in Figure. 4.3), and both v and v′

are symbolic, CUTE removes the memory location &v′′ from both A and P to reflect the fact that

the symbolic value for v′′ is undefined.

Figure 4.4 shows the function evaluate predicate(p, b) that symbolically evaluates p and updates

path c. In case of pointers, CUTE only considers predicates of the form x = y, x 6= y, x =NULL,

and x 6=NULL, where x and y are symbolic pointer variables. We discuss this in Section 4.1.6. If a

symbolic predicate expression is constant, then true or false is returned.

At the time symbolic evaluation of predicates in the procedure evaluate predicate, symbolic

predicate expressions from branching points are collected in the array path c. At the end of the

execution, path c[0 . . . i − 1], where i is the number of conditional statements of P that CUTE

executes, contains all predicates whose conjunction holds for the execution path.

Note that in both the procedures execute symbolic and evaluate predicate, we skip symbolic

execution if the number of predicates executed so far (recorded in the global variable i) becomes

greater than the parameter depth which gives the depth of bounded DFS described next.

4.1.4 Bounded Depth-First Search

To explore paths in the execution tree, CUTE implements a (bounded) depth-first strategy (bounded

DFS). In the bounded DFS, each run (except the first) is executed with the help of a record of

the conditional statements (which is the array branch hist) executed in the previous run. For

39

// inputs: m is a memory location
// e is an expression to evaluate
// modifies A and P by symbolically executing ∗m← e
execute symbolic(m, e)

if (i ≤depth)
match e:

case “v1”:
m1 = &v1;
if (m1 ∈ domain(P))
A = A−m;P = P[m 7→ P(m1)]; // remove if A contains m

else if (m1 ∈ domain(A))
A = A[m 7→ A(m1)];P = P −m;

else P = P −m;A = A−m;
case “v1 ± v2”: // where ± ∈ {+,−}

m1 = &v1; m2 = &v2;
if (m1 ∈ domain(A) and m2 ∈ domain(A))

v = “A(m1)±A(m2)”; // symbolic addition or subtraction
else if (m1 ∈ domain(A))

v = “A(m1)± v2”; // symbolic addition or subtraction
else if (m2 ∈ domain(A))

v = “v1 ±A(m2)”; // symbolic addition or subtraction
else A = A−m;P = P −m; return;
A = A[m 7→ v];P = P −m;

case “v1 ∗ v2”:
m1 = &v1; m2 = &v2;
if (m1 ∈ domain(A) and m2 ∈ domain(A))

L: v = “v1 ∗ A(m2)”; // replace one with concrete value
else if (m1 ∈ domain(A))

v = “A(m1) ∗ v2”; // symbolic multiplication
else if (m2 ∈ domain(A))

v = “v1 ∗ A(m2)”; // symbolic multiplication
else A = A−m;P = P −m; return;
A = A[m 7→ v];P = P −m;

case “∗v1”:
m2 = v1;
if (m2 ∈ domain(P)) A = A−m;P = P[m 7→ P(m2)];
else if (m2 ∈ domain(A)) A = A[m 7→ A(m2)];P = P −m;

else A = A−m;P = P −m;
default:

D: A = A−m;P = P −m;

Figure 4.3: Symbolic Execution

40

// inputs: p is a predicate to evaluate
// b is the concrete value of the predicate in S
// modifies path c, i
evaluate predicate(p, b)

if (i ≤depth)
match p:

case “v1 ./ v2”: // where ./ ∈ {<,≤,≥, >}
m1 = &v1; m2 = &v2;
if (m1 ∈ domain(A) and m2 ∈ domain(A))

c = “A(m1)−A(m2) ./ 0”;
else if (m1 ∈ domain(A))

c = “A(m1)− v2 ./ 0”;
else if (m2 ∈ domain(A))

c = “v1 −A(m2) ./ 0”;
else c = b;

case “v1
∼= v2”: // where ∼= ∈ {=, 6=}

m1 = &v1; m2 = &v2;
if (m1 ∈ domain(P) and m2 ∈ domain(P))

c = “P(m1) ∼= P(m2)”;
else if (m1 ∈ domain(P) and v2 ==NULL)

c = “P(m1) ∼= NULL”;
else if (m2 ∈ domain(P) and v1 ==NULL)

c = “P(m2) ∼= NULL”;
else if (m1 ∈ domain(A) and m2 ∈ domain(A))

c = “A(m1)−A(m2) ∼= 0”;
else if (m1 ∈ domain(A)) c = “A(m1)− v2

∼= 0”;
else if (m2 ∈ domain(A)) c = “v1 −A(m2) ∼= 0”;
else c = b;

if (b) path c[i] = c;
else path c[i] =neg(c);

cmp n set branch hist(b);
i = i + 1;

Figure 4.4: Symbolic Evaluation of Predicates

41

each conditional, CUTE records a branch value which is either true (if the then branch is taken)

or false (if the else branch is taken), as well as a done value which is false when only one

branch of the conditional has executed in prior runs (with the same history up to the branch

point) and is true otherwise. The information associated with each conditional statement of the

last execution path is stored in the array branch hist, kept in a file between executions. For i,

0 ≤ i < |branch hist |, branch hist [i] = (branch hist [i].branch, branch hist [i].done) is the record

corresponding to the (i + 1)th conditional executed.

The procedure cmp and set branch hist in Figure 4.5 checks whether the current execution path

matches the one predicted at the end of the previous execution and represented in branch hist passed

between runs. Specifically, our algorithm maintains the invariant that when run program is called,

branch hist [|branch hist | − 1].done=false holds. This value is changed to true if the execution

proceeds according to all the branches in branch hist as checked by cmp n set branch hist. Note

that we use the parameter depth to restrict the depth of search in the bounded DFS. We observed

in our experiments that the execution almost always follows a prediction of the outcome of a

conditional. However, it could happen that a prediction is not fulfilled because CUTE approximates,

when necessary, symbolic expressions with concrete values (as explained in Section 4.1.3), and

the constraint solver could then produce a solution that changes the outcome of some earlier

branch. (Note that even when there is an approximation, the solution does not necessary change

the outcome.) If it ever happens that a prediction is not fulfilled, an exception is raised to restart

run CUTE with a fresh random input.

Bounded depth-first search proves useful when the length of execution paths are infinite or long

enough to prevent exhaustively search the whole computation tree. Particularly, it is important for

generating finite sized data structures when using preconditions such as data structure invariants

(see section 4.2. For example, if we use an invariant to generate sorted binary trees, then a non-

bounded depth-first search would end up generating infinite number of trees whose every node has

at most one left children and no right children.

42

// modifies branch hist
cmp n set branch hist(branch)

if (i < |branch hist |)
if (branch hist [i].branch 6=branch)

print “Prediction Failed”;
raise an exception; // restart run CUTE

else if (i == |branch hist | − 1)
branch hist [i].done =true;

else branch hist [i].branch = branch;
branch hist [i].done = false;

Figure 4.5: Prediction Checking

// modifies branch hist, I, completed
compute next input()

j = i− 1;
while (j ≥ 0)

if (branch hist [j].done == false)
branch hist [j].branch= ¬branch hist [j].branch;
if (∃I ′ that satisfies neg last(path c[0 . . . j]))

branch hist=branch hist [0 . . . j];
I = I ′;
return;

else j = j − 1;
else j = j − 1;

if (j < 0) completed=true;

Figure 4.6: Compute Next Input

4.1.5 Computing an Input

After the termination of the instrumented program execution, an input for the next execution is

computed using the procedure compute next input (see Figure 4.6). The procedure computes the

input that will direct the next program execution along an alternative execution path. To do so, it

loops over the elements of path c from the end until it has generated an input that would force the

program in the next execution to execute the last unexplored and feasible branch of a conditional

along the current execution. Specifically, the procedure finds the last constraint path c[j] such that

the following holds:

• path c[j] that has not been negated before, and

43

• there exists a logical input map I ′ such that I ′ is a satisfying solution of

neg last(path c[0 . . . j]), where neg last(path c[0 . . . j]) denote the expression path c[0] ∧ . . .∧

path c[j − 1] ∧ ¬ path c[j], where only the last predicate is negated.

If such a constraint is found then I ′ is used as the input for the next execution. Otherwise, concolic

testing is terminated indicating the completion of a depth-first search.

We next present how CUTE solves path constraints. Given a path constraint

C=neg last(path c[0 . . . j]), CUTE checks if C is satisfiable, and if so, finds a satisfying solution I ′.

We have implemented an incremental constraint solver for CUTE to optimize solving of the path

constraints that arise in concolic execution. Our solver is built on top of lp solve [61], a constraint

solver for linear arithmetic constraints. Our solver provides three important optimizations for path

constraints:

(OPT 1) Fast unsatisfiability check: The solver checks if the last constraint is syntactically

the negation of any preceding constraint; if it is, the solver does not need to invoke the expensive

semantic check. (Experimental results show that this optimization reduces the number of semantic

checks by 60-95%.)

(OPT 2) Common sub-constraints elimination: The solver identifies and eliminates common

arithmetic sub-constraints before passing them to the lp solve. (This simple optimization, along

with the next one, is significant in practice as it can reduce the number of sub-constraints by 64%

to 90%.)

(OPT 3) Incremental solving: The solver identifies dependency between sub-constraints and

exploits it to solve the constraints faster and keep the solutions similar. We explain this optimization

in detail.

Given a predicate p in C, we define vars(p) to be the set of all symbolic variables that appear

in p. Given two predicates p and p′ in C, we say that p and p′ are dependent if one of the following

conditions holds:

1. vars(p)∩ vars(p′) 6= ∅, or

2. there exists a predicate p′′ in C such that p and p′′ are dependent and p′ and p′′ are dependent.

Two predicates are independent if they are not dependent.

44

The following is an important observation about the path constraints C and C ′ from two

consecutive concolic executions: C and C ′ differ in the small number of predicates (more precisely,

only in the last predicate when there is no backtracking), and thus their respective solutions I and

I ′ must agree on many mappings. Our solver exploits this observation to provide more efficient,

incremental constraint solving. The solver collects all the predicates in C that are dependent

on ¬path c[j]. Let this set of predicates be D. Note that all predicates in D are either linear

arithmetic predicates or pointer predicates, because no predicate in C contains both arithmetic

symbolic variables and pointer symbolic variables. The solver then finds a solution I ′′ for the

conjunction of all predicates from D. The input for the next run is then I ′ = I[I ′′] which is the

same as I except that for every l for which I ′′(l) is defined, I ′(l) = I ′′(l). In practice, we have

found that the size of D is almost one-eighth the size of C on average.

If all predicates in D are linear arithmetic predicates, then CUTE uses integer linear program-

ming to compute I ′′. If all predicates in D are pointer predicates, then CUTE uses the following

procedure to compute I ′′.

Let us consider only pointer constraints which are either equalities or disequalities. The solver

first builds an equivalence graph based on (dis)equalities (similar to checking satisfiability in theory

of equality [12]) and then based on this graph, assigns values to pointers. The values assigned to the

pointers can be a logical address in the domain of I, the constant non-NULL (a special constant),

or the constant NULL (represented by 0). The solver views NULL as a symbolic variable. Thus, all

predicates in D are of the form x = y or x 6= y, where x and y are symbolic variables. Let D′ be

the subset of D that does not contain the predicate ¬path c[j]. The solver first checks if ¬path c[j]

is consistent with the predicates in D. For this, the solver constructs an undirected graph whose

nodes are the equivalence classes (with respect to the relation =) of all symbolic variables that

appear in D′. We use [x]= to denote the equivalence class of the symbolic variable x. Given two

nodes denoted by the equivalence classes [x]= and [y]=, the solver adds an edge between [x]= and

[y]= iff there exists symbolic variables u and v such that u 6= v exists in D′ and u ∈ [x]= and

v ∈ [y]=. Given the graph, the solver finds that ¬path c[j] is satisfiable if ¬path c[j] is of the form

x = y and there is no edge between [x]= and [y]= in the graph; otherwise, if ¬path c[j] is of the

form x 6= y, then ¬path c[j] is satisfiable if [x]= and [y]= are not the same equivalence class. If

45

// inputs: p is a symbolic pointer predicate
// I is the previous solution
// returns: a new solution I ′′

solve pointer(p, I)
match p:

case “x 6=NULL”: I ′′ = {y 7→non-NULL| y ∈ [x]=};
case “x =NULL”: I ′′ = {y 7→NULL| y ∈ [x]=};
case “x = y”: I ′′ = {z 7→ v | z ∈ [y]= and I(x) = v};
case “x 6= y”: I ′′ = {z 7→ non-NULL| z ∈ [y]=};

return I ′′;

Figure 4.7: Assigning Values to Pointers

¬path c[j] is satisfiable, the solver computes I ′′ using the procedure solve pointer(¬path c[j], I)

shown in Figure 4.7.

Note that after solving the pointer constraints, we either add (by assigning a pointer to

non-NULL) or remove a node (by assigning a pointer NULL) from the current input graph, or alias or

non-alias two existing pointers. This keeps the consecutive solutions similar. Keeping consecutive

solutions for pointers similar is important because of the logical input map: if inputs were very

different, CUTE would need to rebuild parts of the logical input map.

4.1.6 Approximations for Scalable Symbolic Execution

CUTE uses simple symbolic expressions for pointers and builds only (dis)equality constraints for

pointers. We believe that these constraints, which approximate the exact path condition, are a

good trade-off. To exactly track the pointer constraints, it would be necessary to use the theory of

arrays/memory with updates and selections [66]. However, it would make the symbolic execution

more expensive and could result in constraints whose solution is intractable. Therefore, CUTE

does not use the theory of arrays but handles arrays by concretely instantiating them and making

each element of the array a scalar symbolic variable.

It is important to note that, although CUTE uses simple pointer constraints, it still keeps a

precise relationship between pointers: the logical input map (through types), maintains a relation-

ship between pointers to structs and their fields and between pointers to arrays and their elements.

For example, from the logical input map 〈3, 1, 3, 0〉 for Input 3 from Figure 2.1, CUTE knows that

46

p->next is at the (logical) address 4 because p has value 3, and the field next is at the offset 1 in

the struct cell. Indeed, the logical input map allows CUTE to use only simple scalar symbolic

variables to represent the memory and still obtain fairly precise constraints.

Finally, we show that CUTE does not keep the exact pointer constraints. Consider for example

the code snippet *p=0; *q=1; if (*p == 1) ERROR (and assume that p and q are not NULL).

CUTE cannot generate the constraint p==q that would enable the program to take the “then”

branch. This is because the program contains no conditional that can generate the constraint.

Analogously, for the code snippet a[i]=0; a[j]=1; if (a[i]==0) ERROR, CUTE cannot generate

i==j.

4.2 Data Structure Testing

We next consider testing of functions that take data structures as inputs. More precisely, a function

has some pointer arguments, and the memory graph reachable from the pointers forms a data

structure. For instance, consider testing of a function that takes a list and removes an element

from it. We cannot simply test such function in isolation [115, 16, 118]—say generating random

memory graphs as inputs—because the function requires the input memory graph to satisfy the

data structure invariant.2 If an input is invalid (i.e., violates the invariant), the function provides

no guarantees and may even result in an error. For instance, a function that expects an acyclic list

may loop infinitely given a cyclic list, whereas a function that expects a cyclic list may dereference

NULL given an acyclic list. We want to test such functions with valid inputs only. There are two

main approaches to obtaining valid inputs: (1) generating inputs with call sequences [115, 118] and

(2) solving data structure invariants [16, 115]. CUTE supports both approaches.

4.2.1 Generating Inputs with Call Sequences

One approach to generating data structures is to use sequences of function calls. Each data structure

implements functions for several basic operations such as creating an empty structure, adding an

element to the structure, removing an element from the structure, and checking if an element is

2The functions may have additional preconditions, but we omit them for brevity of discussion; for more details,
see [16].

47

in the structure. A sequence of these operations can be used to generate an instance of data

structure, e.g., we can create an empty list and add several elements to it. This approach has

two requirements [115]: (1) all functions must be available (and thus we cannot test each function

in isolation), and (2) all functions must be used in generation: for complex data structures, e.g.,

red-black trees, there are memory graphs that cannot be constructed through additions only but

require removals [115, 118].

4.2.2 Solving Data Structure Invariants

Another approach to generating data structures is to use the functions that check invariants.

Good programming practice suggests that data structures provide such functions. For example,

SGLIB [102] (see Section 7.2.2) is a popular C library for generic data structures that provides

such functions. We call these functions repOk [16]. (SGLIB calls them check consistency.) As

an illustration, SGLIB implements operations on doubly linked lists and provides a repOk function

that checks if a memory graph is a valid doubly linked list; each repOk function returns true or

false to indicate the validity of the input graph.

The main idea of using repOk functions for testing is to solve repOk functions, i.e., generate

only the input memory graphs for which repOk returns true [16, 115]. This approach allows mod-

ular testing of functions that implement data structure operations (i.e., does not require that all

operations be available): all we need for a function under test is a corresponding repOk function.

Previous techniques for solving repOk functions include a search that uses purely concrete exe-

cution [16] and a search that uses symbolic execution for primitive data but concrete values for

pointers [115]. CUTE, in contrast, uses symbolic execution for both primitive data and pointers.

The constraints that CUTE builds and solves for pointers allow it to solve repOk functions

asymptotically faster than the fastest previous techniques [16, 115]. Consider, for example, the

following check from the invariant for doubly linked list: for each node n, n.next.prev == n.

Assume that the solver is building a doubly linked list with N nodes reachable along the next

pointers. Assume also that the solver needs to set the values for the prev pointers. Executing the

check once, CUTE finds the exact value for each prev pointer and thus takes O(N) steps to find

the values for all N prev pointers. In contrast, the previous techniques [16, 115] take O(N2) steps

48

as they search for the value for each pointer, trying first the value NULL, then a pointer to the head

of the list, then a pointer to the second element and so on.

4.3 Discussion

We next discuss the advantages of using CUTE over traditional symbolic execution based testing

approaches.

4.3.1 Pointer Casting and Arithmetic

CUTE often has an advantage over static analysis in reasoning about linked data. For example, to

determine if two pointers point to the same memory location, CUTE simply checks whether their

values are equal and does not require an alias analysis that may be inaccurate in the presence of

pointer casting and pointer arithmetic. For example, for the following C program:

struct foo {

int i;

char c; };

void * memset(void *s,char c,size_t n) {

for (int i = 0; i < n; i++)

((char *)s)[i] = c; return s;

}

bar (struct foo *a) {

if (a && a->c == 1) {

memset(a,0,sizeof(struct foo));

if (a->c != 1)

ERROR;

}

}

49

a fully sound static analysis should report that ERROR might be reachable. However, such a sound

static-analysis tool would be impractical as it would give too many false alarms. More practical

tools, such as BLAST [51], report that the code is safe because a standard alias analysis is not able

to see that a->c has been overwritten. In contrast, CUTE easily finds a precise execution leading

to the ERROR. This kind of code is often found in C where memset is widely used for fast memory

initialization.

4.3.2 Library Functions with Side-Effects

The concrete execution of CUTE helps to remove false alarms, especially in the presence of library

function calls that can have side-effects. In the above code, for example, if the function memset

is a library function with no source code available, static-analysis tools have no way to find out

how the function can affect the global heap. In such situations, they definitely give false alarms.

However, CUTE can tackle the situation as it can see the side-effect while executing the function

concretely.

4.3.3 Approximating Symbolic Values by Concrete Values

CUTE combines the concrete and symbolic executions to make them co-operate with each other,

which helps to handle situations where most symbolic executors would give uncertain results. For

example, consider testing the function f in the following C code:

g(int x) {

return x * x + (x % 2);

}

f(int x, int y) {

z = g(x);

if (y == z)

ERROR;

}

50

A symbolic executor would generate the path constraint y = x * x + (x % 2) that is not

in a decidable theory. Thus, it cannot say that ERROR is reachable with guarantee. On the other

hand, suppose that CUTE starts with the initial inputs x = 3, y = 4. In the first execution, since

CUTE cannot handle the symbolic expression x * x + (x % 2), it approximates z by the concrete

value 3 * 3 + (3 % 2) = 10 and proceeds to generate the path constraint y != 10. Therefore,

by solving the path constraint CUTE will generate the inputs x = 3, y = 10 for the next run

which will reveal the ERROR.

4.3.4 Black-Box Library Functions

The same situation arises in the above code if g is a library function whose source code is not avail-

able. A symbolic executor would generate the path constraint y = g(x) involving uninterpreted

function and would give a possible warning. However, CUTE in the same way as before generates

an input leading to the ERROR.

