
Finding Bugs in Software with a Constraint Solver

by

Mandana Vaziri-Farahani

S.M. Computer Science
Massachusetts Institute of Technology, 1996

B.S. Electrical and Computer Engineering

Carnegie Mellon University, 1995

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2004

c© Massachusetts Institute of Technology 2004. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science
December 17, 2003

Certified by. .
Daniel N. Jackson

Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Finding Bugs in Software with a Constraint Solver

by

Mandana Vaziri-Farahani

S.M. Computer Science
Massachusetts Institute of Technology, 1996

B.S. Electrical and Computer Engineering

Carnegie Mellon University, 1995

Submitted to the Department of Electrical Engineering and Computer Science
on December 17, 2003, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

We present a static technique for finding bugs in object-oriented procedures. It is
capable of checking complex user-defined structural properties – that is, of the con-
figuration of objects on the heap – and generates counterexample traces with no false
alarms. It is modular, requires no user-provided abstractions, and is fully automatic.

It is based on the Alloy modelling language and analyzer. The method relies
on a three-step translation: from code to a formula in Alloy, which is a first-order
relational logic, then to a propositional formula, and finally to conjunctive normal
form. An off-the-shelf SAT solver is then used to find a solution that constitutes a
counterexample.

Modularity comes at the price of intermediate specifications. To minimize such
annotations, the analysis contains a suite of optimizations that allow checking larger
procedures with fewer annotations. The optimizations are based on a special treat-
ment of relations that are known to be functional, and target all steps of the trans-
lation to CNF. Their effect is demonstrated with a prototype tool that can handle a
subset of Java, by analyzing real code.

Thesis Supervisor: Daniel N. Jackson
Title: Associate Professor of Electrical Engineering and Computer Science

2

Acknowledgments

Graduate school has been a wonderful, but challenging journey for me. As it comes
to an end, I would like to thank the people who made that possible.

Words cannot express my gratitude to my advisor, Daniel Jackson. I thank Daniel
for giving me the opportunity to be a member of his research group, and to pursue this
work. I am very grateful for his unrelenting and unconditional support throughout
my graduate studies, and for all his help, especially during more difficult times.

I thank Joan Wheelis wholeheartedly for her unbounded support, and for helping
me to find my way in graduate school. I am extremely grateful to Christopher Crick
for all his encouragement during the writing of this thesis. It would not have been
possible without their help.

I have been privileged to be a member of the Software Design Group. I thank
my fellow SDGers, Mana Taghdiri, Ilya Shlyakhter, Manu Sridharan, Ian Schechter,
Sarfraz Khurshid, Greg Dennis, Tina Nolte, Emina Torlak, and Jonathan Edwards
for many useful discussions. I thank my readers, John Guttag, Gerard Holzmann,
and Martin Rinard, for many useful comments.

Finally, I thank my parents, Chahnaz and Faramarz Vaziri, for sharing their
passion for learning with me, at an early age. I thank my father for teaching me to
think independently, and my mother the value of perseverance. I dedicate this thesis
to them.

This research was supported by grant 0086154 from the ITR program of the Na-
tional Science Foundation.

3

4

“As it grew lighter, Elephant Island loomed up through the mist on our port hand
and for various reasons, thenceforth became our goal.”

Ernest Shackleton, 1916

5

6

Contents

1 Introduction 12

1.1 A New Code Analysis . 13
1.2 An Example . 13

1.2.1 Insertion in Red-Black Trees 13
1.2.2 Specification . 14
1.2.3 Running the Analysis . 17

1.3 How the Analysis Works . 17
1.4 Underlying Assumptions . 19
1.5 Contributions . 20
1.6 Overview of the Thesis . 21

2 The Alloy Modelling Language 22

2.1 Defining Types . 22
2.1.1 Signatures and Atoms . 23
2.1.2 Fields . 23

2.2 Defining Facts . 24
2.2.1 Basic Expressions . 25
2.2.2 Relational Join . 25
2.2.3 Relational Product . 25
2.2.4 Relational Inverse . 26
2.2.5 Transitive Closure . 26
2.2.6 Quantifiers and Logical Connectives 26

2.3 Defining Functions and Assertions . 27
2.4 Running the Alloy Analyzer . 27
2.5 Common Idioms for Object-Oriented Code 27

2.5.1 Local State Encoding . 29
2.5.2 Modelling Object References Explicitly 30
2.5.3 A Look Ahead . 31

3 From Java to Alloy 33

3.1 Basic Encoding . 33
3.1.1 Illustration . 33
3.1.2 Extracting a Computation Graph 35
3.1.3 Variable Renaming in the Computation Graph 36
3.1.4 Encoding the State . 37

7

3.1.5 Encoding Control Flow . 39
3.1.6 Encoding Data Flow . 39
3.1.7 Frame Conditions . 41
3.1.8 Putting It All Together . 42
3.1.9 Advantages over Common Idioms 43

3.2 Extensions . 48
3.2.1 Method Calls . 48
3.2.2 Primitive Types . 51
3.2.3 Arrays . 51
3.2.4 Subclasses . 51
3.2.5 Exceptions . 55

3.3 The Java API . 56
3.3.1 Overview . 56
3.3.2 java.util.Set . 57
3.3.3 java.util.Iterator . 57
3.3.4 java.util.Map . 57

4 From Alloy to CNF 62

4.1 From Alloy to Propositional Logic . 62
4.1.1 Allocating Boolean Variables 62
4.1.2 Translating Expressions . 63
4.1.3 Translating Formulas . 63

4.2 From Propositional Logic to CNF . 64
4.2.1 Polarity and Formula Renaming 64
4.2.2 Example . 66

5 Optimizations 68

5.1 Reducing CNF Size . 68
5.2 Function Representation . 69
5.3 Introducing Alloy Variables . 70
5.4 Logical Simplifications . 70
5.5 Using the Optimizations . 71

6 Case Studies 74

6.1 Red-black Trees . 74
6.1.1 Code . 74
6.1.2 Specification . 77
6.1.3 Results . 77

6.2 Garbage Collection . 81
6.2.1 Code . 81
6.2.2 Specification . 81
6.2.3 Results . 81

6.3 Using Jalloy to Debug Jalloy . 81
6.3.1 Code . 84
6.3.2 Specification . 84

8

6.3.3 Results . 86

7 Conclusion 88

7.1 Jalloy in Context . 88
7.2 Related Work . 89

7.2.1 TestEra . 90
7.2.2 Finite State Verification . 90
7.2.3 Shape Analysis . 93
7.2.4 Theorem Proving . 94

7.3 Evaluation . 95
7.3.1 Merits . 95
7.3.2 Deficiencies . 96
7.3.3 Future Opportunities . 97

7.4 Final Thoughts . 98

9

List of Figures

1-1 Code for Insertion in Red-Black Trees - Part 1 15
1-2 Code for Insertion in Red-Black Trees - Part 2 16
1-3 Specification for Insertion in Red-Black Trees 16
1-4 Counterexample for Insertion in Red-Black trees 18
1-5 Architecture . 19

2-1 Signatures for a simple file system . 23
2-2 Well-formedness constraints for a simple file system 24
2-3 Functions and assertions for a simple file system 28
2-4 Code for the swapTail procedure . 29
2-5 Local Representation of State for the SwapTail procedure 30
2-6 Modelling Object References Explicitly for the SwapTail procedure . 32

3-1 Code for swapTail revisited . 34
3-2 Specification for swapTail . 34
3-3 Counterexample for swapTail . 34
3-4 Computation Graph for swapTail . 35
3-5 Small fragment of code . 36
3-6 Small fragment of code in SSA form 36
3-7 Renamed computation graph for small fragment of code 37
3-8 Renamed Computation Graph for swapTail 38
3-9 Modelling state for the swapTail procedure 38
3-10 Control flow encoding for the swapTail procedure 39
3-11 Translation rules for encoding the data flow 40
3-12 Data flow encoding for the swapTail procedure 41
3-13 Specification for swapTail - revisited 42
3-14 Auto-generated Alloy signatures for connecting the specification to the

procedure’s encoding . 43
3-15 Alloy model for the swapTail procedure - Part 1 44
3-16 Alloy model for the swapTail procedure - Part 2 45
3-17 Counterexample for swapTail - revisited 45
3-18 Number of boolean variables needed, for a class C having k fields of

type T , for scope n, where the maximum number of times fi is updated
over all paths is ui, u =

∑k
i=1 ui, and s is the maximum number of times

any field is updated over all paths. On the right, actual numbers for
insertion in red-black trees for 5 iterations and scope 5. 47

10

3-19 Procedure that calls swapTail . 49
3-20 Computation graph for a procedure that calls swapTail 50
3-21 Example of code with a class hierarchy 52
3-22 Example of Alloy representation of subclasses 53
3-23 Computation graph for example with subclass hierarchy 54
3-24 Computation graph for a catch block 55
3-25 Specification for java.util.Set . 58
3-26 Specification for java.util.HashSet . 59
3-27 Specification for java.util.Iterator . 59
3-28 Specification for java.util.Map . 60
3-29 Specification for java.util.HashMap 61

5-1 Number of clauses and intermediate variables for v.f1. · · · .fk1
= u.g1. · · · .gk2

for scope n . 73

6-1 Left and right rotation for red-black trees 75
6-2 Code for insertion in red-black trees 76
6-3 Specification for red-black tree insertion 78
6-4 Counterexample for Insertion in Red-Black trees - revisited 79
6-5 Results for red-black tree insertion 80
6-6 Code for the garbage collection algorithm 82
6-7 Specification for the garbage collection procedure 83
6-8 Counterexample for assertion reachablesUnchanged 83
6-9 Code for Jalloy - Part 1 . 85
6-10 Code for Jalloy - Part 2 . 86
6-11 Specification for Jalloy . 87
6-12 Counterexample Jalloy . 87

11

Chapter 1

Introduction

Software systems are notoriously prone to bugs – deviations from their expected
behavior. Bugs arise from programmer mistakes or omissions, and their effect can be
benign or catastrophic depending on the domain of application.

The most common way to find bugs in practice is testing. It consists of executing
the code for different inputs and observing the output against what is expected. Test-
ing has several drawbacks. First, whole classes of cases may be missed, and bugs may
easily go uncovered. Second, the number of test cases required may be prohibitively
large. Consider for example, a telephony system that handles 20 features. The differ-
ent combinations of all these features must be tested separately to ensure that their
interaction is handled correctly. But this results in 220 test cases!

A different approach to finding bugs is static analysis, which consists of analyzing
the text of a program, without actually executing it. The most rudimentary static
analyzers are type checkers, supported by common programming languages. They
are extremely helpful at uncovering common programming mistakes, such as calling
a procedure with the wrong number of arguments, but they can also sometimes help
to catch algorithmic bugs. Type annotations are a form of specification, but they are
limited in the kinds of properties they express.

Ideally, one would want to check arbitrary specifications statically. This is of
course undecidable, so existing analyses make a tradeoff between level of automation
and expressivity of the properties checked. At one end of the spectrum, program
analysis techniques are geared at particular properties, such as for example detecting
opportunities for program optimizations, but are fully automatic. At the other end,
theorem proving methods can handle very rich specification languages, but are poorly
automated.

By either giving up termination, or completeness, some methods allow richer prop-
erties to be checked automatically. In recent years, finite state verification techniques
have proven to be useful for finding bugs in code. These methods consist of exploring
all the possible executions of a fragment of code, and checking for behavioral prop-
erties. They typically output a counterexample when a property is found not to be
satisfied. They often rely on an abstraction of the code, which renders it finite state
and makes it manageable.

Finite state verification techniques have been shown to be very effective in checking

12

properties describing event sequences. Software systems differ from hardware in that
they have a very rich structure, and these techniques are not aimed at handling
structural properties readily. The specification languages are often not rich enough.
Some techniques require the user to manually abstract aspects of the system. Others
run into inefficiency or non-termination when dealing with data-intensive code.

This thesis presents a finite state verification technique for checking structural
specifications of code. It is modular, fully automatic, and requires no user-provided
abstractions. It can output counterexample traces when specifications are found not
to be satisfied, and it has no spurious error reports.

1.1 A New Code Analysis

The analysis technique we present here is based on the Alloy [17] modelling language
and its analyzer. It takes as input a Java procedure, a property to verify, expressed in
Alloy, and upper bounds on the number of iterations per loop and on the number of
heap cells per class. Its output is a counterexample trace, if the property is violated,
and “inconclusive” otherwise. It offers the following benefits to its users:

• Ease-of-use It is a push-button tool, and does not require its users to know
of its underlying set-theoretic notions. It does not assume a deep knowledge of
Alloy. Its specification language is easy to use.

• Modularity It allows the user to replace method calls with specifications. This
makes the analysis modular. Since in practice users do not like to write interme-
diate specifications, it offers a suite of optimizations that allows checking larger
procedures with fewer annotations.

• No User-Provided Abstraction It does not require any abstractions from
its user. Instead it considers bounded instances of programs, with a bounded
heap and loops unwound.

• Sound Counterexamples When a property is found not to be satisfied, it
outputs a counterexample, which is an execution trace of the code. There are
no false alarms, preventing the user from having to manually prune scores of
spurious error reports.

1.2 An Example

We illustrate our technique on an implementation of insertion in red-black trees.

1.2.1 Insertion in Red-Black Trees

Red-black trees are binary search trees whose nodes have an additional attribute,
a color, which is either red or black. Each procedure manipulating red-black trees

13

must preserve two invariants regarding colors, that together maintain trees that are
roughly balanced.

1. If a node is red, then both of its children are black.

2. All paths from the root to a node with at most one child have the same number
of black nodes.

Figures 1-1 and 1-2 show an implementation of insertion in a red-black tree. This
code is a close transcription of pseudocode presented in a popular algorithms textbook
[6]. It contains two classes RBNode and RBTree, and procedure RBInsert, which
performs insertion.

The procedure takes an integer i. It first makes a node out of the integer and
inserts it in the tree by calling TreeInsert, a procedure for insertion in binary search
trees. Once the new element has been inserted, the procedure must restore balance
in the tree, which is done in the main while loop. The red-black tree is modified by
calling LeftRotate and RightRotate repeatedly.

1.2.2 Specification

In addition to the fragment of code above, the user provides a specification file shown
in Figure 1-3.

Specifications are written in a stylized version of Alloy. They consists of a series of
function definitions, stating constraints on the states before and after the execution of
the procedure to be checked (called pre and post states respectively). The function
called specification defines the top-level constraint.

The variables available to the user for writing specifications are the parameters of
the procedure to be checked and This if it is non-static, to indicate the receiver.

Most functions typically take a parameter of type S that is an enumerated type
containing elements pre and post. These are used to indicate the state of a field.
For example, n.(left.pre) denotes the object pointed to by the left field of n in
the pre state.

The first property, CorrectColors, says that the children of a red node are black.
It states that that all RBNodes n that are reachable from the root of t by following
zero or more left or right fields in state s, have the property that if n is red, then
both its children are black.

We represent booleans by sets, which when empty represent the value false, and
true otherwise. The formula some n.(isRed.s) means n.(isRed.s) is a non-empty
set, i.e. it is true. Similarly, the keyword no indicates the empty-set, or false.

The second property, IsBalanced says that all paths from the root to a node with
at most one child have the same number of black nodes. It states that for all RBNodes
n1 and n2 reachable from the root, if they both have at most one child1 (indicated by

1In the original algorithm [6], trees have null leaves that are considered to be black. We do not
have these; this is why we need the HasAtMostOneChild function.

14

class RBNode {

boolean isRed; int key;

RBNode right; RBNode left;

RBNode parent;

public RBNode(int i){

isRed = false; key = i;

}

}

class RBTree {

RBNode root;

void TreeInsert(RBNode z){

RBNode k = null;

RBNode x = this.root;

while (x != null){

k = x;

if (z.key < x.key) x = x.left;

else x = x.right;}

z.parent = k;

if (k == null) this.root = z;

else if (z.key < k.key) k.left = z;

else k.right = z;

}

void LeftRotate(RBNode z){

RBNode y = z.right;

z.right = y.left;

if (y.left != null) y.left.parent = z;

y.parent = z.parent;

if (z.parent == null) this.root = y;

else if (z == z.parent.left)

z.parent.left = y;

else z.parent.right = y;

y.left = z;

z.parent = y;

}

Figure 1-1: Code for Insertion in Red-Black Trees - Part 1

15

void RBInsert(int i){

RBNode h = new RBNode(i);

this.TreeInsert(h);

h.isRed = true;

while (h != this.root &&

h.parent.isRed == true){

if (h.parent == h.parent.parent.left){

RBNode y = h.parent.parent.right;

if (y != null && y.isRed == true){

h.parent.isRed = false;

y.isRed = false;

h.parent.parent.isRed = true;

h = h.parent.parent;

} else {

if (h == h.parent.right) {

h = h.parent;

this.LeftRotate(h); }

//h.parent.isRed = false; //bug seeded

h.parent.parent.isRed = true;

this.RightRotate(h.parent.parent);

}

} else { //same as above with

// left and right inverted

}

this.root.isRed = false;

}

}

Figure 1-2: Code for Insertion in Red-Black Trees - Part 2

fun CorrectColors(s: S, t: RBTree) {

all n: t.(root.s).*(left.s + right.s) |

some n.(isRed.s) =>

no n.(right.s).(isRed.s)

&& no n.(left.s).(isRed.s)

}

fun IsBalanced(s: S, t: RBTree){

all n1, n2: t.(root.s).*(left.s + right.s) {

HasAtMostOneChild(n1) && HasAtMostOneChild(n2) =>

#{n:RBNode|n in n1.*(parent.s) && no n1.(isRed.s)}

=

#{r:RBNode|n in n2.*(parent.s) && no n2.(isRed.s)}

}

}

fun HasAtMostOneChild(n: RBNode){

no n.(left.pre) || no n.(right.pre)

}

fun specification() {

Tree(pre, This) && CorrectColors(pre, This)

&& IsBalanced(pre, This) =>

CorrectColors(post, This)

}

Figure 1-3: Specification for Insertion in Red-Black Trees

16

the calls to function HasAtMostOneChild), then the cardinality of the set consisting
of all black nodes on the path from n1 to the root is equal to the cardinality of the
corresponding set for n2. The expression #e denotes the cardinality of e.

These properties are followed by the specification function, which expresses
the top-level specification to be checked. It states that if This is a well-formed tree
in the pre state (indicated by Tree(pre, This), and properties CorrectColors and
IsBalanced are satisfied in the pre state, then CorrectColors is also satisfied in the
post state.

The definition of Tree – not shown in Figure 1-3 – expresses what it means for
a set of RBNodes to form a valid tree. This kind of constraint is often needed when
writing specifications for our analysis technique, because the tool does not restrict
itself to trees or lists, but deals with general graph structures. If well-formedness
constraints are omitted, it may thus find counterexamples with structures that do
not satisfy basic properties expected by the user. Providing such constraints is not
hard, because they often consist of generic properties.

1.2.3 Running the Analysis

If we seed a bug in the code as shown in Figure 1-2 (line commented bug seeded),
and run our analysis technique with the given specification for 5 heap cells per class,
and 5 iterations, we obtain a counterexample in about 20 seconds2.

In Figure 1-4, the numbers on each node indicate the keys, and red nodes are
shown in white. The box indicates a violation of CorrectColors in the post state.
The counterexample goes through 5 iterations; first, the node with key 4 is inserted
in the tree, then after a total of four left and right rotations, nodes 4 and 5 are
consecutive and both red.

This example illustrates some of the features of our technique. The user did not
have to write any intermediate annotations beyond the properties to verify. The
counterexample is always an actual trace of the procedure: there are no spurious
error reports.

