
Abstract
A simple mechanism for structuring specifications is described.
By modelling structures as atoms, it remains entirely first-order
and thus amenable to automatic analysis. And by interpreting
fields of structures as relations, it allows the same relational
operators used in the formula language to be used for derefer-
encing. An extension feature allows structures to be developed
incrementally, but requires no textual inclusion nor any notion
of subtyping. The paper demonstrates the flexibility of the
mechanism by application in a variety of common idioms.

Categories and Subject Descriptors

D.2.1 Requirements/Specifications—Languages; D.2.4
Software/Program Verification—Formal methods, Model
checking; F.3.1 Specifying and Verifying and Reasoning about
Programs—Assertions, Invariants, Specification techniques.

General Terms

Design; Documentation; Languages; Verification.

Keywords

Modeling languages; formal specification; first-order logic; rela-
tional calculus; Alloy language; Z specification language;
schema calculus.

Introduction

I am neither crazy nor a micromaniac.
(A micromaniac is someone obsessed with
reducing things to their smallest possible form.
This word, by the way, is not in the dictionary.)
–Edouard de Pomiane, French Cooking in Ten Minutes, 1930

Most specification languages provide mechanisms that allow
larger specifications to be built from smaller ones. These mech-
anisms are often the most complicated part of the language, and
present obstacles to analysis. This paper presents a simple
mechanism that seems to be expressive enough for a wide vari-
ety of uses, without compromising analyzability.

This work is part of a larger project investigating the design
of a “micro modelling language”. Our premise is that lightweight
application of formal methods [6] demands an unusually small
and simple language that is amenable to fully automatic seman-
tic analysis. The Alloy language is the result to date of our
efforts to design such a language. Based on our experiences
with the language [4] and its analyzer [5], we have recently
developed a revision of Alloy that overcomes many of its limi-
tations. This paper describes the key feature of the revised lan-
guage: the signature, a new modularity mechanism.

The mechanism allows our existing analysis scheme [3] to be
applied to specifications involving structures. This is not
achieved by treating the structuring mechanism as a syntactic
sugar, which would limit the power of the notation (ruling out,
for example, quantification over structures) and would compli-
cate the analysis tool and make output harder for users to inter-
pret. Because of the mechanism’s generality, it has also enabled
us to simplify the language as a whole, making it more uniform
and eliminating some ad hoc elements.

Our mechanism has a variety of applications. It can express
inherent structure in the system being modelled, and can be
used to organize a specification in which details are added
incrementally. It can be used to construct a library of datatypes,
or to describe a system as an instantiation of a more general sys-
tem. And it can express state invariants, transitions, and
sequences, despite the lack of any special syntax for state
machines.

In this last respect, the new language differs most markedly
from its predecessor [4], which provided built-in notions of
state invariants and operations. We now think this was a bad
idea, because it made the language cumbersome for problems
(such as the analysis of security policies or architectural topol-
ogy constraints) in which temporal behaviour can be fruitfully
ignored, and too inflexible for many problems in which tempo-
ral behaviour is important.

Our paper begins by explaining our motivations—the
requirements our mechanism is designed to meet. The mecha-
nism is then presented first informally in a series of examples,
and then slightly more rigorously feature-by-feature. We dis-
cuss related work, especially the schema calculus of Z, and close
with a summary of the merits and deficiences of our notation as
a whole.

1 Requirements

The goal of this work was to find a single structuring mecha-
nism that would support a variety of common specification

A Micromodularity Mechanism

Daniel Jackson, Ilya Shlyakhter and Manu Sridharan
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

dnj@mit.edu

To appear, Joint 8th European Software Engineering
Conference (ESEC) and 9th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE-9),
Vienna, Austria, Sept. 10-14, 2001

idioms:
· States: description of complex state as a collection of named

components; incremental description both by hierarchy, in
which a complex state becomes a component of a larger
state, and by extension, in which new components are added;
declaration of invariants and definitions of derived compo-
nents;

· Datatypes: separate description of a library of polymorphic
datatypes, such as lists, sequences, trees and orders, along
with their operators;

· Transitions: specification of state transitions as operations
described implicitly as formulas relating pre- and post-state;
composition of operations from previously defined invari-
ants and operations; sequential composition of operations;
description of traces as sequences of states;

· Abstractions: description of abstraction relations between
state spaces;

· Assertions: expression of properties intended to be redun-
dant, to be checked by analysis, including: relationships
amongst invariants; wellformedness of definitions (eg, that
an implicit definition is functional); establishment and
preservation of invariants by operations; properties of states
reachable along finite traces; and simulation relationships
between abstract and concrete versions of an operation.

We wanted additionally to meet some more general criteria:
· Simplicity. The language as a whole should be exceptionally

small and simple.
· Flexibility. Support for the particular idioms of state-

machine specification should not be a straitjacket; the lan-
guage should not dictate how state machines are expressed,
and should not make it hard to describe structures that are
not state machines (such as security models and architectur-
al styles).

· Analyzability. A fully automatic semantic analysis should be
possible. In the present work, this has been achieved by
requiring that the modularity mechanism be first order, and
expressible in the kernel of the existing language.

Finally, our language design decisions have been influenced by
some principles that we believe contribute to these goals, make
the language easier to use, and analysis tools easier to build:
· Explicitness. The language should be fully explicit, with as

few implicit constraints, coercions, etc, as possible.
· Minimal mathematics. The basic theory of sets and relations

should suffice; it should not be necessary to introduce
domains, fixed points, infinities or special logical values.

· Minimal syntax. There should be very few keywords or spe-
cial symbols, and no need for special typography or layout.

· Uniformity. A small and general set of constructs should be
applied uniformly, independent of context.

· Lack of novelty. Whenever possible, notions and syntax
should follow standard usage of conventional mathematics
and programming.

2 Informal Description

As a running example, we will specify a simple memory system
involving a cache and a main memory. The memory has a fixed
set of addresses and associates a data value with each address.
The cache, in contrast, associates data values with some subset

of addresses that varies over time. The cache is updated by a
“write-back scheme”, which means that updates need not be
reflected to main memory immediately. The cache may there-
fore hold a more current value for an address than the main
memory; the two are brought into alignment when the address
is flushed from the cache and its value is written to main mem-
ory.

2.1 States

We start by declaring the existence of addresses and data val-
ues:

sig Addr {}
sig Data {}

Each line declares a signature, and introduces a set of atoms:
Addr for the set of addresses, and Data for the set of data val-
ues. Like ‘given types’ in Z, these sets are disjoint from one
another, and their atoms are unstructured and uninterpreted.
Signature names can be used as expressions denoting sets, but
they are also treated as types, so the expression Addr+Data, for
example, is ill-typed, since the union operator (+) requires the
types of its operands to match.

The signature declaration

sig Memory {
addrs: set Addr,
map: addrs ->! Data
}

likewise declares a set of atoms, Memory, corresponding to the
set of all possible memories. In addition, it declares two fields:
addrs and map which associate with a memory a set of address-
es and a mapping from addresses to data values respectively.
Thus, given a memory m, the expression m.addrs will be a set
of addresses, m.map will be a relation from addresses to data
values. The memory, addresses and data values should be
viewed as distinct atoms in their own right; fields don’t decom-
pose an atom, but rather relate one atom to others. The excla-
mation mark in the declaration of the field map is a ‘multiplici-
ty marking’: it says that m.map associates exactly one data value
with each address in the set m.addrs. The use of addrs rather
than Addr on the left side of the arrow indicates that m.map
does not associate a data value with an address that is not in the
set m.addrs.