4.3.5 Lazy Initialization

One can imagine combining symbolic execution with randomization in several ways. CUTE com-

mits to concrete values before the execution. Another approach would be to use full symbolic

execution and generate concrete values on demand [115]. However, this approach does not handle

black-box library functions, executes slower as it needs to always check if data is initialized, and

cannot “recover” from bad initialization as this example shows:

f(int x){

z = x * x + (x % 2);

if (z == 8) {

ERROR;

}

if (x == 10) {

ERROR;

}

}

51

After executing the first if statement, a lazy initializer will initialize x to a random value in any

run since it cannot decide the path constraint x * x + (x % 2) = 8. Thus, it would not be able

to take the then branch of the second if. CUTE, however, would generate x = 10 for the second

run as it simultaneously executes both concretely and symbolically.

4.3.6 Random Initialization

Concolic testing uses random values to initialize the input values. This helps concolic testing to

mitigate the limitations of the constraint solver in many situations. To illustrate this, consider the

following C program:

f(int x, int y){

if (x*x*x > 0){

if (x>0 && y==10)

ERROR;

} else {

if (x>0 && y==20)

ERROR;

}

}

Given a theorem prover that cannot reason about non-linear arithmetic constraints, a static analysis

tool using predicate abstraction [11, 51] will report that both ERRORs in the above code may be

reachable; therefore, the tool will give one false alarm since the second ERROR is unreachable.

This would be true as well if the test (x*x*x > 0) is replaced by a black-box library call. On the

other hand, a test-generation tool based on symbolic execution [115] will not be able to generate

an input to detect any ERROR because its symbolic execution will be stuck at the condition of

the first if-then-else statement. In contrast, CUTE can randomly generate an input where x>0

and y!=10 with almost 0.5 probability; after the first execution with such an input, the depth-first

search of CUTE will generate another input with the same positive value of x but with y=10, which

will lead the program in its second run to the first ERROR. Note that if CUTE randomly generates

a negative value for x in the first run, then CUTE will generate an input where x>0 and y==20

52

to satisfy the then branch of the third if-then-else statement (it will do so because no constraint

is generated for the condition of the first if-then-else statement since it is non-linear); however,

due to the concrete execution, CUTE will then not take the else branch of the first if-then-else

statement in such a second run. In summary, our mixed strategy of random and directed search

along with simultaneous concrete and symbolic execution of the program will allow us to find the

only reachable ERROR statement in the above example with high probability.

53

Chapter 5

Testing Concurrent Programs

In this chapter, we extend concolic testing with a new algorithm, called the race-detection and

flipping algorithm,1 to effectively test shared-memory multi-threaded programs.

We described concolic testing to systematically and automatically test sequential programs.

However, most of the real-world programs are concurrent where computation tasks are distributed

among several threads executing simultaneously and communicating either through shared memory

or message passing. Testing concurrent programs is notoriously harder than testing sequential pro-

grams because of the exponentially large number of possible interleavings of concurrent events [104].

Many of these interleavings share the same causal structure (also called the partial order), and are

thus equivalent with respect to finding bugs in a given program. Techniques for avoiding such

redundant executions are called partial order reduction [110, 76, 38].

Several approaches [39, 34, 19, 17] to testing concurrent programs assume that the data inputs

are from a small finite domain. These approaches rely on exhaustively executing the program for

all possible inputs and perform a partial order reduction to reduce the search space. The problem

with these approaches is that it is hard to scale them—the input set is often too large.

A second approach is to execute a program symbolically in a customized virtual machine which

supports partial order reduction [53, 115]. This requires checking satisfiability of complex con-

straints (corresponding to every branch point in a program). Unfortunately, checking such satis-

fiability may be undecidable or computationally intractable. Moreover, in concurrent programs,

partial order reduction for symbolic execution requires computing the dependency relations between

memory accesses in a program. Because it involves alias analysis, such a computation is often con-

servative resulting in extra dependencies. Therefore, large numbers of unreachable branches may

be explored, often causing many warnings for bugs that could never occur in an actual execution.

1This work is partly done in collaboration with Gul Agha. Part of this work appeared in [86, 85].

54

Our approach is to extend concolic testing with a new technique called race-detection and

flipping. To use concolic testing for multi-threaded programs, we do the following. For a given

concrete execution, at runtime, we determine the causality relation or the exact race conditions

(both data race and lock race) between the various events in the execution path. Subsequently,

we systematically re-order or permute the events involved in these races by generating new thread

schedules as well as generate new test inputs. This way we explore at least one representative from

each partial order. The result is an efficient testing algorithm for concurrent programs which, at

the cost of missing some potential bugs, avoids the problem of false warnings.

We have implemented the algorithm in a publicly available tool, called jCUTE, for testing Java

programs. Apart from detecting assertion violations and uncaught exceptions, jCUTE reports all

data race conditions and deadlock states encountered during the process of testing.

The rest of the chapter is organized as follows. In Section 5.1, we describe the race-detection and

flipping algorithm on programs having no data inputs and prove the correctness of the algorithm.

In Section 5.2, we describe a simple algorithm for extending concolic testing to shared-memory

multi-threaded programs. The goal of this section is to familiarize the readers with various data

structures used in the algorithms described in the subsequent sections. In Section 5.3, we show

how to combine concolic testing with the race-detection and flipping algorithm. We propose a

further optimization of the combined algorithm in Section 5.4. Finally, we conclude the chapter by

discussing some of the advantages of the techniques described in this chapter.

5.1 The Race-Detection and Flipping Algorithm

In the description of the race-detection and flipping algorithm, we assume that a program under

test has no data input. We make this simplification to keep the exposition concise and to keep the

proof of correctness of the race-detection and flipping algorithm simple. In the subsequent sections,

we show how we can combine the race-detection and flipping algorithm with concolic testing.

The race-detection and flipping algorithm is given in Figure 5.1. Recall that Ex(P) is the set of

all feasible execution paths that can be exhibited by the program P on all possible values of inputs

and all possible schedules (see Section 3.2). Similarly, REx(P) is the set that contains exactly one

candidate from each equivalence class of feasible execution paths of P . test program(P) repeatedly

55

global var τ = ε; // the empty sequence

//input: P is the program to test
test program(P)

while testing not completed

execute program(P)

execute program(P)
execute prefix (P, τ);
while there is an enabled thread

execute the next statement of the lowest indexed enabled thread in P
to generate the event e;

race(τ) = false;
postponed(τ) = ∅;
append e to τ ;
if ∃e′ ∈ τ such that e′ l e

let τ = τ1e
′τ2 in race(τ1) = true;

// end of the while loop
if there is an active thread

print ‘‘Error: found deadlock’’;
generate next schedule();

// modifies τ
generate next schedule()

if ∃e such that τ == τ1eτ2 and backtrackable(τ1) and
there is no e′ such that τ == τ ′

1e
′τ ′

2 and |τ1| < |τ ′
1| and backtrackable(τ ′

1)
race(τ1) = false;
let (t, ,) = e in add t to postponed(τ1);
let t = smallest indexed thread in enabled(τ1)\ postponed(τ1) in τ = τ1(t, ,);

else
testing completed;

backtrackable(τ1) =
race(τ1) ==true and |enabled(τ1)\postponed(τ1)| > 1

Figure 5.1: The Race-Detection and Flipping Algorithm

56

executes the program P with different schedules until all paths in a REx(P) have been explored.

Given two sequences of events τ and τ ′, we let ττ ′ to denote the concatenation of the two sequences.

Similarly, given a sequence of events τ and an event e, we let τe to denote the concatenation of

the sequence and the event. Let ε be the empty sequence. A sequence of events is called a prefix,

if it is the prefix of a feasible execution path. The global variable τ keeps track of the execution

path for each execution of P . At the end of each execution, τ is appropriately truncated so that

a depth-first search of the computation tree takes place. execute prefix (P, τ) executes the program

from the beginning until the sequence of events generated by the execution is equal to the prefix τ .

Since an execution path is solely determined by the sequence of threads that are executed in the

path, from now onwards we will ignore the second and the third components of a tuple representing

an event. Thus (t, ,) represents an event on the thread t. With every prefix τ , we associate a

set, denoted by postponed(τ). Moreover, with every prefix τ , we associate a boolean flag, denoted

by race(τ). enabled(τ) returns the set of threads that are enabled after executing the prefix τ .

enabled(τ)\postponed(τ) represents the set of threads that are enabled but not postponed after

executing τ .

In each execution of P during the testing process, P is first partly executed so that it follows the

prefix τ computed in the previous execution. Then P is executed with the default schedule, where

the lowest indexed enabled thread is always chosen. If τ = τ ′e before the start of an execution,

then the execution path and the previous execution path has the same prefix τ ′. In an execution

path τ , for any prefix τ ′ of τ , we set race(τ ′) to true, if there exist e, τ1, e
′, and τ2 such that

τ = τ ′eτ1e
′τ2 and e l e′. Setting race(τ ′) to true flags that in a subsequent execution, we must

postpone the execution of e after the prefix τ ′ so that we may explore a possibly non-equivalent

execution path. At the end of an execution, if τ1 is the longest prefix of the current execution path

τ such that race(τ1) is set to true and |enabled(τ1)\postponed(τ1)| > 1, we generate a new schedule

by truncating τ to τ1e, where e is an event of a thread t that has not been scheduled after τ1 in

any previous execution.

We next prove that the race-detection and flipping algorithm explores all execution paths in a

set REx(P). To keep the proof simple, we assume that no execution path in P ends in a deadlock

state.

57

Theorem 9. If Ex′(P) is the set of the execution paths that are explored by the race-detection and

flipping algorithm, then there is a set REx(P) such that REx(P) ⊆ Ex
′(P) ⊆ Ex(P).

Proof. Before we prove the theorem, we state and prove the following three lemmas.

Lemma 10. If e l e′ in an execution path τ , then e l e′ in any execution path τ ′ ∈ [τ]≡4

The proof of the above lemma follows from the definition of 4.

Lemma 11. Given an event e and a prefix τ , if the following conditions hold:

1. e is enabled after the prefix τ ,

2. ττ ′eτ ′′ is a feasible execution path,

3. there is no event e1 in τ ′ such that e1 l e′, and

4. there is an event e2 in τ ′′ such that e′ l e2,

then τeτ ′τ ′′ ≡4 ττ ′eτ ′′ and e l e2 in τeτ ′τ ′′.

Proof. τeτ ′τ ′′ ≡4 ττ ′eτ ′′ holds if there is no event e′ in τ ′ such that e′ 4 e. Let us assume that

there is an event e′ in τ ′ such that e′ 4 e. This is possible in three cases.

i) There is an e3 in τ ′ such that e′ 4 e3 and e3 C e. Because e is enabled after both τ and ττ ′,

for any e4 in τ , e4 m e. Therefore, there cannot be such an e3.

ii) e is a read or a write event and there is an e3 in τ ′ such that e′ 4 e3 and e3 be the latest event

such that e3 <m e. Then e3 l e. This contradicts condition (3).

iii) e is a lock acquire event, and there is an e3 in τ ′ such that e 4 e3 and e3 is the latest event

such that e3 <m e. Let e4 be the lock acquire event corresponding to the lock release event e3.

If e4 is in τ , then e cannot be enabled immediately after τ . Hence, we have a contradiction. If

e4 is in τ ′, then e4 l e. This contradicts condition (3).

Therefore, all the above three cases are impossible. This proves that τeτ ′τ ′′ ≡4 ττ ′eτ ′′.

e l e2 follows from Lemma 10.

58

Lemma 12. If τeτ1e
′τ2 is a feasible execution path and if e l e′, then e′ is enabled immediately

after τ .

Proof. Let e be generated by the thread t and e′ be generated by the thread t′. Let L be the set of

locks held by t immediately before e is generated and L′ be the set of locks held by t′ immediately

before e′ is generated. Then L∩L′ = ∅. If this is not the case, then let l ∈ L∩L′. There exist two

events e1 and e2 in τ1, such that e1 is an event of t, e2 is an event of t′, e1 is the release of l, and

e2 is the acquire of l. Therefore, e1 4 e2. Moreover, e 4 e1 and e2 4 e′. This violates the fact that

el e′. Therefore, L∩L′ = ∅. Moreover, el e′ implies that e m e′. Hence, e′ is enabled immediately

after τ .

Lemma 13. If τeτ1e
′τ2 is a feasible execution path and if ele′, then there exists a feasible execution

path of the form τe′τ3eτ4 such that e′ l e holds.

Proof. By Lemma 12, e′ is enabled after τ . Therefore, τe′ is a prefix. Because we assume that a

path never ends in a deadlock state, there must exist a feasible execution path whose prefix is τe′

and e is in the path. Let τe′τ3eτ4 be the feasible execution path in which after executing τe′, we

execute e as soon as it gets enabled. In this path e′ l e.

We now get back to the proof of Theorem 9. The proof of Ex′(P) ⊆ Ex(P) is straightforward.

If we remove the check race(τ1) == true from the function backtrackable(τ1), then after each

prefix τ1, we explore the events of all enabled threads. Therefore, the algorithm explores the entire

computation tree, that is, the algorithm explores all execution paths in Ex(P). Clearly, if we keep

the check race(τ1) == true in the function backtrackable(τ1), we may explore a smaller number of

execution paths. Therefore, Ex′(P) ⊆ Ex(P).

We next prove REx(P) ⊆ Ex′(P) by induction. Specifically, we prove that for any τ1 ∈ Ex(P),

there is a τ2 ∈ Ex′(P) such that τ1 ≡4 τ2. Let τ be a prefix explored by the algorithm. Let

us define Exτ (P) = {τ ′ | τ ′ ∈ Ex(P) and τ is a prefix of τ ′}. Similarly, let Ex′τ (P) = {τ ′ |

τ ′ ∈ Ex′(P) and τ is a prefix of τ ′}. By an argument similar to that in the previous paragraph,

Ex′τ (P) ⊆ Exτ (P).

Let Ten = {ti1 , . . . , til} be the set of threads that are enabled after executing τ , where ip < iq

if and only if p < q. Let ek be the event generated if we execute the thread tik after τ . If we

59

remove the check race(τ1) == true from the function backtrackable(τ1), then after executing τ

our algorithm will execute all the threads in Ten in various executions. However, if we keep the

check race(τ1) = true in the function backtrackable(τ1), then after executing τ our algorithm may

only execute the threads ti1 , ti2 , . . . , tik in that order where k < l. This happens if after exploring

all paths in Ex′τek
(P), race(τ) is false. This happens if there exists no e in any of the paths in

Ex′τek
(P) such that ek l e. By the induction hypothesis, let us assume that for each τ ′ ∈ Exτek

(P),

there is a τ ′′ ∈ Ex′τek
(P) such that τ ′ ≡4 τ ′′. We want to prove that the same holds for τ , that is,

for each τ ′ ∈ Exτ (P), there is a τ ′′ ∈ Ex′τ (P) such that τ ′ ≡4 τ ′′. This holds if we can show that

for any k + 1 ≤ m ≤ l and any τ1 ∈ Exτem
(P), there is a τ2 ∈ Ex′τek

(P) such that τ1 ≡4 τ2.

Consider τ1 ∈ Exτem
(P). Then τ1 must be of the form τemτ ′ekτ

′′. We consider three cases as

follows.

(i) If there exists no e in emτ ′ such that e l ek, and there exists no e′ ∈ τ ′′ such that ek l e′′,

then τekemτ ′τ ′′ ≡4 τemτ ′ekτ
′′ by Lemma 11. But τekemτ ′τ ′′ ∈ Exτek

(P). Therefore, by the

induction hypothesis there exists τ2 ∈ Ex′τek
(P) such that τekemτ ′τ ′′ ≡4 τ2. This implies that

τ2 ≡4 τemτ ′ekτ
′′. Therefore, the induction claim holds in this case.

(ii) Now we show the impossibility of the case that there exists no e in emτ ′ such that e l ek,

and there exists an e′ in τ ′′ such that ek l e′. Then τekemτ ′τ ′′ ≡4 τemτ ′ekτ
′′ Lemma 11.

Note that in τekemτ ′τ ′′, the fact ek l e′ still holds. By the induction hypothesis, there exists

τekτ4e
′τ5 ∈ Ex′τek

(P) such that τekτ4e
′τ5 ≡4 τekemτ ′τ ′′. By Lemma 10, in τekτ4e

′τ5, the

fact ek l e′ holds. This contradicts the assumption that after executing tik after τ , race(τ) is

false.

(iii) Now we show the impossibility of the case that there exists an e in emτ ′ such that el ek. Let

us assume that there exists an e in emτ ′ such that e l ek. Then we show that this violates

the assumption that after executing tik after τ , race(τ) is false. Consider the following two

cases.

(a) The first case is e = em. Since em l ek and τemτ ′ekτ
′′ is a feasible execution path of

P , by Lemma 13, there is a feasible execution path of P of the form τekτ4emτ5 such

that in τekτ4emτ5, the fact ek l em holds. This implies that τekτ4emτ5 ∈ Exτek
(P). By

60

the induction hypothesis, there exists τekτ6emτ7 ∈ Ex′τek
(P) such that τekτ6emτ7 ≡4

τekτ4emτ5. By Lemma 10, in τekτ6emτ7, the fact ek l em holds. This violates the

assumption that after executing tik after τ , race(τ) is false.

(b) The second case is that e is present in τ ′. Let τ1 = τemτ8eτ9ekτ
′′. Since e l ek and τ1

is a feasible execution path of P , by Lemma 13, there is feasible execution path of P

of the form τemτ8ekτ4eτ5 such that in τemτ8ekτ4eτ5, the fact ek l em holds. Therefore,

τemτ8ekτ4eτ5 ∈ Exτem
(P). If there is no e′ in emτ8 such that e′ l ek, then by case (ii), we

have a contradiction. Otherwise, if there is a e′ in emτ8 such that e′ l ek, then we get the

case (iii) with |τ8| < |τ ′|. We repeat the process until we get the case (iii)(a) or the case

(ii). The process is guaranteed to terminate as at each step the length of τ8 gets smaller

than the length of τ ′. On the termination of the process we get a contradiction.

5.2 Extending Concolic Testing to Test Concurrent Programs

We next describe a simple algorithm for testing shared-memory multi-threaded programs with

data inputs. The algorithm näıvely extends concolic testing: the algorithm does not combine

concolic testing with the race-detection and flipping algorithm. Our goal in describing the simple

algorithm is to familiarize the readers with the various data structures that we consistently use in

our algorithms.

Given a program P in Scil, our simple algorithm explores a subset of the execution paths in

Ex(P). This is done by repeatedly executing P both symbolically and concretely on different inputs

and schedules, each of which leads the program along a different execution path. At the end of

each execution of P , our algorithm either computes a new schedule or a new input, which is used

in the next execution of P . A new input is generated by solving constraints. To generate a new

schedule, our algorithm picks a scheduler choice recorded during the execution and generates a new

schedule where the particular thread chosen in the scheduler choice is postponed.

61

5.2.1 Instrumentation

jCUTE first instruments the program P under test. Table 5.1 shows the code that jCUTE adds

during instrumentation. The code added by jCUTE during instrumentation includes the code

added by CUTE as in concolic testing. In addition, jCUTE also adds code so that it can control

the interleaving of the various threads at runtime. Specifically, jCUTE adds a call to the procedures

access event before any access to a potential shared memory, fork event after forking a new thread,

and end event after terminating a thread. After the START statement in a program, jCUTE adds

code to create a new thread and execute the procedure testing scheduler in the newly created

thread. This procedure controls the execution of the other threads at runtime. As such jCUTE

can execute a program according to a pre-determined schedule.