1.3 How the Analysis Works

Our analysis technique is based on the Alloy Analyzer – a constraint solver. A formula
encoding the data and control flow of a procedure is checked for consistency against
a structural property. The encoding is done for a bounded instance of the code:
loops are unwound up to a small number, and only a limited number of heap cells
are considered. This is based on the observation that if a fragment of code does not
satisfy some property, then a counterexample of small size can often be exhibited.

Figure 1-5 shows the architecture of the tool. It takes a Java procedure and trans-
lates it to Alloy, which is a first-order logic (FOL) with relations. The specification

2This experiment was done on a 1.1GHz PentiumIII with 640MB of memory, using BerkMin as
the underlying SAT solver.

17

2

1 5

3

2

1 5

3

4

2

1 5

4

3

2

1 3

5

4

2

1 4

3 5

3

2 4

1 5

TreeInsert

LeftRotate

RightRotate

LeftRotate

RightRotate

Figure 1-4: Counterexample for Insertion in Red-Black trees

18

Java source

Alloy

FOL

Propositional

Logic

CNF
Satisfying

Assignment

Counterexample

Trace

SAT solver

Java source

Alloy

FOL

Propositional

Logic

Satisfying

Assignment

Trace

SAT solver

Alloy

Specification

Figure 1-5: Architecture

is negated and conjoined with the formula corresponding to the code, yielding a for-
mula for the problem. This has a satisfying instance if and only if there exists an
execution trace of the code satisfying the negation of the specification, in which case
a counterexample has been found.

In order to find such a satisfying assignment, the Alloy Analyzer first translates
the problem formula to propositional logic, and then to conjunctive normal form
(CNF). An off-the-shelf SAT solver is then used to find a satisfying assignment. If
one is found then it is appropriately presented back to the user as a counterexample.

We can think of our analysis technique as a logical virtual machine: when it finds
an instance, it is as if some execution trace of the code were followed. The advantage
is that the trace is not actually executed sequentially, but obtained in a goal-oriented
fashion to satisfy pre and post constraints. The analyzer can also come up with
initial configurations that violate a specification.

1.4 Underlying Assumptions

Our analysis technique requires bounds from the user for the size of the heap as well
as the number of iterations. An underlying assumption of our work is that checking
exhaustively within small bounds can uncover most bugs. This is known as the small
scope hypothesis. Consider, for example, checking that a delete procedure for linked
lists is correct. It is probably sufficient to test it for all lists of size less than 3, beyond
which the tests become redundant.

The small-scope hypothesis is only a hypothesis because of the undecidable nature
of verification. We cannot therefore have an algorithm that would determine what
bounds are sufficient for any given fragment of code. It is left to the user to select
appropriate bounds for analysis.

19

There is more evidence that the small-scope hypothesis is suitable for designs
than for code. A recent study [1] evaluates the small-scope hypothesis by measuring
branch and statement coverage for a suite of procedures manipulating a variety of data
structures. Coverage is a metric that is widely used to determine the efficacy of a test
suite. The study shows that in most cases a bound of 7 heap cells provides complete
coverage. As we shall see in a subsequent chapter, the experiments performed with
our prototype tool scale to this bound. Checking exhaustively within small bounds
is, however, better than a test suite with good code coverage, because it may uncover
bugs due to missing code.

The small-scope hypothesis is suitable in software because of its inherent nature.
In other engineering disciplines it can be acceptable to perform random testing –
instead of testing all small cases, test randomly selected cases of arbitrary size. This
can be useful because in other disciplines there is a “continuity” to the cases. For
example, if we test that a bridge can support a certain weight, this implies that it
can also support all smaller weights. In software, testing one case cannot be used to
deduce anything about other cases: they have a “discrete” nature. Testing all small
cases for structural properties has the effect of checking all possible “kinds of shapes”
of the heap.

1.5 Contributions

The goal of this thesis is to promote the use of specifications for understanding pro-
grams and finding bugs, by providing an analysis technique that checks code against
structural specifications, while minimizing user-intervention. More specifically, the
objective is to check larger fragments of code with fewer annotations.

There are two avenues in which to approach the issue of checking larger procedures:
top down and bottom up. In the top-down approach, we can view the constraint
solver as a black box and explore abstractions relevant to the programming language
at hand. In the bottom-up approach, we can look inside the constraint solver and
optimize it for the purposes of verifying code. Ultimately, a combination of both
avenues is ideal. This thesis however focuses on the bottom-up approach, by providing
efficient encodings at all stages of translation from code to CNF. By reducing the
size of the CNF produced, in terms of number of clauses and variables, the analysis
technique runs faster and can handle larger fragments of code.

Our contributions are the following:

• An efficient encoding of Java in Alloy. Alloy provides several idioms for express-
ing object-oriented code. They are elegant and natural to use, but not efficient
in practice: they run into the scope-induced explosion problem, where one or
more types require a large bound, making the analysis intractable. We present
an encoding that overcomes this issue.

• A compact encoding of fields in propositional logic. The constraint solver repre-
sents every entity as a relation, including Java fields. But these are mathemat-
ical functions and can be represented more compactly in propositional logic.

20

• Logical simplifications from propositional logic to CNF. When implemented
alone, the compact field representation is not effective. A suite of synergistic
optimizations are required to harvest its benefits. These include a series of
logical simplifications that apply in the translation of propositional logic to
CNF. They are inspired by the verification of code, but can be in fact used
more generally in any context where they are applicable.

Together the optimizations reduce the size of the CNFs produced exponentially.
Empirical results show improvement in the run-time of the analysis, as well as the
ability of checking larger procedures. We present a series of case-studies to illustrate
the ease of use of our technique, as well as the effectiveness of the optimizations.

1.6 Overview of the Thesis

Chapter 2 describes the Alloy modelling language, upon which this work is based.
It provides the basis for understanding the subsequent encoding of Java in Alloy in
Chapter 3, and illustrates some common idioms used to express object-oriented code.
These idioms are elegant but are not efficient in practice. Chapter 3 presents an
encoding that overcomes this issue. It further discusses how different aspects of the
Java programming language can be handled by the analysis technique. Chapter 4
describes the translation steps from Alloy to CNF within the Alloy Analyzer, to pre-
pare the reader for Chapter 5, which presents the optimizations. Chapter 6 presents
a series of case studies to illustrate the effectiveness of the optimizations, as well as
the ease of use of the technique. They include analyses performed with a prototype
tool, of a procedure manipulating red-black trees, a garbage collection program, a
fragment from a text processing system, and from the code of the prototype tool
itself. We found real bugs in the last two case studies. Finally, Chapter 7 concludes
and discusses related and future work.

21

Chapter 2

The Alloy Modelling Language

Alloy is a first-order relational logic for modelling software designs and their relevant
properties and invariants. It has been used in a variety of case studies, such as the
analysis of name servers [20], component frameworks [18], group key management
schemes [39], and file synchronization [29], among others.

Alloy is a relational logic, in that expressions denote relations, and are composed
together using relational operators. This facilitates describing structural properties.
Indeed, the heap may be represented as a set of objects, and fields as relations among
objects. A field in class C of type F can be modelled by a relation that maps C
objects to F objects.

Alloy is a declarative language, meaning that behavior can be expressed by describ-
ing the relationship between the states before and after the execution of a procedure.
Descriptions do not need to be operational, and this allows simpler, more concise
specifications.

Alloy is amenable to automated analysis, and is equipped with a tool (the Alloy
Analyzer) that generates instances and checks for consistency. Our analysis technique
uses both the Alloy language and its analyzer. In a subsequent chapter, we will discuss
optimizations for the analyzer that improve performance for the verification of Java
code.

This chapter presents the Alloy language, and describes common idioms for mod-
elling object-oriented code. These are elegant but inefficient. The next chapter
presents an encoding of Java code that addresses this inefficiency.

2.1 Defining Types

We now present different aspects of the Alloy language by describing a model for
a simple file system [35]. It consists of a set of objects that can be either files or
directories. A filesystem has a root, a set of objects, and mappings for the contents of
each directory as well as the parent directory for every object. We model and analyze
a remove-directory operation.

22

module filesystem

-- File system objects

sig FSObject {}

part sig File, Dir extends FSObject {}

-- A File System

sig FileSystem {

root: Dir,

objects: set FSObject,

contents: Dir ?-> FSObject,

parent: FSObject ->? Dir

}

Figure 2-1: Signatures for a simple file system

2.1.1 Signatures and Atoms

Figure 2-1 shows some signatures, indicated with the keyword sig. A signature
defines a type and a set of atoms. Atoms are similar to objects in object-oriented
programs, in that they are the most basic fragment of the semantics of the language.
But they differ from objects in that they are:

• indivisible: they cannot be decomposed further.

• immutable: they cannot be modified.

• uninterpreted: they do not have any underlying semantics.

In the example of Figure 2-1, we define the types FSObject, File, Dir, and
FileSystem. File and Dir are subtypes of FSObject, as indicated by the keyword
extends. This means that their atoms are contained in the set of atoms of their
supertype. The keyword part means that File and Dir partition FSObject.

2.1.2 Fields

Once we have some types defined, we can introduce relations among them by defining
fields. The type FileSystem has four fields: root, objects, contents, and parent.
Field Root is the root directory; objects is a set of objects contained in the filesystem;
contents is a mapping indicating the contents of each directory; and parent maps
each object to its parent directory.

A field F in signature S denotes a relation S -> F, where -> is the cartesian
product of S and F, and consists of a set of tuples of atoms. Thus root and contents

are relations of type FileSystem -> Dir, and FileSystem -> Dir -> FSObject,
respectively.

The symbol ? is a multiplicity marking, and imposes implicit cardinality con-
straints on a relation. The expression Dir ?-> FSObject states that for each atom
of FSObject there is at most one Dir. We write FSObject ->! Dir to indicate that
there is exactly one atom mapped to each FSObject.

23

module filesystem

-- File system objects

sig FSObject {}

part sig File, Dir extends FSObject {}

-- A File System

sig FileSystem {

root: Dir,

objects: set FSObject,

contents: Dir ?-> FSObject,

parent: FSObject ->? Dir

}

fact well-formedness {

all fs: FileSystem {

with fs {

-- 1. root has no parent

no (fs.root).(fs.parent)

-- 2. objects are those reachable from the root

fs.objects = (fs.root).*(fs.contents)

-- 3. contents only defined on objects

fs.contents in (fs.objects)->(fs.objects)

-- 4. parent is the inverse of contents

(fs.parent) = ~(fs.contents)

}

Figure 2-2: Well-formedness constraints for a simple file system

In the example, the type of objects is given by set FSObject, where set is
another multiplicity marking, indicating that there are zero or more FSObjects for
each FileSystem. To indicate that there is at most one, we use the keyword option

instead. No marking in this case means exactly one. So there is exactly one root for
each FileSystem.

2.2 Defining Facts

We continue the definition of our model of a simple file system by adding a set of
constraints that describe some well-formedness conditions. These are introduced by
the keyword fact in Figure 2-2. The lines of the well_formedness fact are implicitly
conjoined together. In general, formulas enclosed by curly braces {} are implicitly
conjoined. Comments begin with --.

Formula 1 says that the root of a filesystem has no parent, Formula 2 that the
objects are those reachable from the root, Formula 3 that the contents of a filesystem
are only defined on its objects, and Formula 4 that the parent relation is the inverse
of contents.

24

2.2.1 Basic Expressions

Every expression in Alloy denotes a relation, i.e. a set of tuples of atoms. Sets are
represented as degenerate unary relations, and scalars as singleton sets.
Basic expressions can be either:

• The name of a sig, denoting the set of atoms it represents,

• A field name,

• A quantified variable.

These basic expressions can be composed together with set operators, which apply to
relations, since these are essentially sets of tuples of atoms:

• +: set union,

• -: set difference,

• &: set intersection.

2.2.2 Relational Join

The dot operator is a relational join and is defined as follows. Given two relations
p and q of types t1 → · · · → tn and tn → · · · → tm respectively, p.q is a relation of
type t1 → · · · → tn−1 → tn+1 → · · · → tm. A tuple (p1, · · · , pn−1, qn+1, · · · , qm) is in
p.q if and only if there exists atoms pn and qn such that (p1, · · · , pn) is a tuple of p,
(qn, · · · , qm) is a tuple of q, and pn = qn.

When p is a set, the join becomes relational image. In the example, fs.root is
the relational image of fs under the root relation, i.e. the set of atoms that fs maps
to under root.

The with construct is used to simplify Alloy formulas containing repeated appli-
cations of the dot operator to a relation, by factoring it out. For example,

with fs { no root.parent }

is syntactic sugar for

no (fs.root).(fs.parent).

A syntactic sugar, p.q[s], denotes the expression s.(p.q).

2.2.3 Relational Product

The arrow operator is relational product and is defined as follows. Given two relations
p and q of types t1 → · · · → tn and tn+1 → · · · → tm respectively, p→ q is a relation
of type t1 → · · · tn−1 → tn → tn+1 · · · → tm. A tuple (p1, · · · , pn, qn+1, · · · , qm) is in
p→ q if and only if (p1, · · · , pn) is a tuple of p, and (qn+1, · · · , qm) is a tuple of q.

The expression (fs.objects)->(fs.objects), in Formula 3, denotes the relation
that has a tuple (o1,o2) for every o1 and o2 in fs.objects.

25

2.2.4 Relational Inverse

The ~ operator is relational inverse. Given a relation p of type t1 → · · · → tn, ~p is a
relation of type tn → · · · → t1. A tuple (p1, · · · , pn) is in ~p if and only if (pn, · · · , p1)
is a tuple of p.

In the example, ~(fs.contents) in Formula 4 represents the inverse of fs.contents,
mapping an object to the directory that contains it.

2.2.5 Transitive Closure

The symbol ^ denotes the transitive closure of a relation. Given a relation p of type
t → t, the transitive closure of p, consists of p.p + p.p.p + · · ·, where + is set union.
Another relational operator is the reflexive transitive closure of a relation, denoted by
the symbol *. This is the same as the transitive closure, except that it also includes
the relation itself.

In the example, (fs.root).*(fs.contents) denotes the set of all objects reach-
able from fs.root via the fs.contents relation.

2.2.6 Quantifiers and Logical Connectives

There are two ways of building basic formulas out of Alloy expressions. The first is
set inclusion (in), and the second cardinality quantifiers:

• no: followed by an expression, means the expression represents the empty set,

• some: followed by an expression, means the expression has one or more elements.

Formula 1 says that the expression (fs.root).(fs.parent) is the empty set. For-
mula 3 states that fs.contents is contained in (fs.objects)->(fs.objects), mean-
ing that the fs.contents relation is only defined on fs.objects.

Alloy formulas are composed together using logical connectives:

• !, not: logical negation,

• &&, and: logical and,

• ||, or: logical or,

• =>: logical implication,

• <=>: logical equivalence.

A special form of implication is A => B, C, and is equivalent to A => B && !A => C.
Formulas also allow quantification:

• all: universal quantification,

• some: existential quantification.

In the example, variable fs is universally quantified.

26

2.3 Defining Functions and Assertions

It is sometimes useful to define parameterized formulas. These are introduced using
the fun keyword, which stands for function. Figure 2-3 shows a function rmdir, which
removes a directory from a filesystem.

Function rmdir takes three parameters, fs and fs’ that represent a filesystem
prior and after the operation respectively, and d, the directory to be removed. It
first states some preconditions: d must be in the set of objects of fs other than its
root, and d must not have any contents. The function defines contents of the new
filesystem fs’ to be the same as that of fs minus the mapping of d’s parent to d.

The definition of rmdir also states that the root of fs’ is the same as that of fs.
This is called a frame condition, which in general expresses what fields remain the
same when some are modified. These conditions are necessary when a field is not
constrained, in which case it could take on any value1.

Following the function definitions in Figure 2-3 is an assertion introduced using
the keyword assert. This is a consequence of the model that the user may wish
to check using the analyzer. The assertion rmdirRemovesOneDir states that rmdir

removes exactly the specified directory.

2.4 Running the Alloy Analyzer

In order to make Alloy amenable to automated analysis, the user must provide a
bound on the number of atoms per type. This makes it possible to translate Alloy
formulas to propositional logic, as we will see in Chapter 4. This bound is called
scope.

In order to check assertion rmdirRemovesOneDir, we add the line:

check rmdirRemovesOneDir for 5

which directs the Alloy Analyzer to run with a scope of 5 atoms per type. For the
assertion rmdirRemovesOneDir the Alloy Analyzer finds a counterexample: if d is the
root of fs, then it is not removed and fs and fs’ are identical.

2.5 Common Idioms for Object-Oriented Code

The next chapter describes how we encode Java procedures in Alloy. In this section,
we prepare for that presentation by giving an overview of ways this may be done.
Alloy is a flexible language and supports a variety of idioms for describing different
kinds of systems. The concept of state, for instance, may be expressed in several
ways, and this flexibility gives the user the freedom to express models in the most
convenient way.

1In this example, the frame condition is not strictly required because the well-formedness con-
straints together imply that the root does not change.

27

module filesystem

-- File system objects

sig FSObject {}

part sig File, Dir extends FSObject {}

-- A File System

sig FileSystem {

root: Dir,

objects: set FSObject,

contents: Dir ?-> FSObject,

parent: FSObject ->? Dir

}

fact well-formedness {

all fs: FileSystem {

with fs {

-- 1. root has no parent

no (fs.root).(fs.parent)

-- 2. objects are those reachable from the root

fs.objects = (fs.root).*(fs.contents)

-- 3. contents only defined on objects

fs.contents in (fs.objects)->(fs.objects)

-- 4. parent is the inverse of contents

(fs.parent) = ~(fs.contents)

}

-- Delete the directory d

fun rmdir(fs, fs’: FileSystem, d: Dir) {

d in fs.(objects - root)

no d.(fs.contents) -- d is empty

fs’.contents = fs.contents - (d.(fs.parent))->d

fs’.root = fs.root

}

-- rmdir removes exactly the specified directory

assert rmdirRemovesOneDir {

all fs, fs’: FileSystem, d: Dir |

rmdir(fs, fs’, d) => fs.objects - d = fs’.objects

}

check rmdirRemovesOneDir for 5

Figure 2-3: Functions and assertions for a simple file system

28

class ListElem {

int val;

ListElem next;

}

class List {

ListElem first;

static void swapTail(List l, List m){

if (l.first != null && m.first != null) {

ListElem temp = l.first.next;

l.first.next = m.first.next;

m.first.next = temp;

}

}

}

Figure 2-4: Code for the swapTail procedure

In this section, we present two common idioms for modelling objects on the heap.
In the first [39], state is represented locally, and in the second [15] object references
are modelled explicitly. These idioms result in elegant models, but their analysis is
inefficient. Our encoding addresses this issue, at the cost of models that are harder to
read. But since our analysis technique is automated, intermediate models need not
be human-readable.

2.5.1 Local State Encoding

We illustrate these idioms by considering a procedure, swapTail (Figure 2-4), that
takes two linked lists l and m and swaps their tails.

Since we are dealing with a logic, there is no built-in notion of state. Rather we
need to encode it and the concept of location within the logic. One way of doing this
is by having a special signature State. In the local-state idiom (Figure 2-5), fields
are encoded as relations from State to a type. To express field dereferencing such as
e.g. l.first.next, one writes

l.first[s].next[s]

where l is a List, s is a State, and the result of that expression is a ListElem object.
Consider the assignment statement:

l.first.next = m.first.next

This gets encoded as:

l.first[s0].next[s1] = m.first[s0].next[s0]

In this formula, s0 and s1 denote the pre and post states of the assignment respec-
tively. It says that in s1, the next field of the object denoted by l.first[s0] points
to the object denoted by m.first[s0].next[s0]. This leaves the next fields of other
objects, as well as the value of other fields, unspecified in s1. So we additionally need
a series of frame conditions, marked 1, 2, and 3 in Figure 2-5. The first condition

29

sig State {}

sig ListElem {

val: State -> int,

next: State ->? ListElem

}

sig List {

first: State ->? ListElem

}

fun swapTail(s0, s1, s2: State, l, m: List){

some l.first[s0] && some m.first[s0] => { -- if

some temp: ListElem {

-- temp = l.first.next

temp = l.first[s0].next[s0]

l.first[s0].next[s1] = m.first[s0].next[s0]

l.first[s0].val[s1] = l.first[s0].val[s0] -- Frame Condition 1

all o: ListElem - l.first[s0] | -- Frame Condition 2

o.next[s1] = o.next[s0] && o.val[s1] = o.val[s0]

all o: List | l.first[s1] = l.first[s0] -- Frame Condition 3

-- l.first.next = m.first.next

...