In these expressions, the dot is simply relational image. More
precisely, when we say that m is a memory, we mean that the
expression m denotes a set consisting of a single atom. The field
addrs is a relation from Memory to Addr, and m.addrs denotes
the image of the singleton set under this relation. So for a set of
memories ms, the expression ms.addrs will denote the union of
the sets of addresses that belong to the individual memories.
Given an address a, the expression a.(m.map) denotes the set of
data values associated with address a in memory m, which will
either be empty (when the address is not mapped) or a single-
ton. For convenience, we allow the relational image s.r to be
written equivalently as r[s], where [] binds more loosely than
dot, so this expression may be written as m.map[a] instead.

Like objects of an object-oriented language, two distinct
atoms can have fields of the same value. Unlike objects, howev-
er, atoms are immutable. Each field is fixed, and cannot map an

2

atom to one value at one time and another value at another
time. To describe an operation that changes the state of a mem-
ory, therefore, we will use two distinct atoms in the set Memory
to represent the memory’s state before and after.

2.2 Extension

A signature declaration can introduce a set as a subset of one
previously declared, in which case we call it a subsignature. In
this case, the set does not correspond to a type, but rather its
atoms take on the type of the superset. For example, the decla-
ration

sig MainMemory extends Memory {}

introduces a set of atoms MainMemory representing main
memories, which is constrained to be a subset of the set
Memory. Likewise

sig Cache extends Memory {
dirty: set addrs
}

introduces a set of atoms Cache representing those memories
that can be regarded as caches. It also introduces a field dirty
that associates with a cache the set of addresses that is dirty;
later, we will use this to represent those addresses for which a
cache and main memory differ. Because Cache is a subset of
Memory, and m.addrs (for any memory m) is a subset of Addr,
the field denotes a relation whose type is from Memory to Addr.
Expressions such as m.dirty are therefore type-correct for a
memory m, whether or not m is a cache. But since declaration
of the field dirty within the signature Cache constrains dirty to
be a relation that maps only caches, m.dirty will always denote
the empty set when m is not a cache.

This approach avoids introducing a notion of subtyping.
Subtypes complicate the language, and tend to make it more
difficult to use. In OCL [17], which models extension with sub-
types rather than subsets, an expression such as m.dirty would
be illegal, and would require a coercion of m to the subtype
Cache. Coercions do not fit smoothly into the relational frame-
work; they interfere with the ability to take the image of a set
under a relation, for example. Moreover, subtypes are general-
ly disjoint, whereas our approach allows the sets denoted by
subsignatures to overlap. In this case, we’ll add a constraint (in
Section 2.4 below) to ensure that MainMemory and Cache are
in fact disjoint.

Declaring Cache and MainMemory as subsignatures of
Memory serves to factor out their common properties.
Extension can be used for a different purpose, in which a single
signature is developed by repeated extensions along a chain. In
this case, the supersignatures may not correspond to entities in
the domain being modelled, but are simply artifacts of specifi-
cation—fragments developed along the way. Z specifications
are typically developed in this style.

2.3 Hierarchy

The signature declaration also supports hierarchical structur-
ing. We can declare a signature for systems each consisting of a
cache and a main memory:

sig System {
cache: Cache,
main: MainMemory
}

Again, System introduces a set of atoms, and each field repre-
sents a relation. The omission of the keyword set indicates that
a relation is a total function. So for a system s, the expression
s.cache denotes one cache—that is, a set consisting of a single
cache. This is one of very few instances of implicit constraints
in our language, which we introduced in order to make declara-
tion syntax conventional.

Since signatures denote sets of atoms, apparently circular
references are allowed. Linked lists, for example, may be mod-
elled like this, exactly as they might be implemented in a lan-
guage like Java:

sig List {}
sig NonEmptyList extends List {elt: Elt, rest: List}

There is no recursion here; the field rest is simply a homoge-
neous relation of type List to List, with its domain restricted to
the subset NonEmptyList.

2.4 State Properties

Properties of signature atoms are recorded as logical formulas.
To indicate that such a property always holds, we package it as
a fact. To say that, for any memory system, the addresses in a
cache are always addresses within the main memory, we might
write:

fact {all s: System | s.cache.addrs in s.main.addrs}

or, using a shorthand that allows facts about atoms of a signa-
ture to be appended to it:

sig System {cache: Cache, main: MainMemory}
{cache.addrs in main.addrs}

The appended fact is implicitly prefixed by

all this: System | with this |

in which the with construct, explained in Section 3.6 below,
causes the fields implicitly to be dereferences of the atom this.

A fact can constrain atoms of arbitrary signatures; to say that
no main memory is a cache we might write:

fact {no (MainMemory & Cache)}

where no e means that the expression e has no elements, and &
is intersection.

Most descriptions have more interesting facts. We can
express the fact that linked lists are acyclic, for example:

fact {no p: List | p in p.^ rest}

The expression ^ rest denotes the transitive closure of the rela-
tion rest, so that p.^rest denotes the set of lists reachable from p
by following the field rest once or more. This illustrates a bene-
fit of treating a field as a relation—that we can apply standard
relational operators to it—and is also an example of an expres-
sion hard to write in a language that treats extension as subtyp-
ing (since each application of rest would require its own coer-
cion).

3

Often we want to define a property without imposing it as a
permanent constraint. In that case, we declare it as a function.
Here, for example, is the invariant that the cache lines not
marked as dirty are consistent with main memory:

fun DirtyInv (s: System) {
all a !: s.cache.dirty | s.cache.map[a] = s.main.map[a]
}

(The exclamation mark negates an operator, so the quantifica-
tion is over all addresses that are not dirty.) Packaging this as a
function that can be applied to a particular system, rather than
as a fact for all systems, will allow us to express assertions about
preservation of the invariant (Section 2.8).

By default, a function returns a boolean value—the value of
the formula in its body. The value of DirtyInv(s) for a system s is
therefore true or false. A function may return non-boolean val-
ues. We might, for example, define the set of bad addresses to
be those for which the cache and main memory differ:

fun BadAddrs (s: System): set Addr {
result = {a: Addr | s.cache.map[a] != s.main.map[a]}
}

and then write our invariant like this:

fun DirtyInv (s: System) {BadAddrs(s) in s.cache.dirty}

In this case, BadAddrs(s) denotes a set of addresses, and is short
for the expression on the right-hand side of the equality in the
definition of the function BadAddrs. The use of the function
application as an expression does not in fact depend on the
function being defined explicitly. Had we written

fun BadAddrs (s: System): set Addr {
all a: Addr | a in result iff s.cache.map[a] != s.main.map[a]
}

the application would still be legal; details are explained in
Section 3.7.

2.5 Operations

Following Z, we can specify operations as formulas that con-
strain pre- and post-states. An operation may be packaged as a
single function (or as two functions if we want to separate pre-
and post-conditions in the style of VDM or Larch).

The action of writing a data value to an address in memory
might be specified like this:

fun Write (m,m’: Memory, d: Data, a: Addr) {
m’.map = m.map ++ (a->d)
}

The formula in the body of the function relates m, the value of
the memory before, to m’, the value after. These identifers are
just formal arguments, so the choice of names is not significant.
Moreover, the prime mark plays no special role akin to decora-
tion in Z—it’s a character like any other. The operator ++ is rela-
tional override, and the arrow forms a cross product. As men-
tioned above, scalars are represented as singleton sets, so there
is no distinction between a tuple and a relation. The arrows in
the expressions a->d here and addrs->Data in the declaration
of the map field of Memory are one and the same.