After instrumentation, jCUTE repeatedly runs the instrumented program P as follows:

// input: P is the instrumented program to test

// depth is the depth of bounded DFS

run jCUTE (P ,depth)

I = []; h = (number of arguments in P) + 1;

completed=false; branch hist=[]; event=[]; postponed=[];

while not completed

execute P

In an execution, the global shared variable i counts the number of shared memory accesses and

the number of conditional statement executions; i is incremented by 1 before any shared memory

access or before the execution of any conditional statement. The execution points at which i

is incremented denote choice points—the execution path of the program P can be changed at

these choice points either by generating a different schedule or a different input. At these choice

points we record the information required for generating new input in the arrays branch hist and

path c and in the maps I, A, P, and M . The use of these data structures is already described in

Chapter 4. In addition, we record information required for generating new schedules in the arrays

event, enabled, postponed, race. Since a choice point i can represent either a scheduler choice or

62

Before Instrumentation After Instrumentation

// program start shared global vars A = P = path c = enabled = M = [];
l : START shared global vars i = inputNumber = 0;

global var tcurrent = NULL; // stores the scheduled thread
shared global var race = []; // used in the efficient algorithm
sleep = delayed = { }; // used in the optimized algorithm
l : START

create a new thread and execute testing scheduler() in that thread

// input l : inputNumber = inputNumber+1;
l : lv ← input(); init input(&lv, inputNumber);

// new thread l : fork(l);
l : fork(l); fork event();

// lock l : access event(&v, l, l);
l : lock(&v); lock(&v);

// unlock l : unlock(&v);
l : unlock(&v); access event(&v, l,u);

// assignment l : access event(&v, l,w);
l : v ← lv; execute symbolic(&v,“lv”);

v ← lv;

// assignment l : access event(lv1, l,w);
l : ∗lv1 ← lv2; execute symbolic(lv1,“lv2”);

∗lv1 ← lv2;

// assignment l : access event(&v, l, r);
l : lv ← v; execute symbolic(&lv,“v”);

lv ← v;

// assignment l : access event(lv, l, r);
l : lv ← ∗lv; execute symbolic(&lv,“∗lv”);

lv ← ∗lv;

// assignment l : execute symbolic(&v,“e”);
l : lv ← e; lv ← e;
where e ∈ {&v, c, lv, lv op lv}
// conditional l : evaluate predicate(“p”, p);
l : if (p) goto l if (p) goto l

// normal termination l : HALT;
l : HALT end event();

// program error l : print “Found Error with Input ” . I ;
l : ERROR ERROR;

end event();

Table 5.1: Code that jCUTE’s Instrumentation Adds

63

a branch choice, either the elements event [i], enabled [i], postponed [i], race[i] are defined or the

elements branch hist [i], path c[i] are defined.

The array event is used to keep track of the sequence of events generated by an execution of P .

Thus the array event serves the same purpose as the global variable τ in Figure 5.1. postponed [i],

if defined, contains a set of threads that cannot be executed in the next execution of P at the

choice point i. This array, like the event array, maintains information across executions. The other

two arrays enabled and race are not used across executions. enabled [i], if defined, contains a set of

threads that are not enabled at the choice point i. race[i] is set to true if the event stored in event [i]

has an immediate race with some other future event in the execution path. The simple algorithm

does not use this field; the field will be used in the efficient algorithm described in Section 5.3. If we

use event [0 . . . i] to represent the sequence of events event [0]event [1] . . .event [i], then postponed [i]

is the same as postponed(event [0 . . . i− 1]) defined in Section 5.1. Similarly, race[i] is the same as

race(event [0 . . . i− 1]) defined in Section 5.1.

The global variable tcurrent is used by the procedure testing scheduler to store the currently

scheduled thread. The global sets sleep and delayed are used by the further optimized algorithm

described in Section 5.4.

5.2.2 Controlling the Execution of Threads

At runtime, the execution of various threads is controlled by the thread executing the procedure

testing scheduler. This procedure, besides controlling the execution of various threads, ensures

that at any time only one thread is executing. This serialization of the execution of various

threads ensures that there is no uncontrolled concurrency in the system. We next describe how the

procedure testing scheduler controls the various threads so that it can systematically explore the

feasible interleavings.

Let us denote the thread running the procedure testing scheduler by schedulerThread . We

use the variable thisThread to denote the current thread (i.e. the thread accessing the variable

thisThread .) The execution of various threads is controlled using binary semaphores. The pseudo-

code of the implementation of a binary semaphore is given in Figure 5.2. A call to the procedure

wait on a semaphore s makes the calling thread wait until the value of s is 1. Once the value is

64

// Semaphore s is passed by reference in the following procedures
init(Semaphore s){

s = 0 ;
}

// Also known as P ()
wait(Semaphore s) {

await s == 1, then s = 0 ; // must be atomic once s == 1 is detected
}

// Also known as V ()
signal(Semaphore s) {

s = 1 ; // must be atomic
}

Figure 5.2: Binary Semaphore

1, it sets the value of s to 0 atomically. A call to the procedure signal on a semaphore s sets the

value of s to 1 atomically; this signals any thread waiting on s.

We associate a binary semaphore with each thread at the time of its creation and initialize it

to 0. We use t.semaphore to denote the semaphore associated with the thread t.

The definition of the various thread controlling procedures introduced through instrumentation

is given in Figure 5.3. In an execution, before any access to a shared memory location, a thread,

say t, calls the procedure access event. This procedure first executes signal(schedulerThread .

semaphore) to signal the schedulerThread thread to continue its execution. Then the procedure

executes wait(thisThread . semaphore) to make t wait for a signal from the schedulerThread thread.

This way t releases the control to the schedulerThread thread and allows schedulerThread to sched-

ule an appropriate thread from the set of enabled threads. Note that, although, the thread trying

to access the shared memory location is waiting on its semaphore, it is enabled by definition.

A thread also starts waiting on its semaphore when it forks another thread. However, in this

case, the thread calling fork does not signal the thread schedulerThread . This is because after the

execution of fork the child thread starts its execution and we want that at any time during an

execution only one thread is executing.

The schedulerThread after receiving a signal from an executing thread starts it job of picking

65

testing scheduler()
wait(schedulerThread . semaphore);
while there is an enabled thread

if i ≤ |events|
(tcurrent, ,) =event [i] ;

else
tcurrent = lowest indexed thread in the set of enabled threads;

signal(tcurrent . semaphore); // release control to the thread tcurrent

wait(schedulerThread . semaphore); // wait for the thread tcurrent to give back control
// end of the while loop
if there is an active thread

print ‘‘Error: found deadlock’’;
compute next input and schedule() ;

access event(m, label, access type) // access type can be r,w, l,u
signal(schedulerThread . semaphore); // release control to the testing scheduler
wait(thisThread . semaphore); // wait for the testing scheduler to give back control
event [i] = (thisThread , label, access type);
enabled [i] = set of enabled threads;
i = i + 1 ;

fork event()
wait(thisThread . semaphore); // wait for the testing scheduler to give back control

end event()
signal(schedulerThread . semaphore); // release control to the testing scheduler

Figure 5.3: Definition of Various Thread Execution Controlling Procedures for the Simple Testing
Algorithm

the next thread to be scheduled for execution. Whenever schedulerThread receives a signal from

a thread, it knows that all the active threads in the execution are waiting to access a shared

memory location. Then it determines if there is at least one thread that is enabled among the

waiting threads, that is, if there is a thread that is not waiting to acquire a lock that is already

acquired by some other thread. If there is at least one enabled thread, then it picks the same

thread as the previous execution while i is less than the number of elements of event. This ensures

that the current execution follows the schedule computed in the previous execution while i is less

than or equal to the length of event. At the end of the previous execution, the sequence event

66

compute next input and schedule()
for (j = i− 1 ; j ≥ 0 ; j = j − 1)

if event [j] is defined
// compute a new schedule
if |enabled [j]| > |postponed [j]|+ 1

(t, ,) = event [j];
postponed [j] = postponed [j] ∪ {t};
t = smallest indexed thread in enabled [j]\ postponed [j];
event [j] = (t, ,) ;
branch hist = branch hist [0 . . . j];
event = event [0 . . . j];
postponed = postponed [0 . . . j];
return;

else
// compute a new input
if (branch hist [j].done == false)

branch hist [j].branch=¬branch hist [j].branch;
if (∃I ′ that satisfies neg last(path c[0 . . . j]))

branch hist = branch hist [0 . . . j];
event = event [0 . . . j];
postponed = postponed [0 . . . j];
return;

// end of the for loop
if (j < 0) completed = true;

Figure 5.4: Compute Next Schedule or Input for the Simple Testing Algorithm

is truncated appropriately and concatenated with an event to perform a depth-first search of the

feasible execution paths of P . Otherwise, if i is greater than the number of elements in event,

schedulerThread selects the smallest indexed thread that it is enabled. After selecting a thread,

schedulerThread signals the selected thread, and itself starts waiting again for a signal. If after

getting a signal schedulerThread determines that none of the threads are enabled and there is at

least one active thread in the execution, then it flags that there is a deadlock situation. Otherwise,

if there is no enabled or active thread in the execution, then the program execution terminates

and schedulerThread computes a schedule or an input for the next execution using the procedure

compute next input and schedule described next.

67

5.2.3 Computing a Schedule and an Input

The procedure compute next input and schedule (see Figure 5.4) computes the schedule and the

input that will direct the next program execution along an alternative execution path. It loops over

the choice points in the current execution from the end. If the selected choice point j inside the loop

contains a scheduler choice and if not all scheduler choices at the choice point have been exercised,

then a new schedule is generated. Specifically, if the thread t executed at the execution point

denoted by the element event [j] and if t can be added to postponed [j] without making postponed [j]

equal to the set of enabled threads at that choice point, then t is added to the set postponed [j].

Moreover, the smallest indexed thread, which is in the set of enabled threads at the choice point

and which is not in the set postponed [j], is chosen and assigned to event [j]. This ensures that in

the next execution at the same choice point, the scheduler will pick a thread that is enabled and

that is not in postponed [j]. Thus in subsequent executions all the threads that are enabled at the

choice point will get scheduled one by one. Otherwise, if at the selected choice point path c[j] is

defined and if the constraint path c[j] has not been negated previously, then constraint solving is

invoked to generate a new input (see 4.1.5.)

5.3 Extending Concolic Testing with the Race-detection and

Flipping Algorithm

We next show how to extend concolic testing with the race-detection and flipping algorithm. We

call this combined algorithm the efficient algorithm. The efficient algorithm explores a much

smaller superset of the execution paths in REx(P). The algorithm accomplishes this by computing

race conditions between different events in an execution. Based on these race conditions, the

algorithm generates other schedules that flip the race conditions, to provide a depth-first search

of all permutations of the race conditions in the execution path. More specifically, let e0e1e2 . . . en

be an execution path of a program and let ei and ej , where i < j, are related by the immediate

race relation (i.e. ei l ej). In our efficient testing algorithm, we mark the event ei (by setting

race[i] to true) to indicate that it has race with some future event and the thread of ei must be

postponed at that execution point in some future execution so that the race relation between ei

68

and ej gets flipped. While computing the next input and schedule at the end of the execution,

if we choose to backtrack at the event ei, then we generate a schedule for the next execution

where we continue the execution up to the prefix e0 . . . ei−1; however, after that we postpone the

execution of the thread of ei as much as possible. This ensures that the race between ei and ej gets

flipped or permuted (i.e. ej l ei) in the next execution and we get an execution path of the form

e0 . . . ei−1ei+1 . . . eje
′
j+1 . . . ei . . . e′n′ . For example, if t1 : x = 1, t2 : x = 2 is an execution path, then

there is a race condition in the accesses of the shared variable x. We generate a schedule such that

the next execution is t2 : x = 2, t1 : x = 1, i.e., the accesses to x are permuted.

In the efficient algorithm, we modify the definition of the thread controlling procedures described

in Figure 5.3 by the one in Figure 5.5. (We label a statement with M: if the statement is modified or

added to the pseudo-codes given in Figure 5.3.) We assume that the scheduler maintains a dynamic

vector clock and a sequential vector clock with each thread and two dynamic vector clocks with

each shared memory location. The dynamic vector clocks and the sequential vector clocks are

updated using the procedure described in Section 3.2. These vector clocks are used to compute the

l relation in the procedure check and set race. We omit the vector clock update procedures in the

pseudo-code of the efficient algorithm to keep the description simple. The access event procedure

calls the procedure check and set race. The procedure check and set race determines if the current

event has a race with any past event, say event [j]. If such a race exists, then the race[j] is set

to true—assuming that the race condition was not already flipped in a previous execution. The

algorithm for selecting the next thread by the procedure testing scheduler is modified so that a

postponed thread’s execution gets delayed as much as possible. Note that if we postpone the

execution of thread as much as possible in the default schedule, then the proof of the Theorem 9

goes through, because the proof is independent of the default scheduling policy. The computation of

the next input and schedule is done using the modified procedure compute next input and schedule

(see Figure 5.6). In this procedure, a new schedule, which postpones the thread associated with an

event, is generated if the event has a race with a future event. Note that in the simple algorithm

(see Section 5.2), a thread is postponed at an execution point even if the corresponding event has

no race with any future event.

Soundness of our algorithm is trivial; a bug reported by our algorithm is an actual bug because

69

testing scheduler()
wait(schedulerThread . semaphore);
tcurrent = NULL;
while there is an enabled thread

if i ≤ |event |
(tcurrent, ,) =event [i] ;

else
M: if tcurrent is not enabled

tcurrent = lowest indexed thread in the set of enabled threads;
// otherwise schedule the thread that was scheduled in the last iteration
signal(tcurrent . semaphore); // release control to the thread tcurrent

wait(schedulerThread . semaphore); // wait for the thread tcurrent to give back control
// end of the while loop
if there is an active thread

print ‘‘Error: found deadlock’’ ;
compute next input and schedule() ;

access event(m, label, access type) // access type can be r,w, l,u
signal(schedulerThread . semaphore); // release control to the testing scheduler
wait(thisThread . semaphore); // wait for the testing scheduler to give back control
event [i] = (thisThread , label, access type);
enabled [i] = set of enabled threads;

M: check and set race(m);
i = i + 1 ;

fork event()
wait(thisThread . semaphore); // wait for the testing scheduler to give back control

end event()
signal(schedulerThread . semaphore); // release control to the testing scheduler

check and set race(m)
∀j ∈ [0, i) such that event [j] l event [i]

if t not in postponed [j]
if e is a read or write event

print ‘‘Warning: data race found’’;
race[j] = true;

Figure 5.5: Definition of Various Thread Execution Controlling Procedures for the Efficient Testing
Algorithm

70

compute next input and schedule()
for (j = i− 1 ; j ≥ 0 ; j = j − 1)

if event [j] is defined
// compute a new schedule
if |enabled [j]| > |postponed [j]|+ 1

M: if race[j] == true
M: race[j] = false;

(t, ,) = event [j];
postponed [j] = postponed [j] ∪ {t};
t = smallest indexed thread in enabled [j]\ postponed [j];
event [j] = (t, ,) ;
branch hist = branch hist [0 . . . j];
event = event [0 . . . j];
postponed = postponed [0 . . . j];
return;

else
// compute a new input
if (branch hist [j].done == false)

branch hist [j].branch=¬branch hist [j].branch;
if (∃I ′ that satisfies neg last(path c[0 . . . j]))

branch hist = branch hist [0 . . . j];
event = event [0 . . . j];
postponed = postponed [0 . . . j];
return;

// end of the for loop
if (j < 0) completed = true;

Figure 5.6: Compute Next Schedule or Input for the Efficient Testing Algorithm

our algorithm provides a concrete input and schedule on which the program exhibits the bug.

Moreover, our algorithm can be complete in some cases.

Proposition 14. (Completeness) During testing a program with our efficient algorithm, if the

following conditions hold:

• The algorithm terminates.

• The algorithm makes no approximation during concolic execution and the algorithm is able

to solve any constraint which is satisfiable.

then our algorithm has executed all executions in REx and we have hit all reachable statements of

the program.

71

testing scheduler()
wait(schedulerThread . semaphore);
while there is an enabled thread

M: if postponed [i] is defined
M: delayed = delayed ∪ postponed [i] ;
M: sleep = { nextEvent(t) | t ∈ delayed } ;
M: tcurrent = smallest indexed thread from set of enabled threads \ delayed ;

signal(tcurrent . semaphore); // release control to the thread tcurrent

wait(schedulerThread . semaphore); // wait for the thread tcurrent to give back control
M: ∀e ∈ sleep if el event [i− 1];
M: let (t, ,) = e in delayed = delayed \t ;

// end of the while loop
if there is an active thread

print ‘‘Error: found deadlock’’ ;
compute next input and schedule() ;

Figure 5.7: Definition of testing scheduler for the Further Optimized Algorithm

5.4 A Further Optimization

The efficient algorithm improves the simple algorithm by providing a systematic way to flip race

relations between various pairs of events. However, this may result in repeated flipping of race rela-

tions between the same pair of events, if the pair of events are not next to each other. As an instance,

for the example in the Section 5.3, if the next execution path is e0 . . . ei−1ei+1 . . . eje
′
j+1 . . . ei . . . e

′
n′ ,

then our efficient algorithm may detect that there is a race between ej and ei. As a result our

algorithm would try to flip this race once again. To avoid this, we use a technique similar to sleep

sets [38]. Specifically, in the execution path e0 . . . ei−1ei+1 . . . eje
′
j+1 . . . ei . . . e′n′ , we add the thread

t, where t is the thread of the event ei, to the set delayed of every event ei+1, . . . , ej . As a result,

even if we have detected that there is a race between ej and ei, we would not set to true the element

of race corresponding to the event ej (see the 2nd line of the procedure check and set race). This

ensures that we do not repeatedly flip race relation between the same pair of events. The pseudo-

code of the modified procedure testing scheduler is given in Figure 5.7. The procedure nextEvent

takes a thread t as an argument and returns the event that will happen if the thread t executes

next.

72

5.5 Discussion

We presented an efficient algorithm for testing multi-threaded programs. An important aspect of

our algorithm is that we treat symbolic constraint solving and race-flipping uniformly in our algo-

rithm. In a given execution, we either do constraint solving or race-flipping. This helps us to test

concurrent programs in a single go. A pure symbolic execution based testing algorithm for con-

current programs may end up exploring redundant execution paths having the same partial order.

This is because optimal partial order reduction requires accurate knowledge of dependency rela-

tion; such knowledge may not be computable due to inaccuracies of alias analysis during symbolic

execution. On the other hand, a pure concrete execution based testing algorithm for concurrent

programs requires the exploration of all partial orders for all possible inputs. This may not scale up

if the domain of inputs is large. Our algorithm addresses the limitations of both these approaches

by combining symbolic and concrete execution. The concrete execution helps to resolve aliases

exactly at runtime. As a result we get the exact dependency or the causal relation between the

events. The symbolic execution helps to generate a small set of inputs from a large domain of

inputs through constraint solving. Therefore, we believe that concolic testing extended with the

race-detection and flipping algorithm is an attractive technique to test concurrent programs.

73

Chapter 6

Predictive Monitoring of Concurrent

Programs

So far we described a new method of testing multi-threaded shared-memory programs. The key goal

of the method was to generate test inputs and schedules so that all the reachable statements of the

program are executed when the program is run on the generated inputs and schedules. As such, the

proposed method can find generic bugs that are based on statement reachability. Such bugs include

assertion violations, segmentation faults, uncaught exceptions, and so on. In addition, the proposed

method can discover data races and deadlocks in multi-threaded shared-memory programs.

Although statement reachability-based bugs are an important class of bugs in programs, there

may be bugs in a program because the program does not meet its specification. In particular, in

many instances, a program may be required to satisfy a formal specification given as a formula in

a suitable logic. For example, an operating system must satisfy the requirement that if there is

logout by user X, then in the past the user X must have logged in. In this dissertation, we will not

focus on how to determine these requirements. We will assume that in many situations a formal

specification may be available along with a program. This is, in particular, often true for programs

written for safety critical systems.

Given a program and its formal specification, a key research challenge is to develop scalable and

automated methods either to prove that the program meets its specification or that the program

has a bug with respect to the specification. A popular approach to address this problem is model

checking. In model checking the whole state space of a program is automatically explored and

checked against the formal specification. Although model checking can prove a program correct, it

does not scale for large programs because the state space of practical programs is often too large

to be handled by a model checker. This is called the state explosion problem.

Runtime verification, also called runtime monitoring, is an emerging approach which tries to

address the state explosion problem by checking at runtime the execution of a program against

74

its formal specification. In particular, this approach combines testing and formal specification as

follows. Given a specification, a code fragment called a runtime monitor is generated from the

formal specification. The monitor is then weaved into the program through instrumentation so

that whenever the instrumented program is executed, the monitor can check at runtime whether

the specification is violated. The instrumented program is then executed on various test inputs to

check if the program meets its specification on those inputs. Since testing is not rigorous, runtime

monitoring can find violations of a specification a program, but it cannot prove that a program

meets its specification.

We can combine runtime monitoring with concolic testing to test a sequential program against

its formal specification. In the ideal case, if concolic testing manages to explore all feasible paths of

a program and runtime monitoring does not detect any violation of the specification in the explored

paths, then we can prove that the program meets its specification.