-- m.first.next = temp

...

}

}, { -- else

s2 = s0

}

}

Figure 2-5: Local Representation of State for the SwapTail procedure

states that the value of the val field does not change for l.first[s], since we are
only changing its next field. The second one says that for all ListElems other than
l.first[s], their next and val fields remain the same. The last condition states
that the first field remain the same for all Lists.

For each statement, a new State atom is needed to hold the new state. The
number of atoms required for State can therefore be very large, in the order of
hundreds for a Java procedure, clearly beyond what the Alloy Analyzer can handle.
This idiom therefore suffers from the scope-induced explosion problem, where one or
more types require a large scope.

Moreover, frame conditions are not small: when updating one field, one must
explicitly say that all other fields remain the same. The analysis would be more
efficient if each update required fewer additional constraints.

2.5.2 Modelling Object References Explicitly

In the next idiom we discuss, object references are modelled explicitly (Figure 2-
6). There are two main signatures Object and Ref. All classes are represented as
subtypes of Object, and all class fields contain Refs instead of other objects. For

30

example, List has a field first which is of type ListElemRef and not ListElem

itself. The state of the heap is described by the signature State, which has two
fields: a set of references, and a map from references to objects.

A special signature NullRef represents null in Java, and corresponds to the empty
reference. To express field dereferencing such as e.g. l.first.next, one writes

l.(s.obj).first.(s.obj).next.(s.obj),

where l is a ListRef, s is a State, and the result of that expression is a ListElem

object.
Having explicit references makes it easier to write frame conditions. These are now

generic, and indicate what set of references map to the same objects in obj. Each
assignment statement in swapTail is followed by a modifies constraint, which is a
frame condition expressing what does not change as a result of the update. The body
of modifies simply states that all the references not included in its rs parameter
map to the same object in the post state. When updating a field, one no longer needs
to write explicitly that all other fields remain the same.

On the other hand, this scheme also suffers from the scope-induced explosion
problem. For each statement, a new State atom is needed, making its required scope
very large. Another disadvantage is that the obj field in State is very large, since it
maps all references, and it is expensive to have a universal quantifier over this relation
every time there is an update.

2.5.3 A Look Ahead

The idioms described in the previous sections have their advantages. The explicit
reference encoding makes frame conditions generic, simplifying modelling for the user.
It also models null explicitly with a nullRef signature, and allows sets to contain
null values. It is more expressive, in that sense, than the local-state encoding, or
the one we present in the next chapter. It has been successfully used to model
object interactions [15]. The local state encoding has been used for specifying a key
management protocol [39], and is convenient when small traces (i.e. sequence of
states) are sufficient. Both idioms are easy to read, but result in inefficient analysis
when modelling large fragments of code, due to the scope-induced explosion problem.

In the next chapter, we will see an encoding that avoids the scope-induced explo-
sion problem entirely, and requires small frame conditions. It is based on transforming
the code to a form similar to Single Static Assignment (SSA) [4]. It results in Alloy
models that are not very readable, but since our analysis technique is automated, it
is not necessary for intermediate models to be human-readable.

31

sig Object {}

sig Ref {}

static disj sig NullRef extends Ref {}

sig NoRef extends Ref {}

fact { no NoRef }

sig State {

refs: set Ref,

obj: refs ->? Object

}

fact {

all s: State, r: Ref | r = NullRef <=> no r.(s.obj)

}

disj sig ListElemRef extends Ref {}

disj sig ListElem extends Object {

val: int,

next: ListElemRef

}

disj sig ListRef extends Ref {}

disj sig List extends Object {

first: ListElemRef

}

fun swapTail(s0, s1, s2: State, l, m: ListRef){

l.(s0.obj).first != NullRef && m.(s0.obj).first != NullRef => { -- if

some temp: ListElem {

-- temp = l.first.next

...

-- l.first.next = m.first.next

l.(s0.obj).first.(s0.obj).next.(s1.obj) =

m.(s0.obj).first.(s0.obj).next.(s0.obj)

modifies(s0, s1, l.(s0.obj).first.(s0.obj).next) -- Frame Condition

-- m.first.next = temp

...

}

}, { -- else

modifies(s0, s2, noRef)

}

}

fun modifies(pre, post: State, rs: set Ref){

all r: pre.refs - rs | r.(pre.obj) = r.(post.obj)

}

Figure 2-6: Modelling Object References Explicitly for the SwapTail procedure

32

Chapter 3

From Java to Alloy

In the previous chapter, we saw that common Alloy idioms for expressing object-
oriented code suffer from the scope-induced explosion problem, and large frame con-
ditions. In this chapter, we present an encoding that overcomes these efficiency issues.

We first present the encoding for a small subset of Java, and then show how it
may be extended to handle different features of the language: method calls, primitive
types, arrays, subclasses, and exceptions. The chapter closes with a presentation of
how we handle the Java API.

3.1 Basic Encoding

In this section we present the translation of a small subset of Java to Alloy. It
includes: classes, objects, field dereferencing, assignments, if-then-else statements,
return statements, and while loops.

3.1.1 Illustration

We illustrate our encoding of objects and the heap on a small example. Consider
again the swapTail procedure reproduced in Figure 3-1, which takes two linked lists
and swaps their tails. We use our analysis to check whether the swapTail procedure
preserves the property that its inputs are acyclic. We write the Alloy specification
shown in Figure 3-2. The function specification states that: if l and m are acyclic
in the pre state, then m is also acyclic in the post state.

The auxiliary function Acyclic defines the constraint that a list is acyclic, by
stating that for all ListElems e reachable from x.first included, e is not reachable
from itself.

When we run our prototype tool with 2 heap cells per type and 1 iteration, we
obtain a counterexample (Figure 3-3). Black circles represent heap cells of type List,
and white ones of type ListElem. These are labeled with atom names LA0, LA1, EA0,
and EA1. Arrows represent fields. In the pre-state, list m is a list of one element, and
l of two, and they share an element. In the post-state, m is a list with an element
whose next field points to itself, and is therefore cyclic, violating the specification.

33

0
1

2
3
4

class ListElem {

int val;

ListElem next;

}

class List {

ListElem first;

static void swapTail(List l, List m){

if (l.first != null

&& m.first != null) {

ListElem temp = l.first.next;

l.first.next = m.first.next;

m.first.next = temp;

}

}}

Figure 3-1: Code for swapTail revisited

fun Acyclic(s: S, x: List) {

all e: x.(first.s).*(next.s) | e !in e.^(next.s)

}

fun specification() {

Acyclic(pre, l) && Acyclic(pre, m) => Acyclic(post, m)

}

Figure 3-2: Specification for swapTail

post state

EA0

LA0

EA1

LA1

pre state

EA1EA0

LA1LA0

l m l m

Figure 3-3: Counterexample for swapTail

34

0

1

2

3

4

l.first != null &&

m.first != null

temp = l.first.next

l.first.next = m.first.next

m.first.next = temp

l.first == null ||

 m.first == null

Figure 3-4: Computation Graph for swapTail

In the following sections, we will see how a procedure such as swapTail is encoded
in Alloy. We translate a Java procedure into an Alloy model whose instances represent
execution traces. We first construct a computation graph, then rename variables to
encode state, and finally obtain formulas encoding the control and data flow.

3.1.2 Extracting a Computation Graph

To encode a Java procedure in Alloy we start by constructing a computation graph,
which is a directed acyclic graph (DAG), whose nodes represent control points of the
procedure, and whose edges are labeled with Java statements and conditions. The
computation graph is essentially a standard control flow graph (CFG) where all loops
have been unwound up to a parameter provided as input by the user. For example,
one unrolling of:

a; while(p) s; b

gives the graph one would obtain as the standard CFG of:

a; if(p) s; assert !p; b.

The computation graph represents all the executions that terminate while going
around the loops no more times than the parameter provided by the user for loop
unwindings. Any other execution is not represented, and some errors may therefore
be missed. But that is the tradeoff we make: our analysis technique cannot find all
the bugs, but the ones it finds are not spurious.

Figure 3-4 shows the computation graph for the swapTail procedure. The edge
between nodes (0) and (4) is traversed when the condition of the if statement is false.

35

if (n > 0)

n = n + 1

n = 2*n

Figure 3-5: Small fragment of code

if (n0 > 0)

n1 = n0 + 1

n2 = φ(n0, n1)

n3 = 2*n2

Figure 3-6: Small fragment of code in SSA form

3.1.3 Variable Renaming in the Computation Graph

To avoid scope-induced explosion and having a State signature as in the idioms of the
previous chapter, our solution consists of renaming variables and fields when they are
updated. For this reason, we call our encoding name replication. We use a technique
similar to single-static assignment (SSA) [4] used in compiler optimizations. The next
two sections explain both SSA, and our variant of it.

Single Static Assignment

SSA makes dataflow information explicit in a CFG by having multiple instances of
the same variable. In every assignment to a variable v, v gets a fresh name, and every
use of v is renamed to reflect the instance whose definition covers that control point.
Thus a fragment of code is in SSA form if every use of a variable can be traced back
to a single definition.

Consider the sample code shown in Figure 3-5. The first assignment to n gets a
fresh name n1. Assume the instance of n prior to this fragment of code is n0. The
use of variable n in the second assignment can be either renamed to n0 or n1, and
the question is how does that get resolved.

SSA solves this issue by introducing φ-functions as shown in Figure 3-6. These are
inserted at join points as a way of unifying instance names. A φ-function for variable
v is needed at a join point, if there are two or more incoming paths containing
assignments to v. It has a parameter vi for each of these paths, and its meaning is
the ith parameter if the corresponding incoming path is executed. In the example,
φ(n0, n1) is either n0 or n1 depending on which path is executed.

Name Replication

We rename variables as in the SSA form, but we also rename fields when they are
updated. This will help curb the scope-induced explosion problem, as we shall see
in Section 3.1.9. We need the renaming to be such that no path in the computation
graph has two updates to the same variable or field instance. So parallel paths may
share names, and we reuse them whenever possible.

36

0

1

2

n0 > 0

n1 = n0 + 1

!(n0 > 0)

4

n2 = 2*n1

n1 = n0

Figure 3-7: Renamed computation graph for small fragment of code

Renaming is done by providing an index for each variable at each node in the
computation graph. In what follows we use vi to denote the name of variable v at
node i. Figure 3-7 shows the renamed computation graph for the small fragment of
code of Figure 3-5. In this example, we have n1 = n0 and n2 = n1.

We do not use φ-functions, but instead attach frame conditions to edges in order
to unify names at join points. If the name of a variable or field is the same on two
joining branches, then the frame condition is not needed. In Figure 3-7, the box
shows the additional frame condition: n1 is set to be equal to n0, since n was not
modified on that path.

In general, when an edge connects nodes i and j that assign a different index to a
field or variable v, but v is not modified by the statement associated with the edge,
we produce the frame condition:

vj = vi

Figure 3-8 shows the renamed computation graph corresponding to the swapTail

procedure. The additional frame conditions are temp1 = temp0 and next2 = next0,
since temp and next are not updated on that branch.

3.1.4 Encoding the State

Given a renamed computation graph, we model the state in Alloy as follows. A field
of type t appearing in class c is represented by a partial function from c to t for
each program point. Local variables and formal parameters are modelled as optional
singleton sets.

The null value in Java is represented as an empty set in the case of variables1.
Moreover the field of an object is null, if its corresponding partial function does not

1This representation of null is convenient, but has the undesirable side-effect that Java collections
may not include a null value.

37

0

1

2

3

4

l0.first0 != null &&

m0.first0 != null

temp1 = l0.first0.next0

l0.first0.next1 = m0.first0.next0

m0.first0.next2 = temp1

l0.first0 == null ||

 m0.first0 == null

temp1 = temp0

next2 = next0

Figure 3-8: Renamed Computation Graph for swapTail

static sig state {

first0 : List ->! ListElem

next0, next1, next2: ListElem ->! ListElem

val0 : ListElem ->! int

l0, m0 : option List

temp0, temp1 : option ListElem

E_01, E_12, E_23, E_34, E_04: option Bit

}

Figure 3-9: Modelling state for the swapTail procedure

map that object.
The state encoding for swapTail is shown in Figure 3-9. It is encapsulated in a

signature, state, which is static, meaning that it only has one atom.

Naming Edges

Additionally, the state includes a boolean variable for each edge, which is true if and
only if that edge is traversed in an execution. This facilitates the encoding for the
control and data flow, but it also serves as useful feedback to the user. When an
instance is found, the edge variables that are true indicate what path was taken.

Booleans are represented by the type Bit, which has a single atom. A variable of
this type may either contain that atom or not. If it does, it represents the boolean
value true, and false otherwise.

Figure 3-9 shows the edge variables for swapTail. We write Eij to denote the
variable for the edge from node i to node j. For example, E23 represents variable
E_23 in this figure.

38

E_01 || E_04 &&

E_01 => E_12 &&

E_12 => E_23 &&

E_23 => E_34

Figure 3-10: Control flow encoding for the swapTail procedure

3.1.5 Encoding Control Flow

Now that we have an encoding for the state, we give Alloy formulas that represent
the control and data flow of the procedure. The control flow is given by a formula
that captures when an edge is traversed. For each node i, let in(i) be the set of nodes
having an outgoing edge to i, and out(i) the set of nodes having an incoming edge
from i. For each node i, we produce2:

∨{Eji|j ∈ in(i)} ⇒ ∨{Eik|k ∈ out(i)}

These mean that if some node’s incoming edge is traversed then some of its outgoing
edges are also traversed. The formula encoding the control flow is the conjunction of
these formulas.

For the first node in the computation graph (i = 0), where in(i) is empty, we also
conjoin the formula:

∨{Eik|k ∈ out(i)}

Infeasible paths are ruled out because some of the edges are labeled with control
predicates, and these appear in the formula that encodes the data flow presented
below. Note that if more than one outgoing edge is traversed, the constraint solver
may generate an instance corresponding to more than one execution. But all these
executions are feasible. Which one is presented to the user is a question of tool design.
In the case of swapTail, the formula encoding control flow is shown in Figure 3-10.

3.1.6 Encoding Data Flow

We encode the data flow for each edge with a formula that indicates how variables are
related before and after the execution of the statement corresponding to that edge.
For each edge e from node i to j, we produce a formula:

Eij ⇒ t

where t is the translation of the Java statement corresponding to e into Alloy. These
mean that whenever e is traversed, the effect of the Java statement encoded by t is
observed. The formula that encodes the data flow is then the conjunction of these
formulas.

2The construct ∨{· · ·} denotes the disjunction of a set of formulas.

39

S : JavaStatement → Node → Node → AlloyFormula
P : JavaPredicate → Node → Node → AlloyFormula
E : JavaExpr → Node → AlloyExpr

1. S[v = null] i j ≡ no vj

2. S[v = e] i j ≡ vj = E [e] i

3. S[e.f = null] i j ≡ no (E [e] i).f j

&& (all o : O − (E [e] i) | o.f j = o.f i)

4. S[e.f = t] i j ≡ (E [e] i).f j = E [t] i

&& (all o : O − (E [e] i) | o.f j = o.f i)

5. S[return e] i j ≡ result = E [e] i

6. P [e1 == null] i j ≡ no E [e1] i

7. P [e1 == e2] i j ≡ E [e1] i = E [e2] i

8. P [!p] i j ≡ !(P [p] i j)

9. P [p && q] i j ≡ P [p] i j && P [q] i j

10. E [v] i ≡ vi

11. E [e.f] i ≡ (E [e] i).f i

Figure 3-11: Translation rules for encoding the data flow

40

E_01 => some l0.first0 && some m0.first0

E_04 => no l0.first0 || no m0.first0

E_12 => temp1 = l0.first0.next0

E_23 => l0.first0.next1 = m0.first0.next0 &&

all o: ListElem - l0.first0 | o.next1 = o.next0

E_34 => m0.first0.next2 = temp1 &&

all o:ListElem-m0.first0 | o.next2 = o.next1

Figure 3-12: Data flow encoding for the swapTail procedure

The translation rules for Java statements are given in Figure 3-11. The translation
function S is applied to Java statements, P to the predicates of branching statements,
and E to expressions.

Recall that null is represented as the empty set. The first rule gives the transla-
tion for assigning null to a variable. The instance of that variable corresponding to
the node after execution of the assignment (j) is equated to the empty set. Rule 2 is
for the case when we are assigning an expression that is not the null literal.

Rule 3 and 4 give the translation for updating a field. Rule 4 equates the value
of the expression t at node i with the value of the field f at node j of the object
denoted by e at node i. It also adds a frame condition saying that the f field of no
other object changes.

Rule 5 gives the translation of a return statement. A special Alloy variable
result is used to hold the return value. The control flow resulting from a return

is also handled in the computation graph. Rules 6 through 9 give the translation
of Java predicates. The figure does not show logical Or, but its rule is similar to
logical And. Finally rules 10 and 11 translate Java expressions: a variable becomes
one appropriately renamed, and a field dereference becomes a relational image with
a renamed field.

Figure 3-12 shows the data flow encoding for the swapTail procedure. The frame
condition

all o: ListElem - l0.first0 | o.next1 = o.next0

means that for all ListElems other than l0.first0, the next relation remains the
same.

3.1.7 Frame Conditions

Recall that renaming the computation graph also had the effect of adding frame
conditions to some of the edges. When an edge from node i to j is also labeled with
a frame condition of the form vj = vi for some variable v, we produce the formula:

Eij ⇒ vj = vi

In the case of swapTail, the additional frame condition is

E_04 => temp1 = temp0 && next2 = next0

41

fun Acyclic(s: S, x: List) {

all e: x.(first.s).*(next.s) | e !in e.^(next.s)

}

fun specification() {

Acyclic(pre, l) && Acyclic(pre, m) => Acyclic(post, m)

}

Figure 3-13: Specification for swapTail - revisited

In summary, there are two kinds of frame conditions in our encoding. The first
is the one we just described. The second appears after every update of a field,
and concerns only that field. Thus our frame conditions are small for updates, and
possibly not at join points: they may involve many variables and fields. To alleviate
this problem we do not generate frame conditions at joins for some variables whose
values are not needed beyond that point in the computation graph. In practice, this
optimization improves the efficiency of the analysis.

3.1.8 Putting It All Together

We now explain how a procedure’s encoding is combined with the specification file.
We reproduce the specification for swapTail in Figure 3-13.

For the convenience of the user, our technique defines pre and post fields for
each class, to hide the indices in the computation graph. The glue between the
specification file and the encoding for the procedure is shown in Figure 3-14. Signa-
ture S has two disjoint subsignatures pre and post, which are used to parameterize
fields. The signature List, for example, has a field first of type ListElem -> S.
So l.(first.pre) denotes accessing the first field of List l in the pre state.

The signature definitions are followed by a fact that makes the correspondence
between these fields and the ones declared in the state. For example, it states that
next.post is the same as next2. The $ symbol is used to specify a field: List$first
denotes the first field of List.

To allow the user to talk about the parameters of the procedure to be verified, we
add the variables l and m, of type List -> S, to the state signature. We set these
equal to l0 and m0 appropriately.

Figures 3-15 and 3-16 put together all the pieces of the encoding for swapTail, as
well as its specification and the constraints needed to connect the two. The notation
with state is an Alloy shorthand that helps to avoid preceding all fields with state.
The Alloy function named assertion conjoins the encoding and the negation of the
specification.

