
A Proof Assistant for Alloy Specifications

Mattias Ulbrich, Ulrich Geilmann, Aboubakr Achraf El Ghazi, Mana Taghdiri

Karlsruhe Institute of Technology, Germany
{mulbrich,geilmann,elghazi,taghdiri}@ira.uka.de

Abstract. Alloy is a specification language based on a relational first-
order logic with built-in operators for transitive closure, set cardinality,
and integer arithmetic. The Alloy Analyzer checks Alloy specifications
automatically with respect to bounded domains. Thus, while suitable
for finding counterexamples, it cannot, in general, provide correctness
proofs. This paper presents Kelloy, a tool for verifying Alloy specifications
with respect to potentially infinite domains. It describes an automatic
translation of the full Alloy language to the first-order logic of the KeY
theorem prover, and an Alloy-specific extension to KeY’s calculus. It
discusses correctness and completeness conditions of the translation, and
reports on our automatic and interactive experiments.

1 Introduction

Due to their expressive logics, theorem provers have been successfully used to
prove detailed properties of complex system specifications. However, they are
often considered too expensive to use frequently during software development.
The cost is twofold: (1) the proof process is often interactive and requires the user
to be an expert in both the problem domain being analyzed and the theorem
prover being used, and (2) the input language is often a low-level logic that
makes specifications unintuitive and error-prone.

Lightweight formal methods [17], on the other hand, promote checking soft-
ware partially, yet frequently, during design and implementation. Alloy [16], for
example, has been successfully used for checking several software systems against
their requirements (see [7] for some examples). The main reasons for Alloy’s
popularity are its concise language, simple semantics, and fully automatic ana-
lyzer. Alloy provides a first-order logic based on relations that is augmented with
built-in transitive closure (reachability), set cardinality, and basic integer arith-
metic operators, which makes it suitable for specifying structure-rich systems.
Alloy specifications are automatically analyzed using a SAT solver by requiring
a bound on the number of elements of each relation. Consequently, while the
counterexamples are non-spurious, lack of a counterexample, in general, does
not constitute a proof of correctness. Thus, for safety-critical systems, the user
must perform a second round of analysis in which he specifies the problem again,
in the input language of a theorem prover for full verification.

This paper introduces Kelloy, an engine for verifying Alloy specifications,
with the goal of bridging the gap between lightweight formal methods and theo-
rem provers. To reduce the cost of using the underlying theorem prover, namely

KeY [4], it (1) provides a fully automatic translation of Alloy to KFOL—the
first-order logic of KeY, (2) defines an Alloy-specific extension to KeY’s calculus
and a reasoning strategy that improves KeY’s capability in finding proofs au-
tomatically, and (3) simplifies user interaction by generating intermediate proof
obligations that are easy to understand.

KeY is attractive because it combines an interactive proof assistant with
an automatic engine, and its calculus strategy is extensible: one can easily add
new calculus rules and assign them to different proof search heuristic strategies.
Kelloy translates Alloy’s operators to function symbols, thus generating formulas
that conform to the high-level structure of the analyzed Alloy specification. This
makes the tool easy to interact with.

Our target logic is first-order because it is semi-decidable which indicates a
higher automation potential in practice than higher order logics. KeY has built-
in integer support and provides a set of rules implementing Peano arithmetic [5]
extended to integers. Therefore, unlike previous approaches [2,13,14], we are able
to translate the entire Alloy language including integer expressions, cardinality,
and the ordering module (see Section 4.5). Such a translation cannot be complete
because integers are not FOL-axiomatizable, but it suffices in almost all practical
cases [10, p.153]. Although we target KFOL, our resulting formulas (with minor
modifications) can be verified by any prover for first-order logic, which supports
integers.

While some Alloy specifications can be verified automatically, specifications
that extensively use quantifiers or transitive closure result in proof obligations
that are too difficult to discharge fully automatically. In a user-guided, semi-
automatic proof system such as KeY, however, it often suffices if the user pro-
vides only a few inputs (e.g. in the form of quantifier instantiations or induction
hypotheses) to help the system find a proof. Since trying to prove an invalid
assertion is particularly costly, we suggest Kelloy be used after the assertion has
been checked by the Alloy Analyzer. The user can increase the analysis bounds
to gain more confidence in the correctness of the assertion before using Kelloy
for full verification.

In this paper, we describe a fully automatic translation of Alloy to KFOL,
and establish that, the translation is correct (for finite and infinite domains)
and complete (for finite domains). We also describe an Alloy-specific extension
to KeY’s calculus and reasoning strategy. We evaluate the approach by conduct-
ing both automatic and interactive proofs. Out of a total of 22 proved Alloy
assertions in 10 specifications, 12 were proved without any user interaction. We
also evaluate the impact of the user’s experience on the interactive proof process.

2 Related Work

Several approaches address the verification of Alloy specifications. Prioni [2] is
the closest to ours: it translates Alloy to a first-order logic in which function
symbols represent Alloy operators. Prioni’s theorem prover, Athena [3], has a
polymorphic type system that allows a more succinct representation of operators,

2

but cannot handle infinite sets. Therefore, unlike Kelloy that verifies assertions
in both finite and infinite domains, Prioni only analyzes finite domains.