However, if our program is a shared-memory multi-threaded program, then a combination of

runtime monitoring and concolic testing extended with the race-detection and flipping algorithm

is not sufficient, that is, even if we find no violation of the specification by exploring one execution

path from each feasible partial order of the program, there may exist unexplored feasible execution

paths that may violate the property. This is because exploring only non-equivalent execution

paths is not sufficient for catching violations of temporal properties—a temporal property may

be simultaneously satisfied and violated by two different equivalent execution paths. This was

illustrated by an example in Section 2.3.

Next we present a technique to address the above problem. The technique is called predictive

monitoring.1 In predictive monitoring, from an observed execution path, we generate all the

equivalent execution paths and represent them compactly in an abstract model called computation

lattice. We show that runtime monitoring on this model can be done efficiently. Since this technique

enables us to predict violations of properties in non-observed execution paths without re-executing

the program, we call the technique predictive. Observe that predictive monitoring can predict and

monitor all execution paths equivalent to a given execution path; therefore, predictive monitoring is

not comprehensive like model checking. However, when combined with concolic testing, predictive

1This work is done partly in collaboration with Gul Agha and Grigore Roşu. Part of this work appeared in [90,
92, 80, 81, 94].

75

monitoring makes the former more efficient because it does not re-execute the program along

equivalent paths, but relies only on the information that is already available from an execution.

The rest of the chapter is organized as follows. In Section 6.1, we describe a simple form of

monitors for safety properties. In Section 6.2, we define relevant causality which is a refinement

of the notion of causality relation described in Section 3.2. We describe the predictive monitoring

algorithm in Section 6.3.

6.1 Monitors for Safety Properties

Safety properties are a very important, if not the most important, class of properties that one

should consider in monitoring. This is because once a system violates a safety property, there

is no way to continue its execution to satisfy the safety property later. Therefore, a monitor for

a safety property can precisely say at runtime when the property has been violated, so that an

external recovery action can be taken. From a monitoring perspective, what is needed from a safety

formula is a succinct representation of its bad prefixes which are finite sequences of states leading

to a violation of the property. Therefore, one can abstract away safety properties by languages

over finite words.

Automata are a standard means to succinctly represent languages over finite words. In what

follows we define a suitable version of automata, called monitor, with the property that it has a

“bad” state from which it never gets out:

Definition: Let S be a finite or infinite set, that can be thought of as the set of states of the

program to be monitored. Then an S-monitor or simply a monitor, is a tupleMon = 〈M, m0, b, ρ〉,

where

• M is the set of states of the monitor;

• m0 ∈M is the initial state of the monitor;

• b ∈M is the final state of the monitor, also called bad state; and

• ρ :M×S → 2M is a transition function with the property that ρ(b, Σ) = {b} for any Σ ∈ S.

76

Sequences in S?, where ε is the empty one, are called (execution) traces. A trace π is said to be a bad

prefix inMon iff b ∈ ρ({m0}, π), where ρ : 2M×S? → 2M is recursively defined as ρ(M, ε) = M and

ρ(M, πΣ) = ρ(ρ(M, π), Σ), where ρ : 2M×S → 2M is defined as ρ({m}∪M, Σ) = ρ(m, Σ)∪ρ(M, Σ)

and ρ(∅, Σ) = ∅, for all finite M ⊆M and Σ ∈ S.

M is not required to be finite in the above definition, but 2M represents the set of finite subsets

of M. In practical situations it is often the case that the monitor is not explicitly provided in a

mathematical form as above. For example, a monitor can be a specific type of program whose

execution is triggered by receiving events from the monitored program; its state can be given by

the values of its local variables, and the bad state is a fixed unique state which once reached cannot

be changed by any further events.

There are fortunate situations in which monitors can be automatically generated from formal

specifications, thus requiring the user to focus on system’s formal safety requirements rather than

on low level implementation details. In fact, this was the case in all the experiments that we have

performed so far. We have so far experimented with requirements expressed either in extended

regular expressions (ERE) or various variants of temporal logics, with both future and past time

operators. For example, [88, 89] show coinductive techniques to generate minimal static monitors

from EREs and from future time linear temporal logics, respectively, and [50, 13] show how to

generate dynamic monitors, i.e., monitors that generate their states on-the-fly, as they receive the

events, for the safety segment of temporal logic. Note, however, that there may be situations in

which the generation of a monitor may not be feasible, even for simple requirements languages. For

example, it is well-known that the equivalent automaton of an ERE may be non-elementary larger

than the ERE in the worst case [105]; therefore, there exist relatively small EREs whose monitors

cannot even be stored.

Example 15. Consider a reactive controller that maintains the water level of a reservoir within

safe bounds. It consists of a water level reader and a valve controller. The water level reader reads

the current level of the water, calculates the quantity of water in the reservoir and stores it in a

shared variable w. The valve controller controls the opening of a valve by looking at the current

quantity of water in the reservoir. A very simple and naive implementation of this system contains

two threads: T1, the valve controller, and T2, the water level reader. The code snippet is given in

77

Thread T1: Thread T2:

while(true) { while(true) {
if(w > 18) delta = 10; l = readLevel();

else delta = -10; w = calcVolume(l);

for(i=0; i<2; i++) { sleep(100);

v = v + delta; }
setValveOpening(v);

sleep(100);

}
}

5

0 {}

1

{~p}

2

{p,~q}

{q,~r}

{p,~q}

3

{p,~q,~r}

4

{q}

{q}

{p,~q}

{q,~r}

{q}

Figure 6.1: Two Threads (T1 controls the valve and T2 reads the water level) and a Monitor.

Figure 6.1.

Here w is in some proper units such as mega gallons and v is in percentage. The implementation

is poorly synchronized and it relies on ideal thread scheduling.

A sample run of the system can be {w = 20, v = 40}, {w = 24}, {v = 50}, {w = 27}, {v =

60}, {w = 31}, {v = 70}. As we will see later in the paper, by a run we here mean a sequence

of relevant variable writes. Suppose we are interested in a safety property that says “If the water

quantity is more than 30 mega gallons, then it is the case that sometime in the past water quantity

exceeded 26 mega gallons and since then the valve is open by more than 55% and the water quantity

never went down below 26 mega gallon”. We can express this safety property in two different

formalisms: linear temporal logic (LTL) with both past-time and future-time operators, or extended

regular expressions (EREs) for bad prefixes. The atomic propositions that we will consider are

p : (w > 26), q : (w > 30), r : (v > 55). The properties can be written as follows:

78

F1 = �(q → ((r ∧ p)S ↑p))

F2 = {}∗{¬p}{p,¬q}+

({p,¬q,¬r}{p,¬q}∗{q}+ {q}∗{q,¬r}){}∗

The formula F1 in LTL (↑ p is a shorthand for “p and previously not p”) states that “It is

always the case that if (w > 30), then at some time in the past (w > 26) started to be true and

since then (r > 55) and (w > 26).” The formula F2 characterizes the prefixes that make F1 false.

In F2 we use {p,¬q} to denote a state where p and ¬q holds and r may or may not hold. Similarly,

{} represents any state of the system. The monitor automaton for F2 is given also in Figure 6.1.

6.2 Relevant Causality

Monitors for a multi-threaded program may refer to a small subset of the set of the variables of

the program. In our technique, we restrict such variables to a set called path-robust variables. A

variable is said to be path-robust if and only if its value remains the same along an execution path,

that is, its value is independent of the input along any execution path. However, the value of such

a variable may be different for different executions paths of the program. A path-robust variable

is said to be a relevant variable, if it is referred in a monitor of the program.

For example in the multi-threaded program in Figure 2.3, the set of path-robust variables is {x,

y }. Since the value of z may vary along a particular execution path depending on the input, z is

not a path-robust variable. If we consider a monitor for the property ‘‘Always x greater than

0,’’ then the monitor only refers to the path-robust variable x. All the other variables in the

program except x are essentially irrelevant for the monitor. Therefore, the set of relevant variables

is { x }.

To minimize the number of messages, like in [65] which suggests a similar technique but for

distributed systems in which reads and writes are not distinguished, we consider a subset R ⊆ E

of relevant events. We say that e ∈ E is a relevant event if and only if e writes a memory location

m, x is a relevant variable, and m is the address of x (i.e. m = &x). We define the R-relevant

causality on E as the relation 4R:=4 ∩(R × R), so that e 4R e′ iff e, e′ ∈ R and e 4 e′. It is

important to notice though that the other variables can also indirectly influence the relation 4R,

79

because they can influence the relation 4. We next provide a technique based on dynamic vector

clocks that correctly implements the relevant causality relation.

6.2.1 Vector Clock Algorithm for Relevant Causality

We provide a variant of the dynamic vector clock algorithm (see Section 3.2), called the relevant

vector clock algorithm, that correctly and efficiently implements the relevant causality relation.

The relevant causality relation between the events in an execution can be tracked efficiently at

runtime using relevant vector clocks (RVC). A relevant vector clock VR : T → N, where T is the

set of threads that are present in the execution. We call such a map a relevant vector clock (RVC).

Such a map can be partial because threads are created dynamically at runtime. To simplify the

exposition and the implementation, we assume that each RVC VR is a total map, where VR(t) = 0

whenever VR is not defined on thread t.

We associate a RVC with every thread t and denote it by VRt. Moreover, we associate two RVCs

VRa
m and VRw

m with every shared memory m; we call the former access RVC and the latter update

RVC. Whenever a thread t with current RVC VRt generates an event e, the following algorithm,

called the relevant vector clock algorithm, is executed:

1. If e is a relevant event, i.e., if e ∈ R, then

VRt(t)← VRt(t) + 1.

2. If e is a read of a shared memory location m, then

VRt ← max{VRt,VRw
m}

VRa
m ← max{VRa

m,VRt}

3. If e is a write, lock, or unlock of a shared memory location m, then

VRw
m ← VRa

m ← VRt ← max{VRa
m,VRt}

4. If e is a fork event and if t′ is the newly created thread, then

VRt′ ← VRt

5. If e is a relevant event and if e writes the value v to the variable x, then

send message 〈t,VRt, x, v〉.

80

We can associate a RVC with every event e, denoted by VR{e}, as follows. If e is executed by t and

if VRt is the vector clock of t just after the event e, then VR{e} = VRt. Given a multi-threaded

program, we instrument the program so that it runs the relevant vector clock algorithm for every

event and sends the messages to an observer which performs predictive monitoring.

Lemma 16. After the processing of the event ek
t by thread t

(a) VRt(t
′) equals the number of relevant events of t that causally precede ek

t .

(b) VRa
m(t′) equals the number of relevant events of t that causally precede any event in E that

appears before or equals to ek
t and accessed m.

(c) VRw
m(t′) equals the number of relevant events of t′ that causally precede the most recent write

event of m.

Theorem 17. For any two events e and e′, e 4R e′ iff VR{e} ≤ VR{e′}.

The proof of the above two results can be done in a way similar to that of the Theorem 6.

6.3 Runtime Model Generation and Predictive Monitoring

In an execution of a multi-threaded program, the messages sent by the relevant vector clock algo-

rithm are received by an observer which performs the predictive monitoring. The observer receives

messages of the form 〈t,VRt, x, v〉. Each such message represents an event on thread t whose RVC

is VRt, and in that event the value v has been assigned to the relevant variable x. Because of

Theorem 17, the observer can infer the causal dependency between the relevant events emitted by

the execution of the multi-threaded program. We show how the observer can monitor all possible

interleavings of events that do not violate the observed causal dependency. Only one of these in-

terleavings corresponds to the real execution, the others being all potential executions. Hence, the

presented technique can predict safety violations from successful executions.

6.3.1 Multi-Threaded Computation Lattice

Inspired by related definitions in [9], we define the important notions of relevant multi-threaded

computation and run as follows. A relevant multi-threaded computation, simply called multi-

81

threaded computation from now on, is the partial order on the relevant events that the observer

can infer, which is nothing but the relation 4R. A relevant multi-threaded run, also simply called

multi-threaded run from now on, is any permutation of the relevant events, which does not violate

the multi-threaded computation. Our goal is to check safety requirements against all (relevant)

multi-threaded runs of a multi-threaded computation.

A relevant event can change the state of the multi-threaded program as seen by the observer;

this is formalized next. A relevant program state, or simply a program state, is a map from relevant

variables to concrete values. Any permutation of relevant events generates a sequence of program

states in the obvious way, however, not all permutations of relevant events are valid multi-threaded

runs. A program state is called consistent if and only if there is a multi-threaded run containing

that state in its sequence of generated program states. We next formalize these concepts.

Definition: [Consistent Run] For a given permutation of events in R, say R = e1e2 . . . e|R|, we say

that R is a consistent run if for all pairs of events e and e′, e 4R e′ implies that e appears before

e′ in R.

Let ek
t be the kth relevant event generated by the thread t since the start of its execution. A

cut C is a subset of R such that for all t ∈ T if ek
t is present in C, then for all l < k, el

t is also

present in C. In what follows, we let T = {t1, . . . , tn} to be the set of all threads created during the

execution. A cut is denoted by a tuple (ek1

t1
, ek2

t2
, ..., ekn

tn
) where each entry in the tuple corresponds

to the last relevant event for each thread included in C. If a thread t has not seen a relevant event,

then the corresponding entry is denoted by e0
t . A cut C corresponds to a relevant program state

that has been reached after all the events in C have been executed. Such a relevant program state

is called a relevant global multi-threaded state, or simply a relevant global state or even just state,

and is denoted by Σk1k2...kn .

Definition: [Consistent Cut] A cut is said to be consistent if for all events e and e′

(e ∈ C) ∧ (e′ 4R e)→ (e′ ∈ C)

A consistent global state is the one that corresponds to a consistent cut. A relevant event el
t is

said to be enabled in a consistent global state Σk1k2...kn if and only if C ∪ {el
t} is a consistent cut,

82

where C is the consistent cut corresponding to the state Σk1k2...kn . The following proposition holds

for an enabled event:

Proposition 18. A relevant event el
ti

is enabled in a consistent global state Σk1k2...kn if and only

if l = ki + 1. Moreover, for all relevant events e, if e 6= el
ti

and e 4R el
ti
, then e ∈ C, where C is

the consistent cut corresponding to the state Σk1k2...kn.

Proof. Since el
ti

is enabled in the state Σk1k2...kn , C ∪{el
ti
} is a cut. This implies that for all events

ek
ti
, if k < l, then ek

ti
∈ C ∪{el

ti
} and hence ek

ti
∈ C. In particular, all the events e1

ti
, e2

ti
, . . . , el−1

ti
are

in C. However, el−1
ti

is the last relevant event from thread ti, which is included in C. Therefore,

ki = l − 1. The other way follows trivially because eki

ti
4R el

ti
and e 4R eki

ti
for all e ∈ C.

Since el
ti
∈ C ∪ {el

ti
}, e 4R el

ti
, and C ∪ {el

ti
} is a consistent cut, e ∈ C ∪ {el

i} (by the definition

of consistent cut). Since by assumption e 6= el
ti
, we have e ∈ C.

An immediate consequence of the above proposition is the following corollary:

Corollary 19. If C is the consistent cut corresponding to the state Σk1k2...kn and if el
ti

is enabled

in Σk1k2...kn, then the state corresponding to the consistent cut C ∪ {el
ti
} is Σk1k2...ki−1lki+1...kn or

Σk1k2...ki−1(ki+1)ki+1...kn and we denote it by δ(Σk1k2...kn , el
ti
).

Here the partial function δ maps a consistent state Σ and a relevant event e enabled in that

state to a consistent state δ(Σ, e) which is the result of executing e in Σ. Let ΣK0 be the initial

global state, Σ00...0, which is always consistent. The following result holds:

Lemma 20. If R = e1e2 . . . e|R| is a consistent multi-threaded run, then it generates a sequence of

global states ΣK0ΣK1 . . .ΣK|R| such that for all r ∈ [1, |R|], ΣKr−1 is consistent, er is enabled in

ΣKr−1, and δ(ΣKr−1 , er) = ΣKr .

Proof. The proof is by induction on r. By definition the initial state ΣK0 is consistent. Moreover,

e1 is enabled in ΣK0 because the cut C corresponding to the state ΣK0 is empty and hence the

cut C ∪ {e1} = {e1} is consistent. Since ΣK0 is consistent and e1 is enabled in ΣK0 , δ(ΣK0 , e1) is

defined. Let ΣK1 = δ(ΣK0 , e1).

Let us assume that ΣKr−1 is consistent, er is enabled in ΣKr−1 , and δ(ΣKr−1 , er) = ΣKr .

Therefore, δ(ΣKr−1 , er) = ΣKr is also consistent. Let C be the cut corresponding to ΣKr . To prove

83

that er+1 is enabled in ΣKr we have to prove that C ∪ {er+1} is a cut and it is consistent. Let

er+1 = el
t for some t and l i.e. er+1 is the lth relevant event of thread t. For every event ek

t such

that k < l, ek
t 4R el

t. Therefore, by the definition of consistent run, ek
t appears before el

t in R for all

0 < k < l. This implies that all ek
t for 0 < k < l are included in C. This proves that C ∪ el

t is a cut.

Since C is a cut, for all events e and e′ if e 6= el
t, then (e ∈ C ∪ {el

t}) ∧ (e′ 4R e)→ e′ ∈ C ∪ {el
t}.

Otherwise, if e = el
t, then by the definition of consistent run, if e′ 4R el

t, then e′ appears before el
t

in R. This implies that e′ is included in C ∪ {el
t}. Therefore, C ∪ {el

t} is consistent, which proves

that er+1 = el
t is enabled in the state ΣKr . Since ΣKr is consistent and er+1 is enabled in ΣKr ,

δ(ΣKr , er+1) is defined. We let δ(ΣKr , er+1) = ΣKr+1 .

From now on, we identify the sequences of states ΣK0ΣK1 . . .ΣK|R| as above with multi-threaded

runs, and simply call them runs. We say that Σ leads-to Σ′, written Σ Σ′, when there is some

run in which Σ and Σ′ are consecutive states. Let ∗ be the reflexive transitive closure of the

relation . The set of all consistent global states together with the relation ∗ forms a lattice with

n mutually orthogonal axes representing each thread. For a state Σk1k2...kn , we call k1 + k1 + · · · kn

its level. A path in the lattice is a sequence of consistent global states on increasing level, where

the level increases by 1 between any two consecutive states in the path. Therefore, a run is just a

path starting with Σ00...0 and ending with Σr1r2...rn , where ri is the total number of relevant events

of thread ti.

Therefore, a multi-threaded computation can be seen as a lattice. This lattice, which is called

computation lattice and referred to as L, should be seen as an abstract model of the running multi-

threaded program, containing the relevant information needed in order to analyze the program.

Supposing that one is able to store the computation lattice of a multi-threaded program, which

is a non-trivial matter because it can have an exponential number of states in the length of the

execution, one can mechanically model-check it against the safety property.

Given a state Σk1k2...kn we can associate a RVC with the state (denoted by VR{Σk1k2...kn})

such that VR{Σk1k2...kn}(ti) = ki i.e. VR{Σk1k2...kn}(ti) is equal to the number of relevant events

of thread ti that has causally effected the state. With this definition the following results hold:

Lemma 21. If a relevant event e from a thread t is enabled in a state Σ and if δ(Σ, e) = Σ′, then

∀t′ 6= t : VR{Σ}(t′) = VR{Σ′}(t′) and VR{Σ}(t) + 1 = VR{Σ′}(t).

84

Proof. This follows directly from the definition of RVC of a state and Corollary 19.

Lemma 22. If a relevant event e from thread t is enabled in a state Σ, then ∀t′ 6= t : VR{Σ}(t′) ≥

VR{e}(t′) and VR{Σ}(t) + 1 = VR{e}(t).

Proof. VR{Σ}(t) + 1 = VR{e}(t) follows from Lemma 21. Say k = VR{e}(t′) for some t′ 6= t.

Then by (a) of Lemma 16 we know that the kth relevant event from thread t′ causally precedes e

i.e. ek
t′ 4R e. Then by proposition 18, ek

t′ ∈ C, where C is the cut corresponding to Σ. This implies

that k ≤ VR{Σ}(t′) which proves that ∀t′ 6= t : VR{Σ}(t′) ≥ VR{e}(t′).