The last line in Figure 3-16 asks the Alloy Analyzer to produce an instance for
assertion given a scope of 2 for all signatures. The result is the counterexample we
saw before, reproduced in Figure 3-17.

42

sig S {}

disj static pre extends S {}

disj static post extends S {}

sig ListElem {

val: int -> S,

next: ListElem -> S

}

sig List {

first: ListElem -> S

}

fact {

List$first.pre = state$first0

List$first.post = state$first0

ListElem$next.pre = state$next0

ListElem$next.post = state$next2

ListElem$val.pre = state$val0

ListElem$val.post = state$val0

state$l = state$l0

state$m = state$m0

}

Figure 3-14: Auto-generated Alloy signatures for connecting the specification to the
procedure’s encoding

3.1.9 Advantages over Common Idioms

No scope-induced explosion

The name replication encoding avoids types that require large scopes, by introduc-
ing more variables. There is no explicit representation of state objects. These are
eliminated by introducing different instances of variables and fields.

To see how, consider a variable v of type V. In the local-state idiom, v is represented
with a relation v: State -> V. To express the value of v in a state s1, one writes
v[s1]. In the name replication encoding, v simply gets renamed to v1, and there is
no longer a need to represent state s1 explicitly.

Our encoding therefore does not run in the scope-induced explosion problem,
which results from representing state objects explicitly. The tradeoff is that it requires
more Alloy variables. This is not a problem, however, because its representation in
propositional logic is more compact than the ones for the common idioms, as we shall
see shortly.

Small frame conditions

Frame conditions are additional constraints that are added to a model. They are
more expensive to analyze if they involve more formulas. This can be the case if
there is a universal quantification over a type with a large scope. This is because the

43

sig Bit {}

sig S {}

disj static pre extends S {}

disj static post extends S {}

sig ListElem {

val: int -> S,

next: ListElem -> S

}

sig List {

first: ListElem -> S

}

fact {

List$first.pre = state$first0

List$first.post = state$first0

ListElem$next.pre = state$next0

ListElem$next.post = state$next2

ListElem$val.pre = state$val0

ListElem$val.post = state$val0

state$l.pre = state$l0

state$l.post = state$l0

state$m.pre = state$m0

state$m.post = state$m0

}

static sig state {

first0 : List ->! ListElem

next0, next1, next2: ListElem ->! ListElem

val0 : ListElem ->! int

l0, m0 : option List

l, m : List -> S

temp0, temp1 : option ListElem

E_01, E_12, E_23, E_34, E_04: option Bit

}

Figure 3-15: Alloy model for the swapTail procedure - Part 1

44

fact encoding { with state {

//Control Flow

E_01 || E_04

E_01 => E_12

E_12 => E_23

E_23 => E_34

//Data Flow

E_01 => some l0.first0 && some m0.first0

E_04 => no l0.first0 || no m0.first0

E_12 => temp1 = l0.first0.next0

E_23 => l0.first0.next1 = m0.first0.next0 &&

all o: ListElem - l0.first0 | o.next1 = o.next0

E_34 => m0.first0.next2 = temp1 &&

all o:ListElem-m0.first0 | o.next2 = o.next1

//Additional Frame Condition

E_04 => next2 = next0 && temp1 = temp0

}}

fun Acyclic(s: S, x: List) {

all e: x.(first.s).*(next.s) | e !in e.^(next.s)

}

fun specification() { with state {

Acyclic(pre, l) && Acyclic(pre, m) => Acyclic(post, m)

}}

fun assertion() { encoding() && ! specification() }

run assertion for 2

Figure 3-16: Alloy model for the swapTail procedure - Part 2

post state

EA0

LA0

EA1

LA1

pre state

EA1EA0

LA1LA0

l m l m

Figure 3-17: Counterexample for swapTail - revisited

45

Analyzer unwinds a universal quantifier internally into a conjunction.
The frame conditions required by the name replication encoding are small for field

updates: they only concern the field being updated. At join points, this may not be
the case, since they can involve many variables and fields. We minimize these, by
not generating them for some variables whose values are not propagated beyond that
point, making this kind of frame condition local to code blocks.

This is an improvement over frame conditions for the local-state idiom, where
each update requires a condition on all other fields. The explicit-references encoding
has generic frame conditions, but they involve a universal quantifier over references,
which typically has a large scope, making the analysis less efficient.

Treatment of null

In the name replication encoding, null is represented by the empty set. This makes
the implicit references idiom more expressive, because null is represented by a special
nullRef signature instead, allowing sets and arrays to contain this value. We could
represent null with a special atom for each type. But this increases the number
of heap cells needed per class by one, making the analysis less efficient. We have
therefore opted for a less expressive encoding, but a more efficient one. The practical
consequence is that we can check bounded instances with higher scopes.

Tighter encoding in propositional logic

Our encoding has more relations than the common idioms, since each update produces
a new instance for a field. This is not a problem because, as we will see in this section,
it has nonetheless a tighter translation in propositional logic.

The next chapter will discuss how Alloy is translated to propositional logic. For
the purposes of this section, it suffices to know that a relation of type T → V is
represented by a matrix of |T | × |V | boolean variables, where |T | and |V | are the
scopes of T and V , respectively, and each variable represents whether or not there is
a mapping between corresponding atoms of T and V .

Consider a Java class C having k fields f1, · · · , fk of types T , and a procedure
manipulating these. Assume that |C| = |T | = n. Each path of the computation
graph for the procedure has a number of updates to some of these fields. Let ui be
the maximum number of updates to field fi over all paths, and u =

∑k
i=1 ui. Let s be

the maximum number of updates over all paths. We have that s ≥ Maxiui, because
s accounts for all updates to field fj such that uj = Maxiui.

• In the local-state idiom, the fields become k relations of type:

C → State → T

The number of State atoms required is the same as the maximum number of
updates to any field over all paths. So |State| = s. The number of boolean
variables required to represent a relation of this type in propositional logic is
sn2. So the total number of boolean variables over all the fields is: ksn2.

46

Local-State ksn2 7350

Explicit Refs (4s + 2k)n2 9950

Name Replication un2 1800

Figure 3-18: Number of boolean variables needed, for a class C having k fields of type
T , for scope n, where the maximum number of times fi is updated over all paths is
ui, u =

∑k
i=1 ui, and s is the maximum number of times any field is updated over all

paths. On the right, actual numbers for insertion in red-black trees for 5 iterations
and scope 5.

• The idiom with explicit object references has a relation obj of type:

State → Ref → Object

In addition, it has k fields of type:

C → Ref

Since C and T must be subtypes of Object, its scope is 2n. In the worst
case, the number of references is the same as objects. The scope of State is
s as above. So the number of boolean variables required for this scheme is:
4sn2 + 2kn2 = (4s+ 2k)n2

• In our name replication encoding, field fi is represented by ui instances of type

state → C → T

Since state has scope 1, and is only used to encapsulate the state encoding, field
fi requires uin

2 boolean variables for all its instances. Summing this number
over all fields yields: un2.

Figure 3-18 summarizes the number of boolean variables required for each scheme.
Since s ≥ Maxiui, ks ≥

∑k
i=1 ui = u. Therefore ksn2 ≥ un2, and name replication

requires fewer boolean variables than local-state. This is because the representation
of each field in local-state grows larger with the total number of updates, including
those to other fields. Thus update information is shared across the representation of
fields.

On the other hand, name replication can require more variables than the explicit
references scheme. This happens when many updates happen in parallel paths and
s is much smaller than u. However, this is not the case in practice, and since s
also grows larger with updates to variables that are not even fields, it is actually
larger than u. For instance, for the insertion procedure in red-black trees presented

47

in Chapter 1, k = 3 (left, right, parent). For 5 iterations we have: s = 98, and
u = 72. The right column of Figure 3-18 shows actual numbers for n = 5.

In conclusion, the small analysis of this section gives evidence that even though
our scheme has more Alloy relations than the two idioms, it requires fewer boolean
variables in practice, and has a tighter encoding at the level of propositional logic.

3.2 Extensions

In this section, we extend our basic encoding to handle different features of the Java
language. Some features such as arrays, subclasses, and exceptions (except for de-
tecting null pointer dereferences), are not currently implemented in our prototype
tool, whose goal is to demonstrate the feasibility of the basic encoding and the op-
timizations for the common case of pointer manipulations. The sections on these
features indicate that they can be easily supported in our framework. Of course, the
tractability of the resulting analysis will remain to be seen. Other Java features such
as multi-threading, reflection and dynamic loading, built-in exceptions other than
null-pointer dereferences, are not supported and not discussed here.

3.2.1 Method Calls

In our technique, method calls are simply inlined. Recursion may be addressed by
unwinding in a similar way to loops, but out prototype tool does not handle it.

To avoid shadowing variable names, each call gets a unique identifier (call id), and
the local variables and parameters of the method are renamed using that identifier.
Additional constraints are added to set the formals equal to the actual parameters.
A special variable result holds the return value.

Constructors are inlined similarly, and the object created is held in a result

variable. They additionally need the following constraints:

• The result variable is set equal to this.

• All class fields not mentioned in the body are set to be null.

• The returned object is chosen to be fresh. This is done by maintaining a special
set, used, for each class, and constraining the new object not to be in this set.

Figure 3-19 shows a procedure that calls swapTail. Its computation graph is
shown in Figure 3-20. Procedure Main invokes three methods: constructor for List
(call id: 1), which also calls the constructor for ListElem (call id: 2), and swapTail

(call id: 3). Local variables and parameters of methods and constructors are labeled
with a call id, indicated with an underscore. For instance, i1_1 refers to parameter
i of the constructor for List.

The computation graph for the constructor of ListElem appears between nodes
1 and 6. It starts out by setting the formal parameter equal to the actual, which in
this case is i1_1 passed on from the constructor of List. Then it sets the values of
fields appropriately. Edge E_45 is labeled with a constraint that states that the newly

48

class ListElem {

int val;

ListElem next;

public ListElem(int i){

val = i;

}

}

class List {

ListElem first;

public List(int i){

first = new ListElem(i);

}

static void swapTail(List l, List m){

if (l.first != null

&& m.first != null) {

ListElem temp = l.first.next;

l.first.next = m.first.next;

m.first.next = temp;

}

}

void Main() {

List l = new List(1);

swapTail(l, l);

}

}

Figure 3-19: Procedure that calls swapTail

49

this0_2 != usedListElem0 &&

usedListElem1 = usedListElem0 +

this0_2

this0_2.val0 = i1_2

5

6

7

this0_2.next1 = null

8

i1_2 = i1_1

result_2 = this0_2

9

l1_0 = result_1

4

3

2

1

i1_1 = 1

first1_1 = result_2

this0_1 != usedList0 &&

usedList1 = usedList0 + this0_1

0

result_1 = this0_1

12

13

14

15

16

l1_3.first0 != null &&

m1_3.first0 != null

temp1 =

l1_3.first0.next1

l1_3.first0.next2 =

m1_3.first0.next1

m1_3.first0.next3

= temp1

l1_3.first0 == null ||

 m1_3.first0 == null

10

11

l1_3 = l1_0

m1_3 = l1_0

temp1 = temp0

next3 = next1

Figure 3-20: Computation graph for a procedure that calls swapTail

50

created object is fresh. Variable usedListElem0 holds all the ListElem objects that
are already in use in the heap. So this constraint simply says that this0_2 is not in
that set, and it updates the used set appropriately. Finally, edge E_56 sets the result
to be the same as this0_2. The computation graphs for the other calls are similar.

An edge label contains information about the file and the line number of the
statement or condition that edge represents. This is used to convey the trace back to
the user, when a counterexample is found.

3.2.2 Primitive Types

Our technique handles the primitive types boolean and int. As discussed before,
we represent booleans with the type Bit, which has one atom. The truth value is
then represented by testing for set-emptiness. So if b is a boolean, in Alloy, we write
some b to indicate that it is true, and no b that it is false.

Java ints are represented by a signature integer. This allows for a very small
number of ints – as many as the scope, but not necessarily in the range induced by
the scope. We support comparisons between integers but not arithmetic. It is possible
to incorporate a decision procedure for linear integer arithmetic in Alloy [30]. This
will allow decoupling the scope from the number of integers that can be handled, and
allow the analysis of arbitrary linear constraints over integers.

3.2.3 Arrays

Our technique has very limited support for integers. Its support for arrays is also
therefore limited, since it cannot handle arithmetic for index manipulation. In this
section we sketch how uni-dimensional arrays can be represented.
Arrays can be represented by Alloy functions ranging over non-negative integers:

• The length of the array is given by the cardinality of the function.

• An array initialization produces a constraint specifying the length of the array.

• Accessing the array is done by taking the relational image of the index.

• For each update of one of its elements, the array is renamed, and a frame
condition is added to state the values at other indices does not change.

3.2.4 Subclasses

In this section, we sketch how subclasses can be represented, as well as inheritance
and dynamic dispatch.

Java subclasses are represented in Alloy with subsignatures. Consider, for exam-
ple, the Java program shown in Figure 3-21. It consists of a class Point and two
subclasses TwoDPoint and ColorPoint, which inherit field x, and have additional
fields y and isRed, respectively. All classes define a method equals which tests for
equality by comparing respective fields.

51

public class Point {

int x;

public Point() {}

public Point(int x){

this.x = x;

}

public boolean equals(Point p){

return (x == p.x);

}

public boolean transistiveTest(Point p1, Point p2, Point p3){

boolean ret = false;

if (p1.equals(p2) && p2.equals(p3) && p1.equals(p3))

ret = true;

return ret;

}}

public class TwoDPoint extends Point {

int y;

public TwoDPoint (int x, int y){

this.x = x;

this.y = y;

}

public boolean equals(Point p){

if (x != p.x)

return false;

if (p instanceof TwoDPoint)

return (y == ((TwoDPoint)p).y);

return false;

}}

public class ColorPoint extends Point {

boolean isRed;

public ColorPoint (int x, boolean isRed){

this.x = x;

this.isRed = isRed;

}

public boolean equals(Point p){

if (x != p.x)

return false;

if (p instanceof ColorPoint)

return (isRed == ((ColorPoint)p).isRed);

return false;

}}

Figure 3-21: Example of code with a class hierarchy

52

sig Point {

x: integer

}

disj sig TwoDPoint extends Point {

y: integer

}

disj sig ColorPoint extends Point {

isRed: Bit

}

Figure 3-22: Example of Alloy representation of subclasses

Figure 3-22 shows the corresponding subtypes in Alloy. The signatures TwoDPoint
and ColorPoint are declared to be disjoint, since the intersection of subclasses in Java
is empty.

Field Inheritance

Field inheritance can be modelled naturally with subtypes in Alloy. For example,
if cp is of type ColorPoint, then the field dereferencing expression cp.x is simply
translated to the relational join expression cp.x. Since cp is in the set represented
by signature Point, then x is well-defined on it.

Method Inheritance and Dynamic Dispatch

In Java, each expression has an apparent type as well as an actual one [23]. The
apparent type is determined statically by the type checker based on type declarations.
The actual type is the one an expression has at a program point when the program
executes, and is possibly a subtype of the apparent one.

The procedure that is actually used in a method call depends dynamically on the
actual type of the receiver (dynamic dispatch). It is the one declared in the class
corresponding to the actual type, if it exists, and otherwise the one appearing in the
nearest parent class (method inheritance).

We model method inheritance and dynamic dispatch in Alloy by explicitly testing
for the type of the receiver and inlining all the possible computation graphs in parallel.
Given a receiver with apparent type T, and a method M called on it, we select the
declarations of M appearing in all the subtypes of T3, as well as in the nearest parent.
This gives a collection of computation graphs to be inlined. We then add a test for
the type of the receiver to each graph and include them in an if-then-else construct,
that does the tests starting from the subtypes that are farther away, to type T itself,
and finishing with the parent. Since subtypes in Alloy are simply subsets, checking
the type of an object is done in Alloy with set inclusion.

Figure 3-23 illustrates this by showing a fragment of the computation graph for
procedure Main of Figure 3-21.

3We assume that a type is a subtype of itself.

53

0

1

2

p2 in TwoDPoint

Computation

Graph for equals

declared in

TwoDPoint

3

4

p2 !in TwoDPoint

p2 in ColorPoint

Computation

Graph for equals

declared in

ColorPoint

p2 !in ColorPoint

5

6

p2 in Point

Computation

Graph for equals

declared in

Point

k

Figure 3-23: Computation graph for example with subclass hierarchy

54

0

1

3

 exc != null

exc in ExcType

Computation

Graph for body

of catch clause

exc = null

 exc == null

exc !in ExcType

2

e = exc

Figure 3-24: Computation graph for a catch block

3.2.5 Exceptions

To handle exceptions, we start with a computation graph whose method calls have
been inlined. We use special variables to hold exception objects, and we modify the
computation graph to accommodate exceptional control flow.

We introduce a signature Exception in Alloy and declare all exceptions to be its
subtypes. The translation rules of Figure 3-11 are modified to include:

S[throw e] i j ≡ E [exc] j = E [e] i

The variable exc represents the single live exception object, and has the same type.
Edges labeled with throw statements are connected to the nearest enclosing catch
clause, or to the exit point of the computation graph if none exists. The catch clause:

catch(ExcType e) { body }

gets the computation graph shown in Figure 3-24. First, there is a check to see if
an exception was thrown by testing the variable exc against null. Since null is the
empty set in our representation, this amounts to checking if exc is empty or not. The
second condition checks if the exception object is of the appropriate type, and if so
the body of the catch clause is executed, after setting the formal parameter equal
to exc. Finally, the exception variable is reset to null. Multiple consecutive catch

clauses get similar computation graphs connected together in series.

55

Detecting Null Pointer Dereferences

Null pointer dereference exceptions are handled in a similar way as user-defined ex-
ceptions. Consider the following fragment of code:

...

list = list.next;

...

We transform this code to the following:

...

if (list != null) list = list.next;

else throw new NullPointerException();

...

The throw statement is modeled in the computation graph as described above.

3.3 The Java API

In this section, we present how the Java API is handled in our analysis technique.

3.3.1 Overview

Instead of inlining method calls, we could instead replace them with an Alloy spec-
ification that describes their behavior. This avoids analyzing the body of the call,
and makes the analysis scalable. However, it has the disadvantage of requiring the
user to write such specifications, making the tool less practical. For the Java API,
these specifications are known ahead of time. So our technique has a number of them
built-in. In this section, we present the built-in specifications for java.util.Set,
java.util.Map, and java.util.Iterator.

Each built-in specification consists of two parts: some declarations in the state

sig, and a series of Alloy functions describing the behavior of specific methods. These
functions take on the general form:

methodName(field, field’: T -> U, ..., receiver: V, parameter: P,

..., result: R)

The function takes all the fields that it modifies as parameters. This is because at each
point when a call is made fields have been renamed, and the proper instances must be
passed. The function also takes a receiver, the formal parameters of the corresponding
method, and a result variable. The body of the function is a constraint relating all
these parameters together.

Since subtypes are substitutable for their supertypes, they must obey the same
specifications. We thus only give specifications for the interfaces.

56

3.3.2 java.util.Set

Figure 3-25 shows the specifications for java.util.Set. The state sig contains
declarations for instances of field elems, which hold the elements of each Set in
different states.

Following the sig declarations are specifications for various methods for Sets.
The function isEmpty takes an elems field, a Set s and a return value r. The body
of isEmpty says that if s has no elements then r is true, otherwise it is false.

The function add takes two instances of the elems field, for the pre and post

states, and a receiver Set s. It also takes an object o of type t, and a return value
r. The body says that the elements of s in the post state are the same as the ones
for s augmented with object o. If o is not already in s, then r is true, otherwise it
is false.