Another approach [12] to verifying Alloy specifications is via a translation
to omega closure fork algebras [11]. Since the target system is an equational
calculus, the translation eliminates all Alloy quantifiers, leading to intermediate
expressions that are extremely hard to understand [14]. To reduce the cost of
user interaction, Dynamite [14] has been developed, which targets a calculus in
fork algebra that supports quantifiers. Unlike Kelloy that uses a first-order logic,
Dynamite uses the higher-order logic of the PVS theorem prover [20].

To our knowledge, unlike Kelloy, Prioni and Dynamite do not support the
complete Alloy language; they cannot handle integers and set cardinality. How-
ever, they integrate the Alloy Analyzer in their interactive proof processes by
checking user-provided intermediate hypotheses using the Analyzer first. A sim-
ilar feature can be added to Kelloy as well.

In [8, 9], SMT solvers are used to verify Alloy specifications fully automat-
ically. However, since Alloy is undecidable, in many cases, SMT solvers fail to
verify valid specifications. As described in [7], these approaches are complemen-
tary to a full verification, but semi-automatic engine like Kelloy.

In [18], proof obligations for Event-B [1]—a set-theoretical language sup-
porting integer expressions, cardinalities, and binary relations—are translated
to KFOL. Similar to Kelloy, this approach targets a first-order theory that re-
sembles the constructs of the source language. This work, however, targets an
untyped logic, provides no calculus rules, no tool support, and no discussion of
soundness and completeness of the translation. Furthermore, relations of higher
arities and the transitive closure operator are not supported by Event-B and
thus not covered by this work.

3 Background

3.1 Alloy and the Alloy Analyzer

Alloy [16] is a first-order relational logic with built-in transitive closure, set
cardinality, and integer arithmetic operators. Our analysis introduces function
symbols for the Alloy constructs of Fig. 1. In addition to the core Alloy logic,
this subset of Alloy—called Alloy0—contains commonly-used Alloy constructs.
It therefore enables us to generate formulas that closely conform to the structure
of the Alloy specification being analyzed, and thus simplifies user interactions.
Alloy constructs not present in Alloy0 are desugared by Kelloy.

As shown in Fig. 1, an Alloy0 problem consists of declarations and an as-
sertion to check1. The Alloy Analyzer checks assertions with respect to a user-
provided, finite scope—an upper bound on the number of elements of each type—
fully automatically. While the reported counterexamples are guaranteed to be
non-spurious, absence of a counterexample does not constitute proof.
1 An Alloy problem with facts f1, . . . , fn and an assertion a is an Alloy0 problem with

an assertion (f1 and ... and fn) implies a.

3

problem ::= dcl∗ assertion
dcl ::= sig id [(in | extends) type]
| rel : type [→ type]+

assertion ::= formula
exp ::= type | var | rel | none | exp + exp
| exp - exp | exp & exp | exp.exp
| exp → exp |~exp | ^exp | Int intExp

intExp ::= number | #exp | int var
| intExp (+ | - | *) intExp
| (sum var : exp|intExp)

formula ::= intExp intComp intExp
| exp (in | =) exp | not formula
| formula (and | or | implies) formula
| (lone | some | one) exp
| all var : set exp|formula
| some var : set exp|formula

intComp ::= < | > | =
type ::= id | Int
rel ::= id
var ::= id

Fig. 1. Abstract syntax for Alloy0

Declarations. Alloy0 types represent sets of uninterpreted atoms. The sig-
nature sig A declares A as a top-level type. sig B in A declares B as a subtype
(subset) of A. The extends keyword has the same effect with the additional
constraint that extensions of a type are mutually disjoint. Relations can have
arbitrary arities and are declared as f : A1 → . . .→ An.

Expressions. Alloy0 expressions evaluate to relations. Sets are unary rela-
tions and scalars are singleton unary relations. The built-in relation none denotes
the empty set. Operators +, -, and & denote union, difference, and intersection,
respectively. For relations r and s, relational join (composition), Cartesian prod-
uct, and transpose are denoted by r.s, r -> s, and ~r, respectively. Transitive
closure ^r denotes the smallest transitive relation that contains r.

Integer expressions evaluate to integer values (Z) and are constructed from
numbers, arithmetic operators +, -, and *, set cardinality #, and sum. The built-
in signature Int denotes the set of integer atoms. The cast operators int and
Int give the integer value corresponding to an integer atom, and vice versa. The
expression (sum x: A | ie) gives the sum of the integer expression ie for all
distinct bindings of the variable x in the unary relation A.

Formulas. Basic Alloy0 formulas are constructed using the subset (in),
equality, and integer comparison operators, and combined using the usual logical
operators. The formulas lone e, some e, and one e constrain the cardinality
of a relational expression e to be at most one, at least one, and exactly one,
respectively. The quantifiers all and some denote the universal and existential
quantifiers, and are supported by the Alloy Analyzer if the quantified variable is
either a scalar or can be skolemized [16]. In our analysis, however, relations are
first-order constructs, and thus quantifiers in the general form of Q x : set e | F
are allowed, where e is an expression of an arbitrary arity, x ranges over all
subsets of e, and Q is either the universal or existential quantifier.

3.2 The KeY Proof System

KeY [4] is a deductive theorem prover based on a sequent calculus for JavaDL—
a first-order dynamic logic for the Java programming language—which allows

4

both automatic and interactive proofs. Kelloy uses the many-sorted, first-order
subset of JavaDL, called KFOL.