Lemma 23. If R = e1e2 . . . e|R| is a consistent multi-threaded run generating the sequence of global

states ΣK0ΣK1 . . .ΣK|R|, then VR{ΣKi} can be recursively defined as follows:

VR{ΣK0}(t) = 0 for all t ∈ T

VR{ΣKr}(t) = max (VR{ΣKr−1}(t),VR{er}(t)) for all t ∈ T and 0 < r ≤ |R|

Proof. ∀t ∈ T : VR{ΣK0}(t) = 0 holds by definition. Let er be from thread t′. By Lemma 20

er is enabled in ΣKr−1 . Therefore, by Lemma 22, ∀t 6= t′ : VR{ΣKr−1}(t) ≥ VR{er}(t). This

implies that ∀t 6= t′ : VR{ΣKr}(t) = VR{ΣKr−1}(t) = max (VR{ΣKr−1}(t),VR{er}(t)). Otherwise

if t = t′, by Lemma 22, VR{ΣKr−1}(t)+1 = VR{er}(t). Therefore, VR{ΣKr}(t) = VR{ΣKr−1}(t)+

1 = VR{er}(t) = max (VR{ΣKr−1}(t),VR{er}(t)). This proves that ∀j ∈ T : VR{ΣKr}(t) =

max (VR{ΣKr−1}(t),VR{er}(t)).

Corollary 24. If R = e1e2 . . . e|R| is a consistent multi-threaded run generating the sequence of

global states ΣK0ΣK1 . . .ΣK|R|, then

VR{ΣKr}(t) = max (VR{e1}(t),VR{e2}(t), . . . ,VR{er}(t)) for all t ∈ T and 0 < r ≤ |R|

Example 25. Figure 6.2 shows the causal partial order on relevant events extracted by the observer

from the multi-threaded execution in Example 15 together with the generated computation lattice.

The actual execution, Σ00Σ01Σ11Σ12Σ22Σ23Σ33, is marked with solid edges in the lattice. Besides

its RVC, each global state in the lattice stores its values for the relevant variables w and v. It

can be readily seen from Figure 2.3 that the LTL property F1 defined in Example 15 holds on the

85

e6:<v=70, T1,(3,3)>

e4:<v=60, T1,(2,1)>

e3:<w=27, T2,(0,2)>

e2:<v=50, T1,(1,1)>

e1:<w=24, T2,(0,1)>

e5:<w=31, T2,(0,3)>

)40,20(

{})(00

==
=

vw

SL

)70,31(

},,{)(33

==
=

vw

rqpSL

)60,31(

},,{)(23

==
=

vw

rqpSL

)50,31(

},{)(13

==
=
vw

qpSL

)60,27(

},{)(22

==
=
vw

rpSL

)40,31(

},{)(03

==
=
vw

qpSL

)50,27(

}{)(12

==
=
vw

pSL

)60,24(

}{)(21

==
=
vw

rSL

)40,27(

}{)(02

==
=
vw

pSL

)50,24(

{})(11

==
=

vw

SL

)40,24(

{})(01

==
=

vw

SL

Figure 6.2: Computation Lattice

sample run of the system, and also that it is not in the language of bad prefixes, F2. However, F1

is violated on some other consistent runs, such as Σ00Σ01Σ02Σ12Σ13Σ23Σ33. On this particular run

↑p holds at Σ02; however, r does not hold at the next state Σ12. This makes the formula F1 false

at the state Σ13. The run can also be symbolically written as {}{}{p}{p}{p, q}{p, q, r}{p, q, r}. In

the automaton in Figure 6.1, this corresponds to a possible sequence of states 00123555. Hence,

this string is accepted by F2 as a bad prefix.

Therefore, by carefully analyzing the computation lattice extracted from a successful execution

one can infer safety violations in other possible consistent executions. In what follows we propose

effective techniques to analyze the computation lattice. A first important observation is that one

can generate it on-the-fly and analyze it on a level-by-level basis, discarding the previous levels.

However, even if one considers only one level, that can still contain an exponential number of states

in the length of the current execution. A second important observation is that the states in the

computation lattice are not all equiprobable in practice. By allowing an user configurable window

86

of most likely states in the lattice centered around the observed execution trace, the presented

technique becomes quite scalable, requiring O(wm) space and O(twm) time, where w is the size of

the window, m is the size of the bad prefix monitor of the safety property, and t is the size of the

monitored execution trace.

6.3.2 Level by Level Analysis of the Computation Lattice

Given an execution path τ of a multi-threaded program, the relevant vector clock algorithm gen-

erates a message for each relevant event in τ . The purpose of the predictive monitoring is to check

all execution paths in [τ]≡4
against a given monitor. The check is performed by an observer which

has access to the sequence of messages generated from τ .

A näıve observer would just check the observed sequence of messages against the monitor for

the safety property, say Mon like in Definition 6.1, and would maintain at each moment a set

of states, say MonStates in M. Let Q be the sequence of messages received from the execution

τ . For each message in the sequence, it would create the next state Σ and replace MonStates by

ρ(MonStates,pgmState(Σ)), where pgmState(Σ) gives the mapping of all relevant program variables

to their values in the state Σ. If the bad state b will ever be in MonStates, then a property violation

error would be reported, meaning that the current execution trace led to a bad prefix of the safety

property. Here we assume that the messages are received in the order in which they are emitted, and

also that the monitor works over the global states of the multi-threaded programs. This assumption

is essential for the observer to deduce the actual execution path of the multi-threaded program. The

knowledge of the actual execution path is used by the observer to apply the causal cone heuristics

as described later. The assumption is not necessary if we do not want to use causal cone heuristics.

The work in [91] describes a technique for the level by level analysis of the computation lattice

without the above assumption.

The pseudo-code for the näıve observer is given in Figure 6.3. pgmState(Σ)[x 7→ v] is same as

pgmState(Σ), except the value of the relevant variable x being v.

A smart observer, as said before, will analyze not only the observed execution trace, but also

all the other consistent runs of the multi-threaded system, thus being able to predict violations

from successful executions. The observer receives the messages from the running multi-threaded

87

Let Mon = 〈M, m0, b, ρ〉 be the given monitor;
pgmState(ΣK0) maps each relevant variable to its initial value;
MonStates(ΣK0) = ρ({m0},pgmState(ΣK0));
global var CurrentState = ΣK0 ;

// inputs: Q is the sequence of messages received from the program execution
runNäıveObserver(Q)

for each msg ∈ Q
〈t,VR, x, v〉 = msg ;
NextState = pgmState(CurrentState)[x 7→ v];
MonStates(NextState) = ρ(MonStates(CurrentState), pgmState(NextState));
if b ∈ MonStates(NextState);

print “property violated”;
CurrentState = NextState;

Figure 6.3: Monitoring a Linear Trace

program and appends them to the message sequence Q. At the end of the execution, it traverses

the computation lattice level by level and checks whether the bad state of the monitor can be hit

by any of the runs up to the current level. We next provide the algorithm that the observer uses to

construct the lattice level by level from the sequence of messages Q it receives from the execution

path τ of an instrumented program.

The observer maintains a list of global states (CurrLevel), that are present in the current level of

the lattice. For each message msg in Q, it tries to construct a new global state from the set of states

in the current level and the message msg. If the global state is created successfully, then it is added

to the list of global states (NextLevel) for the next level of the lattice. The process continues until

certain condition, levelComplete?() holds. At that time the observer says that the level is complete

and starts constructing the next level by setting CurrLevel to NextLevel, NextLevel to empty set,

and reallocating the space previously occupied by CurrLevel. Here the predicate levelComplete?() is

crucial for generating only those states in the level that are most likely to occur in other executions,

namely those in the window, or the causality cone, that is described in the next subsection. The

levelComplete? predicate is also discussed and defined in the next subsection. The pseudo-code

for the level-by-level monitoring of the lattice is given in Figure 6.4.

Every global state Σ contains the value of all relevant shared variables in the program, a RVC

88

Let Mon = 〈M, m0, b, ρ〉 be the given monitor;
pgmState(ΣK0) maps each relevant variable to its initial value;
MonStates(ΣK0) = ρ({m0},pgmState(ΣK0));
∀t ∈ T , VR{ΣK0}(t) = 0;
global var CurrLevel = {ΣK0};
global var NextLevel = ∅;

// inputs: Q is the sequence of messages received from the program execution
runObserver(Q)

while Q is not empty
Q = constructLevel(Q);

constructLevel(Q)
for each msg ∈ Q and Σ ∈ CurrLevel

if nextState? (Σ, msg)
NextLevel = NextLevel] createState(Σ, msg);
if levelComplete? (NextLevel, msg , Q)

Q = removeUselessMessages(CurrLevel , Q);
CurrLevel = NextLevel ;
NextLevel = ∅;
return Q;

nextState? (Σ, msg)
〈t,VR, x, v〉 = msg ;
if (∀t′ 6= t : VR{Σ}(t′) ≥ VR(t′) and VR{Σ}(t) + 1 == VR(t))

return true;
return false;

createState(Σ, msg)
〈t,VR, x, v〉 = msg ;
Σ′ = new copy of Σ;
VR{Σ′}(t) = VR{Σ}(t) + 1;
pgmState(Σ′)[x 7→ v];
MonStates(Σ′) = ρ(MonStates(Σ),pgmState(Σ′));
if b ∈ MonStates(Σ′);

print “property violated”;
return Σ′;

Figure 6.4: Level-by-level Monitoring of a Computation Lattice

89

VR{Σ} to represent the latest events from each thread that resulted in that global state. Here

the predicate nextState? (Σ, msg), checks if the event corresponding to the message msg is enabled

in the state Σ. The correctness of the predicate is given by Lemma 22. It says that event e can

generate a consecutive state for a state Σ, if and only if Σ ‘knows’ everything e knows about the

current evolution of the multi-threaded system except for the event e itself. Note that e may know

less than Σ knows with respect to the evolution of other threads in the system, because Σ has

global information.

The procedure createState(Σ, msg), which implements the function δ described in Corollary 19,

creates a new global state Σ′, where Σ′ is a possible consistent global state that can result from

Σ after the relevant event e that generated the message msg. Together with each state Σ in the

lattice, a set of states of the monitor, MonStates(Σ), also needs to be maintained, which keeps

all the states of the monitor in which any of the partial runs ending in Σ can lead to. In the

procedure createState, we set the MonStates of Σ′ with the set of monitor states to which any of

the current states in MonStates(Σ) can transit when the state Σ′ is observed. pgmState(Σ′) returns

the value of all relevant program shared variables in state Σ′, and pgmState(Σ′)[x 7→ v] means that

in pgmState(Σ′) the relevant variable x is updated with the value v. Lemma 21 justifies that RVC

of the state Σ′ is updated properly.

The merging operation nextLevel]Σ adds the global state Σ to the set nextLevel. If Σ is already

present in nextLevel, it updates the existing state’s MonStates with the union of the existing state’s

MonStates and the Monstates of Σ. Two global states are same if their RVCs are equal.

The procedure removeUselessMessages(CurrLevel,Q) removes from Q all the message that can-

not contribute to the construction of any state at the next level. It creates a RVC VRmin whose

each component is the minimum of the corresponding component of the RVCs of all the global

states in the set CurrLevel. It then removes all the messages in Q whose RVCs are less than or

equal to Vmin . This procedure makes sure that we do not store any unnecessary message. The

correctness of the procedure is given by the following lemma.

Lemma 26. For a given relevant event e, if VR{e} ≤ VRmin , then ∀Σ ∈ CurrLevel , e is not

enabled in Σ.

Proof. If e is enabled in Σ, then by Lemma 22, VR{e}(t) = VC (Σ) + 1, where t is the thread that

90

generated e. This implies that if e is enabled in Σ, then VR{e} 6≤ VR{Σ}. Since VR{e} ≤ VRmin

we have ∀Σ ∈ CurrLevel , VR{e} ≤ VR{Σ}. Therefore, e is not enabled in Σ.

The observer runs in a loop till Q is empty. In each iteration of the loop, the procedure

constructLevel is called. The pseudo-code for the observer is given in Figure 6.4.

6.3.3 Causality Cone Heuristic

The number of states on a level in the computation lattice can be exponential in the length of the

trace. Generating all the states in a level may not be feasible due to limited memory. However, note

that some states in a level can be considered more likely to occur in a consistent run than others.

For example, two independent events that can possibly permute may have a huge time difference.

Permuting these two events would give a consistent run, but that run may not be likely to take

place in a real execution of the multi-threaded program. So we can ignore such a permutation. We

formalize this concept as causality cone, or window, and exploit it in restricting our attention to a

small set of states in a given level.

As mentioned earlier, we assume that the messages are received in an order in which they

are generated in the execution. Note that this ordering corresponds to the real execution of the

program, and it respects the partial order associated with the computation. This execution will be

taken as a reference to compute the most probable consistent runs of the system.

If we consider all the messages generated by executing the program as a finite sequence of

messages, then a lattice formed by any prefix of this sequence is a sub-lattice of the computation

lattice L. This sub-lattice, say L′, has the following property: if Σ ∈ L′, then for any Σ′ ∈ L

if Σ′ ∗ Σ, then Σ′ ∈ L′. We can see this sub-lattice as a portion of the computation lattice L

enclosed by a cone. The height of this cone is determined by the length of the prefix of messages.

We call this causality cone. All the states in L that are outside this cone cannot be determined

from the prefix of messages. Therefore, they are outside the causal scope of the sequence of events

corresponding to the messages in the prefix. As we consider longer prefixes, this cone moves down.

If we compute a RVC Vmax , whose each component is the maximum of the corresponding

component of the RVCs of all the messages in the message sequence, then Vmax represents the RVC

of the global state appearing at the tip of the cone. The tip of the cone, by Corollary 24, traverses

91

w=3

< w=3

w

Figure 6.5: Causality Cones

levelComplete? (NextLevel, msg , Q)
if size(NextLevel)≥ w

return true;
else if msg is the last message in Q

return true;
else

return false;

Figure 6.6: levelComplete? Predicate

the actual execution run of the program.

To avoid the generation of a possibly exponential number of states in a given level, we consider

a fixed number, say w, of most probable states in a given level. In a level construction, we say that

the level is complete once we have generated w states in that level. However, a level may contain

less than w states. Then the level construction algorithm gets stuck. To avoid this scenario, we say

that a level is complete if we have used all the messages in the message sequence for the construction

of the states in the current level . The pseudo-code for levelComplete? is given in Figure 6.6.

92

e6:<v=70, T1,(3,3)>

e4:<v=60, T1,(2,1)>

e3:<w=27, T2,(0,2)>

e2:<v=50, T1,(1,1)>

e1:<w=24, T2,(0,1)>

e5:<w=31, T2,(0,3)>

)40,20(

{})(00

==
=

vw

SL

)70,31(

},,{)(33

==
=

vw

rqpSL

)60,31(

},,{)(23

==
=

vw

rqpSL

)50,31(

},{)(13

==
=
vw

qpSL

)60,27(

},{)(22

==
=
vw

rpSL

)50,27(

}{)(12

==
=
vw

pSL

)60,24(

}{)(21

==
=
vw

rSL

)40,27(

}{)(02

==
=
vw

pSL

)50,24(

{})(11

==
=

vw

SL

)40,24(

{})(01

==
=

vw

SL

Figure 6.7: Causality Cone Heuristics applied to Example 2

Example 27. Figure 6.7 shows the portion of the computation lattice constructed from the multi-

threaded execution in Example 15, when the causality cone heuristics is applied with parameters

w = 2 and l = 3. The possible consistent run Σ00Σ01Σ02Σ03Σ13Σ23Σ33, shown on the left side of

the Figure 6.7, is pruned out by the heuristics. In this particular run the two independent events

e2 and e5 that are permuted have long time difference in the actual execution. Therefore, we can

safely ignore this run among all other possible consistent runs.

93

Chapter 7

Implementation and Case Studies

We first describe the details of two tools, which implement of the various testing methods described

so far. We then report several case studies using the tools; these case studies show the applicability

of the methods. In our case studies, we do not consider any formal specification. As such the case

studies do not provide any empirical evaluation of the predictive monitoring technique.

7.1 Implementation

We have developed two automated concolic testing tools: CUTE for testing C programs and jCUTE

for testing Java programs. CUTE only implements concolic testing and works for sequential C pro-

grams. jCUTE implements all three methods—concolic testing, race-detection and flipping, and

predictive monitoring. The tools, CUTE and jCUTE, consist of two main modules: an instrumen-

tation module and a library to perform symbolic execution, to solve constraints, to control thread

schedules, and to perform predictive monitoring. The instrumentation module inserts code in the

program under test so that the instrumented program calls the library at runtime for performing

symbolic execution. The library creates a symbolic heap to symbolically track the shared memory

locations. The library also maintains a symbolic stack for each thread to track the local variables

symbolically. To solve arithmetic inequalities, the constraint solver of both CUTE and jCUTE uses

lp solve [61], a library for integer programming. jCUTE comes with a graphical user interface (a

snapshot can be found in Figure 7.1).

7.1.1 Program Instrumentation

To instrument C code under test, CUTE uses CIL [68], a framework for parsing and transforming

C programs. CUTE saves all the generated inputs in the file-system. Users of CUTE can replay

94

Figure 7.1: Snapshot of jCUTE

the program on these recorded inputs to reproduce the bugs. The replay can also be performed

with the aid of a debugger. To instrument Java code under test, jCUTE uses the SOOT compiler

framework [109]. jCUTE performs instrumentation at the bytecode level. For sequential programs,

jCUTE can generate JUnit test cases, which can be used by the user for regression testing as well

as for debugging. For concurrent programs, jCUTE records both the inputs and the schedules

for various execution paths. This enables the user to replay the executions and reproduce bugs.

jCUTE also allows the users to visualize graphically a multithreaded execution.

The instrumentation modules of both the tools first translate a program into the three-address

code that closely follows the syntax given in Figure 3.1. The difference is that an expression e can

also be a function call of the form fun name(v1, . . . , vn). After the simplification, the instrumen-

tation module inserts instrumentation code throughout the simplified code for concolic execution

at runtime. Figure 7.1 shows examples of the code that the instrumentation module adds during

instrumentation for function calls and function definitions. The procedure push(&v) pushes the

symbolic expression for the address &v to a symbolic stack used for passing symbolic arguments

during function calls. The reverse procedure pop(&v) pops a symbolic expression from the symbolic

95

Before Instrumentation After Instrumentation

// function call push(&v1); . . . ; push(&vn);
v = f(v1, . . . , vn); v = f(v1, . . . , vn);

pop(&v);

// function def Tf(T1 x1, . . . , Tn xn) {
Tf(T1 x1, . . . , Tn xn) { pop(&x1); . . . ; pop(&xn);

B; // body B;
return v; } push(&v);

return v; }

Table 7.1: Code that the Instrumentation Module Adds for Functions.

stack and assigns it to the address &v.

A difference between CUTE or jCUTE and traditional symbolic execution is that CUTE or

jCUTE does not require instrumentation of the whole program. Calls to uninstrumented functions

proceed only with the concrete execution, without symoblic execution. This allows CUTE or

jCUTE to handle programs that use binary and native libraries whose source code or bytecode are

not available.

7.1.2 Utility Functions

The CUTE toolkit provides two commands, cutec and cute, for code instrumentation and running

of the instrumented code. The toolkit also provides four macros that give the user additional control

over the instrumentation.

The command cutec expects a set of C files and a toplevel function; cutec instruments the C

files and compiles the instrumented files with a C compiler. cutec assumes that the program starts

by calling the toplevel function and that the input to the program consists of the memory graph

reachable from the arguments passed to the toplevel function. cutec generates a main function

that first initializes the input for the toplevel function and the symbolic state, and then calls the

instrumented toplevel function with the generated input. At the end of the execution of the toplevel

function, main calls the constraint solver to generate input for the next execution and stores the

input in a file.

The command cute takes the executable generated by cutec and executes it iteratively until

an error is found or full branch coverage is attained or a depth-first search completes. If an error

96

is found, cute invokes a debugger for the user to replay the erroneous execution.

The CUTE library provides the following macros that the user can insert into the C code under

test:

1) CUTE input(x) allows the user to specify that the variable x (of any type, including a pointer) is

an input, besides the arguments of the toplevel function. This comes handy to replace any external

user input, e.g., scanf(‘‘%d’’,&v) by CUTE input(v) (which also assigns value to &v).

2) CUTE input array(p,size). This macro is similar to CUTE input except that it assumes that

p is a pointer and specifies that p points to an array of size size.

3) CUTE assume(pred), where pred is some C predicate. This macro allows the execution to

proceed if the pred holds. This way we can restrict the input, e.g., the predicate can be a repOk()

call for some data structure.

4) CUTE assert(pred). This macro specifies an assertion whose violation is considered an error.

Similar commands and functions are also provided by jCUTE.

7.2 Experimental Evaluation

We illustrate six case studies, which show how CUTE and jCUTE can detect errors. In the first

two case studies, we use CUTE for testing. In the rest of the case studies, we use jCUTE. The

tool and the code for each case study can be found at http://osl.cs.uiuc.edu/~ksen/cute/.