The function iterator returns a java.util.Iterator object, given a set s. In
addition to the parameters s, return value r, and relevant fields, it also takes param-
eters used and used’ of type set Iterator. These variables are needed whenever a
new object is created, and indicate what objects are in use in each state. The function
iterator takes these parameters since it creates a new Iterator object. Its body is
described further in Section 3.3.3.

The specification for java.util.HashSet (Figure 3-26) contains only specifica-
tions for constructors and all other specifications are the same as those for
java.util.Set.

It starts with a sig declaration, HashSet, to be a subtype of Set. The Java
HashSet() constructor gets translated to the Alloy function new, which takes param-
eters used, used’, and return object r containing the newly created HashSet. The
body of new simply says that r has no elements, and that it has not been previously
used.

Note that we do not support Sets that contain null as an element, because null

is represented as empty set.

3.3.3 java.util.Iterator

The Iterator sig is shown in Figure 3-27. It requires declarations of the fields elems
and seen, for the set of elements for this iterator, and those that have already been
returned, respectively. The body of the iterator function in the Set specification
(Figure 3-25), says that the Iterator r has the same elements as s, and its seen set
is empty. Moreover, r is a fresh object, it is not contained in used, but appears in
used’.

The function specification for iterators are defined similarly to those for sets.

3.3.4 java.util.Map

The signature Map (HashMap) is shown in Figure 3-28 (Figure 3-29). It requires
declarations of the field map, which hold the mapping of each Map object in each
state. The function declarations for Map are similar to those for Set.

57

sig state {

...

elems0, elems1, ..., elemsk: Set -> Object,

...

}

sig Set {

elems0, elems1, ..., elemsk: set Object

}

fun isEmpty(elems: Set -> Object, s: Set, r: boolean){

no s.elems => some r, no r

}

fun contains(elems: Set -> Object, s: Set, o: Object, r: boolean){

o in s.elems => some r, no r

}

fun add(elems, elems’: Set -> Object, s: Set, o: Object, r: boolean){

s.elems’ = s.elems + o

all e: Set - s | e.elems’ = e.elems

o !in s.elems => some r, no r

}

fun addAll(elems, elems’: Set -> Object,

s: Set, os: Set, r: boolean){

s.elems’ = s.elems + os.elems

all e: Set - s | e.elems’ = e.elems

os.elems !in s.elems => some r, no r

}

fun remove(elems, elems’: Set -> Object,

s: Set, o: Object, r: boolean){

s.elems’ = s.elems - o

all e: Set - s | e.elems’ = e.elems

o in s.elems => some r, no r

}

fun iterator(elems: Set -> Object, iteratorElems: Iterator -> Object,

seen: Iterator -> Object, used, used’: set Iterator,

s: option Set, r: option Iterator){

r.iteratorElems = s.elems

no r.seen

some r

r !in used

used’ = used + r

}

Figure 3-25: Specification for java.util.Set

58

disj sig HashSet extends Set {}

fun new(elems: Set -> Object, used, used’: set Set, r: HashSet){

some r

no r.elems

r !in used

used’ = used + r

}

Figure 3-26: Specification for java.util.HashSet

sig state {

...

elems0, elems1, ..., elemsn: Iterator -> Object,

seen0, seen1, ..., seenm: Iterator -> Object,

...

}

sig Iterator {}

fun hasNext(elems: Iterator -> Object, seen: Iterator -> Object,

i: option Iterator, r: option Bit){

i.elems !in i.seen => some r, no r

}

fun next(elems, elems’: Iterator -> Object,

seen, seen’: Iterator -> Object,

i: option Iterator, r: option Object){

r !in i.seen

r in i.elems

i.elems’ = i.elems

all e: Iterator - i | e.elems’ = e.elems

i.seen’ = i.seen + r

all e: Iterator - i | e.seen’ = e.seen

}

Figure 3-27: Specification for java.util.Iterator

59

sig state {

...

map0, map1, ..., mapn: Map -> Object -> Object,

...

}

sig Map {}

fun isEmpty(map: Map -> Object -> Object,

m: option Map, r: option Bit){

no m.map => some r, no r

}

fun containsKey(map: Map -> Object -> Object,

m: option Map,

o: option Object, r: option Bit){

some o.(m.map) => some r, no r

}

fun containsValue(map: Map -> Object -> Object,

m: option Map,

o: option Object, r: option Bit){

some o.~(m.map) => some r, no r

}

fun get(map: Map -> Object -> Object, m: option Map,

o: option Object, r: option Object){

r = o.(m.map)

}

fun put(map, map’: Map -> Object -> Object,

m: option Map, o: option Object,

v: option Object, r: option Object){

m.map’ = m.map ++ o -> v

all e: Map - m | e.map’ = e.map

r = o.(m.map)

}

fun remove(map, map’: Map -> Object -> Object,

m: option Map, o: option Object,

r: option Object){

m.map’ = m.map - o -> Object

all e: Map - m | e.map’ = e.map

r = o.(m.map)

}

fun clear(map, map’: Map -> Object ->Object, m: option Map){

no m.map’

all e: Map - m | e.map’ = e.map

}

Figure 3-28: Specification for java.util.Map

60

disj sig HashMap extends Map {}

fun new(used, used’: set Map, r: HashMap){

no r.map

r !in used

used’ = used + r

}

Figure 3-29: Specification for java.util.HashMap

61

Chapter 4

From Alloy to CNF

In this chapter, we discuss how the Alloy Analyzer translates Alloy to propositional
logic (Section 4.1), and how propositional logic is then translated to conjunctive nor-
mal formal form, which is the input format of off-the-shelf SAT solvers (Section 4.2).
This will serve as a preparation for the next chapter, which presents optimizations to
improve scalability.

4.1 From Alloy to Propositional Logic

Alloy is a first-order relational logic. In order to translate it to propositional logic,
the number of atoms per type must be bounded. This is given by the scope, which is
supplied to our analysis technique by the user, as the number of heap cells.

Given a scope for each type, the Alloy Analyzer first allocates a matrix of boolean
variables to each relation. Each of these boolean variables indicates whether a tuple
is contained in the set of tuples for that relation.

An Alloy expression is translated into a matrix of boolean formulas. Each of these
formulas is true if and only if the corresponding tuple is contained in the set of tuples
of the relation denoted by that expression. These formulas are obtained by combining
the matrices of sub-expressions following a given set of rules. To translate an Alloy
formula to propositional logic, the Analyzer combines the matrices of its expressions,
into a single formula. We present this translation more in detail in the following
sections.

4.1.1 Allocating Boolean Variables

We illustrate with the translation of the Alloy formula:

a.f = b,

where a is a set of type A, b a set of type B, and f is a binary relation from A to B.
For simplicity we assume that the scope of both A and B is n.

62

The Alloy Analyzer allocates a matrix of n2 boolean variables to binary relation
f :

f11 · · · f1n

· · · · · · · · ·
fn1 · · · fnn

where fij is true if and only if f maps atom i of its domain to atom j of its range.
Sets are degenerate relations. Set a is thus allocated n boolean variables:

a1

· · ·
an

and similarly for set b:

b1
· · ·
bn

4.1.2 Translating Expressions

After having allocated boolean variables to all relations in the formula, the analyzer
then proceeds to combine these matrices into matrices of boolean formulas. For
example, given set a, the relational image a.f of a under relation f , gets the matrix

(a1 ∧ f11) ∨ · · · ∨ (an ∧ fn1)
· · ·

(a1 ∧ f1n) ∨ · · · ∨ (an ∧ fnn)

which is the result of matrix multiplication, and states that atom i is an element of
a.f if and only if there is some atom j in a such that f maps j to i. Other Alloy
expressions are translated into matrices of boolean formulas in a similar way [14].

4.1.3 Translating Formulas

To translate formulas, the analyzer combines these matrices into a single propositional
formula. For example, the formula f = g, where f and g are binary relations, becomes:

(f11 ⇔ g11) ∧ · · · ∧ (f1n ⇔ g1n) ∧ · · · ∧ (fn1 ⇔ gn1) ∧ · · · ∧ (fnn ⇔ gnn).

which states that variables f and g denote the same set of tuples: tuple (i, j) is in f
if and only if it is in g.

63

The formula a.f = b then becomes the following conjunction:

((a1 ∧ f11) ∨ · · · ∨ (an ∧ fn1)) ⇔ b1 ∧
· · · ∧

((a1 ∧ f1n) ∨ · · · ∨ (an ∧ fnn)) ⇔ bn

4.2 From Propositional Logic to CNF

Once a propositional formula is obtained, the Alloy Analyzer then proceeds to trans-
late it to the input format of SAT solvers: conjunctive normal form (CNF), which
consists of a conjunction of disjunctions of literals (i.e. a propositional variable, or
its negation).

A simple way of doing this is to use distributivity laws. However, this results
in an exponential blow-up in the size of the formula. Instead, the Alloy Analyzer
uses a method due to to Plaisted and Greenbaum [32]. It consists of renaming each
subformula – except negations and atomic propositions – with a fresh propositional
variable. This causes an increase in the number of variables, but the size of the
formula increases only linearly. In order to preserve the satisfiability of the original
formula, a definition is conjoined for each new propositional variable. This definition is
dependent upon the polarity of the subformula, defined below. Given a propositional
formula ψ, we define in what follows ren(ψ), the resulting formula after renaming,
and then prove that it preserves satisfiability.

We write φ v ψ to say that φ is a subformula of ψ. A satisfying assignment S
to a formula is a set of pairs of propositional variables and truth values. We write
S(φ) to denote the truth value assigned to subformula φ by S. The notation ψ[V/φ]
means replacing subformula φ in ψ with V , where V is either a propositional variable
or a truth value.

4.2.1 Polarity and Formula Renaming

When we rename a subformula φ with a propositional variable L, we need to conjoin
a definition for L to the whole formula. This may be the following:

L ⇔ φ

This guarantees that satisfiability is preserved, because L and φ are forced to have the
same truth value. However, an equivalence (⇔) is expensive, since it results in two
implications, and it is possible to simplify this definition into a one-way implication,
given the notion of polarity. Informally, the polarity of a subformula indicates if
there is an even or an odd number of negations leading to it, starting from the root
of the syntax tree of the whole formula. The definition becomes an implication in one
direction, or the other, depending on the polarity.

Polarity The polarity of a subformula φ of ψ, denoted by pol(φ,ψ), is defined as

64

follows. If there is an equivalence formula1 φ′, such that φ v φ′ ∧ φ′ v ψ, then
pol(φ,ψ) = 0. Otherwise, if the number of negations plus the number of implications
φ1 ⇒ φ2 such that φ v φ1 is even (odd), then pol(φ,ψ) = 1 (−1).

Formula Renaming For each subformula φ in ψ to be renamed, we associate a literal
Lφ, and a definition formula Def(φ) defined as follows depending on the polarity of φ
relative to ψ:

Def(φ) =
Lφ ⇒ φ, if pol(φ,ψ) = 1
Lφ ⇐ φ, if pol(φ,ψ) = -1
Lφ ⇔ φ, if pol(φ,ψ) = 0

Let ψ′ denote the formula ψ with all subformulas renamed to their corresponding
literals. The formula ren(ψ) is given by ψ′ ∧

∧
φ Def(φ′).

Example Consider the formula ¬(A∨B)∨(C∧D). Subformula (A∨B) has polarity 1,
and (C∧D) polarity −1. We can rename these with variables L1 and L2, respectively,
and conjoin corresponding definitions, to obtain the renamed formula:

L1 ∨ L2 ∧
L1 ⇐ (A ∨B) ∧
L2 ⇒ (C ∧D)

A subformula of polarity 1 has the property that, if a satisfying assignment for the
whole formula assigns the truth value false to it, then that value is really a “don’t
care”. This means that if it is replaced with true, then the whole formula is still
satisfied.

Conversely, a subformula of polarity −1 has a similar property: if a satisfying
assignment assigns the true to it, then that value is really a “don’t care”.

In this example, consider the satisfying assignment that assigns false to both
(A ∨ B) and (C ∧ D). Then it is also a satisfying assignment for ¬(A ∨ B) ∨ true.
This explains why the one-way implication in L2 ⇒ (C ∧D) is adequate: if (C ∧D)
is true then L2 must also be true, but if is false, then L2 can be either true or false,
and the whole formula is still satisfied.

Property Let φ be a subformula of ψ with polarity 1 (-1). If S is a satisfying
assignment such that S(φ) = false (true), then S is also a satisfying assignment for
ψ[true/φ] (ψ[false/φ]).

Theorem A formula ψ is satisfiable if and only if ren(ψ) is satisfiable.

1An equivalence formula is one where the top-most node of its syntax tree is an equivalence.

65

Proof We show that renaming a single subformula φ preserves satisfiability. ren(ψ)
can then be obtained by a series of renamings. So we prove that ψ is satisfiable if
and only if ψ[Lφ/φ] ∧ Def(φ) is satisfiable.

Assume ψ is satisfiable and let S be a satisfying assignment. Then S∪{(Lφ,S(φ))}
is a satisfying assignment for ψ[Lφ/φ] ∧ Def(φ) regardless of the polarity of φ.

Now assume that ψ[Lφ/φ] ∧ Def(φ) is satisfiable and let S be a satisfying assign-
ment. We show that ψ is satisfiable as well, by cases:

• pol(φ,ψ) = 1, Def(φ) = Lφ ⇒ φ. If S assigns the same truth value to Lφ and φ,
then S is also a satisfying assignment for ψ. If S assigns false to Lφ and true
to φ. In the formula ψ[Lφ/φ], Lφ has polarity 1, so by the Property above, S
is also a satisfying assignment for ψ[Lφ/φ][true/Lφ]. But under the assignment
S, ψ[Lφ/φ][true/Lφ] = ψ. So S is necessarily also a satisfying assignment for
ψ.

• pol(φ,ψ) = -1, Def(φ) = Lφ ⇐ φ. Analogous to the case above.

• pol(φ,ψ) = 0, Def(φ) = Lφ ⇔ φ. In this case, S must assign the same truth
value to φ and Lφ, so it is also a satisfying assignment for ψ.

4.2.2 Example

Consider the subformula

(A ∧ B) ∨ (C ∧D) ∨ (E ∧ F) ∨ (G ∧H) ∨ (I ∧ J) ∨ (K ∧ L).

If we use distributivity laws to transform this to CNF, we obtain 64 clauses:

(A ∨ C ∨ E ∨G ∨ I ∨K)
(A ∨ C ∨ E ∨G ∨ I ∨ L)
(A ∨ C ∨ E ∨G ∨ J ∨K)
(A ∨ C ∨E ∨G ∨ J ∨ L)
(A ∨ C ∨ E ∨H ∨ I ∨K)
(A ∨ C ∨ E ∨H ∨ I ∨ L)
(A ∨ C ∨ E ∨H ∨ J ∨K)
(A ∨ C ∨ F ∨H ∨ J ∨ L)
(A ∨ C ∨ F ∨G ∨ I ∨K)
(A ∨ C ∨ F ∨G ∨ I ∨ L)

· · ·

66

Using Plaisted and Greenbaum’s method, we first rename the subformulas, and obtain
the following conjunction of formulas:

L1 ∨ L2 ∨ L3 ∨ L4 ∨ L5 ∨ L6

L1 ⇒ (A ∧ B)
L2 ⇒ (C ∧D)
L3 ⇒ (E ∧ F)
L4 ⇒ (G ∧H)
L5 ⇒ (I ∧ J)
L6 ⇒ (K ∧ L)

Each of the lines above can be easily translated to CNF:

(L1 ∨ L2 ∨ L3 ∨ L4 ∨ L5 ∨ L6)
(¬L1 ∨ A)
(¬L1 ∨ B)
(¬L2 ∨ C)
(¬L2 ∨D)
(¬L3 ∨E)
(¬L3 ∨ F)
(¬L4 ∨G)
(¬L4 ∨H)
(¬L5 ∨ I)
(¬L5 ∨ J)
(¬L6 ∨K)
(¬L6 ∨ L)

This has 13 clauses, instead of 64. In general, there is a linear increase in the size of
the formula, as opposed to an exponential one.

67

Chapter 5

Optimizations

A field declared in a class is modelled as a relation, but it always maps its object
to exactly one other object (or to null). In other words, the relation is functional.
Mathematically, this relation is a function. By exploiting this fact, we can optimize
different steps of the analysis, with the goal of reducing the number of variables and
clauses produced in the final CNF, and thus improving the SAT solver’s performance.

Our main idea is a compact representation for functions that requires fewer boolean
variables than the representation for general relations. Alone, however, this does not
reduce the number of variables in the CNF, because the step that translates proposi-
tional formulas to CNF adds intermediate variables, and counteracts the benefit of the
improved representation. To obtain a real benefit, we need two other optimizations:
first, a systematic introduction of variables in the first-order formula, and, second, a
series of logical simplifications in the propositional formula. In the next sections, we
describe how these optimizations work independently, and how they fit. But first, we
give a justification for why the size of the CNF is a good metric and why it is useful
to aim at reducing it.

5.1 Reducing CNF Size

It is generally hard to predict the efficiency of SAT solvers, and the best way to
validate an optimization is through empirical results. Indeed, the efficiency of a SAT
solver is dependent on the structure of the formula being analyzed. A large formula
may take a short time because the SAT solver can find a small inconsistent subset of
the clauses quickly, or deduce an inconsistency rapidly through resolution. A short
formula may take a long time because its structure may be more intricate.

A smaller CNF size does not always mean that the SAT solver will run faster.
Indeed there is a competition [34] for the smallest hard CNF. Moreover adding clauses
sometimes may improve efficiency. An example of that is one of Alloy’s optimizations,
symmetry-breaking predicates [36], that improve performance, while adding more
clauses. These work by restricting the structure of the formula, allowing the SAT
solver to converge faster.

However, there is a limit in terms of number of clauses and variables that state-

68

of-the-art SAT solvers can handle. Beyond that limit they take too long or take too
much memory regardless of the structure of the formula. Every boolean variable may
potentially double the run-time, since the SAT solver searches for a solution with that
variable having alternatively value true and false. It is therefore sensible to reduce
the number of variables. Moreover, 80% of the SAT solver’s time is spent doing unit
propagation1, which consists of going through the clauses and setting their literals to
true or false, after having made a decision on the value of one variable. This time
increases monotonically with the number of clauses. It is therefore also sensible to
reduce the number of clauses.

In the next sections we present semantics-preserving optimizations that allow a
tighter encoding of code in CNF both in terms of the number of variables and clauses.
The next chapter provides empirical evidence that they result in an improvement in
the run-time, and allow formulas previously unanalyzable to be analyzed.

5.2 Function Representation

A relation f that is a total function maps each atom in its domain to exactly one atom
in its range. By representing this atom as an integer in binary form, the encoding of
f requires only blog(n)c + 1 rather than n boolean variables in each row. Suppose
the tighter encoding of f is the matrix:

f11 · · · f1l

· · · · · · · · ·
fn1 · · · fnl

Not all relations in our encoding are functions. For instance, the transitive closure of a
field (which may appear in a specification) is not generally functional. Therefore, the
relational and functional representation must coexist. To achieve this, we transform
the tighter representation to the standard, n× n, by building the n× n matrix from
the n× (blog(n)c + 1) variables of the smaller matrix:

¬f11 ∧ · · · ∧ ¬f1(l−1) ∧ f1l ¬f11 ∧ · · · ∧ f1(l−1) ∧ ¬f1l · · ·
· · · · · · · · ·

¬fn1 ∧ · · · ∧ ¬fn(l−1) ∧ fnl ¬fn1 ∧ · · · ∧ fn(l−1) ∧ ¬fnl · · ·

where the formula at row i and column j is true if and only if row i in the compact
representation of f represents integer j. Note that since blog(n)c+1 bits can represent
more than n values, we must add a side condition that constrains each row of the
compact representation in such way that it represents an integer less than n.