Declarations. KFOL declarations consist of a set of types, a set of function
symbols, and a set of predicate symbols. We write f : T1× . . . Tn → T to declare
an n-ary function symbol f that takes arguments of types T1, . . . , Tn, and returns
a value of type T . A constant symbol c of type T is a function with no arguments,
and is denoted by c : T . A predicate symbol p that takes arguments of types
T1, . . . , Tn is denoted by p: T1 × . . .× Tn → Prop.

Expressions and Formulas. The set of all expressions for a declaration
is denoted by Expr, and the set of all formulas by Frml. Expressions are con-
structed from function applications, and formulas from predicate applications.
The equality predicate = is built-in. In addition, KFOL provides boolean con-
stants true and false, and the propositional connectives ∧, ∨, ⇒, ⇔, and the
negation ¬ to combine formulas. Universal and existential quantificatiers are
written, respectively, as ∀x:T | φ and ∃x:T | φ for a variable symbol x of type
T and a formula φ. KFOL has a built-in type int along with the binary function
symbols +,−, ∗ : int×int→ int, and the predicate symbol < : int× int→ Prop
which are all written in infix notation.

For a KFOL declaration C, a set of formulas A and a formula f we write
A |=C f to denote that f is a logical consequence of A in C.

4 Axiomatization of Alloy0

As shown in Fig. 2, Alloy0 specifications are translated to KFOL using the trans-
lation function T which takes two arguments: a well-typed Alloy0 problem P ,
and a set fin of signatures that are marked by the user to be considered as
finite. This is because some specifications require a finite setting (see Section
4.3). The translation T [<p, fin>] returns a ternary tuple <C, kd, ka> where C
denotes a set of KFOL constant declarations that represents the signatures and
relations of P , kd is a KFOL formula that encodes the declaration constraints
and the finite types (using the finite1 predicate described in Section 4.3), and ka

denotes a KFOL formula encoding the assertion. Instead of reducing Alloy0 con-
structs to their definitions, our translation uses function symbols. This increases
the automation level, makes the formulas easy-to-understand, and clarifies their
correspondence to the original Alloy0 formulas. The semantics of these KFOL
functions are defined by a set of KFOL axioms Ax. To prove the intended asser-
tion in P , we invoke KeY on the proof obligation for Ax |=C kd ⇒ ka.

4.1 Declarations

Let max denote the maximum relation arity used in the analyzed Alloy0 prob-
lem. For every 1 ≤ n ≤ max, we introduce a KFOL type Reln to denote the set
of n-ary relations. Atoms of the universe are denoted by the KFOL type Atom.

For every arity n, the membership predicate inn : Atomn ×Reln → Prop
allows the construction of the KFOL formula inn(a1, . . . , an, r) which denotes

5

T : problem × P(type)→ P(KFOL-decl)× Frml× Frml

S : dcl → KFOL-decl
F : dcl ∪ formula → Frml

N : type ∪ rel ∪ var → KFOL-const ∪KFOL-var
Ax : P(Frml)

T [<d1 . . . dn, a, fin>] = <
Si=n

i=1 {S[di]},
Vi=n

i=1 F [di] ∧
V

S∈fin finite1(N [S]), F [a]>
S[sig A] = N [A] : Rel1
S[sig A (in|extends) B] = N [A] : Rel1
S[r:A1 → . . .→ An] = N [r] : Reln
F [sig A] =

V
S disj1(N [A], N [S]) for any top-level signature S 6= A

F [sig A in B] = subset1(N [A], N [B])
F [sig A extends B] = F [sig A in B] ∧V

S disj1(N [A], N [S]) for any extension S of B where S 6= A
F [r:A1 → ..→ An] = subsetn(N [r], prod1×(n−1)(N [A1], (.., prod1×1(N [An−1], N [An]))))

KFOL Axioms:

∀r, s:Reln | subsetn(r, s)⇔ ∀a1:n:Atom | inn(a1:n, r)⇒ inn(a1:n, s)
∀r, s:Reln | disj n(r, s)⇔ ∀a1:n:Atom | ¬(inn(a1:n, r) ∧ inn(a1:n, s))

Fig. 2. Translation rules for Alloy0 declarations. P(S) denotes the powerset of a set S.

the membership of an n-ary tuple <a1, . . . , an> in an n-ary relation r. We write
ai:j as a shorthand for ai, . . . , aj . The uninterpreted function sin1 : Atom→ Rel1
relates atoms and singleton sets.

In Fig. 2, the auxiliary translation function S translates any Alloy0 signature
or relation r of arity n to a constant of type Reln with a unique name N [r].
The auxiliary translation function F constrains subtypes to be subsets of their
parents using the uninterpreted predicate subsetn: Reln ×Reln → Prop. Top-
level signatures as well as extensions of a common signature are constrained to be
mutually disjoint using the uninterpreted predicate disj n: Reln ×Reln → Prop.
The semantics of these predicates are given by the axioms of Fig. 2. The type
information of a relation r is encoded by constraining N [r] to be a subset of
the Cartesian product of its column types. Function prodn×m : Reln ×Relm →
Reln+m denotes the Cartesian product of two relations of arities n and m, and
is defined in Fig. 4.

Fig. 3 provides an example of translating Alloy0 declarations to KFOL.
Fig. 3(a) gives a simple representation of a rooted, weighted, directed graph
in Alloy0 and Fig. 3(b) gives its KFOL translation. The line numbers denote
which Alloy0 statement produces each KFOL formula.