The action of reading a data value can likewise be specified

as a function, although since it has no side-effect we omit the m’
parameter:

fun Read (m: Memory, d: Data, a: Addr) {
d = m.map[a]
}

Actions on the system as a whole can be specified using these
primitive operations; in Z, this idiom is called ‘promotion’. A
read on the system is equivalent to reading the cache:

fun SystemRead (s: System, d: Data, a: Addr) {
Read (s.cache, d, a)
}

The Read operation has an implicit precondition. Since the data
parameter d is constrained (implicitly by its declaration) to be
scalar—that is, a singleton set—the relation m.map must
include a mapping for the address parameter a, since otherwise
the expression m.map[a] will evaluate to the empty set, and the
formula will not be satisfiable. This precondition is inherited by
SystemRead. If the address a is not in the cache, the operation
cannot proceed, and it will be necessary first to load the data
from main memory. It is convenient to specify this action as a
distinct operation:

fun Load (s,s’: System, a: Addr) {
a !in s.cache.addrs
s’.cache.map = s.cache.map + (a->s.main.map[a])
s’.main = s.main
}

The + operator is just set union (in this case, of two binary rela-
tions, the second consisting of a single tuple). A write on the
system involves a write to the cache, and setting the dirty bit.
Again, this can be specified using a primitive memory opera-
tion:

fun SystemWrite (s,s’: System, d: Data, a: Addr) {
Write (s.cache, s’.cache, d, a)
s’.cache.dirty = s.cache.dirty + a
s’.main = s.main
}

A cache has much smaller capacity than main memory, so it will
occasionally be necessary (prior to loading or writing) to flush
lines from the cache back to main memory. We specify flushing
as a non-deterministic operation that picks some subset of the
cache addrs and writes them back to main memory:

fun Flush (s,s’: System) {
some x: set s.cache.addrs {

s’.cache.map = s’.cache.map - (x->Data)
s’.cache.dirty = s.cache.dirty - x
s’.main.map = s.main.map ++

{a: x, d: Data | d = s.cache.map[a]}
}

}

The - operator is set difference; note that it is applied to sets of
addresses (in the third line) and to binary relations (in the sec-
ond). The comprehension expression creates a relation of pairs
a->d satisfying the condition.

Finally, it is often useful to specify the initial conditions of a

4

system. To say that the cache initially has no addresses, we
might write a function imposing this condition on a memory
system:

fun Init (s: System) {no s.cache.addrs}

2.6 Traces

To support analyses of behaviours consisting of sequences of
states, we declare two signatures, for ticks of a clock and traces
of states:

sig Tick {}
sig SystemTrace {

ticks: set Tick,
first, last: ticks,
next: (ticks - last) !->! (ticks - first)
state: ticks ->! System}
{
first.*next = ticks
Init (first.state)
all t: ticks - last |

some s = t.state, s’ = t.next.state |
Flush (s,s’)
|| (some a: Addr | Load (s,s’,a))
|| (some d: Data, a: Addr | SystemWrite (s,s’,d,a))

}

Each trace consists of a set of ticks, a first and last tick, an order-
ing relation next (whose declaration makes it a bijection from
all ticks except the last to all ticks except the first), and a rela-
tion state that maps each tick to a system state.

The fact appended to the signature states first a generic
property of traces: that the ticks of a trace are those reachable
from the first tick. It then imposes the constraints of the opera-
tions on the states in the trace. The initial condition is required
to hold in the first state. Any subsequent pair of states is con-
strained to be related by one of the three side-effecting opera-
tions. The existential quantifier plays the role of a let binding,
allowing s and s’ in place of t.state and t.next.state, representing
the state for tick t and the state for its successor t.next. Note that
this formulation precludes stuttering; we could admit it simply
by adding the disjunct s=s’ allowing a transition that corre-
sponds to no operation occurring.

Bear in mind that this fact is a constraint on all atoms in the
set SystemTrace. As a free standing fact, the second line of the
fact—the initial condition— would have been written:

fact {all x: SystemTrace | Init ((x.first).(x.state))}

2.7 Abstraction

Abstraction relationships are easily expressed using our func-
tion syntax. To show that our memory system refines a simple
memory without a cache, we define an abstraction function
Alpha saying that a system corresponds to a memory that is like
the system’s memory, overwritten by the entries of the system’s
cache:

fun Alpha (s: System, m: Memory) {
m.map = s.main.map ++ s.cache.map
}

As another example, if our linked list were to represent a set, we
might define the set corresponding to a given list as that con-
taining the elements reachable from the start:

fun ListAlpha (p: List, s: set Elt) {
s = p.*rest.elt
}

2.8 Assertions

Theorems about a specification are packaged as assertions. An
assertion is simply a formula that is intended to hold. A tool can
check an assertion by searching for a counterexample—that is,
a model of the formula’s negation.

The simplest kinds of assertion record consequences of state
properties. For example,

assert {
all s: System | DirtyInv (s) && no s.cache.dirty

=> s.cache.map in s.main.map
}

asserts that if the dirtiness invariant holds,and there are no
dirty addresses, then the mapping of addresses to data in the
cache is a subset of the mapping in the main memory.

An assertion can express consequences of operations. For
example,

assert {
all s: System, d: Data, a: Addr |

SystemRead (s,d,a) => a in s.cache.addrs
}

embodies the claim made above that SystemRead has an implic-
it precondition; it asserts that whenever SystemRead occurs for
an address, that address must be in the cache beforehand. An
assertion can likewise identify a consequence in the post-state;
this assertion

assert {
all s,s’: System, d: Data, a: Addr |

SystemWrite (s,s’,d,a) => s’.cache.map[a] = d
}

says that after a SystemWrite, the data value appears in the
cache at the given address.

Preservation of an invariant by an operation is easily record-
ed as an assertion. To check that our dirtiness invariant is pre-
served when writes occur, we would assert

assert {
all s,s’: System, d: Data, a: Addr |

SystemWrite (s,s’,d,a) && DirtyInv (s) => DirtyInv (s’)
}

Invariant preservation is not the only consequence of an opera-
tion that we would like to check that relates pre- and post-
states. We might, for example, want to check that operations on
the memory system do not change the set of addresses of the
main memory. For the Flush operation, for example, the asser-
tion would be

assert {
all s,s’: System | Flush(s,s’) => s.main.addrs = s’.main.addrs
}

5

which holds only because the cache addresses are guaranteed to
be a subset of the main memory addresses (by the fact associat-
ed with the System signature).

The effect of a sequence of operations can be expressed by
quantifying appropriately over states. For example,

assert {
all s, s’: System, a: Addr, d,d’: Data |

SystemWrite (s,s’,d,a) && SystemRead (s’,d’,a) => d = d’
}

says that when a write is followed by a read of the same address,
the read returns the data value just written.

To check that a property holds for all reachable states, we
can assert that the property is an invariant of every operation,
and is established by the initial condition. This strategy can be
shown (by induction) to be sound, but it is not complete. A
property may hold for all reachable states, but may not be pre-
served because an operation breaks the property when execut-
ed in a state that happens not to be reachable.

Traces overcome this incompleteness. Suppose, for example,
that we want to check the (rather contrived) property that, in
every reachable state, if the cache contains an address that isn’t
dirty, then it agrees with the main memory on at least one
address:

fun DirtyProp (s: System) {
some (s.cache.addrs - s.cache.dirty)

=> some a: Addr | s.cache.map[a] = s.main.map[a]
}

We can assert that this property holds in the last state of every
trace:

assert {
all t: SystemTrace | with t | DirtyProp (last.state)
}

This assertion is valid, even though DirtyProp is not an invari-
ant. A write invoked in a state in which all clean entries but one
had non-matching values can result in a state in which there are
still clean entries but none has a matching value.

