
Diploma/Master Thesis

Verification of Shortest-Path Algorithms
Route planning in transportation networks is one of the most active topics in the research field of Algo-
rithm Engineering with many real world applications like navigation systems, online route planning systems
(e. g. Google Maps) or timetable information systems. Usually, the transportation network is modeled as a
weighted graph. Then, the problem can be solved by applying Dijkstra’s algorithm to find the shortest-path
between two nodes s and t. In recent years, many so-called speed-up techniques have been developed for
Dijkstra’s algorithm that accelerate query times by a factor of up to 3 Million.

Goals:

Requirements:

Contact:

Implement shortest-path algorithms in Java.
Express the shortest path problem in a relational first order logic efficiently.
Optimize an existing program checking technique until it handles the shortest path code.

Established knowledge in algorithmics and formal verification.
Familiarity with first order logic.
Knownledge in Java and C++ is helpful but not mandatory.

Thomas Pajor, Junior Prof. Dr. Mana Taghdiri, Prof. Dr. Dorothea Wagner

Email: {pajor,taghdiri,wagner}@ira.uka.de
WWW: http://asa.iti.uni-karlsruhe.de/, http://i11www.iti.uni-karlsruhe.de/

Notes: Available from January 2010 on.
The thesis will be supervised and written in English language.

s

t

In order to get the best results, implementations of these algorithms are highly optimized. Thus, there is
a high chance that the code contains bugs that are not discovered by manual testing. Such bugs can lead
to wrong results or—even worse—may cause the program to crash.

In recent years, various systematic testing techniques have been developed that automatically check the
code for deep, complex bugs. In this project, we will investigate how to apply such techniques to the
implementations of shortest path algorithms. We will start with one of the state-of-the-art approaches,
and improve it by developing different domain-specific optimizations until it can handle our shortest path
code with a reasonable performance.

Shortest path (solid) and incorrect path (dotted). Search space of a speed-up technique (SHARC).

Institut für Theoretische Informatik

Lehrstuhl für Algorithmik I

Institut für Theoretische Informatik

Automated Software Analysis Group