It should be noted that our type system is less precise than that of Alloy0; we
encode some type-related properties as additional formulas that are incorporated
as assumptions. Using the same type system would require a vast number of
operators to be defined for all types, and a completely untyped system would
not be compatible with our distinction of atoms and relations. Our calculus
represents a useful compromise where arity information is captured syntactically
by types, but the signature hierarchy is enforced semantically by formulas.

6

1 sig WT
2 sig Node
3 edges: Node→Node→WT
4 sig Root in Node

1 WT : Rel1
2 Node : Rel1
1,2 disj 1(WT ,Node)
3 edges : Rel3
3 subset3(edges, prod1×2(Node, prod1×1(Node,WT)))
4 Root : Rel1
4 subset1(Root ,Node)

(a) (b)

Fig. 3. An example of translating declarations: (a) Alloy0, (b) KFOL

4.2 Relational Expressions

We use the auxiliary translation function E : exp ∪ intExp → Expr to translate
Alloy expressions. A basic expression, namely a type, relation, or variable t is
translated to its KFOL counterpart N [t]. The translation of other relational
expressions is given in Fig. 4. Integer expressions are discussed in Section 4.3.

The Alloy0 relation none is translated to a KFOL constant none1 : Rel1 and
is axiomatized to be empty. Relational operators are translated to KFOL func-
tions whose names are subscripted by the arity information of their arguments.
The semantics of these functions are defined by axioms over the predicates inn.

Most axioms of Fig. 4 directly define the Alloy0 semantics of the correspond-
ing operators. Due to the compactness of FOL, however, transitive closure can-
not be characterized by a recursively enumerable set of first-order axioms [19].
Such an axiomatization is possible for finite interpretations [6], but because we
are interested in infinite systems as well, those results are not applicable to our
approach.

We define transitive closure using a primitive recursive function itrJoin2 that
uses the built-in integer type of KeY. This translation is comprehensible for users
and allows us to define canonical induction calculus rules. As shown in Fig. 4,
for a binary relation r and any integer i ≥ 0, the KFOL expression itrJoin2 (r, i)
evaluates to a relation that contains the pairs (a, b) where b is reachable from a
by following 0 to i steps in r.

4.3 Integer Expressions and Cardinality

The Alloy Analyzer calculates arithmetic expressions with respect to a fixed
bitwidth, and thus calculations are subject to overflow. When verifying speci-
fications, however, overflow is often not intended and integers are assumed to
represent the infinite set of mathematical integers. Therefore, we translate Al-
loy0 integer expressions using KFOL’s int type that models the semantics of
mathematical integers, thus deliberately deviating from the Alloy semantics. In-
teger numbers, arithmetic expressions, and comparisons in Alloy0 are translated
to their counterparts in KFOL.

The Alloy Analyzer requires all relations to be finite, and thus the cardinality
operator is defined for all expressions. In our translation, however, relations

7

E : exp ∪ intExp → Expr

E[none] = none1 E[~x2] = transpose2(E[x2])
E[xn + yn] = unionn(E[xn], E[yn]) E[^x2] = tc2(E[x2])
E[xn - yn] = diff n(E[xn], E[yn]) E[Int ie] = sin1(i2a(E[ie]))
E[xn & yn] = intersectn(E[xn], E[yn]) E[int v] = a2i(ordInv1(E[v], 1))

E[xn.ym] = joinn×m(E[xn], E[ym]) E[i1
*

±i2] = E[i1] ∗±E[i2]

E[xn -> ym] = prodn×m(E[xn], E[ym]) E[#xn] = cardn(E[xn])

E[(sum v : x1 | ie)] = Σ
i=card1 (E[x1])
i=1 E[ie][sin1(ordInv1(E[x1], i))/N [v]]

KFOL Axioms:

∀a:Atom | in1(a,none1)⇔ false
∀a, b:Atom | in1(b, sin1(a))⇔ a = b
∀r, s:Reln, a1:n:Atom | inn(a1:n, unionn(r, s))⇔ inn(a1:n, r) ∨ inn(a1:n, s)
∀r, s:Reln, a1:n:Atom | inn(a1:n, diff n(r, s))⇔ inn(a1:n, r) ∧ ¬inn(a1:n, s)
∀r, s:Reln, a1:n:Atom | inn(a1:n, intersectn(r, s))⇔ inn(a1:n, r) ∧ inn(a1:n, s)
∀r:Reln, s:Relm, a1:n+m−2:Atom | inn+m−2(a1:n+m−2, joinn×m(r, s))

⇔ (∃b:Atom | inn(a1:n−1, b, r) ∧ inm(b, an:n+m−2, s))
∀r:Reln, s:Relm, a1:n+m:Atom |

inn+m(a1:n+m, prodn×m(r, s))⇔ inn(a1:n, r) ∧ inm(an+1:n+m, s)
∀r:Rel2, a1, a2:Atom | in2(a1, a2, transpose2(r))⇔ in2(a2, a1, r)
∀r:Rel2, a1:2:Atom | in2(a1:2, tc2(r))⇔ ∃i: int | i ≥ 0 ∧ in2(a1:2, itrJoin2(r, i))
∀r:Rel2, i: int≥0 | itrJoin2(r, 0) = r ∧

itrJoin2 (r, i+ 1) = union2(itrJoin2(r, i), join2×2(r, itrJoin2(r, i))))
∀r:Reln, a1:n:Atom | (finiten(r) ∧ inn(a1:n, r))⇒ 1 ≤ ordn(r, a1:n) ≤ cardn(r)
∀r:Reln, i: int | (finiten(r) ∧ 1 ≤ i ≤ cardn(r))