Finally, refinements are checked by assertions involving
abstraction relations. We can assert that a SystemWrite refines
a basic Write operation on a simple memory:

assert {
all s,s’: System, m,m’: Memory, a: Addr, d: Data |

Alpha (s,m) && Alpha (s’,m’) && SystemWrite (s,s’,a,d)
=> Write (m,m’,a,d)

}

or that the Flush operation is a no-op when viewed abstractly:

assert {
all s,s’: System, m,m’: Memory |

Alpha (s,m) && Alpha (s’,m’) && Flush (s,s’)
=> m.map = m’.map

}

Note the form of the equality; m = m’ would be wrong, since
two distinct memories may have the same mapping, and the
abstraction Alpha constrains only the mapping and not the
memory atom itself.

Many of the assertions shown here can be made more suc-
cinct by the function shorthand explained in Section 3.7 below.
For example, the assertion that a read following a write returns
the value just written becomes:

assert {
all s: System, a: Addr, d: Data |

SystemRead (SystemWrite (s,d,a),a) = d
}

and the assertion that Flush is a no-op becomes:

assert {
all s: System | Alpha (s).map = Alpha (Flush (s)).map
}

2.9 Polymorphism

Signatures can be parameterized by signature types. Rather
than declaring a linked list whose elements belong to a particu-
lar type Elt, as above, we would prefer to declare a generic list:

sig List [T] {}
sig NonEmptyList [T] extends List [T] {elt: T, rest: List [T]}

Functions and facts may be parameterized in the same way, so
we can define generic operators, such as:

fun first [T] (p: List [T]): T {result = p.elt}
fun last [T] (p: List [T]): T {some q: p.*rest | result = q.elt && no
q.rest}
fun elements [T] (p: List [T]): set T {result = p.*rest.elt}

In addition, let’s define a generic function that determines
whether two elements follow one another in a list:

fun follows [T] (p: List[T], a,b: T) {
some x: p.*rest | x.elt = a && x.next.elt = b
}

To see how a generic signature and operators are used, consid-
er replacing the traces of Section 2.6 with lists of system states.
Define a function that determines whether a list is a trace:

fun isTrace (t: List [System]) {
Init (first(t))
all s, s’: System | follows (t,s,s’) => {

Flush (s,s’)
|| (some a: Addr | Load (s,s’,a))
|| (some d: Data, a: Addr | SystemWrite (s,s’,d,a))
}

}

Now our assertion that every reachable system state satisfies
DirtyProp can now be written:

assert {
all t: List[System] | isTrace(t) => DirtyProp (last(t))
}

2.10 Variants

To illustrate the flexibility of our notation, we sketch a different
formulation of state machines oriented around transitions
rather than states.

Let’s introduce a signature representing state transitions of

6

our memory system:

sig SystemTrans {pre,post: System}
{pre.main.addrs = post.main.addrs}

Declaring the transitions as a signature gives us the opportuni-
ty to record properties of all transitions—in this case requiring
that the set of addresses of the main memory is fixed.

Now we introduce a subsignature for the transitions of each
operation. For example, the transitions that correspond to load
actions are given by:

sig LoadTrans extends SystemTrans {a: Addr}
{Load (pre, post, a)}

For each invariant, we define a set of states. For the states satis-
fying the dirty invariant, we might declare

sig DirtyInvStates extends System {}

along with the fact

fact {DirtyInvStates = {s: System | DirtyInv(s)}}

To express invariant preservation, it will be handy to declare a
function that gives the image of a set of states under a set of
transitions:

fun postimage (ss: set System, tt: set SystemTrans): set System {
result = {s: System | some t: tt | t.pre in ss && s = t.post}
}

so that we can write the assertion like this:

assert {postimage (DirtyInvStates, LoadTrans) in DirtyInvStates}

For an even more direct formulation of state machine proper-
ties, we might have defined a transition relation instead:

fun Trans (r: System -> System) {
all s, s’ : System |

s->s’ in r => Flush (s,s’) || …
}

Then, using transitive closure, we can express the set of states
reachable from an initial state, and assert that this set belongs
to the set characterized by some property:

assert {all r: System -> System, s: System |
Init (s) && Trans(r) => s.*r in DirtyPropStates
}

where DirtyPropStates is defined analogously to DirtyInvStates.

2.11 Definitions

Instead of declaring the addresses of a memory along with its
mapping, as we did before:

sig Memory {
addrs: set Addr,
map: addrs ->! Data
}

we could instead have declared the mapping alone:

sig Memory {
map: Addr ->? Data
}

and then defined the addresses using a subsignature:

sig MemoryWithAddrs extends Memory {
addrs: set Addr}
{addrs = {a: Addr | some a.map}}

Now by making the subsignature subsume all memories:

fact {Memory in MemoryWithAddrs}

we have essentially ‘retrofitted’ the field. Any formula involving
memory atoms now implicitly constrains the addrs field. For
example, we can assert that Read has an implicit precondition
requiring that the argument be a valid address:

assert {all m: Memory, a: Addr, d: Data | Read (m,d,a) => a in
m.addrs}

even though the specification of Read was written when the
field addrs did not even exist.

3 Semantics

For completeness, we give an overview of the semantics of the
language. The novelties with respect to the original version of
Alloy [4] are (1) the idea of organizing relations around basic
types as signatures, (2) the treatment of extension as subsetting,
and (3) the packaging of formulas in a more explicit (and con-
ventional) style. The semantic basis has been made cleaner, by
generalizing relations to arbitrary arity, eliminating ‘indexed
relations’ and the need for a special treatment of sets.

3.1 Types

We assume a universe of atoms. The standard notion of a math-
ematical relation gives us our only composite datatype. The
value of an expression will always be a relation—that is, a col-
lection of tuples of atoms. Relations are first order: the elements
of a tuple are themselves atoms and never relations.

The language is strongly typed. We partition the universe
into subsets each associated with a basic type, and write (T1, T2,
…, Tn) for the type of a relation whose tuples each consist of n
atoms, with types T1, T2, etc.

A set is represented semantically as a unary relation, namely
a relation whose tuples each contain one atom. A tuple is rep-
resented as a singleton relation, namely a relation containing
exactly one tuple. A scalar is represented as a unary, singleton
relation. We use the terms ‘set’, ‘tuple’ and ‘scalar’ to describe
relations with the appropriate properties. Basic types are used
only to construct relation types, and every expression that
appears in a specification has a relational type. Often we will say
informally that an expression has a type T where T is the name
of a basic type when more precisely we mean that the expres-
sion has the type (T).

So, in contrast to traditional mathematical style, we do not
make distinctions amongst the atom a, the tuple (a), the set {a}
containing just the atom, or the set {(a)} containing the tuple,
and represent all of these as the last. This simplifies the seman-
tics and gives a more succinct and uniform syntax.

3.2 Expression Operators

Expressions can be formed using the standard set operators
written as ASCII characters: union (+), intersection (&) and dif-

7

ference (-). Some standard relational operators, such as trans-
pose (~) and transitive closure (^), can be applied to expressions
that denote binary relations. Relational override (++) has its
standard meaning for binary relations but can applied more
broadly.