If we incorporate this optimization in the Alloy Analyzer, this actually results in
an increase in the number of variables in the final CNF. This is because the step
that transforms propositional logic to CNF counteracts the gain of the compact rep-
resentation, by renaming all the formulas in the converted matrix with propositional

1This is according to the developers of Chaff [27], a state-of-the-art SAT solver.

69

variables (as described above in Section 4.2). So the resulting CNF has all the vari-
ables that it would have had without the compact representation, in addition to all
the ones the new representation introduces.

5.3 Introducing Alloy Variables

To avoid this problem, we first rename all subexpressions that are scalars, i.e. single-
ton sets, in the first-order formula. This breaks formulas into small subformulas that
are translated in a non-compositional fashion. Most subformulas that appear in the
translation of a fragment of Java code have the form:

v.f1. · · · .fk1
= u.g1. · · · .gk2

,

where v and u are scalars, and f1, · · · , fk1
, and g1, · · · , gk2

are functions encoding
fields. We rename subexpressions of the form a.f by introducing an Alloy variable b,
and conjoin definitions of the form b = a.f with the whole formula. Variable b is a
scalar since a is a scalar and f is a function. We obtain:

v1 = v.f1 ∧ · · · ∧ vk1−1 = vk1−2.fk1−1 ∧ u1 = u.g1 ∧ · · · ∧ uk2
= uk2−1.gk2

∧ vk1−1.fk1
= uk2

.

The next section describes logical simplifications that allow a formula of the form
a.f = b to be translated compactly to CNF without adding any additional propo-
sitional variables. The CNF’s for these formulas are then conjoined by taking the
union of their clauses. Introducing an Alloy variable for the subexpression a.f results
in blog(n)c+ 1 additional boolean variables. If this subexpression were translated to
CNF without the introduction of Alloy variables and logical simplifications, it would
result in at least n2 additional boolean variables, since all the elements of the product
(an n× n matrix) would be renamed.

5.4 Logical Simplifications

We now describe the logical simplifications that allow us to translate a.f = b com-
pactly to CNF, without introducing any additional propositional variables. They
take advantage of the fact that a scalar is represented by a collection of propositional
formulas having the property that exactly one of them is true. Informally, the first
two simplifications help because they push disjunctions down in the formula’s syntax
tree. Disjunctions are a source of blow-up when transforming to CNF, and their effect
is lessened if they are further away from the root.

70

Logical Simplification 1 Consider the formula:

(A1 ∧B1) ∨ · · · ∨ (An ∧ Bn) (5.1)

where the Ai and Bi (1 ≤ i ≤ n) are boolean formulas. If exactly one of the A
formulas is true, then it can be easily seen that (5.1) is logically equivalent to:

(¬A1 ∨B1) ∧ · · · ∧ (¬An ∨Bn) (5.2)

Logical Simplification 2 Consider the formula:

((A1 ∧B1) ∨ · · · ∨ (An ∧ Bn)) ⇔ C (5.3)

where Ai and Bi (1 ≤ i ≤ n) are boolean formulas. If exactly one of the A formulas
is true, then it can be easily seen that (5.3) is logically equivalent to:

(A1 ∧ (B1 ⇔ C)) ∨ · · · ∨ (An ∧ (Bn ⇔ C)) (5.4)

Our final simplification is specific to the representation of integers, and relies on
the fact that integers can be compared bit by bit.

Definitions A literal is either a propositional variable, or its negation of one.
Given a literal a, let var(a) denote the propositional variable corresponding to a,
and phase(a) be + (−) if a is var(a) (¬var(a)).

Logical Simplification 3 Let Ai (1 ≤ i ≤ n) be a collection of formulas of the
form ai

1 ∧ · · · ∧ ai
l, such that for all i, j, and for all k (1 ≤ k ≤ l),

var(ai
k) = var(aj

k), and let Bi be a similar collection. Consider the formula:

A1 ⇔ B1 ∧ · · · ∧An ⇔ Bn (5.5)

If exactly one of the Ai is true, and similarly for the Bi, and for all i and k,
phase(ai

k) = phase(bik), then it can be seen that (5.5) is logically equivalent to:

var(a1
1) ⇔ var(b11) ∧ · · · ∧ var(a1

l) ⇔ var(b1l) (5.6)

5.5 Using the Optimizations

Let us now see how these optimizations are applied in obtaining the CNF for
v.f1. · · · .fk1

= u.g1. · · · .gk2
.

We have seen that v.f1. · · · .fk1
= u.g1. · · · .gk2

can be transformed into a conjunc-
tion of k1 + k2 formulas of the form a.f = b. Let k denote k1 + k2. Since conjunction
of CNF can be obtained simply by taking union of clause sets, we can avoid variable
introduction and obtain a formula of size kα, if a.f = b can be represented with α
clauses.

71

In what follows, we compute α. Consider translating the formula a.f = b to CNF.
The variable a is a scalar and its compact representation requires l boolean variables:
a1 · · ·al, where l denotes blog(n)c+ 1, and n is the scope. Function f has a compact
representation having nl boolean variables: f11 · · · f1l · · · fn1 · · · fnl.

Converting the compact representation of a to the standard one results in a vector
of n elements. We use Ai to denote the formula on row i of this vector, and similarly
Bi for b. Function f ’s compact representation results in an n× n matrix, and we use
Fij to denote the formula at row i, column j.
The formula a.f = b can be translated as:

(A1 ∧ F11 ∨ · · · ∨ An ∧ Fn1) ⇔ B1

∧ · · · ∧
(A1 ∧ F1n ∨ · · · ∨An ∧ Fnn) ⇔ Bn

Exactly one of the Ai is true, so we can apply Logical Simplification 2:

A1 ∧ (F11 ⇔ B1) ∨ · · · ∨An ∧ (Fn1 ⇔ B1)
∧ · · · ∧

A1 ∧ (F1n ⇔ Bn) ∨ · · · ∨An ∧ (Fnn ⇔ Bn)

We can then apply Logical Simplification 1:

(¬A1 ∨ (F11 ⇔ B1)) ∧ · · · ∧ (¬An ∨ (Fn1 ⇔ B1))
∧ · · · ∧

(¬A1 ∨ (F1n ⇔ Bn)) ∧ · · · ∧ (¬An ∨ (Fnn ⇔ Bn))

After moving terms around and factoring, we obtain:

¬A1 ∨ ((F11 ⇔ B1) ∧ · · · ∧ (F1n ⇔ Bn))
∧ · · · ∧

¬An ∨ ((Fn1 ⇔ B1) ∧ · · · ∧ (Fnn ⇔ Bn))

Note that for all i, the formulas Fi1, · · · , Fin and B1, · · · , Bn satisfy the conditions of
Logical Simplification 3. So we apply it to obtain:

(¬A1 ∨ ((f11 ⇔ b1) ∧ · · · ∧ (f1l ⇔ bl)))
∧ · · · ∧

(¬An ∨ ((fn1 ⇔ b1) ∧ · · · ∧ (fnl ⇔ bl)))

The intuition behind this final formula is the following. If Ai is true, this means that
the ith atom is included in a, and since a is a scalar, that is its value. In that case,
the ith row of the compact representation of f – which contains the value mapped to
the ith atom – must be equal point-wise to that of b, since a.f = b.

This formula can be easily translated to CNF, since e.g. f11 ⇔ b1 is (f11 ⇒
b1) ∧ (f11 ⇐ b1), and the Ai are conjunctions, whose negations become disjunctions,
and can be easily distributed. Therefore, formula a.f = b results in 2nl clauses, and
no additional intermediate variables. The formula v.f1. · · · .fk1

= u.g1. · · · .gm results
in 2nlk clauses, and since we added k variables to break it down, it has lk intermediate
boolean variables.

72

Clauses Intermediate Variables

Non-Optimized (4k + 2)n2 + kn kn2 + kn

Optimized 2knblog(n)c+ k kblog(n)c + k

Figure 5-1: Number of clauses and intermediate variables for v.f1. · · · .fk1
=

u.g1. · · · .gk2
for scope n

Consider translating v.f1. · · · .fk1
= u.g1. · · · .gk2

to CNF, without using optimiza-
tions. Each subexpression of the form a.f results in a vector of n formulas, that are
disjunctions of n conjunctions. For each of these formulas, we introduce n proposi-
tional variables to rename the conjunctions, requiring 3 clauses each for their defini-
tions. We also introduce 1 variable to rename the whole formula, and its definition
requires n+1 clauses. So the subexpression a.f requires n(n+1) additional variables,
and n(4n + 1) clauses. Therefore there are n(4n + 1)k clauses and n(n + 1)k vari-
ables after the translation of each side of the equality. The equality itself adds 2n2

clauses. We obtain the numbers summarized in Figure 5-1. Some typical numbers
(see next chapter) are 58056 clauses in the optimized case vs 153259, and 13384 vari-
ables instead of 64575. These numbers were taken from the analysis of a procedure
manipulating red-black trees.

73

Chapter 6

Case Studies

In this chapter, we present a series of case studies to demonstrate the effectiveness
of our optimizations, and the usefulness of our technique. These case studies were
performed with a prototype tool, Jalloy, that implements our technique for the basic
subset of Java presented in Section 3.1. Jalloy has built-in specifications for the Java
API given in Section 3.3. It works by translating Java code directly to CNF using
the optimizations, using Alloy to translate the specifications to CNF, and conjoining
the two. All experiments were run on a 1.1GHz PentiumIII with 640MB of memory,
using the BerkMin SAT solver [10].

6.1 Red-black Trees

We visit again the red-black tree example presented in the introduction. The goal of
this case-study is to demonstrate the efficacy of the optimizations in practice.

6.1.1 Code

Recall red-black trees are binary search trees whose nodes have an additional at-
tribute, a color, which is either red or black. Each procedure manipulating red-black
trees must preserve some invariants regarding colors, that together maintain trees
that are roughly balanced.

Figures 6-1 and 6-2 reproduce an implementation of insertion in a red-black tree.
This code is a close transcription of pseudocode presented in a popular algorithms
book [6]. It contains two classes RBNode and RBTree, and procedure RBInsert, which
performs insertion.

The comment /@verify@/ indicates to the prototype tool which procedure to
check. A more sophisticated prototype could support writing specifications directly
in code as annotations, and would avoid the need for this comment. Our tool takes
the input parameters, the number of iterations and bound on the size of the heap, on
the command line.

74

class RBNode {

boolean isRed; int key;

RBNode right; RBNode left;

RBNode parent;

public RBNode(int i){

isRed = false; key = i;

}

}

class RBTree {

RBNode root;

void TreeInsert(RBNode z){

RBNode k = null;

RBNode x = this.root;

while (x != null){

k = x;

if (z.key < x.key) x = x.left;

else x = x.right;}

z.parent = k;

if (k == null) this.root = z;

else if (z.key < k.key) k.left = z;

else k.right = z;

}

void LeftRotate(RBNode z){

RBNode y = z.right;

z.right = y.left;

if (y.left != null)

y.left.parent = z;

y.parent = z.parent;

if (z.parent == null)

this.root = y;

else if (z == z.parent.left)

z.parent.left = y;

else

z.parent.right = y;

y.left = z;

z.parent = y;

}

void RightRotate(RBNode z){

// similar to LeftRotate, left and right swapped

}

Figure 6-1: Left and right rotation for red-black trees

75

// /@verify@/

void RBInsert(int i){

RBNode h = new RBNode(i);

this.TreeInsert(h);

h.isRed = true;

while (h != this.root && h.parent.isRed == true){

if (h.parent == h.parent.parent.left){

RBNode y = h.parent.parent.right;

if (y != null && y.isRed == true){

h.parent.isRed = false;

y.isRed = false;

h.parent.parent.isRed = true;

h = h.parent.parent;

} else {

if (h == h.parent.right) {

h = h.parent;

this.LeftRotate(h);

}

//h.parent.isRed = false; //bug seeded

h.parent.parent.isRed = true;

this.RightRotate(h.parent.parent);

}

} else { //same as above with

// left and right inverted

}

this.root.isRed = false;

}

}

}

Figure 6-2: Code for insertion in red-black trees

76

6.1.2 Specification

Each procedure manipulating red-black trees must preserve the following invariants:

1. If a node is red, then both of its children are black.

2. All paths from the root to a node with at most one child have the same number
of black nodes.

In order to check these invariants, the user writes a specification file (Figure 6-3).
Functions CorrectColors and IsBalanced express invariants 1 and 2 respectively.
Function Tree states some well-formedness conditions on a red-black tree: the parent
field must be acyclic, and left, right and parent fields must be set consistently.

The variables available to the user for writing specifications are the parameters of
the procedure to be checked and This if it is non-static. These variables are declared
in the state signature, and are made available to the user with the with state

construct.
Most functions typically take a parameter of type S that is an enumerated type

containing elements pre and post. These are used to indicate the state of a field.
For example, n.(left.pre) denotes the object pointed to by the left field of n in
the pre state.

6.1.3 Results

The results are shown in Figure 6-5. Times are in seconds.
Some experiments were done after injecting a bug by removing one line in the

code (indicated in Figure 6-2 by the comment bug seeded). In Figure 6-5, dashes
indicate either that the experiment took more than 10 minutes or that there was a
shortage of memory. The non-optimized experiments are done by translating a subset
of Java code to Alloy and uses the Alloy Analyzer equipped with BerkMin as well.
The number of iterations are generally picked to match the scope, since that will
allow a structure of that size to be traversed.

Some of these experiments result in a counterexample. For instance, the coun-
terexample corresponding to assertion CCAssertBis with the bug seeded, for scope
of 5 and 5 iterations, is reproduced in Figure 6-4. The numbers on each node indicate
the keys, and red nodes are shown in white. The counterexamples goes through 5
iterations to violate CCAssertBis.

The results show a considerable reduction in the number of clauses and variables
for the optimized case, a significant improvement in run-time, and the ability to check
larger instances.

They also show that the translation without optimization can obtain all the coun-
terexamples very rapidly. This was expected; a fundamental assumption of our work,
which we refer to as the small scope hypothesis, is that most bugs can be demonstrated
with small counterexamples. An empirical study [1] demonstrates that a scope of 6 is
enough to obtain full statement and branch coverage for a variety of benchmarks. Our
optimizations allow checking all properties with a scope of 6, which was not possible
before, and as high as scope of 8 in some cases.

77

fun Tree(s: S) { with state {

no (This.s).(root.s).(parent.s)

all r : (t.s).(root.s).*(left.s + right.s) {

r !in r.^(parent.s)

some r.(parent.s) => r in r.(parent.s).(right.s + left.s)

some r.(left.s + right.s) => r.(left.s) != r.(right.s)

some r.(right.s) => r.(right.s).(parent.s) = r

some r.(left.s) => r.(left.s).(parent.s) = r

}

}

}

fun CorrectColors(s: S) { with state {

all r: (This.s).(root.s).*(left.s + right.s) |

some r.(isRed.s) => no r.(right.s).(isRed.s) &&

no r.(left.s).(isRed.s)

}

}

fun CCAssert() { with state {

Tree(pre) && CorrectColors(pre) => CorrectColors(post)

}

}

fun CCAssertBis() { with state {

Tree(pre) && CorrectColors(pre)

&& IsBalanced(pre) => CorrectColors(post)

}

}

fun HasAtMostOneChild(r: RBNode, s: S){

no r.(right.s) || no r.(left.s))

}

fun IsBalanced(s: S) { with state {

all r1, r2: (This.s).(root.s).*(left.s + right.s) {

HasAtOneMostOneChild(r1, s) &&

HasAtOneMostOneChild(r2, s) =>

#{r: RBNode | r in r1.*(parent.s) && no r.(isRed.s)}

=

#{r: RBNode | r in r2.*(parent.s) && no r.(isRed.s)}

}

}

}

fun IBAssert() {

Tree(pre) && IsBalanced(pre) => IsBalanced(post)

}

fun specification() { CCAssert() }

Figure 6-3: Specification for red-black tree insertion

78

2

1 5

3

2

1 5

3

4

2

1 5

4

3

2

1 3

5

4

2

1 4

3 5

3

2 4

1 5

TreeInsert

LeftRotate

RightRotate

LeftRotate

RightRotate

Figure 6-4: Counterexample for Insertion in Red-Black trees - revisited

79

We can also increase the number of iterations to 20 and get an outcome within a
minute or two in most cases. For RBInsert, 20 iterations for each loop correspond
to 1540 lines of code. A state-of-the-art SAT solver can handle formulas with up
to about 300,000 clauses. These results suggest that a code fragment of 1500 lines
might be encodable within these limits. Of course, the tractability of the subsequent
analysis is another matter, and depends on the intricacy of the structure of the code.

assertion scope # iter counter? time opt clauses opt vars opt time clauses vars

CCAssert 2 2 no 0 6827 2218 0 15343 7638
3 3 no 0 14443 4201 0 40042 18727
4 4 no 3 35642 7887 20 82678 36316
4 10 no 4 79496 15033 82 188452 81148
4 20 no 13 152586 26943 – – –
5 5 no 22 58056 13384 232 153259 64575
5 10 no 43 102281 19854 506 283780 117344
5 20 no 25 190731 32794 – – –
6 6 no 159 85160 19659 – – –
6 10 no 198 126700 25247 – – –
6 20 no 514 230550 39217 – – –

IBAssert 2 2 no 0 7066 2310 0 15545 7694
3 3 no 0 16300 4816 0 41827 19281
4 4 yes 7 40950 9559 15 87654 37766
4 10 yes 25 84804 16705 87 193404 82574
4 20 yes 109 157894 28615 – – –
5 5 yes 12 87369 22109 52 182058 72853
5 10 yes 44 131594 28579 – – –
5 20 yes 144 220044 41519 – – –
6 6 yes 22 148548 38027 103 318908 121400
6 10 yes 49 190088 43615 – – –
6 20 yes 132 293938 57585 – – –
7 7 yes 141 240865 62127 – – –
7 10 yes 189 276652 66627 – – –

CCAssertBis 2 2 no 0 6867 2242 0 15537 7726
bug seeded 3 3 no 0 15165 4471 0 41172 19162

4 4 no 2 37886 8679 18 85840 37450
4 10 no 12 81302 15753 82 192286 82630
4 20 no 62 153662 27543 – – –
5 5 yes 18 75141 18608 65 172059 70344
5 10 yes 43 118921 25013 140 303460 123573
5 20 yes 100 206481 37823 – – –
6 6 yes 77 124936 31383 202 298686 116224
6 10 yes 82 166056 36915 – – –
7 7 yes 93 199567 50690 – – –
7 10 yes 239 234991 55145 – – –
8 8 yes 272 349823 82336 – – –
8 10 yes 641 386261 86216 – – –

Figure 6-5: Results for red-black tree insertion

80

6.2 Garbage Collection

In this section, we present an implementation of the Shorr-Waite garbage collection
algorithm. This was posed as a Challenge Problem at the 2001 Microsoft Summer
Institute1.

6.2.1 Code

The garbageCollector procedure takes a root node and a set of nodes constituting
a graph. It marks all nodes that are reachable from the root, collects all the unmarked
ones in a free list, and returns the first element of this list.

6.2.2 Specification

There are two correctness requirements:

1. The left and right fields of a node reachable from the root are not changed.

2. Any node on the free list is not reachable from the root.

Figure 6-7 shows these specifications. The helper function reachable defines what
it means for a node to be reachable from the root. Function reachablesUnchanged

states the first property above, and freeUnreachable the second one.

6.2.3 Results

Running Jalloy for a scope of 4 and 4 iterations on both properties results in no coun-
terexample. We now seed a bug in the code (indicated by the comment bug seeded),
and remove the part of the mark procedure that visits the right field of nodes.

We obtain the counterexample for the reachablesUnchanged property in 14 sec-
onds (Figure 6-8). It shows two nodes N0 and N2. N0’s right field points to N2, and
N2’s to itself. Left fields are null. Since right fields are not explored in the buggy
code, N2 does not get marked. It thus becomes the first element of freeList and
its right field gets set to null, violating the property that reachable nodes must not
change.