⇒ ∃a1:n:Atom | inn(a1:n, r) ∧ ordn(r, a1:n) = i
∀r:Reln, a1:n, b1:n:Atom | (finiten(r) ∧ inn(a1:n, r) ∧ inn(b1:n, r)

∧ ordn(r, a1:n) = ordn(r, b1:n))⇒ (a1 = b1 ∧ . . . ∧ an = bn)
∀r: Rel1, a: Atom | in1(a, r)⇒ ordInv1(r, ord1 (r, a)) = a
∀a:Atom | in1(a,N [Int])⇒ i2a(a2i(a)) = a
∀i: int | in1(i2a(i), N [Int]) ∧ a2i(i2a(i)) = i

Fig. 4. Translation rules for Alloy0 expressions. xi and yi represent Alloy0 expressions
of arity i. The expression e[e1/e2] substitutes e1 for all occurrences of e2 in e.

are potentially infinite, and thus cardinality is defined only for those that are
explicitly known to be finite. For this purpose, we introduce a family of finiteness
predicates finiten : Reln → Prop that hold if the user marks a signature as finite,
or if finiteness can be inferred2. Unlike the Alloy Analyzer that finitizes relations
by user-provided, specific upper bounds, Kelloy considers all finite domains for
those relations that are flagged as finite.

As shown in Fig. 4, we translate Alloy0’s cardinality operator to a KFOL
function cardn : Reln → int≥0 which yields the cardinality of an n-ary relation r
if it is finite, and is unspecified otherwise. cardn is computed using an ordering
function ordn : Reln×Atomn → int>0—a bijection from the elements of a finite

2 Kelloy includes a set of axioms to infer finiteness. For example, the singleton sin1(a)
is always finite, and the union of two finite relations is finite.

8

F : dcl ∪ formula→ Frml F [one xn] = onen(E[xn])
F [xn in yn] = subsetn(E[xn], E[yn]) F [lone xn] = lonen(E[xn])
F [xn = yn] = (E[xn] = E[yn]) F [some xn] = somen(E[xn])
F [all a : set xn | g] = (∀ N [a]:Reln | subsetn(N [a], E[xn])⇒ F [g])
F [some a : set xn | g] = (∃ N [a]:Reln | subsetn(N [a], E[xn]) ∧ F [g])

KFOL Axioms:

∀r, s:Reln | r = s⇔ ∀a1:n:Atom | inn(a1:n, r)⇔ inn(a1:n, s)
∀r:Reln | onen(r)⇔ somen(r) ∧ lonen(r)
∀r:Reln | lonen(r)⇔

∀a1 :n , b1 :n : Atom | inn(a1 :n , r) ∧ inn(b1 :n , r)⇒ (a1 = b1) ∧ . . . ∧ (an = bn)
∀r:Reln | somen(r)⇔ ∃a1:n:Atom | inn(a1:n, r)

Fig. 5. Translation rules for Alloy0 formulas. xn denotes an Alloy0 expression of arity n.

relation r to the inclusive integer interval [1, . . . , cardn(r)]. It is easy to show that
if the axioms for ordn , as shown in Fig. 4 hold, cardn(r) gives the cardinality of
r. We also define the function ordInv1 : Rel1× int → Atom to denote the inverse
of ord1(r) for any unary relation r.

The Alloy0 signature Int is translated like other top-level signatures to a
constant function symbol N [Int] : Rel1. The Alloy0 cast operators Int and int
are translated using the bijections i2a : int→ Atom and a2i : Atom→ int that
give the atom corresponding to an integer value and vice versa. Since in Alloy0,
the int operator is only applicable to scalar variables, the atom corresponding
to v in the expression (int v) can be retrieved by ordInv1(E[v], 1).

The sum construct is translated using the cardinality function and KFOL’s
bounded sum operator. Note that, due to the underspecification of card1 and
ordInv1, the result of the sum operation is unspecified if E[S] is not finite.

4.4 Formulas

Alloy0 formulas are translated using the auxiliary translation function F given
in Fig. 5. Subset and equality formulas are translated using the subseti predi-
cates and KFOL’s built-in (polymorphic) equality. Negation, conjunction, dis-
junction, and implication operators in Alloy0 are translated to their counterparts
in KFOL, and skipped in Fig. 5 in the interest of space. For an Alloy0 expres-
sion x of arity n, a multiplicity formula (mult x) is translated to a predicate
multn(E[x]) in KFOL where mult stands for the multiplicities some, lone, and
one. Further axioms give the semantics of these predicates. Universal and exis-
tential quantifiers in Alloy0 are translated to those in KFOL where the bounding
expression is incorporated into the body of the quantifier.

4.5 The Ordering Module

The Alloy Analyzer provides some library modules that can be used in Alloy
problems. Most library functions are inlined and treated like other expressions.
The ordering module, however, triggers special optimizations in the Analyzer.

9

Since this module is widely used, we also treat it specially. The declaration
ord[S] defines a total order3 on a signature S, which is represented by Alloy0
relations next:S->S, first:S, and last:S which, respectively, denote the suc-
cessor of an element, and the smallest and the largest elements of the order.
These relations are translated to KFOL constants nextS : Rel2, firstS : Rel1,
and lastS : Rel1, respectively.