There are two special relational operators, dot and arrow.
The dot operator is a generalized relational composition. Given
expressions p and q, the expression p.q contains the tuple 〈p1, …
pm-1, q2, …, qn〉 when p contains 〈p1, …, pm〉, q contains 〈q1, … qn〉,
and pm = q1. The last type of p and the first type of q must
match, and m + n, the sum of the arities of p and q, must be
three or more so that the result is not degenerate. When p is a
set and q is a binary relation, the composition p.q is the stan-
dard relational image of p under q; when p and q are both bina-
ry relations, p.q is standard relational composition. In all of the
examples above, the dot operator is used only for relational
image.

The arrow operator is cross product: p -> q is the relation
containing the tuple 〈p1, …, pm, q1, … qn〉 when p contains 〈p1,
…, pm〉, and q contains 〈q1, … qn〉. In all the examples in this
paper, p and q are sets, and p -> q is their standard cross prod-
uct.

3.3 Formula Operators

Elementary formulas are formed from the subset operator, writ-
ten in. Thus p in q is true when every tuple in p is in q. The for-
mula p : q has the same meaning, but when q is a set, adds an
implicit constraint that p be scalar (ie, a singleton). This con-
straint is overridden by writing p: option q (which lets p to be
empty or a scalar) or p: set q (which eliminates the constraint
entirely). Equality is just standard set equality, and is short for a
subset constraint in each direction.

An arrow that appears as the outermost expression operator
on the right-hand side of a subset formula can be annotated
with multiplicity markings: + (one or more), ? (zero or one) and
! (exactly one). The formula

r: S m -> n T

where m and n are multiplicity markings constrains the relation
r to map each atom of S to n atoms of T, and to map m atoms of
S to each atom of T. S and T may themselves be product expres-
sions, but are usually variables denoting sets. For example,

r: S -> ! T
r: S ? -> ! T

make r respectively a total function on S and an injection.
Larger formulas are obtained using the standard logical con-

nectives: && (and), || (or), ! (not), => (implies), iff (bi-implica-
tion). The formula if b then f else g is short for b => f && !b =>
g. Within curly braces, consecutive formulas are implicitly con-
joined.

Quantifications take their usual form:

all x: e | F

is true when the formula F holds under every binding of the
variable x to a member of the set e. In addition to the standard
quantifiers, all (universal) and some (existential), we have no,
sole and one meaning respectively that there are no values, at
most one value, and exactly one value satisfying the formula.

For a quantifier Q and expression e, the formula Q e is short for
Q x: T | x in e (where T is the type of e), so no e, for example,
says that e is empty.

The declaration of a quantified formula is itself a formula—
an elementary formula in which the left-hand side is a variable.
Thus

some x = e | F

is permitted, and is a useful way to express a let binding.
Quantifiers may be higher-order; the formula

all f: s ->! t | F

is true when F holds for every binding of a total function from s
to t to the variable f. Our analysis tool cannot currently handle
higher-order quantifiers, but many uses of higher-order quanti-
fiers that arise in practice can be eliminated by skolemization.

Finally, we have relational comprehensions; the expression

{x1: e1, x2: e2, … | F}

constructs a relation of tuples with elements x1, x2, etc., drawn
from set expressions e1, e2, etc., whose values satisfy F.

3.4 Signatures

A signature declaration introduces a basic type, along with a
collection of relations called fields. The declaration

sig S {f: E}

declares a basic type S, and a relation f. If E has the type (T1, T2,
…, Tn), the relation f will have the type (S, T1, T2, …, Tn), and if
x has the type S, the expression x.f will have the same type as E.
When there are several fields, field names already declared may
appear in expressions on the right-hand side of declarations; in
this case, a field f is typed as if it were the expression this.f,
where this denotes an atom of the signature type (see Section
3.6).

The meaning of a specification consisting of a collection of
signature declarations is an assignment of values to global con-
stants– the signatures and the fields. For example, the specifi-
cation

sig Addr {}
sig Data {}
sig Memory {map: Addr -> Data}

has 4 constants—the three signatures and one field—with
assignments such as:

Addr = {a0, a1}
Data = {d0, d1, d2}
Memory = {m0, m1}
map = {(m0,a0,d0), (m1,a0,d1), (m1,a0,d2)}

corresponding to a world in which there are 2 addresses, 3 data
values and 2 memories, with the first memory (m0) mapping
the first address (a0) to the first data value (d0), and the second
memory (m1) mapping the first address (a0) both to the second
(d1) and third (d2) data values.

A fact is a formula that constrains the constants of the spec-
ification, and therefore tends to reduce the set of assignments
denoted by the specification. For example,

8

fact {all m: Memory | all a: Addr | sole m.map[a]}

rules out the above assignment, since it does not permit a mem-
ory (such as m1) to map an address (such as a0) to more than
one data value.

The meaning of a function is a set of assignments, like the
meaning of the specification as a whole, but these include bind-
ings to parameters. For example, the function

fun Read (m: Memory, d: Data, a: Addr) {
d = m.map[a]
}

has assignments such as:

Addr = {a0, a1}
Data = {d0, d1, d2}
Memory = {m0, m1}
map = {(m0,a0,d1)}
m = {m0}
d = {d1}
a = {a0}

The assignments of a function representing a state invariant
correspond to states satisfying the invariant; the assignments of
a function representing an operation (such as Read) correspond
to executions of the operation.

An assertion is a formula that is claimed to be valid: that is,
true for every assignment that satisfies the facts of the specifi-
cation. To check an assertion, one can search for a counterex-
ample: an assignment that makes the formula false. For exam-
ple, the assertion

assert {
all m,m’: Memory, d: Data, a: Addr |

Read (m,d,a) => Read (m’,d,a)}

which claims, implausibly, that if a read of memory m returns d
at a, then so does a read at memory m’, has the counterexample

Addr = {a0}
Data = {d0,d1}
Memory = {m0, m1}
map = {(m0,a0,d0), (m1,a0,d1)}

To find a counterexample, a tool should negate the formula and
then skolemize away the bound variables, treating them like the
parameters of a function, with values to be determined as part
of the assignment. In this case, the assignment might include:

m = {m0}
m’ = {m1}
d = {d0}
a = {a0}

3.5 Extension

Not every signature declaration introduces a new basic type. A
signature declared without an extension clause is a type signa-
ture, and creates both a basic type and a set constant of the
same name. A signature S declared as an extension is a subsig-
nature, and creates only a set constant, along with a constraint
making it a subset of each supersignature listed in the extension
clause. The subsignature takes on the type of the supersigna-

tures, so if there is more than one, they must therefore have the
same type, by being direct or indirect subsignatures of the same
type signature.

A field declared in a subsignature is as if declared in the cor-
responding type signature, with the constraint that the domain
of the field is the subsignature. For example,

sig List {}
sig NonEmptyList extends List {elt: Elt,rest: List}

makes List a type signature, and NonEmptyList a subset of List.
The fields elt and rest map atoms from the type List, but are
constrained to have domain NonEmptyList. Semantically, it
would have been equivalent to declare them as fields of List,
along with facts constraining their domains:

sig List {elt: Elt,rest: List}
sig NonEmptyList extends List {}
fact {elt.Elt in NonEmptyList}
fact {rest.List in NonEmptyList}

(exploiting our dot notation to write the domain of a relation r
from S to T as r.T).

3.6 Overloading and Implicit Prefixing

Whenever a variable is declared, its type can be easily obtained
from its declaration (from the type of the expression on the
right-hand side of the declaration), and every variable appear-
ing in an expression is declared in an enclosing scope. The one
complication to this rule is the typing of fields.