This case study illustrates the fact that Jalloy is easy to use, and its specification
language expressive enough to handle properties of interest. By ease of use, we mean
that no annotations beyond the property of interest were needed for the analysis.

6.3 Using Jalloy to Debug Jalloy

In this section, we present a case study where Jalloy was used to find a real bug,
unknown to the author, in the code of Jalloy itself. The bug was found in the following

1The code we consider here is written using loops and not recursion.

81

class Node {

boolean marked;

Node left;

Node right;

}

import java.util.*;

class GC {

// /@verify@/

public Node garbageCollector(Node root, Set nodes) {

Iterator t = nodes.iterator();

while(t.hasNext()){

Node node = (Node) t.next();

node.marked = false;

}

mark(root);

Node freeList = null;

Iterator r = nodes.iterator();

while(r.hasNext()){

Node node = (Node) r.next();

if (node.marked == false){

node.left = freeList;

node.right = null;

freeList = node;

}

}

return freeList;

}

// Marks all nodes that a reachable from "from".

private void mark(Node from) {

Set work = new HashSet();

work.add(from);

while(!work.isEmpty()){

Iterator t = work.iterator();

Node n = (Node) t.next();

work.remove(n);

if (!n.marked){

n.marked = true;

if (n.left != null)

work.add(n.left);

//if (n.right != null) //bug seeded

// work.add(n.right);

}

}

}

}

Figure 6-6: Code for the garbage collection algorithm

82

fun reachable(n: Node){with state {

n in (root.pre).*(left.pre + right.pre)

}

}

fun reachablesUnchanged() {with state {

all n: Node | reachable(n) => {

n.(left.pre) = n.(left.post)

n.(right.pre) = n.(right.post)

}

}

}

fun freeUnreachable(){with state {

all n: Node | n in (freeList.post).*(left.post) <=> !reachable(n)

}

}

fun specification(){

reachablesUnchanged()

}

Figure 6-7: Specification for the garbage collection procedure

pre state post state

N0

N2

N0

N2

freeList

Figure 6-8: Counterexample for assertion reachablesUnchanged

83

way. We first observed that some procedure did not have the required behavior.
However the calling context was too large for Jalloy to handle. We thus analyzed the
procedure against its preconditions and specification, to see if the problem came from
the procedure itself. Jalloy did not find a counterexample, which indicated that the
procedure was correct, and probably one of its preconditions was violated in the code.
By relaxing preconditions one by one, we observed different scenarios in which the
procedure broke, and that helped to pinpoint which precondition was not satisfied.

Our technique can be used in this fashion to get assurance that a procedure is
correct, but also to gain a better understanding of how a violations of its preconditions
affect behavior. Therefore the tool supports reasoning about code, a procedure at a
time.

6.3.1 Code

The code appears in Figures 6-9 and 6-102. Computation graphs are represented
with sets of edges. Each edge has a set of incoming edges, InEdges, and outgoing
ones, outEdges. Computation graphs are DAGs with a single entry and exit nodes.
We do not represent nodes explicitly. The starting edges are all those having no
incoming ones, and the final edges are those having no outgoing ones. The method
getFirstEdges returns takes a set of edges and returns those having no incoming
ones. Method getNextEdges also takes a set of edges, and returns the set of all of
their outgoing ones.

The method topologicalSort returns the topological sort of a set of edges that
represent a computation graph. It has a working set, current, which is initialized to
the initial edges of the graph. In each iteration, the elements of current are added,
in any order, to the vector ord, current is updated to be the next set of edges, and
the new current set is removed from ord. These next edges are then added back in
the next iteration to the end of the vector, thus respecting the partial order.

6.3.2 Specification

During regular testing, we observe that topologicalSort returns a vector that does
not have every edge appearing in the edges input parameter. So we write the speci-
fication of Figure 6-11 to check the following property:

• The vector returned, ord, has the same elements as the input parameter edges.

The specification makes use of field elems in the specification of java.util.Set,
which represents the set of objects contains in the collection.

The precondition function expresses some preconditions and well-formedness
constraints. Formula 1 says that outEdges is acyclic, and similarly for inEdges.
Formula 3 states that inEdges and outEdges must be consistent, and Formula 4

that if edge e is in edges, then so are its incoming and outgoing edges.

2In the experiment, we replaced the Vector type by Set, since Vectors are not supported by the
prototype tool. This is adequate for the specification we consider.

84

import java.util.*;

public class Edge {

Set inEdges;

Set outEdges;

public Edge(){

inEdges = new HashSet();

outEdges = new HashSet();

}

public boolean hasNoInEdges(){

return inEdges.isEmpty();

}

public static Set getFirstEdges(Set edges){

Set firstEdges = new HashSet();

Iterator t = edges.iterator();

while(t.hasNext()){

Edge e = (Edge) t.next();

if (e.hasNoInEdges())

firstEdges.add(e);

}

return firstEdges;

}

public static Set getNextEdges(Set edges){

Set nextEdges = new HashSet();

Iterator t = edges.iterator();

while(t.hasNext()){

Edge e = (Edge) t.next();

nextEdges.addAll(e.outEdges);

}

return nextEdges;

}

}

Figure 6-9: Code for Jalloy - Part 1

85

public class ComputationGraph {

Set edges;

///@verify@/

public Vector topologicalSort(){

Vector ord = new HashSet();

Set current = Edge.getFirstEdges(edges);

while(!current.isEmpty()){

ord.addAll(current);

current = Edge.getNextEdges(current);

ord.removeAll(current);

}

return ord;

}

}

Figure 6-10: Code for Jalloy - Part 2

The correct is the correctness condition: ord and edges must have the same set
of elements. The assertion checks to see if the precondition implies the correctness
condition.

6.3.3 Results

We check procedure topologicalSort for 2 iterations and a scope of 5, and obtain
no counterexample. If we comment out precondition 3, we obtain the counterexample
shown in Figure 6-12, where circles represent edge atoms, light arrows are inEdges

fields, and dark ones outEdges. The returned vector contains atom E4.
The current set is initialized to contain E4 since this has no incoming edges.

Because of the inconsistency between inEdges and outEdges, atom E3 is never added
to current, and therefore is missing from the output vector.

Going back to the context in which topologicalSort is called, we discover that
precondition 3 is indeed violated. The following helped in finding this bug:

• Getting confirmation that the procedure was right in itself.

• Writing the preconditions down.

• Relaxing preconditions to examine how the procedure breaks.

• Checking the calling code to see if preconditions are indeed violated.

86

fun precondition() {with state {

-- 1. outEdges are acyclic

Acyclic((outEdges.pre).(elems.pre))

-- 2. inEdges are acyclic

Acyclic((inEdges.pre).(elems.pre))

-- 3. inEdges and outEdges are consistent

all e1, e2: Edge | e2 in e1.(outEdges.pre).(elems.pre) <=>

e1 in e2.(inEdges.pre).(elems.pre)

-- 4. If e is in edges, then so are its inEdges and outEdges

all e: Edge |

e in (This.pre).(edges.pre).(elems.pre) =>

e.(outEdges.pre).(elems.pre)

in (This.pre).(edges.pre).(elems.pre) &&

e.(inEdges.pre).(elems.pre)

in (This.pre).(edges.pre).(elems.pre)

}

fun correct() {with state {

(ord.post).(elems.post) = (This.pre).(edges.post).(elems.post)

}

}

fun assertion() { precondition() => correct() }

fun specification() { assertion() }

fun Acyclic [t] (r: t -> t) {no x: t | x in x.^r}

Figure 6-11: Specification for Jalloy

E3

E4

outEdgeinEdge

Figure 6-12: Counterexample Jalloy

87

Chapter 7

Conclusion

In this chapter, we first discuss how our analysis technique fits in the larger context of
a software engineering process. We then present related work. The chapter concludes
with an evaluation of the merits and deficiencies of the thesis work, and final thoughts.

7.1 Jalloy in Context

Software bugs may be roughly categorized as follows. One type of error arises when
a program is solving the wrong problem. A software system is often part of a larger
system consisting of hardware, specialized devices, and in some cases humans. Speci-
fying the precise requirements of a software system is difficult and error-prone in itself.
Software may therefore meet its requirements, but fail to fulfill its purpose. Another
category of errors is when a program does not satisfy its high-level requirements, and
these arise for several reasons.

• Algorithmic Bugs. The system implements an algorithm correctly but the
algorithm does not solve the problem. Or else the system implements an al-
gorithm incorrectly. This category includes bugs that result from typos in the
code.

• Bugs of Omission. The system does not handle all possible inputs correctly.
There is basically missing code, resulting from unforeseen usages of the system,
or from wrong assumptions. This category also includes bugs in exceptional
termination, which arise when the system does not handle failure gracefully.

• Bugs of Resource Management. The system may take too much memory or
too much time, failing to meet its performance requirements. It may have mem-
ory leaks because it fails to release memory adequately, or there are unexpected
buffer overflows.

• Security Bugs. The system satisfies its functional requirements when used
within the envelope it was built for, but is vulnerable to attacks by malevolent
clients.

88

Our analysis technique is independent of any model or methodology for software
development. It does not address testing systems as a whole, or showing that a
system meets its high-level requirements. It is useful for checking aspects of an
individual module, specifically abstract data types with rich complex structure, during
implementation.

The technique does not require a whole program and can be used on incomplete
code. It ensures that a procedure is algorithmically correct and provides the right
functionality, by checking that if its preconditions are met then so are its postcondi-
tions. It can also be used to show that preconditions are satisfied in a calling context.
Moreover, the user may check that a data representation is manipulated correctly by
a procedure, by showing that key invariants are maintained.

In addition to uncovering algorithmic bugs, the technique can also unveil bugs of
omission. A test suite with good code coverage exercises existing code, but may not
uncover bugs that arise from missing code. Our analysis technique can uncover these
types of bugs because we are checking consistency between code and a specification.
Any discrepancy, whether from existing or missing code, is reported as an error. It
may therefore find subtle bugs that a good test suite misses.

The technique can also be used to find bugs of resource management. By setting
small bounds on the lengths of buffers, the analysis can be used to check for buffer
overflows. Security bugs are often a result of buffer overflows, so these types of errors
may be unveiled as well.

Our analysis also complements existing testing techniques in that it supports
informal reasoning about the code. When a test case fails, it may not be clear
where the bug is located, and performing deep analysis of small fragments of the
code can help to reason about it, and uncover the source of the error. Suppose, for
example, that a programmer observes that the output of a called procedure is not
what he expects. Two scenarios are possible: either the procedure is incorrect, or its
preconditions are violated in the calling context. By analyzing the procedure itself
he can disambiguate between these two scenarios. If it appears to be correct, then its
preconditions are violated in the calling context, and the error is located elsewhere.

Our analysis also allows the programmer to gain a better understanding of how
violations of preconditions affect the behavior of a procedure. By weakening precon-
ditions, he may use our technique to generate scenarios in which the procedure fails.
This in turn can be useful for reasoning about the calling context. Moreover, the
analysis can help to pinpoint preconditions and postconditions when these are not
known by the programmer. These can be used as documentation for the code, but
more importantly can suggest new test cases.

7.2 Related Work

For a bounded instance of a program, our analysis explores all the possible inputs
and executions, typically accounting for billions of cases. Unlike testing, it can also
generate an initial configuration of the heap which leads to a property violation. It
differs from finite state verification tools, such as model checking, in that it is modular:

89

procedures may be checked in isolation without requiring a driver. It differs from
shape analysis in that it produces sound counterexamples and no false alarms. It also
requires no intermediate code annotations, or user-provided abstractions.

7.2.1 TestEra

TestEra [25] is a specification-based testing method for Java. It consists of generat-
ing test cases from an Alloy specification of a procedure. The precondition is used
to produce all the non-isomorphic inputs of a bounded size, which are concretized to
Java objects. TestEra then runs the code on these concrete inputs, to produce con-
crete outputs, which are mapped to abstract ones. The abstract outputs is checked
for consistency against the Alloy postcondition. Any discrepancy is reported as an
input/output pair that violates the specification. TestEra has been used successfully
to test methods from the Java Collection API, and a fault tree analyzer. It has helped
to find bugs in real software systems.

TestEra can be seen as a dynamic version of our technique. The code is not
modeled in Alloy, but executed instead. This poses a tradeoff. On the one hand,
it scales better than our technique. On the other hand, the number of test cases
produced can grow very large and it may be prohibitive to execute the code for all
of them. Our technique does not actually execute different paths of the code, but
finds a single execution that violates a property. It has therefore an advantage for
specifications that produce a large number of possible heap shapes (e.g. unconstrained
graphs).

7.2.2 Finite State Verification

FeaVer

Telephone switches offer over 100 features, and the distributed software required for
call processing is very complicated. The interaction between these features is the
main source of complexity: 10 of them alone produce 210 possible combinations, and
testing is simply infeasible. This is known as the feature interaction problem. FeaVer
[13] is a tool that addresses this problem. It has been used to find hundreds of bugs
in Lucent’s PathStar access server.

FeaVer supports mechanized model extraction, to translate C code to Promela,
the input language of the Spin model checker [12]. The user is required to provide
a lookup table that maps patterns in the code to Promela. Three different kinds
of abstraction are possible: disregarding a statement and replacing it with skip,
preserving a statement entirely, or mapping to a non-deterministic construct. Non-
determinism is used to abstract irrelevant data, and to model the environment of the
system in a general way. The lookup table needs to be constructed once. As the
system evolves, it changes only slightly.

FeaVer uses the lookup-table to produce an abstract model of a C program, which
it then verifies against a user-provided temporal specification, using the model checker
Spin. It outputs any counterexample trace found back to the user in a suitable fashion.

90

FeaVer differs from our technique in that it does not target structural properties
of code. Moreover, it requires user-provided abstraction which our technique does
not need.

Bandera

Model checking techniques have matured to the point that they are used for hardware
verification in industry. The transfer of technology for software has been difficult
because of a gap between modern programming languages and the input languages
of model checkers (typically finite state machines). The goal of the Bandera project
[5] is to address this gap, by providing automated support for model construction.

Bandera consists of a slicer that disregards components of the system not relevant
to the property being checked, an abstraction-based specializer that helps the user to
limit the domain of variables and to perform abstract interpretation, and a back end
that maps Bandera’s intermediate representation to the input languages of various
existing model checks (such as Spin [12] and SMV [26]).

Like FeaVer, Bandera is used to check temporal properties of code and is not
targeted at the kind of structural properties we consider. It also requires user-provided
abstractions.

Java PathFinder

The Java PathFinder [41] is an environment for checking Java bytecode, that in-
tegrates model checking, program analysis, and testing. It requires user-provided
abstractions of the program, and uses the Bandera tool for slicing. Java PathFinder
requires an initialization of the heap that fixes it to a particular configuration. Thus
it is impossible to have the tool automatically find an initial configuration that breaks
an assertion, as can be done in our analysis.

A recent approach [21] to verifying Java programs is a generalization of symbolic
execution to linked data structures. It is based on the Java PathFinder and augments
it with the capability of symbolic execution of Java code.

The tool takes a fragment of Java code and a property to verify. It then proceeds
to symbolically execute it: variables of primitive types are given a symbolic value, and
fields of objects are given the value unknown. These fields are given actual values in
a process called lazy initialization: when a field needs to be accessed, it is initialized
in all the possible ways, producing a tree of executions visited in turn. The branching
conditions for each execution are kept in a path condition. When these conditions
involve linear integer arithmetic, a decision procedure (the Omega library [31]) is
used to determine if they are consistent. When the path condition for an execution
becomes inconsistent, the tool does not pursue it any further. A counterexample is
output to the user when a property is found not to be satisfied.

This approach essentially consists of executing all possible paths and treating
only primitive types as symbolic values. It is based on model checking, which suffers
from the state explosion problem. It is not clear what the memory requirements are
for this method, when checking a procedure with complex pointer manipulations. To

91

ease this problem, the approach makes use of preconditions, to disallow configurations
that do not satisfy them. For example, if a list is known to be acyclic, fewer heap
configurations are possible, and therefore not all executions are explored.

Another drawback of the approach is that it is non-terminating for structural
properties that are satisfied. For example, consider a while loop that traverses a list,
breaking only when it reaches null. If no counterexample is found, this approach will
continue to explore longer and longer lists, without any provisions for when to stop.
For such properties, running the approach for long enough gives a guarantee that the
property is satisfied. But there is no evidence as to what that length of execution is
for a given program.

Our approach is different in that it always terminates, regardless of the satisfia-
bility of the property to be checked. Moreover, our technique does not explore all the
possible executions. These are encoded in the logic and the constraint solver finds an
execution violating the property in a goal-oriented way, by trying to satisfy a logical
formula. Our approach is limited by the capability of the SAT solver, but does not
suffer as badly from state explosion, because it does not need to maintain information
about all the possible states.

SLAM

The SLAM [2] toolkit takes a C program and a safety property and checks fully
automatically if the property is satisfied. It outputs either a sound ‘yes’ or ‘no’, or
‘don’t know’. It can prove that a property is satisfied, and if it is not, it outputs a
counterexample trace, with no spurious error reports. Because of the incompleteness
of the underlying theorem prover, the answer may also be ‘don’t know’. Since verifying
properties is undecidable, SLAM may not always terminate. It has however been
shown to terminate in practice.

The toolkit is composed of three main parts: C2BP performs an abstraction of the
C program based on predicate abstraction; BEBOP is a novel model checker that uses
a combination of data-flow analysis and binary decision diagrams (BDDs); NEWTON
is a predicate discovery tool.

The process works as follows. The user writes a specification in SLIC (Specification
Language for Interface Checking), modelling a state machine expressing erroneous
executions. The C code is then instrumented with the specification, and the problem
becomes: is the error state reachable? The C2BP tool takes an instrumented program
and abstracts it into a boolean program, in which the only variables are booleans and
represent predicates of the original program. BEBOP model checks the boolean
program to determine if the error state is reachable. If it is not, there is a guarantee
that the property is satisfied because boolean programs are sound abstractions. If the
error state is found to reachable, then NEWTON determines if the counterexample
found is feasible. If it is, a sound counterexample has been found. If it not, NEWTON
produces a set of new predicates that explicate the infeasibility. These predicates
result in new boolean variables, and a new boolean program is built, at which point
the process starts over.

Predicate abstraction was first introduced by Saidi and Graf [11] in the context of

92

verifying infinite-state systems. It consists of mapping the concrete states to abstract
states according to their evaluation under a finite set of predicates. The abstract
transitions are computed using a theorem prover. C2BP realizes predicate abstraction
for a substantial subset of C. It starts with an initial set of predicates corresponding to
the control conditions of the C program. It assigns a boolean variable for each of these
predicates. To determine how the value of the booleans variables is affected with each
statement, it uses weakest preconditions [8]. Since the weakest precondition itself may
not be an existing predicate, it must be strengthened to a combination of existing
ones. This is done by using decision procedures of existing theorem provers (Simplify
and Vampyre), and potentially an exponential number of calls to the theorem prover
must be made (in the number of predicates). A number of optimizations alleviate
this issue in C2BP. The tool also uses alias analysis to improve the precision of the
weakest precondition computation in the presence of pointers and aliasing.

The BEBOP tool uses data-flow analysis to compute the set of reachable states
for each statement in a boolean program. It uses BDDs to represent sets of states,
as well as the transfer function of each statement. Unlike symbolic model checkers, it
does not represent the control-flow with a BDD, but keeps an explicit representation
of the control flow graph. It computes a fixpoint by iterating over the set of facts
associated with each statement.