If finite1(N [S]) holds, the previously defined ord1 function induces an or-
dering. When N [S] is not finite, nextS relates each element to its immediate
successor and thus makes N [S] countable (i.e. isomorphic to the natural num-
bers). In this case, we extend the axioms for ord1 to define a bijection from N [S]
to int>0. The semantics of nextS is then given by:

∀a, b: Atom |(in1(a,N [S]) ∧ in1(b,N [S]))
⇒ (in2(a, b,nextS)⇔ ord1(N [S], b) = ord1(N [S], a) + 1)

Ordered signatures in Alloy0 cannot be empty. This is encoded as ¬(N [S] =
none1). The constant firstS yields the element associated with 1, and lastS
yields the one associated with card1(N [S]) if N [S] is finite, and the empty set
otherwise.

firstS = sin1(ordInv1(N [S], 1)) ¬finite1(N [S])⇒ lastS = none1

finite1(N [S])⇒ (lastS = sin1(ordInv1(N [S], card1(N [S]))))

Properties about the elements of a countable set are often proved using in-
duction. KeY provides an induction scheme for its integer type which can be
used for this purpose.

4.6 Theoretical Properties

This section discusses the correctness and completeness of our translation. In
KFOL, the semantics of the built-in integers is set to Z. KeY’s calculus contains
a set of inference rules to deal with arithmetic expressions. The calculus, however,
cannot be complete because according to Gödel’s incompleteness theorem, there
is no sound and complete calculus for integer arithmetic [4, §2.7].

The first two theorems state the properties for Alloy0 problems without in-
tegers and the third one handles the integer case. The proof sketches for the
theorems can be found elsewhere [21].

In the following, we use sigs(P) to denote the set of all signatures (not
including the signature Int) defined in an Alloy0 problem P .

Theorem 1 (Correctness). Let P be an Alloy0 problem that does not contain
any integer expression (neither of type int nor Int) and fin ⊆ sigs(P) a set of
signatures. Let T [<P, fin>] = <C, kd, ka> be the translation of P . If Ax |=C

kd ⇒ ka, then P is valid in all structures that interpret the signatures in fin as
finite.
3 The Alloy Analyzer treats signatures as finite, so the last element of the order does

not have a next element.

10

This theorem implies that the Alloy Analyzer will not produce a counterex-
ample for an Alloy0 problem (not containing integers) that has been proved by
Kelloy. If fin = ∅, Thm. 1 implies that our translation is correct with respect to
all structures, i.e. both finite and infinite ones. The Alloy Analyzer, on the other
hand, interprets Alloy0 problems only with respect to finite structures.

Completeness, however, holds only for finite structures. In first-order logic,
it is not possible to formalize that one type is the powerset of another type.
Consequently, our axioms cannot guarantee that the KFOL type Reln represents
the set of all n-ary relations. This limitation did not appear problematic in
practice, but restricts the completeness theorem to the case of finite structures.

Theorem 2 (Relative completeness). Let P be an Alloy0 problem that does
not contain any integer expression (neither of type int nor Int). Let T [<P, sigs(P)>] =
<C, kd, ka> be the translation of P with all the signatures finitized. If P has no
counterexample which interprets all signatures as finite, then Ax |=C kd ⇒ ka.

The next theorem considers Alloy0 problems that contain integer expressions.
The Alloy Analyzer—due to its methodology—finitizes all domains. Hence, it
cannot check problems for validity with respect to Z, but only with respect to a
fixed bitwidth. In contrast, integers in KFOL are never interpreted bounded.
Therefore, we cannot establish a relationship between arbitrary Alloy0 and
KFOL counterexamples. For example, an Alloy0 formula that specifies that there
is a maximum integer value is not valid with respect to Z and thus cannot be
proved by Kelloy. However, the Alloy Analyzer will not produce a counterexam-
ple either since the formula is valid in all structures with a finite integer domain.
Consequently, we generalize the correctness and completeness results by fixing
the semantics of the Alloy signature Int to Z:

Theorem 3 (Correctness and Completeness modulo integers). Let P be
an Alloy0 problem (which may contain integer expressions) and fin ⊆ sigs(P) a
set of signatures. Let T [<P, fin>] = <C, kd, ka> be the translation of P .

If Ax |=C kd ⇒ ka, then P is valid in all structures that interpret the signa-
tures in fin as finite and interpret the signature Int as Z.

If fin = sigs(P) and P has no counterexample which interprets all signatures
in sig(P) as finite and the signature Int as Z, then Ax |=C kd ⇒ ka.

5 Reasoning Strategy

The KeY system uses a sequent calculus [15] for proving. A proof-tree is con-
structed by applying the calculus rules to a proof sequent. This can either be
done manually through the GUI, or automatically by KeY’s proof search strategy
that assigns priorities to all applicable rules and instantiates quantifiers heuris-
tically. We extend the existing strategy by incorporating new (Alloy-specific)
calculus rules.

All axioms from the previous sections are implemented as rules for the cal-
culus. For example, axioms that follow the form ∀x:T | P (x)⇒ (F (x)⇔ G(x))

11

become conditional rewrite rules that replace F (x) with G(x) when the guard
P (x) is known to hold. Since all axioms become rules, the set of Axioms Ax is
no longer included in the proof obligation.

The axiom rules rewrite all invocations of the predicates subsetn , disjn , lonen ,
onen , somen , and relational equality to their quantified definitions. We consider
this undesirable for two reasons: (1) formulas grow considerably in size and
are thus hard to understand, and (2) when quantifiers cannot be eliminated by
skolemization, they require the strategy to provide a suitable instantiation which
is a heuristic task.