For modularity, a signature creates a local namespace. Two
fields with the name f appearing in different signatures do not
denote the same relational constant. Interpreting an expression
therefore depends on first resolving any field names that appear
in it. In an expression of the form e.f, the signature to which f
belongs is determined according to the type of e. To keep the
scheme simple, we require that sometimes the specifier resolve
the overloading explicitly by writing the field f of signature S as
Sf. (At the end of the previous section, for example, the reference
in the fact to rest should actually be to Listrest, since the context
does not indicate which signature rest belongs to.)

In many formulas, a single expression is dereferenced sever-
al times with different fields. A couple of language features are
designed to allow these formulas to be written more succinctly,
and, if used with care, more comprehensibly. First, we provide
two syntactic variants of the dot operator. Both p::q and q[p] are
equivalent to p.q, but have different precedence: the double
colon binds more tightly than the dot, and the square brackets
bind more loosely than the dot. Second, we provide a with con-
struct similar to Pascal’s that makes dereferencing implicit.

Consider, for example, the following simplified signature for
a trace:

sig Trace {
ticks: set Tick,
first: ticks,
next: ticks -> ticks,
state: ticks -> State
}

Each trace t has a set of ticks t.ticks, a first tick t.first, an order-
ing t.next that maps ticks to ticks, and a relation t.state mapping

9

each tick to a state. For a trace t and tick k, the state is k.(t.state);
the square brackets allow this expression to be written instead
as t.state[k]. To constrain t.ticks to be those reachable from t.
first we might write:

fact {all t: Trace | (t.first).*(t.next) = t.ticks}

Relying on the tighter binding of the double colon, we can elim-
inate the parentheses:

fact {all t: Trace | t::first.*t::next = t.ticks}

Using with, we can make the t prefixes implicit:

fact {all t: Trace | with t | first.*next = ticks}

In general, with e | F is like F, but with e prefixed wherever
appropriate to a field name. Appropriateness is determined by
type: e is matched to any field name with which it can be com-
posed using the dot operator. A fact attached to a signature S is
implicitly enclosed by all this: S | with this |, and the declara-
tions of a signature are interpreted as constraints as if they had
been declared within this scope. Consequently, the declaration
of first above should be interpreted as if it were the formula:

all this: Trace | with this | first: ticks

which is equivalent to

all this: Trace | this.first: this.ticks

and should be typed accordingly.

3.7 Function Applications

A function may be applied by binding its parameters to expres-
sions. The resulting application may be either an expression or
a formula, but in both cases the function body is treated as a
formula. The formula case is simple: the application is simply
short for the body with the formal parameters replaced by the
actual expressions (and bound variables renamed where neces-
sary to avoid clashes).

The expression case is more interesting. The application is
treated as a syntactic sugar. Suppose we have a function appli-
cation expression, e say, of the form

f(a1, a2, …, an)

that appears in an elementary formula F. The declaration of the
function f must list n + 1 formal arguments, of which the second
will be treated as the result. The entire elementary formula is
taken to be short for

all result: D | f (a1, result, a2, …, an) => F [result/e]

where D is the right-hand side of the declaration of the missing
argument, and F [result/e] is F with the fresh variable result sub-
stituted for the application expression e. The application of f in
this elaborated formula is now a formula, and is treated simply
as an inlining of the formula of f.

To see how this works, consider the definition of a function
dom that gives the domain of a relation over signature X:

fun dom (r: X -> X, d: set X) {d = r.X}

(We have defined the function monomorphically for a homoge-
neous relation. In practice, one would define a polymorphic
function, but we want to avoid conflating two unrelated issues.)

Here is a trivial assertion that applies the function as an expres-
sion:

assert {all p: X -> X | (dom (p)).p in X}

Desugaring the formula, we get

all p: X -> X | all result: set X | dom (p, result) => result.p in X

and then inlining

all p: X -> X | all result: set X | result = p.X => result.p in X

This formula can be reduced (by applying a universal form of
the One Point Rule) to

all p: X -> X | (p.X).p in X

which is exactly what would have been obtained had we just
replaced the application expression by the expression on the
right-hand side of the equality in the function’s definition!

Now let’s consider an implicit definition. Suppose we have a
signature X with an ordering lte, so that e.lte is the set of ele-
ments that e is less than or equal to, and a function min that
gives the minimum of a set, defined implicitly as the element
that is a member of the set, and less than or equal to all mem-
bers of the set:

sig X {lte: set X}
fun min (s: set X, m: option X) {

m in s && s in m.lte
}

Because the set may be empty, min is partial. Depending on the
properties of lte it may also fail to be deterministic. A formula
that applies this function

assert {all s: set X | min (s) in s}

can as before be desugared

all s: set X | all result: option X | min (s, result) => result in s

and expanded by inlining

all s: set X | all result: option X |
(result in s) && s in result.lte => result in s

but in this case the One Point Rule is not applicable.
As a convenience, our language allows the result argument of

a function to be declared anonymously in a special position,
and given the name result. The domain function, for example,
can be defined as:

fun dom (r: X -> X): set X {result = r.X}

How the function is defined has no bearing on how it is used;
this definition is entirely equivalent to the one above, and can
also be applied as a formula with two arguments.

3.8 Polymorphism

Polymorphism is treated as a syntactic shorthand. Lack of space
does not permit a full discussion here.

4 Related Work

We have shown how a handful of elements can be assembled
into a rather simple but flexible notation. The elements them-

10

selves are far from novel—indeed, we hope that their familiari-
ty will make the notation easy to learn and use—but their
assembly into a coherent whole results in a language rather dif-
ferent from existing specification languages.

4.1 New Aspects

The more novel aspects of our work are:
· Objectification of state. Most specification languages repre-

sent states as cartesian products of components; in our
approach, a state, like a member of any signature, is an indi-
vidual—a distinct atom with identity. A similar idea is used
in the situation calculus [11], whose ‘relational fluents’ add a
situation variable to each time-varying relation. The general
idea of objectifying all values is of course the foundation of
object-oriented programming languages, and was present in
LISP. Interestingly, object-oriented variants of Z (such as [1])
do not objectify schemas. The idea of representing struc-
tures in first-order style as atoms is present also in algebraic
specifications such as Larch [2], which treat even sets and
relations in this manner.

· Components as relations. Interpreting fields of a structure as
functions goes back to early work on verification, and is
widely used (for example, by Leino and Nelson [10]). We are
not aware, however, of specification languages that use this
idea, or that flatten fields to relations over atoms.

· Extension by global axioms. The ‘facts’ of our notation allow
the properties of a signature to be extended monotonically.
The idea of writing axioms that constrain the members of a
set constant declared globally is hardly remarkable, but it
appears not to have been widely exploited in specification
languages.

· Extension by subset. Treating the extension of a structure as
a refinement modelled by subset results in a simple seman-
tics, and melds well with the use of global axioms. Again, this
seems to be an unremarkable idea, but one whose power has
not been fully recognized.

4.2 Old Aspects

The aspects of our work that are directly taken from existing
languages are:
· Formulas. The idea of treating invariants, definitions, opera-

tions, etc, uniformly as logical formulas is due to Z [14].
· Assertions. Larch [2] provides a variety of constructs for

adding intentional redundancy to a specification in order to
provide error-detection opportunities.

· Parameterized formulas. The ‘functional’ style we have
adopted, in which all formulas are explicitly parameterized,
in contrast to the style of most specification languages, is
used also by languages for theorem provers, such as PVS
[13]. VDM [8] offers a mechanism called ‘operation quota-
tion’ in which pre- and post conditions are reused by inter-
preting them as functions similar to ours.