SLAM does not require any user-annotations or user-provided abstractions. In-
stead, it performs its own abstraction and automatically refines it. It has been used
successfully to find bugs in device drivers, and checking API usage rules. The pro-
cess converges rapidly for control-intensive properties, but not necessarily for data-
intensive ones – the kind of structural property we consider for our technique. SLIC
is more limited than our technique’s specification language in terms of what it can
express, since transitive closure is not available.

7.2.3 Shape Analysis

Shape analysis algorithms can identify invariants for programs that manipulate heap-
allocated storage. They represent the heap as shape graphs, conservative abstractions
that capture properties at different points in the program.

Parametric shape analysis (PSA) [33] is a technique that represents the heap as a
structure in a 3-valued logic. Variables are unary predicates, and fields binary ones.
The boolean value 1/2 is used to represent uncertainty, and is used to abstract sets
of concrete heaps. Like traditional shape analysis, there are “summary nodes” that
represent one or more concrete heap cells, and are represented by a special unary
predicate.

PSA starts with a set of possible input heap shapes, represented as 3-valued
logical structures, and performs abstract interpretation over them, given the semantics
of each statement in the program. The process terminates because the structures
considered are bounded. It computes the shape of the heap at each program point.
The invariants discovered can then be used to see if some property of interest is
satisfied. The output of the analysis is a sound ‘no’, or ‘yes’, and when nothing can
be deduced ‘don’t know’.

93

To make the analysis more precise, PSA allows the user to provide instrumentation
predicates. An example of such a predicate is: do two or more fields point to the same
element? They are associated with a definition in terms of the core predicates, but
store more precise information than evaluating that formula. They are used to fine
tune the analysis.

The ideas in PSA have been implemented in a tool, TVLA [22], that takes as
input the initial shape graphs, as well as the operational semantics of each statement
in the code’s control-flow graph, together with instrumentation predicates. It has
been used on code manipulating linked data structures, as well as sorting programs.

Unlike our technique, PSA can prove properties without bounds, but it may also
output ‘don’t know’. In contrast to our property-independent translation, PSA re-
quires instrumentation predicates that tailor the analysis for the discovery of particu-
lar properties. Recent work [24] presents space-efficient encodings of boolean formulas
that represent shape graphs. Its goals but not its methods are similar to ours.

7.2.4 Theorem Proving

ESC

The Extended Static Checker (ESC) [7] uses a specialized theorem prover to check
code. It can detect null-pointer dereferences, array out-of-bound errors, and can also
check user-defined pre and post-conditions. These specifications can define abstract
variables that respect hiding: the internal variables of a procedure are not exposed.
A mechanism is provided for expressing abstraction functions that connect abstract
variables to their representation.

ESC translates the code together with user annotations to Dijkstra’s guarded
commands, and uses weakest preconditions to generate verification conditions. These
are then handed to a theorem prover, Simplify, which runs automatically with no
user assistance. ESC is not geared at proving correctness, but rather finding bugs.
In particular, failed proofs are turned into useful error messages for the user.

There are several aspects of the design of ESC that make it unsound. The user
may write Assume statements to prevent spurious error messages, but the correctness
of these constraints is up to the user. Experience with ESC has shown that unwinding
loops up to a limited number (0 or 1) leads to the discovery of many useful errors,
and is more efficient than discovering loop invariants. This is another source of
unsoundness by design.

Structural properties such as those handled in our technique are not expressible
in ESC’s annotation language, mainly because of the absence of transitive closure.
Since we consider bounded programs only, transitive closure over a relation becomes
the application of that relation as many times as the scope. So given any scope, our
properties involving transitive closure are expressible in ESC’s annotation language,
by repeated field dereferencing. However, this notation is cumbersome, and any
change in the scope entails a change in the annotations. Experiments have not been
performed to compare the tools where ESC is used in this fashion.

ESC outputs error messages when a property is found to be violated, but unlike

94

our technique, no counterexample trace.

Verifun

Verifun [9] is a theorem proving system that grew out of experience with the Simplify
prover, and is based on the conventional Nelson-Oppen design [28]. It leverages recent
advances in SAT solving technology to perform backtracking more efficiently.

Many verification problems can be expressed in a logical formula containing pred-
icates and functions from an application domain composed together with logical con-
nectives. Verifun separates the propositional aspect of the formula by introducing
proxy variables. These are propositional variables that are introduced to replace
predicates and functions, and therefore abstract away their specific semantics. The
abstract propositional formula obtained is conservative: it has a representation of all
the satisfying assignments of the original formula, and possibly more.

Verifun then uses an off-the-shelf SAT solver to obtain a solution. If none is
found, then there is a guarantee that the original formula did not have a solution.
On the other hand, if there is a solution, the tool must check that it is not spurious,
by verifying that the truth values of the proxy variables are consistent with the
underlying semantics of the predicates they represent. This is done by invoking
decision procedures for, e.g. linear arithmetic, and the theory of arrays.

These decision procedures are augmented with an explicating capability. When a
set of constraints are found to be unsatisfiable, a proof is generated in terms of the
relations between the proxy variables. This additional constraint is then conjoined
with the abstract propositional formula and the process starts over. Thus, this ap-
proach performs automated successive refinement of an abstract formula, and adds
more and more detailed information about the underlying semantics of the predicates
that are abstracted away.

The idea of replacing an entity with a boolean variable is similar to predicate
abstraction, where predicates are first introduced to capture some aspect of a system,
such as its control flow information. Then the predicates are replaced by boolean
variables similar to the proxy variables in Verifun, and analysis proceeds given this
abstraction. SLAM’s boolean programs are abstractions of this nature.

Verifun does not handle the kind of structural property that we consider in our
technique.

7.3 Evaluation

In this section, we evaluate the merits and deficiencies of the thesis, as well as op-
portunities for future work and challenges that lie ahead in order to make the tool
practical.

7.3.1 Merits

We presented an efficient encoding of Java in Alloy that overcomes shortcomings of
the common idioms for expressing object-oriented models. In particular, the encod-

95

ing avoids the scope-induced explosion problem, where one or more types require a
large number of atoms. We achieved this by introducing a variable renaming simi-
lar to single static assignment. Despite the fact that our encoding adds relations, it
nevertheless has a tighter translation to propositional logic than the common idioms.

Our encoding uses edge variables – booleans that label each edge of the computa-
tion graph. These simplify the translation of Java to Alloy, but they are also used to
report counterexamples back to the user. Their truth values in an instance indicate
which edges of the computation graph were traversed.

The optimizations we presented help to improve the scalability of the analysis,
and allow larger procedures to be checked with fewer annotations. They target a
common case: field dereferences. They do not provide any improvement in scalability
when a fragment of code does not have many field dereferences. The optimizations
are based on a compact functional representation for fields, and aim at reducing the
size of the CNF produced. They are synergistic in that implemented alone many of
them do not result in an improvement. Although inspired by the verification of code,
they are in fact more general. The compact representation is applicable to any Alloy
model containing functions. The logical simplifications can be used independently in
other contexts.

7.3.2 Deficiencies

The thesis has several shortcomings. First, the prototype tool supports a very limited
subset of Java. For some omitted constructs, we described how the analysis might
handle them. This is the case for subclassing and user-defined exceptions, as well as
uni-dimensional arrays. The shortcoming here is that due to the lack of experimen-
tation, the efficiency of the resulting analyses remains to be seen.

Other constructs are not treated at all. These include built-in exceptions other
than null-pointer dereferences; multi-dimensional arrays; and multi-threading. There
does not seem to be any inherent obstacle in handling concurrency: one might simply
represent all possible interleavings in the computation graph. This would result in a
larger encoding for the control flow. So the efficiency of the resulting analysis also
remains to be seen.

A major omission from the subset of Java supported is recursion. We could handle
singly-recursive procedures by unwinding them as we do to loops. Mutually recursive
procedures may be handled in a similar manner.

We represent null as the empty set, which prevents us from analyzing code that
has collections containing null. This would not have been the case if we had repre-
sented it using a special null object. However, this would require treating all objects
as members of the type Object, dramatically increasing the scope (and thus damaging
the performance of the analysis). The latest version of Alloy alleviates this problem
by offering subtypes and union types, and allowing scopes to be set on individual sub-
types. A variable would then be declared as being of its own type unioned with null,
and collections would be able to contain null explicitly. Classes would be represented
as subtypes of Object, and could be bounded independently.

A second major shortcoming is the lack of a specification language for our analysis

96

technique. Currently we use Alloy itself without any kind of veneer, which is not
ideal. A practical specification language would benefit from a ”modifies” clause, for
example, allowing frame conditions to be expressed. There are also a number of minor
but important details to overcome. For example, because Alloy has no overloading on
function names, Jalloy cannot distinguish Java methods with the same name. With a
more expressive specification language, a wider variety of checks might also be offered.
For example, one may want to check that, if one procedure runs followed by another,
some property holds.

Currently, there are very few specifications built-in for the Java API. More of
these are needed to make the tool practical. For the specifications we provided we
omitted dealing with methods that provide views, which abstract aspects of a data
type, and lead to a kind of “abstract aliasing”.

A final shortcoming of the thesis is that there are very few experiments. Although
the experiments we performed do illustrate the feasibility of the analysis technique, as
well the efficacy of the optimizations, they are not sufficient to evaluate ease-of-use.
More experiments are needed to show that our technique is easy to use in practice.
A better prototype tool would help in this direction.

7.3.3 Future Opportunities

The thesis offers some opportunities that were not realized due to lack of time. These
include incorporating the optimizations in the Alloy Analyzer. Currently, the pro-
totype tool translates Java directly to CNF and the result is conjoined with the
translation of the specification to CNF produced by the Analyzer. So the translation
to Java does not benefit from the Analyzer’s simplifications and optimizations such
as symmetry-breaking [36], and subformula sharing [37].

One missed opportunity is the treatment of null-pointer dereferences in the way
we presented in an earlier paper [19]. This approach is more efficient than the one we
presented here, but was not easy to handle by our direct translation of Java to Alloy.
Once the optimizations are incorporated in the Analyzer, it could easily be put in
place.

Recall that frame conditions are needed at join points in the computation graph
to unify the names of variables. These formulas can potentially be large, and we
alleviated this problem by ignoring variables representing subexpressions not needed
beyond the join point. This might be taken further, by avoiding the propagation
of the name of any non-live variable – that is, whose value is not needed beyond a
certain point. No doubt other traditional compiler analyses could also be brought to
bear on the problem of obtaining a compact representation.

Another opportunity is to use a technique called type-splitting in the analysis of
code containing subclasses. This technique is not novel and has been used in other
tools (e.g. [16]). It consists of splitting a type into more than one subtype, and
assigning different subtypes to variables pointing to structures that do not share
objects. For example, if we have two linked lists and we know that they do not share
elements, we can assign a different subtype to each of the lists. This technique is
helpful because it helps to reduce the size of the encoding in propositional logic: the

97

subtypes now have fields over smaller domains.
There are many opportunities for tool and user interface improvements. In our

prototype, specifications are provided in a separate file; it would be more practical
to allow in-code annotations. The output trace is currently displayed by highlighting
the code in an emacs window using a script. A graphical user interface could show
heap snapshots pictorially (using a facility similar to the Alloy Analyzer’s visualizer),
correlating them with program points.

Finally, there are complementary approaches that would improve scalability. The
optimizations we presented are bottom-up: we optimized the Analyzer for the ver-
ification of code. Another approach is to treat the Analyzer as a black box and to
perform abstractions of the code that allow larger fragments to be analyzed. Con-
ventional techniques such as slicing might play a role. Procedural abstractions might
be refined incrementally: replacing a procedure with a specification that allows all
possible behaviors and successively refining it [38]. Such techniques could be fruitfully
combined with ours.

7.4 Final Thoughts

Programmers often shy away from writing structural specifications, even though they
are invaluable for understanding code and finding bugs. This state of affairs may
be due to the lack of a tool for checking specifications. Theorem proving can be
used to verify structural properties, but is hard to automate fully. Existing finite-
state verification techniques do not handle structure readily. Other automated tools
require many intermediate annotations beyond the specification to verify.

Our objective was to build a finite-state verification system for checking structural
specifications. The technique we presented is fully automatic, modular, and does not
require any user-provided abstractions. The only abstraction it uses is to consider
bounded instances of code. It outputs sound counterexamples.

Modularity comes at a price. The user may write intermediate specifications for
procedure calls, but we have aimed to minimize the need for this. For the Java API,
our technique has some specifications built-in. To minimize intermediate annotations
and allow larger fragments of code to be checked, we presented a series of synergistic
optimizations that reduce the size of the CNF produced exponentially. Although the
optimizations were inspired by the verification of Java code, they are in fact more
general. They can be applied to any Alloy model containing functional relations. The
logical simplifications can also be used independently.

Our case studies demonstrated the effectiveness of the optimizations in practice, as
well as the usefulness of our technique in finding real bugs. The size of procedures does
not grow very much over time, but processors get faster and faster. Our technique,
therefore, should become more effective as time passes. Our hope is that it will also
be successful in promoting the use of specifications as an invaluable tool for finding
bugs in software systems.

98

Bibliography

[1] A. Andoni, D. Daniliuc, S. Khurshid and D. Marinov. Evaluating the ”Small
Scope Hypothesis”. Unpublished manuscript. September 2002.

[2] T. Ball, S. K. Rajamani. “The SLAM Project: Debugging System Software
via Static Analysis”, Proc. Principles of Programming Languages (POPL’02),
January 2002.

[3] W. R. Bush, J. D. Pincus, and D. Sielaff. “A Static Analyzer for Finding Dynamic
Programming Errors”, Software Practice and Experience 2000 (30):775–802.

[4] D. R. Chase, M. Wegman and F. Zadeck. “Analysis of Pointers and Structures”,
Proc. Programming Language Design and Implementation, 1990.

[5] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby,
H. Zheng. “Bandera: Extracting Finite-State Models from Java Source Code”,
Proc. International Conference on Software Engineering, June 2000.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest. “Introduction to Algorithms”, MIT
Press, 1990.

[7] D. Detlefs, K. R. Leino, G. Nelson, and J. Saxe. “Extended Static Checking”.
Technical Report 159, Compaq Systems Research Center, 1998.

[8] E. Dikjstra. “A Discipline of Programming”. Prentice-Hall, 1976.

[9] C. Flanagan, R. Joshi, X. Ou, and J. Saxe. “Theorem Proving using Lazy Proof
Explication”, Proc. Computer-Aided Verification 2003 (CAV’03), Boulder, Col-
orado, July 2003.

[10] E. Goldberg and Y. Novikov. “BerkMin: A fast and robust SAT-solver”, In
Design, Automation, and Test in Europe, March 2002.

[11] S. Graf and H. Saidi. “Construction of abstract state-graphs with PVS”, Proc.
Computer-aided Verification (CAV’97), LNCS 1254, pages 72–83, 1997.

[12] G.J. Holzmann. “The Model Checker Spin”, IEEE Trans. on Software Engineer-
ing, Vol. 23, 5, May 1997.

[13] G. J. Holzmann and M. H. Smith. “Automating Software Feature Verification”,
Bell Labs Technical Journal, Vol. 5, 2, April-June 2000.

99

[14] D. Jackson. “Automating First-Order Relational Logic”, Proc. Foundations of
Software Engineering, San Diego, November 2000.

[15] D. Jackson and A. Fekete. “Lightweight Analysis of Object Interactions”, Proc.
Fourth International Symposium of Theoretical Aspects of Computer Software,
Sendai, Japan, October 2001.

[16] D. Jackson, S. Jha, and C. Damon: “Faster Checking of Software Specifica-
tions by Eliminating Isomorphs”, Proc. Principles of Programming Languages
(POPL’96), 1996.

[17] D. Jackson, I. Shlyakhter and M. Sridharan. “A Micromodularity Mechanism”,
Proc. Foundations of Software Engineering, 2001.

[18] D. Jackson and K. Sullivan. “COM Revisited: Tool Assisted Modelling and
Analysis of Software Structures”, Proc. Foundations of Software Engineering,
San Diego, California, November 2000

[19] D. Jackson and M. Vaziri. “Finding Bugs with a Constraint Solver”, Proc. In-
ternational Symposium on Software Testing and Analysis (ISSTA’00), Portland,
Oregon, August 2000.

[20] S. Khurshid and D. Jackson. “Exploring the Design of an Intentional Naming
Scheme with an Automatic Constraint Analyzer”, Proc. 15th IEEE International
Conference on Automated Software Engineering, Grenoble, France, September
2000.

[21] S. Khurshid, C. Pasareanu, and W. Visser. “Generalized Symbolic Execution for
Model Checking and Testing”, Proc. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’03), Warsaw, Poland, April 2003.

[22] T. Lev-Ami and M. Sagiv. “TVLA: A System for Implementing Static Analyses”,
Proc. Static Analysis Symposium, 2000.

[23] B. Liskov with J. Guttag. “Program Development in Java. Abstraction, Specifi-
cation, and Object-Oriented Design”, Addison-Wesley, 2001.

[24] R. Manevich, G. Ramalingam, J. Field, D. Goyal, M. Sagiv. “Compactly Repre-
senting First-Order Structures for Static Analysis”, Proc. Static Analysis Sym-
posium (SAS’02), 2002.

[25] D. Marinov and S. Khurshid. “TestEra: A Novel Framework for Automated
Testing of Java Programs”, Proc. Automated Software Engineering (ASE’01),
Nov 2001.

[26] K. L. McMillan. “Symbolic model checking - an approach to the state explosion
problem”, PhD thesis, SCS, Carnegie Mellon University, 1992.

100

[27] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. “Chaff: Engineering
and Efficient SAT Solver”, Proc. Design and Automation Conference, Las Vegas,
June 2001.

[28] G. Nelson and D. Oppen. “Simplification by cooperating decision procedures”,
ACM Transactions on Programming Languages and Systems, 1(2):245–257, Oc-
tober 1979.

[29] T. Nolte. “Exploring Filesystem Synchronization with Lightweight Modeling and
Analysis”, Masters thesis, MIT Laboratory for Computer Science, Cambridge,
MA, August 2002.

[30] M. Vaziri and T. Nolte. “Augmenting a Finite-State Verification System with a
Decision Procedure”, submitted for publication, October 2003.

[31] The Omega Library Web Page: http://www.cs.umd.edu/projects/omega/

[32] D. A. Plaisted and S. Greenbaum. “A Structure-Preserving Clause Form Trans-
lation”, Journal of Symbolic Computation, 2:293–304, 1986.

[33] M. Sagiv, T. Reps, and R. Wilhelm. “Parametric shape analysis via 3-valued
logic”, ACM Transactions on Programming Languages and Systems, 24(3), 217-
298, 2002.

[34] SAT Competitions. http://www.satlive.org/SATCompetition.

[35] R. Seater. “Alloy 2.0 Tutorial”, http://alloy.mit.edu.

[36] I. Shlyakhter. “Generating Effective Symmetry-Breaking Predicates for Search
Problems”, SAT’01 Workshop, Electronic Notes in Discrete Mathematics, Vol.
9, June 2001.

[37] I. Shlyakhter, M. Sridharan, R. Seater, D. Jackson. “Exploiting Subformula Shar-
ing in Automatic Analysis of Quantified Formulas”, Proc. Conference on Theory
and Applications of Satisfiability Testing (SAT’03), May 2003.

[38] M. Taghdiri. Personal communication.

[39] M. Taghdiri. ”Lightweight Modelling and Automatic Analysis of Multicast Key
Management Schemes”, Masters Thesis, MIT Laboratory for Computer Science,
Cambridge, MA, December 2002.

MIT Laboratory for Computer Science, manuscript, March 2003.

[40] M. Vaziri and D. Jackson. “Checking Properties of Heap-Manipulating Proce-
dures with a Constraint Solver”, Proc. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’03), Warsaw, Poland, April 2003.

[41] W. Visser, K. Havelund, G. Brat and S. Park. “Model Checking Programs”,
Proc. International Conference on Automated Software Engineering, September
2000.

101