Our strategy addresses this by only expanding predicates to their definitions
when skolemization is applicable. Otherwise, lemma rules are used to exploit the
semantics of the predicates without rewriting them. For example, a lemma lets
us conclude inn(a1:n, sn) from inn(a1:n, rn) and subsetn(rn, sn). This maintains
the structural correspondence between formulas and the Alloy0 specification,
and allows reasoning on the abstraction level of relations. Overall, the strategy
features around 500 lemma rules that have been proved using KeY to follow from
the axioms.

The recursive nature of the definition of transitive closure (tc2) poses a special
challenge during proving. In order to simplify proofs and to increase the automa-
tion level, we use additional lemmas to capture several simple properties about
tc2, such as its transitivity. Such lemmas are useful for proving some assertions
that involve transitive closure. For some cases, however, an induction scheme
is required. We can use induction on the integers in the definition of itrJoin2.
However, formulas generated this way get cumbersome quickly. We therefore de-
fine special induction schemes that are more intuitive, and thus easier to use.
Further information can be found elsewhere [21].

6 Evaluation

In this section, we summarize our experimental results of proving Alloy assertions
with Kelloy. We proved a total of 22 assertions in 10 Alloy problems of varying
sizes and complexity4. The chosen collection of Alloy problems is included in the
Alloy Analyzer 4.1 distribution and involves all relevant aspects of the language,
including transitive closure, integer arithmetic, and the ordering module. In the
following, we first elaborate on the automatically proved assertions and show
the impact of our reasoning strategy. We then report on the interactive proofs.

6.1 Automation

Out of the 22 assertions, 12 have been proved completely automatically by Kel-
loy. The remaining 10 assertions required manual guidance as discussed in the
next section. Table 1 shows runtime measured on an Intel Core2Quad, 2.8GHz,
8GB memory, and the number of proof steps (i.e. the number of single rule
applications) required for each automatic proof.
4 All Alloy problems and proofs can be found at http://asa.iti.kit.edu/306.php

12

Kelloy Strategy Basic Strategy
Problem Assertion Time (Steps) Result Time (Steps) Result

address book delUndoesAdd 9.3 (2476) proved 27.1 (5475) proved
addIdempotent 0.1 (113) proved 5.0 (1176) proved

abstract memory writeRead 0.8 (567) proved 1.0 (597) proved
writeIdempotent 14.0 (4482) proved 6.5 (1009) proved

media assets hidePreservesInv 0.0 (39) proved 0.1 (70) proved
pasteNotAffectsHidden 15.9 (2619) proved time-out (–) failed

mark sweep soundness1 3.0 (1195) proved time-out (–) failed
grandpa noSelfFather 0.0 (77) proved 0.0 (77) proved

noSelfGrandpa 26.5 (3144) proved 39.8 (3276) proved
filesystem FileInDir 0.5 (160) proved time-out (–) failed

SomeDir 0.2 (205) proved time-out (–) failed
birthday addWorks 0.1 (129) proved 1.2 (506) proved

Table 1. Automatically-proved assertions (time in seconds, time-out after 2h)

Kelloy’s strategy uses numerous lemmas to maintain the structure of formulas
and to allow reasoning on the abstraction level of relations. To evaluate the
impact of these lemmas on the automation level, we compared Kelloy’s strategy
to a basic strategy that applies all the axiom rules, but none of the lemmas.
Table 1 also shows these numbers.

Out of the 12 assertions automatically proved by Kelloy, 4 could not be proved
automatically by the basic strategy. Furthermore, although for the remaining
assertions, the basic strategy suffices, Kelloy performs most of the proofs faster
and requires fewer proof steps. Exceptions include writeIdempotent for which
the basic strategy is superior, and noSelfFather and writeRead for which the
two strategies perform equally well. These assertions involve simple formulas for
which rewriting function symbols as their quantified definitions and using the
default quantifier instantiation is sufficient.

6.2 Interactive Proofs

10 of the verified Alloy assertions required user interaction to guide the prover.
During interactive proving, the user manually applies rules to the sequent (KeY’s
GUI makes this quite convenient). The automatic proof search strategy can be
invoked anytime on the subgoals of a proof. The strategy then either proves
the subgoal, or stops when the maximum number of steps (set by the user) is
reached. It is a common practice to frequently invoke the strategy and only focus
on those cases that the prover cannot solve on its own.

The manual rule applications can be categorized into three groups of de-
scending complexity: (1) Hypothesis introduction: for example as an induction
hypothesis or for a case distinction. (2) Prover guidance: rule applications that
allow the strategy to solve a subgoal (more quickly). These include, for example,
quantifier instantiations and case distinctions on formulas from the sequent. (3)
Non-essential steps: simple steps that the strategy would find automatically but
the user prefers to do manually to keep track of the proof.

The complexity of the proofs for the 10 interactively-proved assertions differ
considerably. 7 assertions required only very few (max. 10) interactive steps. One
example of such a proof is the completeness assertion for the mark and sweep
Alloy problem: only one, yet quite a complex step to handle transitive closure

13

had to be done interactively. The remaining 3 assertions required between 36
and 291 interactive steps. The assertion stating the correctness of Dijkstra’s
deadlock prevention algorithm had the most complex proof: we introduced seven
intermediate hypotheses that were proved using induction. Overall, the proof
took 18875 steps out of which 7/219/65 were manual steps of the categories
1/2/3. A proof of this complexity can be conducted by an experienced user in
roughly one work day.