We ran the first two case studies on a Linux machine with a dual 1.7 GHz Intel Xeon processor.

The rest of the case studies were run on a 2.0 GHz Pentium M processor laptop with 1 GB RAM

running Windows XP.

7.2.1 Data Structures of CUTE

We applied CUTE to test its own data structures. CUTE uses a number of non-standard data

structures at runtime, such as cu linear to represent linear expressions, cu pointer to represent

pointer expressions, cu depend to represent dependency graphs for path constraints etc. Our goal

in this case study was to detect memory leaks in addition to standard errors such as segmentation

faults, assertion violation etc. To that end, we used CUTE in conjunction with valgrind [108]. We

discovered a few memory leaks and a couple of segmentation faults that did not show up in other

97

uses of CUTE. This case study is interesting in that we applied CUTE to partly unit test itself and

discovered bugs. We briefly describe our experience with testing the cu linear data structure.

We tested the cu linear module of CUTE in the depth-first search mode of CUTE along with

valgrind. In 537 iterations, CUTE found a memory leak. The following is a snippet of the function

cu linear add relevant for the memory leak:

cu_linear *

cu_linear_add(cu_linear *c1, cu_linear *c2, int add) {

int i, j;

cu_linear* ret=(cu_linear*)malloc(sizeof(cu_linear));

. . . // skipped 18 lines of code

if(ret->count==0) return NULL;

If the sum of the two linear expressions passed as arguments becomes constant, the func-

tion returns NULL without freeing the memory allocated for the local variable ret. CUTE

constructed this scenario automatically at the time of testing. Specifically, CUTE con-

structed the sequence of function calls l1=cu linear create(0); l1=cu linear create(0);

l1=cu linear negate(l1); l1=cu linear add(l1,l2,1); that exposes the memory leak that

valgrind detects.

7.2.2 SGLIB Library

We also applied CUTE to unit test SGLIB [102] version 1.0.1, a popular, open-source C library

for generic data structures. The library has been extensively used to implement the commercial

tool Xrefactory. SGLIB consists of a single C header file, sglib.h, with about 2000 lines of code

consisting only of C macros. This file provides generic implementation of most common algorithms

for arrays, lists, sorted lists, doubly linked lists, hash tables, and red-black trees. Using the SGLIB

macros, a user can declare and define various operations on data structures of parametric types.

The library and its sample examples provide verifier functions (can be used as repOk) for each

data structure except for hash tables. We used these verifier functions to test the library using

98

the technique of repOk mentioned in Section 4.2. For hash tables, we invoked a sequence of its

function. We used CUTE with bounded depth-first search strategy with bound 50. Figure 7.2

shows the results of our experiments.

We chose SGLIB as a case study primarily to measure the efficiency of CUTE. As SGLIB is

widely used, we did not expect to find bugs. Much to our surprise, we found two bugs in SGLIB

using CUTE.

The first bug is a segmentation fault that occurs in the doubly-linked-list library when a non-

zero length list is concatenated with another zero-length list. CUTE discovered the bug in 140

iterations (about 1 seconds) in the bounded depth-first search mode. This bug is easy to fix by

putting a check on the length of the second list in the concatenation function.

The second bug, which is a more serious one, was found by CUTE in the hash table library

in 193 iterations (in 1 second). Specifically, CUTE constructed the following valid sequence of

function calls which gets the library into an infinite loop:

typedef struct ilist { int i; struct ilist *next; } ilist;

ilist *htab[10];

main() {

struct ilist *e,*e1,*e2,*m;

sglib_hashed_ilist_init(htab);

e=(ilist *)malloc(sizeof(ilist)); e->next = 0; e->i=0;

sglib_hashed_ilist_add_if_not_member(htab,e,&m);

sglib_hashed_ilist_add(htab,e);

e2=(ilist *)malloc(sizeof(ilist)); e2->next = 0; e2->i=0;

sglib_hashed_ilist_is_member(htab,e2); }

where ilist is a struct representing an element of the hash table. We reported these bugs to the

SGLIB developers, who confirmed that these are indeed bugs.

Figure 7.2 shows the results for testing SGLIB 1.0.1 with the bounded depth-first strategy. For

each data structure and array sorting algorithm that SGLIB implements, we tabulate the time

that CUTE took to test the data structure, the number of runs that CUTE made, the number of

99

Name Run time # of # of Branches % Branch # of Functions OPT 1 OPT 2 # of
in seconds Iterations Explored Coverage Tested in % & 3 in % Bugs

Array Quick Sort 2 732 43 97.73 2 67.80 49.13 0
Array Heap Sort 4 1764 36 100.00 2 71.10 46.38 0
Linked List 2 570 100 96.15 12 86.93 88.09 0
Sorted List 2 1020 110 96.49 11 88.86 80.85 0
Doubly Linked List 3 1317 224 99.12 17 86.95 79.38 1
Hash Table 1 193 46 85.19 8 97.01 52.94 1
Red Black Tree 2629 1,000,000 242 71.18 17 89.65 64.93 0

Table 7.2: Results for Testing SGLIB 1.0.1 with Bounded Depth-First Strategy with Depth 50

branches it executed, branch coverage obtained, the number of functions executed, the benefit of

optimizations, and the number of bugs found.

The branch coverage in most cases is less than 100%. After investigating the reason for this, we

found that the code contains a number of assert statements that were never violated and a number

of predicates that are redundant and can be removed from the conditionals.

The last two columns in Figure 7.2 show the benefit of the three optimizations from Section 4.1.5.

The column OPT 1 gives the average percentage of executions in which the fast unsatisfiability

check was successful. It is important to note that the saving in the number of satisfiability checks

translates into an even higher relative saving in the satisfiability-checking time because lp solve

takes much more time (exponential in number of constraints) to determine that a set of constraints

is unsatisfiable than to generate a solution when one exists. For example, for red-black trees and

depth-first search, OPT 1 was successful in almost 90% of executions, which means that OPT 1

reduces the number of calls to lp solve an order of magnitude. However, OPT 1 reduces the

solving time of lp solve more than two orders of magnitude in this case; in other words, it would

be infeasible to run CUTE without OPT 1. The column OPT 2 & 3 gives the average percentage of

constraints that CUTE eliminated in each execution due to common sub-expression elimination and

incremental solving optimizations. Yet again, this reduction in the size of constraint set translates

into a much higher relative reduction in the solving time.

7.2.3 Java 1.4 Collection Library

We used jCUTE to test the thread-safe Collection framework implemented as part of the java.util

package of the standard Java library provided by Sun Microsystems. A number of data structures

provided by the package java.util are claimed as thread-safe in the Java API documentation.

100

This implies that the library should provide the ability to safely manipulate multiple objects of

these data structures simultaneously in multiple threads. No explicit locking of the objects should

be required to safely manipulate the objects. More specifically, multiple invocation of methods on

the objects of these data structures by multiple threads must be equivalent to a sequence of serial

invocation of the same methods on the same objects by a single thread.

We chose this library as a case study primarily to evaluate the effectiveness of our jCUTE tool.

As Sun Microsystems’ Java is widely used, we did not expect to find potential bugs. Much to our

surprise, we found several previously undocumented data races, deadlocks, uncaught exceptions,

and an infinite loop in the library. Note that, although the number of potential bugs is high, these

bugs are all caused by a couple of problematic design patterns used in the implementation.

Experimental Setup The java.util provides a set of classes implementing thread-safe Col-

lection data structures. A few of them are ArrayList, LinkedList, Vector, HashSet, LinkedHash-

Set, TreeSet, HashMap, TreeMap, etc. The Vector class is synchronized by implementation. For

the other classes, one needs to call the static functions such as Collections.synchronizedList,

Collections.synchronizedSet, etc., to get a synchronized or thread-safe object backed by a non-

synchronized object of the class. To setup the testing process we wrote a multithreaded test driver

for each such thread-safe class. The test driver starts by creating two empty objects of the class.

The test driver also creates and starts a set of threads, where each thread executes a different

method of either of the two objects concurrently. The invocation of the methods strictly follows

the contract provided in the Java API documentation. We created two objects because some of

the methods, such as containsAll, takes as an argument an object of the same type. For such

methods, we call the method on one object and pass the other object as an argument. Note that

more sophisticated test drivers can be written. A simplified skeleton of the test-driver that we used

is given below:

public class MTListTest extends Thread {

List s1,s2;

public MTListTest(List s1, List s2) {

this.s1 = s1; this.s2 = s2; }

101

public void run() {

int c = Cute.input.Integer();

Object o1 = (Object)Cute.input.Object("java.lang.Object");

switch(c){

case 0: s1.add(o1); break;

case 1: s1.addAll(s2); break;

case 2: s1.clear(); break;

.

.} }

public static void main(String[] args) {

List s1 = Collections.synchronizedList(new LinkedList());

List s2 = Collections.synchronizedList(new LinkedList());

(new MTListTest(s1,s2)).start();

(new MTListTest(s2,s1)).start();

(new MTListTest(s1,s2)).start();

(new MTListTest(s2,s1)).start();}

}

The arguments to the different methods are provided as input to the program. If a class is

thread-safe, then there should be no error if the test-driver is executed with any possible interleav-

ing of the threads and any input. However, jCUTE discovered data races, deadlocks, uncaught

exceptions, and an infinite loop in these classes. Note that in each case jCUTE found no such error

if methods are invoked in a single thread. As such the bugs detected in the Java Collection library

are concurrency related.

The summary of the results is given in the Table 7.3. Here we briefly describe an infinite loop

and a data race leading to an exception that jCUTE discovered in the synchronized LinkedList

class and the synchronized ArrayList class, respectively.

102

We present a simple scenario under which the infinite loop happens. The test driver first creates

two synchronized linked lists by calling

List l1 = Collections.synchronizedList(new LinkedList());

List l2 = Collections.synchronizedList(new LinkedList());

l1.add(null);

l2.add(null);

The test driver then concurrently allows a new thread to invoke l1.clear() and another new

thread to invoke l2.containsAll(l1). jCUTE discovered an interleaving of the two threads that

resulted in an infinite loop. However, the program never goes into infinite loop if the methods

are invoked in any order by a single thread. jCUTE also provided a trace of the buggy execution.

This helped us to detect the cause of the bug. The cause of the bug is as follows. The method

containsAll holds the lock on l2 throughout its execution. However, it acquires the lock on l1

whenever it calls a method of l1. The method clear always holds the lock on l1. In the trace,

we found that the first thread executes the statements

modCount++;

header.next = header.previous = header;

of the method l1.clear() and then there is a context switch before the execution of the statement

size=0; by the first thread. The other thread starts executing the method containsAll by

initializing an iterator on l1 without holding a lock on l1. Since the field size of l1 is not set

to 0, the iterator assumes that l1 still has one element. The iterator consumes the element and

increments the field nextIndex to 1. Then a context switch occurs and the first thread sets size of

l1 to 0 and completes its execution. Then the other thread starts looping over the iterator. In each

iteration nextIndex is incremented. The iteration continues if the method hasNext of the iterator

returns true. Unfortunately, the method hasNext performs the check nextIndex != size; rather

than checking nextIndex < size;. Since size is 0 and nextIndex is greater than 0, hasNext

always returns true and hence the loop never terminates. The bug can be avoided if containsAll

holds lock on both l1 and l2 throughout its execution. It can also be avoided if containsAll uses

the synchronized method toArray as in the Vector class, rather than using iterators. Moreover,

103

Name Run time # of # of % Branch # of Functions # of Bugs Found
in seconds Paths Threads Coverage Tested data races/deadlocks/

infinite loops/exceptions
Vector 5519 20000 5 76.38 16 1/9/0/2
ArrayList 6811 20000 5 75 16 3/9/0/3
LinkedList 4401 11523 5 82.05 15 3/3/1/1
LinkedHashSet 7303 20000 5 67.39 20 3/9/0/2
TreeSet 7333 20000 5 54.93 26 4/9/0/2
HashSet 7449 20000 5 69.56 20 19/9/0/2

Table 7.3: Results for Testing Synchronized Collection Classes of JDK 1.4

the statement nextIndex != size; should be changed to nextIndex < size; in the method

hasNext. Note that this infinite loop should not be confused with the infinite loop in the following

wrongly coded sequential program commonly found in the literature.

List l = new LinkedList(); l.add(l); System.out.println(l);

We next present a simple scenario under which jCUTE found a data race leading to an uncaught

exception in the class ArrayList. The test driver first creates two synchronized array lists by calling

List l1 = Collections.synchronizedList(new ArrayList());

List l2 = Collections.synchronizedList(new ArrayList());

l1.add(new Object());

l2.add(new Object());

The test driver then concurrently allows a new thread to invoke l1.add(new Object())

and another new thread to invoke l2.containsAll(l1). During testing, jCUTE discov-

ered data races over the fields size and modCount of the class ArrayList. In a subse-

quent execution, jCUTE permuted the events involved in a data race and discovered an un-

caught ConcurrentModificationException exception. However, the program never throws the

ConcurrentModificationException exception if the methods are invoked in any order by a single

thread. Note that the Java API documentation claims that there should be no such data race or

uncaught ConcurrentModificationException exception when we use synchronized form of array

list. jCUTE also provided a trace of the buggy execution. This helped us to detect the cause of

the bug. It is worth mentioning that jCUTE not only detects actual races, but also flips to see if

the data race can be fatal, i.e., that it can lead to uncaught exceptions.

104

7.2.4 NASA’s Java Pathfinder’s Case Studies

In [75], several case studies have been carried out using Java PathFinder and Bandera. These case

studies involve several small to medium-sized multithreaded Java programs; thus they provide a

good suite to evaluate jCUTE. The programs include RemoteAgent, a Java version of a component

of an embedded spacecraft-control application, Pipeline, a framework for implementing multi-

threaded staged calculations, RWVSN, Doug Lea’s framework for reader writer synchronization,

DEOS, a Java version of the scheduler from a real-time executive for avionics systems, Bound-

edBuffer, a Java implementation of multithreaded bounded buffer, NestedMonitor, a semaphore

based implementation of bounded buffer, and ReplicatedWorkers, a parameterizable job sched-

uler. Details about these programs can be found in [75]. We also considered a distributed sorting

implementation used in [53]. This implementation involves both concurrency and complex data

inputs.

We used jCUTE to test these programs. Since most of these programs are designed to run in

an infinite loop, we bounded our search to a finite depth. jCUTE discovered known concurrency

related errors in RemoteAgent, DEOS, BoundedBuffer, NestedMonitor, and the distributed sorting

implementation and seeded bugs in Pipeline, RWVSN, and ReplicatedWorkers. The summary of

the results is given in the Table 7.4. In each case, we stopped at the first error. Note the although

the running time of our experiments is many times smaller than that in [75, 53], we are also using

a much faster machine.

It is worth mentioning that we tested the un-abstracted version of these programs rather than

requiring a programmer to manually provide abstract interpretations as in [75]. This is possible

with jCUTE because jCUTE tries to explore distinct paths of a program rather than exploring

distinct states. Obviously, this means that we cannot prove a program correct if the program has

infinite length paths. Java PathFinder and Bandera can verify a program in such cases if the state

space of the abstracted program is finite.

7.2.5 Needham-Schroeder Protocol

The Needham-Schroeder public-key authentication protocol [77] aims at providing mutual authen-

tication through message exchanges between two parties: an initiator and a responder ; details of

105

Name Run time # of # of % Branch Lines # of Bugs Found
in seconds Paths Threads Coverage of Code data races/deadlocks/assertions/exceptions

BoundedBuffer 11.41 43 9 100.0 127 0/1/0/0
NestedMonitor 0.46 2 3 100.0 214 0/1/0/0
Pipeline 0.70 3 5 64.29 103 1/0/1/0
RemoteAgent 0.45 2 3 87.5 55 1/1/0/0
RWVSN 2.19 8 5 68.18 590 1/0/1/0
ReplicatedWorkers 0.34 1 5 25.93 954 0/0/1/0
DEOS 35.23 111 6 64.75 1443 0/0/1/0

Table 7.4: Java PathFinder’s Case Studies (un-abstracted)

the protocol can be found elsewhere [77]. Lowe reported an attack against the original protocol

and also proposed a fix, called Lowe’s fix [36].

We tested a concurrent implementation of the protocol using jCUTE. jCUTE found the attack

in 406 iterations or about 95 seconds of search.

We compare these results with the ones reported previously [40, 41] for the same protocol. The

explicit-state C model-checker VeriSoft [40] analyzed a concurrent implementation of the protocol

with finite input domain. Verisoft was unable to find the attack within 8 hours, evolutionary

testing (with manual tuning) found the attack after 50 minutes (on a somewhat slower machine).

DART [41] found the attack on a sequential implementation of the protocol with a somewhat

stronger intruder model1 in 18 minutes. In comparison, jCUTE found the attack on a concurrent

implementation of the protocol with a proper intruder model in only 95 seconds, which is an order

of magnitude faster than the fastest previous approach. This performance difference is due to

jCUTE’s efficient algorithm that only explores distinct causal structures.

7.2.6 TMN Protocol

The Tatebayashi, Matsuzaki, and Newman (TMN) Protocol [107] is a protocol for distribution of

a fresh symmetric key. In this protocol when an initiator wants to communicate with a responder,

it uses a trusted server to obtain a secret symmetric session key. The details of the protocol can

be found in [107].

In this protocol, an intruder can establish a parallel session through eavesdropping and obtain

the secret key [60]. We tested a concurrent implementation of the protocol using jCUTE. jCUTE

found the attack in 522 iterations or about 127 seconds of search.

1Note that a stronger intruder model makes it easier for the intruder to find an attack. This in turn makes the
search space smaller resulting in faster testing time.

106

Chapter 8

Related Work

We briefly describe the related work and compare it to the work presented in this dissertation.

The body of related work may be loosely classified into three broad categories: testing sequential

programs, testing concurrent programs, and runtime verification.

8.1 Testing Sequential Programs

Automated testing is an active area of research. In the last five years, over a dozen of techniques

and tools have been proposed that automatically increase test coverage or generate test inputs.

The simplest, and yet often very effective, techniques use random generation of (concrete) test

inputs [15, 70, 35, 24, 72]. Some recent tools use bounded-exhaustive concrete execution [117, 42,

16]; such testing tries all values from user-provided domains. These tools can achieve high code

coverage, especially for testing data structure implementation. However, they require the user to

carefully choose the values in the domains to ensure the high coverage.

Tools based on symbolic execution use a variety of approaches; in our view, the most relevant of

these are abstraction-based model checking [10, 14], explicit-state model checking [115], symbolic-

sequence exploration [118, 73], and static analysis [25]—to detect (potential) bugs or generate test

inputs. These tools inherit the incompleteness of their underlying reasoning engines such as theorem

provers and constraint solvers. For example, tools using precise symbolic execution [115, 118] cannot

analyze any code that would build constraints out of pre-specified theories, e.g., any code with non-

linear arithmetic or array indexing with non-constant expressions. As another example, tools based

on predicate abstraction [10, 14] do not handle code that depends on complex data structures. In

these tools, the symbolic execution proceeds separately from the concrete execution (or constraint

solving).

107

Cadar and Engler propose Execution Generated Testing (EGT) [18], an approach similar to

CUTE: EGT explores different execution paths using a combined symbolic and concrete execution.

However, EGT does not consider inputs that are memory graphs or code that has preconditions.

Also, EGT and CUTE differ in how they approximate symbolic expressions with concrete values.

EGT follows a more traditional approach to symbolic execution and proposes an interesting method

that lazily solves the path constraints: EGT starts with only symbolic inputs and tries to execute

the code fully symbolically, but if it cannot do so, EGT solves the current constraints to generate

a (partial) concrete input with which the execution proceeds.

CUTE is also related to some methods which use backtracking to generate a test input that

executes one given path (e.g., a path that may be known to contain a bug) [56, 46]. However,

in contrast to these methods, CUTE attempts to cover all feasible paths, in a style similar to

systematic testing. Moreover, the prior work did not address inputs that are memory graphs.

Visvanathan and Gupta [116] proposed a technique that generates memory graphs. They also use

a specialized symbolic execution (not the exact execution with symbolic arrays) and develop a

solver for their constraints. However, they consider one given path, do not consider unknown code

segments (e.g., library functions), and do not use a combined concrete execution to generate new

test inputs. Moreover, in our case the constraint solving is incremental.