· Parametric Polymorphism. The idea of parameterizing
descriptions by types was developed in the programming
languages community, most notably in the context of ML
[12].

· Implicit Prefixing. Our ‘with’ operator is taken from Pascal
[9].

· Relational operators. The dot operator, and the treament of

scalars as singletons, comes from the earlier version of Alloy
[4].

4.3 Z’s Schema Calculus

Z has been a strong influence on our work; indeed, this paper
may be viewed as an attempt to achieve some of the power and
flexibility of Z’s schema calculus in a first-order setting. Readers
unfamiliar with Z can find an excellent presentation of the
schema calculus in [16]. The current definitive reference is [15],
although Spivey’s manual [14] is more accessible for praction-
ers.

A schema consists of a collection of variable declarations and
a formula constraining the variables. Schemas can be anony-
mous. When a name has been bound to a schema, it can be
used in three different ways, distinguished according to context.
First, it can be used as a declaration, in which case it introduces
its variables into the local scope, constraining them with its for-
mula. Second, where the variables are already in scope, it can be
used as a predicate, in which case the formula applies and no
new declarations are added. Both of these uses are syntactic; the
schema can be viewed as a macro.

In the third use, the schema is semantic. Its name represents
a set of bindings, each binding being a finite function from vari-
ables names to values. The bindings denoted by the schema
name are the models of the schema’s formula: those bindings of
variable names to values that make the formula true.

How a schema is being applied is not always obvious; in the
set comprehension {S}, for example, S represents a declaration,
so that the expression as a whole denotes the same set of bind-
ings as S itself. Given a binding b for a schema with component
variable x, the expression b.x denotes the value assigned to x in
b. Unlike Alloy’s dot, this dot is a function application, so for a
set of bindings B, the expression B.x is not well formed.

Operations in Z are expressed using the convention that
primed variables denote components of the post-state. A mech-
anism known as decoration allows one to write S’ for the schema
that is like S, but whose variable names have been primed.
Many idioms, such as promotion, rely on being able to manip-
ulate the values of a schema’s variables in aggregate. To support
this, Z provides the theta operator: θS is an expression that
denotes a binding in which each variable x that belongs to S is
bound to a variable of the same name x declared in the local
scope. Theta and decoration interact subtly: θS’ is not a binding
of S’, but rather binds each variable x of S to a variable x’
declared locally. So where we would write s=s’ to say that pre-
and post-states s and s’ are the same, a Z specifier would write
θS = θS’. This formula equates each component x of S to its
matching component x’ of S’, because x and x’ are the respective
values bound to x by θS and θS’ respectively.

Our ‘fact’ construct allows the meaning of a signature name
to be constrained subsequent to its declaration. A schema, in
contrast, is ‘closed’: a new schema name must be introduced for
each additional constraint. This can produce an undesirable
proliferation of names for a system’s state, but it does make it
easier to track down those formulas that affect a schema’s
meaning.

The variables of a schema can be renamed, but cannot be
replaced by arbitrary expressions (since this would make non-
sense of declarations).This requires the introduction of existen-

11

tial quantifiers where in our notation an expression is passed as
an actual. On the other hand, when no renaming is needed, it is
more succinct.

Z’s sequential composition operator is defined by a rather
complicated transformation, and relies on adherence to partic-
ular conventions. The schema P ; Q is obtained by collecting
primed variables in P that match unprimed variables in Q;
renaming these in both P and Q with a new set of variable
names; and then existentially quantifying the new names away.
For example, to say that a read following a write to the same
address yields the value written, we would write:

all m: Memory, a: Addr, d, d’: Data | Read (Write(m,a,d),d’) => d = d’

which is short for

all m: Memory, a: Addr, d, d’: Data |
all m’: Memory | Write (m,m’,a,d) => Read (m,a,d’) => d = d’

In Z, assuming appropriate declarations of a schema Memory
and a given type Data, the formula would be:

∀Memory; Memory’; x!: Data • Write ; Read [x!/d!] ⇒ x! = d!

which is short for

∀Memory; Memory’; x!: Data •
∃Memory’‘ •
∃Memory’ • Write ∧ θMemory’ = θMemory’‘
∃Memory’; d!: Data •

Read ∧ θMemory = θMemory’‘ ∧ d! = x!
⇒ x! = d!

The key semantic difference between signatures and schemas is
this. A signature is a set of atoms; its fields are relational con-
stants declared in global scope. A schema, on the other hand,
denotes a higher-order object: a set of functions from field
names to values. Our approach was motivated by the desire to
remain first order, so that the analysis we have developed [3]
can be applied. Not surprisingly, there is a cost in expressive-
ness. We cannot express higher-order formulas, most notably
those involving preconditions. Suppose we want to assert that
our write operation has no implicit precondition. In Z, such an
assertion is easily written:

∀Memory; a?: Addr • ∃Memory’; d!: Data • Write

We might attempt to formulate such an assertion in our nota-
tion as follows:

assert {
all m: Memory, a: Addr, d: Data | some m’: Memory | Write

(m,m’,d,a) }

Unfortunately, this has counterexamples such as

Addr = {a0}
Data = {d0}
Memory = {m0, m1}
map = {}

in which the map relation lacks an appropriate tuple. Intuitively,
the assertion claims that there is no context in which a write
cannot proceed; a legitimate counterexample—but one we cer-
tainly did not intend—simply gives a context in which a memo-
ry with the appropriate address-value mapping is not available.

We have focused in this discussion on schemas. It is worth
noting that Z is expressive enough to allow a style of structur-
ing almost identical to ours, simply by declaring signatures as
given types, fields and functions as global variables, and by
writing facts, and the bodies of functions, as axioms. Field
names would have to be globally unique, and the resulting spec-
ification would likely be less succinct than if expressed in our
notation.

4.4 Phenomenology

Pamela Zave and Michael Jackson have developed an approach
to composing descriptions [18] that objectifies states, events
and time intervals, and constrains their properties with global
axioms. Objectification allows descriptions to be reduced to a
common phenomenology, so that descriptions in different lan-
guages, and even in different paradigms can be combined.
Michael Jackson has argued separately for the importance of
objectification as a means of making a more direct connection
between a formal description and the informal world: as he puts
it, “domain phenomena are facts about individuals” [7]. It is
reassuring that the concerns of language design and tractability
of analysis that motivated our notation are not in conflict with
sound method, and it seems that our notation would be a good
choice for expressing descriptions in the form that Zave and
Jackson have proposed.

5 Evaluation

5.1 Merits

The key motivations of the design of our mechanism have been
minimality and flexibility. It is worth noting how this has been
achived by the omission of certain features:
· There is only one form of semantic structuring; our opinion

is that adding extra mechanisms, for example to group oper-
ations into classes, does not bring enough benefit to merit
the additional complexity, and tends to be inflexible. (Our
language does provide some namespace control for signature
and paragraph names in the style of Java packages, but this is
trivial and does not interact with the basic mechanism).

· There is no subtyping; subsignatures are just subsets of their
supersignatures, and have the same type. There are only two
types: basic types (for signatures), and relational types (for
expressions). Types are not nested.

· There is only one way that formulas are packaged for reuse.
The same function syntax is used for observers, operations,
refinement relations, etc. The function shorthand syntax
unifies the syntax of both declaration and use for explicit and
implicit function definitions.

· The values of a signature with fields are just like the values of
any basic type; there is nothing like Z’s notion of a schema
binding.