In order to evaluate the impact of the user’s expertise on the interactive
proof process, we asked an Alloy user with no previous experience in KeY to
prove a soundness assertion for the mark and sweep Alloy problem. Out of 1389
steps, 207 (2/57/148) have been performed manually. The proof, including a
proof-sketch on paper, was conducted within two work days.

In comparison to that, an experienced user in both Alloy and KeY, proved
the same assertion in 4 hours with only 10 (5/1/4) interactive steps out of a
total of 9372 steps. The higher number of total steps, but drastically smaller
number of interactive steps show that it requires some experience to effectively
leverage the automation strategy. However, the experiment indicates that the
proof process is intuitive enough for a user with no prior experience in Kelloy.

7 Conclusion

We presented Kelloy, a tool for full verification of Alloy problems. We formally
defined a translation of the Alloy language to the first-order logic of the theorem
prover KeY and discussed its correctness and completeness. To our knowledge,
Kelloy is the only system that provides proof capability for the whole Alloy
language (including integers, cardinality, and the ordering module).

We used Kelloy to prove some challenging Alloy assertions semi-automatically.
Our experiments showed that usually only structurally complex systems or sys-
tems that involve inductive properties require user interaction. Moreover, con-
siderable parts of a proof can be automated while the user only performs central
steps interactively. In many cases, however, conducting a proof using Kelloy re-
quires in-depth knowledge of the analyzed Alloy problem; the required time and
effort depend on the user’s experience in the tool. Kelloy is thus intended to be
used in conjunction with automatic approaches as described in [7].

The presentation of proof obligations in Kelloy resembles the original Alloy
structure such that even a non-expert in KeY can conduct interactive proofs.
The effort of interaction might be further lowered in the future, for example
by pretty-printing expressions in the Alloy syntax or integration of the Alloy
Analyzer for counterexample generation and visualization.

Several program analysis tools (see [7] for some examples) use Alloy as their
specification languages. Incorporating Alloy into KeY raises the opportunity of
full verification of programs that contain Alloy specifications, leveraging both
the expressiveness of Alloy and the dynamic logic of KeY. Pursuing this idea is
left for future work.

14

Acknowledgement

We thank Peter H. Schmitt and the anonymous reviewers for their helpful com-
ments. This work was funded in part by the MWK-BW grant 655.042/taghdiri/1.

References

1. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: Application to Event-B. Fundamenta Informaticae (2007)

2. Arkoudas, K., Khurshid, S., Marinov, D., Rinard, M.: Integrating model checking
and theorem proving for relational reasoning. In: (RMICS) (2003)

3. Athena. http://people.csail.mit.edu/kostas/dpls/athena/
4. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-

ware: The KeY Approach. Springer-Verlag (2007)
5. Buss, S.R.: First-order proof theory of arithmetic. In: Handbook of Proof Theory,

pp. 79–147. Elsevier (1998)
6. van Eijck, J.: Defining (reflexive) transitive closure on finite models. http://

homepages.cwi.nl/~jve/papers/08/pdfs/FinTransClosRev.pdf

7. El Ghazi, A.A., Geilmann, U., Ulbrich, M., Taghdiri, M.: A Dual-Engine for Early
Analysis of Critical Systems. In: (DSCI) (2011)

8. El Ghazi, A.A., Taghdiri, M.: Analyzing Alloy Constraints using an SMT Solver:
A Case Study. In: (AFM) (2010)

9. El Ghazi, A.A., Taghdiri, M.: Relational Reasoning via SMT Solving. In: (FM)
(2011)

10. Fortune, S., Leivant, D., O’Donnell, M.: The expressiveness of simple and second-
order type structures. (J. ACM) (1983)

11. Frias, M., Lopez Pombo, C.: Interpretability of first-order linear temporal logics in
fork algebras. In: Journal of logic and algebraic programming (2006)

12. Frias, M., Lopez Pombo, C., Aguirre, N.: An equational calculus for Alloy. In:
(ICFEM) (2004)

13. Frias, M., Lopez Pombo, C., Baum, G., Aguirre, N., Maibaum, T.: Taking Alloy
to the movies. In: (FME) (2003)

14. Frias, M., Lopez Pombo, C., Moscato, M.: Alloy Analyzer+PVS in the analysis
and verification of Alloy specifications. In: (TACAS) (2007)

15. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische
Zeitschrift (1935)

16. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press
(2006)

17. Jackson, D., Wing, J.: Lightweight formal methods. In: IEEE Computer (1996)
18. Köker, C.: Discharging Event-B proof obligations. Studienarbeit, Universität Karl-

sruhe (TH) (2008)
19. Lev-Ami, T., Immerman, N., Reps, T.W., Sagiv, M., Srivastava, S., Yorsh, G.:

Simulating reachability using first-order logic with applications to verification of
linked data structures. Logical Methods in Computer Science 5(2) (2009)

20. Shankar, N., Owre, S., Rushby, J., Stringer-Calvert, D.: PVS Prover Guide. Com-
puter Science Laboratory, SRI International (1999)

21. Ulbrich, M., Geilmann, U., Ghazi, A.A.E., Taghdiri, M.: On proving alloy specifi-
cations using KeY. Tech. Rep. 2011-37, Karlsruhe Institute of Technology (2011)

15