8.2 Testing Concurrent Programs

Improving the reliability of concurrent programs is a challenging area of research. A major cause for

defects in multithreaded programs is race conditions. A large body of research focuses on dynamic

or static race detection [78, 69, 33, 82, 21, 26]. Race detection suffers from the problem of false

warnings. Moreover, the dynamic techniques can report all possible race conditions only if there

are good test inputs that can achieve high code coverage. Our algorithm not only detects races but

also permutes them systematically to search if the races can lead to some bug. Moreover, jCUTE

generates test inputs so that the number of races caught is maximized.

Bruening [17] first proposed a technique for dynamic partial order reduction, called ExitBlock-

RW algorithm, to systematically test multithreaded programs. These technique uses two sets,

delayed set and enabled set, similar to the sets postponed and Tenabled in our algorithm, to enumerate

108

t1:
1: x = 1;

t2:
2: y = 4;

t3:
3: x = 2;

Figure 8.1: A Three-Threaded Program

meaningful schedules by re-ordering dependent atomic blocks. However, this assume that the

program under test follows a consistent mutual-exclusion discipline using locks. The dynamic

partial order reduction technique proposed by Carver and Lei [19] guarantees that exactly one

interleaving for each partial order is explored. However, their approach involves storing schedules

that have not been yet explored; this can become a memory bottleneck.

More recently, dynamic partial order reduction proposed by Flanagan and Godefroid [34] re-

moves the memory bottleneck in [19] at the cost of possibly exploring more than one interleav-

ing for each partial order. This technique uses dynamically constructed persistent sets and sleep

sets [38] to prune the search space. The key difference between the DPOR algorithm in [34]

and our race-detection and flipping algorithm is that,for every choice point, the DPOR algorithm

in [34] uses a persistent set and we use a postponed set. These two sets can be different at a

choice point. For example, for the 3-threaded program in Figure 8.1, if the first execution path is

(t1, 1,w)(t2, 2,w)(t3, 3,w), then at the first choice point denoting the initial state of the program,

the persistent set is {t1, t3}; whereas, at the same choice point, the postponed set is {t1}. (Apart

from scheduling the thread t1, the race-detection and flipping algorithm also schedules the thread t2

at the first choice point.) Note that the DPOR algorithm in [34] picks the elements of a persistent

set by using a complex forward lookup algorithm. In contrast, we simply put the current scheduled

thread to the postponed set at a choice point.

Moreover, the implementation in [34] considers two read accesses to the same memory location

by different threads to be dependent. Thus for the 3-threaded program in Figure 8.2, the imple-

mentation described in [34] would explore six interleavings. We remove the redundancy associated

with this assumption by using a more general notion of race and its detection using dynamic vector

clock algorithm. As such, for the above example, we will explore only one interleaving. Note that

none of the previous descriptions of the above dynamic partial order reduction techniques have

handled programs which have inputs.

In a similar independent work [103], Siegel et al. use a combination of symbolic execution and

109

t1:
1: lv1 = x;

t2:
2: lv2 = x;

t3:
3: if (x > 0)

4: ERROR;

Figure 8.2: Another Three-Threaded Program

static partial order reduction to check if a parallel numerical program is equivalent to a simpler

sequential version of the program. Thus this work can also be seen as a way of combining symbolic

execution with partial order reduction based model checking techniques for the purpose of testing

parallel programs. However, their work deals with symbolic execution of numerical programs with

floating points, rather than programs with pointers and data-structures. Therefore, static partial

order reduction proves effective in their approach.

Model checking tools [106, 23, 29] based on static analysis have been developed. These tools

are useful in detecting bugs in concurrent programs. These tools also employ (static) partial order

reduction techniques to reduce search space. The partial order reduction depends on detection of

thread-local memory locations and patterns of lock acquisition and release. Because of the use

of static analysis, the methods can result in false warnings. However, despite encouraging recent

successes in software model checking for larger systems, there is little hope that one can actually

prove the correctness of large concurrent systems, and one must in those cases still rely on debugging

and testing.

8.3 Runtime Verification

There has been considerable interest in runtime verification techniques in recent years, as perhaps

best shown by the series of workshops [1]. Runtime verification can be simplistically viewed as a

rigorous approach to testing, in which the requirements specifications use some underlying logical,

typically temporal [62, 63], formalism. The same algorithms used to detect errors during testing can

be used to trigger recovery actions at runtime, so runtime verification techniques are frequently

applied in monitoring. Runtime verification has so far been concerned with analyzing software

systems, essentially as a complementary approach to model checking software systems [11, 39, 48,

114, 52, 23, 74, 106]. We briefly review some of the techniques for runtime verification below. Note

that these techniques may also possibly be combined with our method for predictive monitoring.

110

NASA’s runtime verification system Java PathExplorer (JPaX) [49] and its sub-system Eagle [13]

has already been used to analyze the K9 Mars Rover [7]. Eagle has also been used to find security

attacks in DARPA logs [67]. Temporal Rover and DBRover [27, 28] are commercial runtime

verification tools. The MaC tool [59, 54] is a runtime monitoring tool with a specialized formal

monitoring specification language with the potential for steering the execution of programs at

runtime. A technique is proposed in [57] where the execution events are stored in an SQL database

at runtime and then analyzed by means of queries after the program terminates. The PET tool,

described in [45, 44, 43], uses a future time temporal logic formula to guide the execution of a

program for debugging purposes. POTA and Java MultiPathExplorer [83, 90, 92, 97] are tools

which check safety formulae against a partial order extracted online from an execution trace.

Efficient decentralized monitoring of message passing distributed systems is proposed in [95, 96].

Java-MoP [20] proposes the use of monitoring as a programming paradigm. Complexity results for

testing a finite trace against temporal formulae expressed in different logics are investigated in [64].

Algorithms using alternating automata to monitor temporal properties are proposed in [32], and

a specialized collecting statistics technique along the execution trace is described in [31]. Various

algorithms to generate testing automata from temporal logic formulae are discussed in [79, 71], and

[37] presents a Büchi automata inspired algorithm.

111

Chapter 9

Conclusion

With the increasing use of software in society, we want software to be reliable, safe, secure, and

robust. Unfortunately, as experience in industry has shown, developing large reliable software is a

hard task. As such more than half of the total software development cost is spent in testing. Even

after such a huge investment, serious bugs and security flaws are common in widely-used software.

We believe this is because the most widely used method for improving software quality—testing—is

generally done manually and in ad hoc ways. Automated and rigorous methods are rarely used for

testing because such methods are hardly effective or scalable. In this dissertation, we developed

a family of methods of automated testing, which we believe can improve testing and make it

more systematic and scalable. Our methods use ideas from formal methods, constraint solving,

theory of concurrency, dynamic program analysis, and model checking and apply them to build

effective testing methods which exploit the full computational power of modern day computers in

the testing process. The net result is that we are able to make testing systematic and automated.

We summarize the contributions of this dissertation in the next section, and discuss issues and

open problems in the final section.

9.1 Summary

We presented concolic testing, a method to explore different paths in programs by coupling concrete

and symbolic executions in a cooperative way. Concrete execution enables symbolic execution to

mitigate the effects of the incompleteness of the underlying reasoning engines; for example, concrete

execution helps resolve the constraints that theorem provers cannot handle, resolve aliases for

pointers (using concrete values for pointers), handle arrays and pointers (our technique requires no

static alias analysis) etc. On the other hand, symbolic execution (along with constraint solving at

112

the end of execution) helps generate concrete inputs that lead the program to a different concrete

execution, thus increasing coverage. We showed that constraint solving for concolic testing can be

done in an incremental way, which makes test input generation highly efficient. We described how

to efficiently generate dynamic data structures by incrementally adding or removing a node, or by

aliasing two pointers.

Concolic testing works only for sequential programs. Testing becomes notoriously hard for large

concurrent software due to the inherent non-determinism in the execution of such software. We

extended the concolic testing approach to develop a method for testing concurrent programs. The

extended method uses the concrete execution of concolic testing to determine an abstract relation,

called causality relation, between the events in a concurrent execution. This causality relation

naturally defines an equivalence relation between the execution paths of a concurrent program. We

provide a technique for exploring at least one candidate from each equivalence class of execution

paths of a concurrent program with complex data inputs; this improves the efficiency of testing con-

current programs considerably. In addition to common errors such as assertion violations, memory

leaks, uncaught exceptions, and segmentation faults, our testing approach can catch concurrency

related errors such as data races and deadlocks. Because our testing approach is designed to explore

execution paths of a concurrent program, we term our approach Explicit Path Model Checking.

In other research [84], we have developed a method that extend concolic testing to test message

passing distributed systems or actor systems [3, 5]. In this method, we assume that a program

consists of a number of asynchronously executing concurrent processes or actors, which may take

data inputs and communicate using asynchronous messages. Because of the large numbers of

possible data inputs as well as the asynchrony in the execution and communication, distributed

programs exhibit very large numbers of potential behaviors. As in the race-detection and flipping

algorithm, our method uses simultaneous concrete and symbolic execution, or concolic execution,

to explore all distinct behaviors that may result from a program’s execution given different data

inputs and schedules. The key idea is as follows. We use the symbolic execution to generate data

inputs that may lead to alternate behaviors. At the same time, we use the concrete execution to

determine, at runtime, the partial order of events in the program’s execution. This enables us to

improve the efficiency of our algorithm by avoiding many tests which would result in equivalent

113

behaviors. We have implemented this method in jCUTE. In order to keep the dissertation concise

and coherent, we did not include a description this method.

Shared memory systems can be modeled as asynchronous message passing systems by associat-

ing a thread with every memory location. Reads and writes of a memory location can be modeled as

asynchronous messages to the thread associated with the memory location. However, this particular

model would treat both reads and writes similarly. Hence, the algorithm in [84] would explore many

redundant executions. For example, for the 2-threaded program t1 : x = 1;x = 2; t2 : y = 3;x = 4;,

the algorithm in [84] would explore six interleavings. Our race-detection and flipping algorithm,

which assumes that two reads are not in race, would explore only three interleavings of the program.

We observed that concolic testing can miss bugs if we test concurrent multi-threaded programs

against a formal specification. In particular we showed that exploring only one candidate execution

path from each equivalence class is not sufficient for catching violations of temporal properties; a

temporal property may be simultaneously satisfied and violated by two different causally equiv-

alent execution paths. To solve this problem, we proposed a testing method based on predictive

monitoring of concurrent programs. In this technique, from an observed execution path, we stati-

cally generate all the causally equivalent execution paths and represent such paths compactly in an

abstract model called computation lattice. We showed that monitoring of temporal properties can

be done efficiently using this model. Using this technique, we can predict violations of properties in

non-observed execution paths without re-executing the program; therefore, we call this technique

predictive monitoring. It is important to note that, although predictive monitoring can predict and

monitor all execution paths that are causally equivalent to an observed execution path, we still

need concolic testing along with race-detection and flipping to explore all non-equivalent execution

paths.

Based on these methods we have developed tools for testing C and Java programs. The binaries

of these tool have been made available to researchers. These tools serve as a core engine to effectively

explore non-equivalent execution paths of a programs. One application of this basic functionality

is unit testing, which is provided as a feature in these tools. However, the possibilities of applying

these tools are endless. The basic path exploration feature of these tools can also be used to

generate regression test suites, to detect likely program invariants, to carryout simulations, for

114

stress testing, and as a part of other dynamic analysis methods.

9.2 Discussion

We presented a set of methods to effectively test shared-memory multi-threaded programs. Al-

though the methods are quite effective in finding bugs in real-world programs, a number of ques-

tions are often raised about these methods. Next we try to address these questions. Our goal is to

clarify the applicability and the limitations of our methods, as well as to describe open problems.

9.2.1 Scalability

A question that is often asked is how scalable our methods are. First, let us discuss the scalability

of CUTE. Our experience shows that scalability in terms of memory usage is not a problem for

CUTE because we explore one path at a time. During a concolic execution along a path, extra

memory is consumed to maintain the symbolic state and the symbolic path constraint. It is often

the case that a small fraction of the concrete state of a program is data dependent on the inputs.

Therefore, the size of the symbolic state, which is almost proportional to the size of the part of the

concrete state that is data dependent on the inputs, usually remains small. Moreover, along an

execution path, the number of conditionals that are data dependent on the inputs are often small.

This results in low memory usage for the maintenance of path constraint. Note that in the case

of model checking, the tools tend to keep the entire state space in the memory and memory often

becomes a bottleneck.

Obviously, the number of paths of a large program can be huge. Exploration of huge number of

paths may take a lot of time. We call this the path explosion problem. If we put a time limit on the

process of testing for a program having a huge number of paths, a depth-first search strategy often

ends up in exploring a small subtree of the whole computation tree. As a result concolic testing

gets localized to a small part of the computation tree. A way to address this problem would be to

develop better search strategies. We describe a couple of candidate search strategies and discuss

their pros and cons.

One possible search strategy is random search where a constraint to be solved is picked randomly

from the set of constraints generated along a path. We believe that this strategy would tend

115

to sample the paths in the computation tree uniformly—thus, preventing the search from being

localized to a small subtree. Obviously a limitation of the random search strategy is that concolic

testing may end up exploring same path more than once. Moreover, unlike a depth-first search

strategy, a random search strategy has no way to determine if it has explored the entire computation

tree. Therefore, even for a small program, for which we can solve any generated path constraint,

with random testing we have no way to prove that we have explored all the reachable statements

of the program.

Another possible search strategy that prevents the search from getting localized is a breadth-first

search strategy. Unfortunately, in the case of a breadth-first search strategy, for each depth of a

tree, we have to store an input for each execution path passing through all the nodes at the depth

in the tree. Since the number of nodes at a depth can be, in the worst case, equal to the number

of the feasible execution paths of a program, the amount of storage required for storing the inputs

for each path in a large programs may easily exhaust available persistent memory.

Developing interesting and efficient search strategies requires further investigation. Apart from

investigating new efficient search strategies, one can also think of combining static analyses with

concolic testing. Using static analyses, one can identify the subtrees in the whole computation tree

that are problematic; one can then use concolic testing to explore only those subtrees. We believe

that static analyses can help to prune the path space more aggressively.

Now let us turn to the scalability of jCUTE. In case of shared-memory multi-threaded programs

that jCUTE deals with, a large number of accesses to the shared memory by various threads may

result in a large number of non-equivalent execution paths. As a result jCUTE may not scale for

such programs in principle. However, in practice, we observed that for ‘well-written’ programs

(see [98]) an execution path often consists of large execution blocks that are atomic. The execution

of such atomic blocks by a thread does not interfere with the execution of the other threads. A

common way to ensure such atomicity is through the use of locks. During the process of testing such

well-written programs, jCUTE ends up exploring the execution paths that are the interleavings of

these large atomic blocks. As such jCUTE prunes a large portion of the path space. Obviously,

such kind of pruning is not possible for programs in which multiple threads often access the shared

memory without synchronization. Therefore, for the purpose of effective testing, one should avoid

116

such bad programming styles.

Apart from the above mentioned issues, the need for solving constraints may also prevent

CUTE or jCUTE from scaling for large programs. When an execution path gets large, the size

of the path constraint increases; eventually constraint solvers may not be able to handle the path

constraint. However, constraint solving is very efficient in CUTE or jCUTE. This is because of

the approximations that concolic testing performs: it separates the arithmetic constraints and the

pointer constraints. If the last negated constraint is an arithmetic constraint, then only the set of

arithmetic constraints is solved; otherwise, the set of pointer constraints is solved. Note that this

way of decoupling the arithmetic constraints from the pointer constraints has some limitations (see

the discussion in Section 4.1.6). However, we believe that such decoupling is a good compromise

for the efficiency it provides.

Moreover, the solution in one execution path is often quite similar to the next execution as we

negate only a single constraint. To exploit this fact, we proposed an optimization in Section 4.1.5.

This optimization makes constraint solving incremental and highly efficient in case the negated

constraint is an arithmetic constraint. In case the negated constraint is a pointer constraint, this

becomes even more efficient as we simply add a node, delete a node, or make two pointers equal.

Overall, we observed that incremental constraint solving takes a small fraction of the total execution

time. Note that, although CUTE and jCUTE use a custom incremental solver, other solvers such

as CVC Lite [12] or Uclid [58] can also be used for generating new inputs.

For shared-memory multi-threaded programs, our race-detection and flipping algorithm’s effi-

ciency depends on the number of equivalence classes of a given program—the larger the number of

equivalence classes the lesser is the efficiency. A natural question to ask is whether the equivalence

relation defined in Section 3.2 is optimal for efficiency. Unfortunately, the relation is not optimal.

In [93], we showed that we can define a coarser equivalence relation that results in fewer number

of equivalence classes. The equivalence relation uses a weak happens-before relation which orders

a write of a shared variable with all its subsequent reads that occur before the next write to the

variable. However, we do not know how to adapt this coarser equivalence relation in testing to

obtain further reduction in the path space. This remains a topic for future research. Moreover, it

would be useful to investigate the optimal equivalence relation for which we can develop a testing

117

method that would explore one candidate from each equivalence class.

9.2.2 Program Verification

A report of a bug by CUTE or jCUTE represents an actual bug because the bug is found by

executing a program on a concrete input and schedule. However, CUTE and jCUTE can verify a

program only in some limited cases: namely, if the following three conditions are satisfied. First,

the testing process using CUTE (resp. jCUTE) terminates. Second, CUTE (resp. jCUTE) makes

no approximation during concolic execution. Third, CUTE (resp. jCUTE) is able to solve any

constraint which is satisfiable. These conditions guarantee that the tool has executed all feasible

execution paths of a program and has hit all the reachable statements of the program. For most

practical programs, CUTE and jCUTE can only find bugs; they cannot verify the programs. This

can be seen as a limitation of our testing methods.

To partially address the above problem we have proposed two approaches: statistical model

checking [99, 100, 101, 6, 4] and learning to verify [112, 111, 113]. Statistical model checking

aims to bound the confidence with which we can say that a system is correct; in this approach,

we check if a system whose behavior can be modeled probabilistically meets its formal reliability

specification. Specifically, we assume that the specification is given in some probabilistic temporal

logic such as the probabilistic computation tree logic (PCTL) [47] or the continuous stochastic

logic (CSL) [2, 8]. Model checking is performed by automatically translating the specification into

a series of inter-dependent statistical hypothesis testing experiments. The experiments are then

conducted through discrete event simulation of the system. The number of simulation runs that

need to be performed depends on the degree of confidence that we want in our decision.

Statistical model checking works for any system for which the inputs come from a fixed proba-

bility distribution. Unfortunately, for general software systems, one cannot assume there is a fixed

probability distribution over the inputs. Therefore, we cannot directly apply statistical model

checking to a general software system. We believe that by observing the actual behaviors exhibited

by a system in the field, one can try to check if the inputs come from a fixed probability distribu-

tion; if this is the case, we can apply statistical model checking to verify quantitative properties of

the system.

118

Another approach to verify infinite state systems is the learning to verify paradigm. The key

idea behind this approach is based on the observation that often the state-space of infinite state

systems is highly structured. For example, for a number of practical systems, such as parameterized

systems, or systems with unbounded integers and message queues, the reachable state-space is

regular and can be represented by a deterministic finite automaton. Traditional model checking

techniques typically verify such a system by iteratively ‘traversing’ the entire state space of the

system, but such traversal may take a long time to terminate, or it may never terminate. By using

language inference and learning techniques, we have shown that it is often possible to find the

reachable states of a system by either collecting its samples or by answering certain membership

and equivalence queries. We have implemented this technique in a tool called LEVER and used it

to analyze various systems with integers, message queues, stacks and parameterized systems. The

systems that we analyzed using LEVER are quite small in size. A future research challenge would

be make learning to verify work for large software systems where the reachable state space may

not be regular—for example, by using concolic testing to obtain samples.

119

References

[1] 1st, 2nd, 3rd, 4th, and 5th Workshops on Runtime Verification (RV’01 - RV’05), volume
55(2), 70(4), 89(2), 113 of Electronic Notes in Theoretical Computer Science. Elsevier Science:
2001, 2002, 2003, 2004, 2005, 2005.

[2] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying continuous-time Markov chains.
In Proc. of Computer Aided Verification (CAV’96), volume 1102 of LNCS, pages 269–276,
1996.

[3] G. Agha. Actors: A Model of Concurrent Computation. MIT Press, 1986.

[4] G. Agha, C. Gunter, M. Greenwald, S. Khanna, J. Meseguer, K. Sen, and P. Thati. Formal
modeling and analysis of DoS using probabilistic rewrite theories. In International Workshop
on Foundations of Computer Security (FCS’05) (Affiliated with LICS’05), 2005.

[5] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation.
Journal of Functional Programming, 7:1–72, 1997.