Our interpretation of a subsignature as a subset of the supersig-
nature appears to be novel as a mechanism for structuring in a
specification language. It has three nice consequences:
· Elimination of type coercions. If x belongs to a signature S

whose extension S’ defines a field f, the expression x.f will just
denote an empty set if x does not belong to S’. Contrast this
with the treatment of subclasses in the Object Constraint

12

Language [17], for example, which results in pervasive coer-
cions and often prevents the use of set and relation operators
(since elements must be coerced one at a time).

· Ease of extension. Constraints can be added to the subsigna-
ture simply by writing a constraint that is universally quanti-
fied over elements of that subset.

· Definitional extension. We can declare an extension S’ of a
signature S with additional fields, relate these fields to the
fields declared explicitly for S, and then record the fact that
S=S’ (as illustrated in Section 2.11). The effect is that every
atom of S has been extended with appropriately defined
fields, which can be accessed whenever an expression denot-
ing such an atom is in scope! We expect to find this idiom
especially useful for defining additional fields for visualiza-
tion purposes.

5.2 Deficiencies

One might wonder whether, having encoded structures using
atoms, and having provided quantifiers over those atoms, one
can express arbitrary properties of higher-order structures.
Unfortunately, but not surprisingly, this is not possible. The
catch is that fields are treated in any formulas as global variables
that are existentially quantified. To simulate higher-order logic,
it would be necessary to allow quantifications over these vari-
ables, and since they have relational type, that would imply
higher-order quantification. The practical consequence is that
properties requiring higher-order logic cannot be expressed.
One cannot assert that the precondition of an operation is no
stronger than some predicate; one cannot in general specify
operations by minimization; and one cannot express certain
forms of refinement check. An example of this problem is given
in Section 4.3 above. Whether the problem is fundamental or
can be partially overcome remains to be seen.

The treatment of subsignatures as subsets has a nasty conse-
quence. Since a field declared in a subsignature becomes
implicitly a field of the supersignature, two subsignatures can-
not declare fields of the same name. The extension mechanism
is therefore not properly modular, and a specification should
use hierarchical structure instead where this matters.

Modelling a set of states as atoms entails a certain loss of
abstraction. In this specification

sig A {}
sig S {a: A}
fun op (s,s’: S) {s.a = s’.a}

the operation op has executions in which the pre- and post-
states are equal (that is, the same atom in S), and executions in
which only their a components are equal. One might object that
this distinction is not observable. Moreover, replacing the for-
mula by s=s’ would arguably be an overspecification—a ‘bias’ in
VDM terminology [8]. The situation calculus [11] solves this
problem by requiring every operation to produce a state
change: s and s’ are thus regarded as distinct situations by virtue
of occurring at different points in the execution. The dual of
this solution is to add an axiom requiring that no two distinct
atoms of S may have equal a fields. Either of these solutions is
easily imposed in our notation.

Our treatment of scalars and sets uniformly as relations has
raised the concern that the resulting succinctness comes with a

loss of clarity and redundancy. Extensive use of the previous
version of our language, mostly by inexperienced specifiers,
suggests that this is not a problem. The loss of some static
checking is more than compensated by the semantic analysis
that our tool performs.

6 Conclusion

Two simple ideas form the basis of our modularity mechanism:
(1) that a structure is just a set of atoms, and its fields are glob-
al relations that map those atoms to structure components; and
(2) that extensions of a structure are just subsets. Our relation-
al semantics, in which all variables and fields are represented as
relations, makes the use of structures simple and succinct, and
it ensures that the language as a whole remains first order. For
a variety of modelling tasks, we believe that our approach pro-
vides a useful balance of expressiveness and tractability.

Acknowledgments

The language described here was refined by experience writing
specifications, long before an analyzer existed, and by the devel-
opment of the analyzer tool itself. Mandana Vaziri and Sarfraz
Khurshid were our early adopters, and Brian Lin and Joe Cohen
helped implement the tool. The paper itself was improved
greatly by comments from Mandana and Sarfraz, from Michael
Jackson, from Tomi Mannisto, and especially from Pamela
Zave, whose suggestions prompted a major rewrite. Jim
Woodcock helped us understand Z, and the clarity and simplic-
ity of his own work has been a source of inspiration to us. Our
ideas have also been improved by the comments of the mem-
bers of IFIP working groups 2.3 and 2.9, especially Tony Hoare,
Greg Nelson and Rustan Leino. This work was funded in part by
ITR grant #0086154 from the National Science Foundation, by
a grant from NASA, and by an endowment from Doug and Pat
Ross.

References

[1] R. Duke, G. Rose and G. Smith. Object-Z: A Specification
Language Advocated for the Description of Standards. SVRC
Technical Report 94-45. The Software Verification Research
Centre, University of Queensland, Australia.

[2] John V. Guttag, James J. Horning, and Andres Modet. Report on
the Larch Shared Language: Version 2.3. Technical Report 58,
Compaq Systems Research Center, Palo Alto, CA, 1990.

[3] Daniel Jackson. Automating first-order relational logic. Proc.
ACM SIGSOFT Conf. Foundations of Software Engineering. San
Diego, November 2000.

[4] Daniel Jackson. Alloy: A Lightweight Object Modelling
Notation. To appear, ACM Transactions on Software
Engineering and Methodology, October 2001.

[5] Daniel Jackson, Ian Schechter and Ilya Shlyakhter. Alcoa: the
Alloy Constraint Analyzer. Proc. International Conference on
Software Engineering, Limerick, Ireland, June 2000.

[6] Daniel Jackson and Jeannette Wing. Lightweight Formal
Methods. In: H. Saiedian (ed.), An Invitation to Formal Methods.
IEEE Computer, 29(4):16-30, April 1996.

[7] Michael Jackson. Software Requirements and Specifications: A

13

Lexicon of Practice, Principles and Prejudices. Addison-Wesley,
1995.

[8] Cliff Jones. Systematic Software Development Using VDM.
Second edition, Prentice Hall, 1990.

[9] Kathleen Jensen and Nicklaus Wirth. Pascal: User Manual and
Report. Springer-# Verlag, 1974.

[10] K. Rustan M. Leino and Greg Nelson. Data abstraction and
information hiding . Research Report 160, Compaq Systems
Research Center, November 2000.

[11] Hector Levesque, Fiora Pirri, and Ray Reiter. Foundations for the
Situation Calculus. Linköping Electronic Articles in Computer
and Information Science, ISSN 1401-9841, Vol. 3(1998), Nr. 018.

[12] Robin Milner, Mads Tofte and Robert Harper. The Definition of
Standard ML. MIT Press, 1990.

[13] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS Language Reference. Computer Science Laboratory, SRI
International, Menlo Park, CA, September 1999.

[14] J. Michael Spivey. The Z Notation: A Reference Manual. Second
edition, Prentice Hall, 1992.

[15] Ian Toyn et al. Formal Specification—Z Notation—Syntax, Type
and Semantics. Consensus Working Draft 2.6 of the Z Standards
Panel BSI Panel IST/5/-/19/2 (Z Notation). August 24, 2000.

[16] Jim Woodcock and Jim Davies. Using Z: Specification,
Refinement and Proof. Prentice Hall, 1996.

[17] Jos Warmer and Anneke Kleppe. The Object Constraint
Language: Precise Modeling with UML. Addison Wesley, 1999.

[18] Pamela Zave and Michael Jackson. Conjunction as Composition.
ACM Transactions on Software Engineering and Methodology
II(4): 379–411, October 1993.

14