[6] G. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-based specification language for prob-
abilistic object systems. Electronic Notes in Theoretical Computer Science, 153(2):213–239,
2006. Expanded version of the paper that appeared in Proceedings of the 3rd Workshop on
Quantitative Aspects of Programming Languages.

[7] C. Artho, H. Barringer, A. Goldberg, K. Havelund, S. Khurshid, M. Lowry, C. Pasareanu,
G. Roşu, K. Sen, W. Visser, and R. Washington. Combining test case generation and runtime
verification. Theoretical Computer Science, 336(2–3):209–234, May 2005.

[8] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continuous-time Markov
chains. ACM Transactions on Computational Logic, 1(1):162–170, 2000.

[9] O. Babaoğlu and K. Marzullo. Consistent global states of distributed systems: Fundamen-
tal concepts and mechanisms. In S. Mullender, editor, Distributed Systems, pages 55–96.
Addison-Wesley, 1993.

[10] T. Ball. Abstraction-guided test generation: A case study. Technical Report MSR-TR-2003-
86, Microsoft Research, 2003.

[11] T. Ball and S. Rajamani. The SLAM Toolkit. In Proceedings of CAV’2001 (13th Conference
on Computer Aided Verification), volume 2102 of LNCS, pages 260–264, 2001.

[12] C. W. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity
checker. In Proc. 16th International Conference on Computer Aided Verification, volume
3114 of LNCS, pages 515–518. Springer, 2004.

120

[13] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. In
Proceedings of 5th International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’04), volume 2937 of LNCS, pages 44–57. Springer, 2004.

[14] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. Generating Test
from Counterexamples. In Proc. of the 26th ICSE, pages 326–335, 2004.

[15] D. Bird and C. Munoz. Automatic Generation of Random Self-Checking Test Cases. IBM
Systems Journal, 22(3):229–245, 1983.

[16] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on Java predi-
cates. In Proc. of International Symposium on Software Testing and Analysis, pages 123–133,
2002.

[17] D. Bruening. Systematic testing of multithreaded Java programs. Master’s thesis, MIT, 1999.

[18] C. Cadar and D. Engler. Execution generated test cases: How to make systems code crash
itself. In Proc. of SPIN Workshop, 2005.

[19] R. H. Carver and Y. Lei. A general model for reachability testing of concurrent programs.
In 6th International Conference on Formal Engineering Methods (ICFEM’04), volume 3308
of LNCS, pages 76–98, 2004.

[20] F. Chen and G. Roşu. Towards monitoring-oriented programming: A paradigm combining
specification and implementation. In Proceedings of the 3rd Workshop on Runtime Verifica-
tion (RV’03), volume 89 of Electronic Notes in Theoretical Computer Science, pages 106–125.
Elsevier Science, 2003.

[21] J. D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. Efficient and
precise datarace detection for multithreaded object-oriented programs. In Proc. of the ACM
SIGPLAN Conference on Programming language design and implementation, pages 258–269,
2002.

[22] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze. Using symbolic execution for verifying
safety-critical systems. In Proceedings of the ESEC/FSE-9, pages 142–151, 2001.

[23] J. Corbett, M. B. Dwyer, J. Hatcliff, C. S. Pasareanu, Robby, S. Laubach, and H. Zheng.
Bandera : Extracting Finite-state Models from Java Source Code. In Proc. of ICSE’00:
International Conference on Software Engineering, Limerich, Ireland, June 2000. ACM Press.

[24] C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for Java. Software:
Practice and Experience, 34:1025–1050, 2004.

[25] C. Csallner and Y. Smaragdakis. Check ’n’ Crash: Combining static checking and testing.
In 27th International Conference on Software Engineering, 2005.

[26] A. Dinning and E. Schonberg. Detecting access anomalies in programs with critical sections.
In Proc. of the ACM/ONR Workshop on Parallel and Distributed Debugging, May 1991.

[27] D. Drusinsky. The Temporal Rover and the ATG Rover. In SPIN Model Checking and
Software Verification, volume 1885 of Lecture Notes in Computer Science, pages 323–330.
Springer, 2000.

121

[28] D. Drusinsky. Monitoring Temporal Rules Combined with Time Series. In Proc. of CAV’03:
Computer Aided Verification, volume 2725 of Lecture Notes in Computer Science, pages 114–
118. Springer-Verlag, 2003.

[29] M. B. Dwyer, J. Hatcliff, Robby, and V. P. Ranganath. Exploiting object escape and lock-
ing information in partial-order reductions for concurrent object-oriented programs. Form.
Methods Syst. Des., 25(2–3):199–240, 2004.

[30] C. J. Fidge. Partial orders for parallel debugging. In Proceedings of the Workshop on Parallel
and Distributed Debugging (WPDD), pages 183–194. ACM, 1988.

[31] B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collecting Statistics over Runtime Ex-
ecutions. In Proc. of RV’02: The Second International Workshop on Runtime Verification,
volume 70 of Electronic Notes in Theoretical Computer Science, Paris, France, 2002. Elsevier.

[32] B. Finkbeiner and H. Sipma. Checking Finite Traces using Alternating Automata. In Proc.
of RV’01: The First International Workshop on Runtime Verification, volume 55(2) of Elec-
tronic Notes in Theoretical Computer Science, Paris, France, 2001. Elsevier Science.

[33] C. Flanagan and S. N. Freund. Detecting race conditions in large programs. In Proc. of the
Program Analysis for Software Tools and Engineering Conference, June 2001.

[34] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software.
In Proc. of the 32nd Symposium on Principles of Programming Languages (POPL’05), pages
110–121, 2005.

[35] J. E. Forrester and B. P. Miller. An Empirical Study of the Robustness of Windows NT
Applications Using Random Testing. In Proceedings of the 4th USENIX Windows System
Symposium, 2000.

[36] G. Lowe. An Attack on the Needham-Schroeder Public-Key Authentication Protocol. Inf.
Processing Letters, 1995.

[37] D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal Properties
on Running Programs. In Proc. of ASE’01: International Conference on Automated Software
Engineering, pages 412–416. Institute of Electrical and Electronics Engineers, 2001.

[38] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems – An Ap-
proach to the State-Explosion Problem, volume 1032 of LNCS. Springer-Verlag, 1996.

[39] P. Godefroid. Model Checking for Programming Languages using VeriSoft. In 24th ACM
Symposium on Principles of Programming Languages, pages 174–186, 1997.

[40] P. Godefroid and S. Khurshid. Exploring Very Large State Spaces Using Genetic Algorithms.
In Tools and Algorithms for the Construction and Analysis of Systems, 2002.

[41] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In Proc.
of the ACM SIGPLAN 2005 Conference on Programming Language Design and Implemen-
tation (PLDI), 2005.

[42] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite state machines
from abstract state machines. In Proc. International Symposium on Software Testing and
Analysis, pages 112–122, 2002.

122

[43] E. Gunter and D. Peled. Tracing the Executions of Concurrent Programs. In Proc. of RV’02:
Second International Workshop on Runtime Verification, volume 70 of Electronic Notes in
Theoretical Computer Science. Elsevier, 2002.

[44] E. L. Gunter, R. P. Kurshan, and D. Peled. PET: An interactive software testing tool. In
Computer Aided Verification (CAV’00), volume 1885 of Lecture Notes in Computer Science,
pages 552–556. Springer-Verlag, 2003.

[45] E. L. Gunter and D. Peled. Using functional languages in formal methods: The PET sys-
tem. In Parallel and Distributed Processing Techniques and Applications, pages 2981–2986.
CSREA, 2000.

[46] N. Gupta, A. P. Mathur, and M. L. Soffa. Generating test data for branch coverage. In Proc.
of the International Conference on Automated Software Engineering, pages 219–227, 2000.

[47] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6(5):512–535, 1994.

[48] K. Havelund and T. Pressburger. Model Checking Java Programs using Java PathFinder.
International Journal on Software Tools for Technology Transfer, 2(4):366–381, Apr. 2000.

[49] K. Havelund and G. Roşu. An overview of the runtime verification tool Java PathExplorer.
Formal Methods in System Design, to appear.

[50] K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS’02), volume 2280 of Lecture Notes
in Computer Science, pages 342–356. Springer, 2002.

[51] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In Proceedings of
the 29th ACM Symposium on Principles of Programming Languages, pages 58–70, January
2002.

[52] G. Holzmann and M. H. Smith. A practical method for verifying event-driven software. In
Proceedings of the International Conference on Software Engineering (ICSE’99). IEEE/ACM,
1999.

[53] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic execution for model
checking and testing. In Proc. 9th Int. Conf. on TACAS, pages 553–568, 2003.

[54] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assurance Tool for
Java. In Proceedings of the 1st Workshop on Runtime Verification (RV’01), volume 55 of
Electronic Notes in Theoretical Computer Science. Elsevier Science, 2001.

[55] J. C. King. Symbolic Execution and Program Testing. Communications of the ACM,
19(7):385–394, 1976.

[56] B. Korel. A dynamic Approach of Test Data Generation. In IEEE Conference on Software
Maintenance, pages 311–317, November 1990.

[57] D. Kortenkamp, T. Milam, R. Simmons, and J. Fernandez. Collecting and Analyzing Data
from Distributed Control Programs. In Proc. of RV’01: First International Workshop on
Runtime Verification, volume 55 of Electronic Notes in Theoretical Computer Science, Paris,
France, 2001. Elsevier Science.

123

[58] S. K. Lahiri and S. A. Seshia. The UCLID decision procedure. In Proc. of Intl. Conf. on
Computer-Aided Verification (CAV), volume 3114 of LNCS, pages 475–478. Springer, 2004.

[59] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime assurance based
on formal specifications. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, 1999.

[60] G. Lowe and A. W. Roscoe. Using csp to detect errors in the TMN protocol. Software Engg.,
23(10):659–669, 1997.

[61] lp solve. http://groups.yahoo.com/group/lp solve/.

[62] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer,
New York, 1992.

[63] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer, New
York, 1995.

[64] N. Markey and P. Schnoebelen. Model checking a path (preliminary report). In Proceedings of
the 14th International Conference on Concurrency Theory (CONCUR’2003), Lecture Notes
in Computer Science. Springer, 2003, to appear.

[65] K. Marzullo and G. Neiger. Detection of global state predicates. In Proceedings of the 5th
International Workshop on Distributed Algorithms (WADG’91), volume 579 of Lecture Notes
in Computer Science, pages 254–272. Springer-Verlag, 1991.

[66] J. McCarthy and J. Painter. Correctness of a compiler for arithmetic expressions. In Pro-
ceedings of Symposia in Applied Mathematics. AMS, 1967.

[67] P. Naldurg, K. Sen, and P. Thati. A temporal logic based approach to intrusion detection.
In 24th IFIP WG 6.1 International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE’04), volume 3235 of LNCS, pages 359–376. Springer, 2004.

[68] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate Language and Tools
for Analysis and transformation of C Programs. In Proceedings of Conference on compiler
Construction, pages 213–228, 2002.

[69] R. Netzer and B. Miller. Detecting data races in parallel program executions. In Advances
in Languages and Compilers for Parallel Computing. MIT Press, 1990.

[70] J. Offut and J. Hayes. A Semantic Model of Program Faults. In Proc. of ISSTA’96, pages
195–200, 1996.

[71] T. O’Malley, D. Richardson, and L. Dillon. Efficient Specification-Based Oracles for Critical
Systems. In Proc. of the California Software Symposium, 1996.

[72] C. Pacheco and M. D. Ernst. Eclat: Automatic generation and classification of test inputs.
In 19th European Conference Object-Oriented Programming, 2005.

[73] Parasoft. Jtest manuals version 6.0. Online manual, February 2005. http://www.parasoft.
com/.

124

[74] D. Y. Park, U. Stern, and D. L. Dill. Java Model Checking. In Proc. of the First International
Workshop on Automated Program Analysis, Testing and Verification, Limerick, Ireland, June
2000.

[75] C. S. Pasareanu, M. B. Dwyer, and W. Visser. Finding feasible abstract counter-examples.
International Journal on Software Tools for Technology Transfer (STTT’03), 5(1):34–48,
2003.

[76] D. Peled. All from one, one for all: on model checking using representatives. In 5th Conference
on Computer Aided Verification, pages 409–423, 1993.

[77] R. Needham and M. Schroeder. Using Encryption for Authentication in Large Networks of
Computers. Communications of the ACM, 21(12):993–999, 1978.

[78] B. Richards and J. R. Larus. Protocol-based data-race detection. In Proc. of the SIGMET-
RICS symposium on Parallel and distributed tools, pages 40–47, 1998.

[79] D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-Based Test Oracles for
Reactive Systems. In Proc. of ICSE’92: International Conference on Software Engineering,
pages 105–118, 1992.

[80] G. Roşu and K. Sen. An instrumentation technique for online analysis of multithreaded
programs. In Workshop on Parallel and Distributed Systems: Testing and Debugging (PAD-
TAD’04) (Satellite workshop of IPDPS’04). IEEE digital library, April 2004.

[81] G. Roşu and K. Sen. An instrumentation technique for online analysis of multithreaded
programs. Special Issue of Concurrency and Computation: Practice and Experience (CC:PE),
2006. (To Appear).

[82] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic
data race detector for multithreaded programs. ACM Transactions on Computer Systems,
15(4):391–411, 1997.

[83] A. Sen and V. K. .Garg. Partial order trace analyzer (pota) for distrubted programs. In
Proceedings of the 3rd Workshop on Runtime Verification (RV’03), Electronic Notes in The-
oretical Computer Science, 2003.

[84] K. Sen and G. Agha. Automated systematic testing of open distributed programs. In Inter-
national Conference on Fundamental Approaches to Software Engineering (FASE’06), LNCS
(To appear), 2006.

[85] K. Sen and G. Agha. Concolic testing of multithreaded programs and its application to
testing security protocols. Technical Report UIUCDCS-R-2006-2676, UIUC, 2006.

[86] K. Sen and G. Agha. CUTE and jCUTE : Concolic unit testing and explicit path model-
checking tools. In Computer Aided Verification (CAV’06), LNCS, 2006. (To Appear).

[87] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In 5th joint
meeting of the European Software Engineering Conference and ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE’05). ACM, 2005.

125

[88] K. Sen and G. Roşu. Generating optimal monitors for extended regular expressions. In
Proceedings of the 3rd Workshop on Runtime Verification (RV’03), volume 89 of ENTCS,
pages 162–181. Elsevier Science, 2003.

[89] K. Sen, G. Roşu, and G. Agha. Generating Optimal Linear Temporal Logic Monitors by
Coinduction. In Proceedings of 8th Asian Computing Science Conference (ASIAN’03), volume
2896 of Lecture Notes in Computer Science, pages 260–275. Springer-Verlag, December 2003.

[90] K. Sen, G. Roşu, and G. Agha. Runtime Safety Analysis of Multithreaded Programs. In 9th
European Software Engineering Conference and 11th ACM SIGSOFT International Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE’03), pages 337–346. ACM,
2003.

[91] K. Sen, G. Roşu, and G. Agha. Runtime safety analysis of multithreaded programs. In
Proceedings of 4th joint European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE’03). ACM, 2003.

[92] K. Sen, G. Roşu, and G. Agha. Online efficient predictive safety analysis of multithreaded
programs. In Proceedings of 10th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’04), volume 2988 of Lecture Notes in
Computer Science, pages 123–138, Barcelona, Spain, March 2004.

[93] K. Sen, G. Roşu, and G. Agha. Detecting errors in multithreaded programs by generalized
predictive analysis of executions. In Proceedings of 7th IFIP International Conference on
Formal Methods for Open Object-Based Distributed Systems (FMOODS’05), volume 3535 of
LNCS, pages 211–226. Springer, 2005.

[94] K. Sen, G. Roşu, and G. Agha. Online efficient predictive safety analysis of multithreaded
programs. International Journal on Software Technology and Tools Transfer, 2006.

[95] K. Sen, A. Vardhan, G. Agha, , and G. Roşu. Efficient decentralized monitoring of safety in
distributed systems. In 26th International Conference on Software Engineering (ICSE’04),
pages 418–427. IEEE, 2004.

[96] K. Sen, A. Vardhan, G. Agha, , and G. Roşu. On specifying and monitoring epistemic
properties of distributed systems. In 2nd International Workshop on Dynamic Analysis
(WODA’04), Satellite workshop of ICSE 2004, pages 32–35. British Institution of Electrical
Engineers (IEE), 2004.

[97] K. Sen, A. Vardhan, G. Agha, , and G. Roşu. Decentralized runtime analysis of multithreaded
applications. In NSF Next Generation Software Program Workshop (NSFNGS’06) (Satellite
Workshop of IPDPS’06). IEEE Digital Library, 2006. (To Appear).

[98] K. Sen and M. Viswanathan. Model checking multithreaded programs with asynchronous
atomic methods. In 18th International Conference on Computer Aided Verification (CAV’06),
LNCS. Springer, 2006. (To Appear).

[99] K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box probabilistic
systems. In 16th International Conference on Computer Aided Verification (CAV’04), volume
3114 of LNCS, pages 202–215. Springer, 2004.

126

[100] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic systems.
In 17th International Conference on Computer Aided Verification (CAV’05), volume 3576 of
LNCS, pages 266–280. Springer, 2005.

[101] K. Sen, M. Viswanathan, and G. Agha. VESTA: A statistical model checker and analyzer
for probabilistic systems. In 2nd International Conference on Quantitative Evaluation of
Systems (QEST’05), pages 251–252. IEEE, 2005. Tool Paper.

[102] SGLIB. http://xref-tech.com/sglib/main.html.

[103] S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke. Using model checking with
symbolic execution to verify parallel numerical programs. Technical Report UM-CS-2005-15,
University of Massachusetts Department of Computer Science, 2005.

[104] G. L. Steele. Making asynchronous parallelism safe for the world. In 17th ACM Symposium
on Principles of Programming Languages (POPL’90), pages 218–231, 1990.

[105] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (preliminary
report). In Fifth Annual ACM Symposium on Theory of Computing, pages 1–9. ACM Press,
1973.

[106] S. D. Stoller. Model-Checking Multi-Threaded Distributed Java Programs. In Proc. of
SPIN’00: SPIN Model Checking and Software Verification, volume 1885 of LNCS, pages
224–244. Springer, 2000.

[107] M. Tatebayashi, N. Matsuzaki, and J. David B. Newman. Key distribution protocol for
digital mobile communication systems. In Proceedings on Advances in cryptology (CRYPTO
’89), pages 324–334. Springer-Verlag, 1989.

[108] Valgrind. http://valgrind.org/.

[109] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a Java
optimization framework. In CASCON 1999, pages 125–135, 1999.

[110] A. Valmari. Stubborn sets for reduced state space generation. In 10th Conference on Appli-
cations and Theory of Petri Nets, pages 491–515, 1991.

[111] A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Actively learning to verify safety for
fifo automata. In 24th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’04), volume 3328 of LNCS, pages 494–505. Springer, 2004.

[112] A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Learning to verify safety properties. In
6th International Conference on Formal Engineering Methods (ICFEM’04), volume 3308 of
LNCS, pages 274–289. Springer, 2004.

[113] A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Using language inference to verify
omega-regular properties. In 11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’05), volume 3440 of LNCS, pages 45–60.
Springer, 2005.

[114] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Proceedings
of the 15th International Conference on Automated Software Engineering. IEEE Computer
Science Press, Sept. 2000.

127

[115] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with Java PathFinder.
In Proc. 2004 ACM SIGSOFT International Symposium on Software Testing and Analysis,
pages 97–107, 2004.

[116] S. Visvanathan and N. Gupta. Generating test data for functions with pointer inputs. In
17th IEEE International Conference on Automated Software Engineering, 2002.

[117] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting redundant object-
oriented unit tests. In Proc. 19th IEEE International Conference on Automated Software
Engineering, pages 196–205, Sept. 2004.

[118] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for generating
object-oriented unit tests using symbolic execution. In Procs. of TACAS, 2005.

128

Biography

Koushik got his B.Tech in Computer Science and Engineering from the Indian Institute of Technol-

ogy Kanpur, India in 1999. He subsequently worked as a software engineer and as a middleware ar-

chitect in two companies before joining the University of Illinois at Urbana-Champaign in 2001. His

paper on concolic testing won the ACM SIGSOFT Distinguished Paper Award at ESEC/FSE’05.

He received the C.L. and Jane W-S. Liu Award in 2004 for exceptional research promise and the C.

W. Gear Outstanding Graduate Award in 2005 from the UIUC Department of Computer Science.

129

