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Abstract. We present a new approach to information flow control (IFC),
which exploits counterexample-guided abstraction refinement (CEGAR)
technology. The CEGAR process is built on top of our existing IFC analy-
sis in which illegal flows are characterized using program dependence
graphs (PDG) and path conditions (as described in [12]). Although path
conditions provide an already precise abstraction that can be used to
generate witnesses to the illegal flow, they may still cause false alarms.
Our CEGAR process recognizes false witnesses by executing them and
monitoring their executions, and eliminates them by automatically re-
fining path conditions in an iterative way as needed. The paper sketches
the foundations of CEGAR and PDG-based IFC, and describes the ap-
proach in detail. An example shows how the approach finds illegal flow,
and demonstrates how CEGAR eliminates false alarms.
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1 Introduction

Information flow control (IFC) is an important technique for discovering security
leaks in software. IFC analyzes the program source code and either discovers a
potential illegal flow of information, or guarantees that an illegal flow is impos-
sible. While IFC can take advantage of several well-established program analysis
techniques, due to undecidability problems, all sound IFC methods may produce
false alarms.

Since false alarms can have a devastating effect on practicability of a security
analysis [15], new approaches try to better exploit program analysis and veri-
fication technology.! The goal is to optimize precision while at the same time,
maintaining scalability. In particular, theoretical and practical studies in pro-
gram analysis have shown that flow-sensitivity, context-sensitivity and object-
sensitivity greatly improve the precision of an analysis. However, sensitivity and
precision are expensive and can easily destroy scalability, thus, limiting the size

! The new DFG Priority Program “Reliably Secure Software” (SPP 1496) represents
such an approach in Germany.
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of the analyzed program. Therefore, the engineer must carefully decide what
hurts more: false alarms or limited program size.

One popular choice is the use of type theory. Many IFC methods are based
on security type systems [3,14,22], some of which are also available as practical
implementations (e.g. [2,18]). Type systems are sound and reasonably efficient.
However, they are not always flow sensitive and context sensitive, and may gen-
erate false alarms in the presence of exceptions or recursive methods.

A more precise alternative is an IFC method based on program dependence
graphs (PDGs) [12,23,25]. PDGs are flow-sensitive, context-sensitive, and object-
sensitive, resulting in fewer false alarms; they also need less annotations than
type-based tools such as JIF [11]. PDG-based IFC is sound (it is guaranteed to
discover all potential leaks [27]), but much more expensive than type systems. In
order to reduce the cost, IBM Research developed a simplified PDG-based TFC
that ignores implicit flows (by arguing that they are rare in practice); thus, by
sacrificing “a little bit” of soundness, they gain precision (dramatically reduced
number of false alarms) as well as scalability up to 500MLOC Java [25].

In this paper, we follow an alternative approach: we explore how to improve
precision while maintaining soundness. Our starting point is the PDG-based TFC
as described in [10,12] and implemented in the JOANA analysis tool. JOANA
can handle full Java bytecode, and scales up to 50kLOC [10,11].

JOANA'’s analysis is based on path conditions. PDGs give only a binary an-
swer to the information flow problem: either “there is a potential flow” or “it
is guaranteed that no flow exists”. To provide a more precise feedback, we have
introduced path conditions [10,23] as a device to characterize the circumstances
under which a flow may occur. Path conditions are built on top of PDG, ex-
ploiting the fact that a flow can happen only along PDG paths. They express
conditions over program variables that must be satisfied in order to have an
(illegal) flow between two program points. The conditions can be solved using
a constraint solver; any satisfying solution provides values to program’s input
variables which act as a witness to illegal flow. Path conditions considerably
improve the precision of PDG, but may still generate false alarms due to certain
conservative abstractions.

In this paper, we describe a novel approach to eliminating false alarms that
may occur in path condition-based IFC. We extend PDGs and path conditions by
an instantiation of the counterexample guided abstraction refinement (CEGAR)
framework [6]. CEGAR has been successfully used to improve the precision of
software model checking [1,13,19] and data structure analysis [21,24]. A number
of CEGAR-based program analysis tools (such as [1,19]) has been successfully
used in industry. To our knowledge, however, it has never been exploited in
software security and IFC before.

We introduce a novel instantiation of CEGAR that can be applied in the
context of information flow analysis. Our approach checks for an (illegal) flow
between two given program points by iteratively solving and refining path con-
ditions. It starts from the path condition generated by JOANA for a given pair
of program points and solves it using an off-the-shelf, complete constraint solver.
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Since path conditions are sound, lack of a satisfying solution guarantees that the
program contains no flows between the given points. However, if a solution is
found, it must be checked for validity to ensure that it is not a false witness.
This is done by executing the program on the input values provided by the solu-
tion, and monitoring the program state during the execution. A false alarm will
be eliminated by using the constraint solver again, to refine the path condition
and reveal more details about the program behavior. This solve-validate-refine
process continues until either a valid witness is found, or it is shown that the
code contains no flows between the given program points.

The refinement process is monotonic, and thus guarantees termination (for
terminating programs). Furthermore, the on-demand nature of our refinement
guarantees that only as much code will be analyzed as necessary to check flow
between two certain program points. However, the path conditions of larger pro-
grams may become intractable after several refinements. Therefore, the analysis
time is bounded by a user-provided time-out threshold. In a time-out case, the
technique outputs the last satisfying solution as a potential witness for flow.

Compared to the expressive, but purely static PDGs and path conditions, the
CEGAR-based approach can eliminate false alarms by incorporating constraint
solving, automated test runs, and automatic path condition refinement. The
result is a considerable improvement in precision. In this paper, we focus on de-
scribing the approach and the underlying ideas and will elaborate on the details
of the technique using an example. The technical details of the implementation,
and experimental results will follow in a future paper.

2 Program Dependence Graphs

It is a difficult task to construct precise PDGs for full C++ or Java. In par-
ticular, context-sensitivity and object-sensitivity require complex and quite ex-
pensive (O(n?)) algorithms. We will not describe full details of advanced PDG
construction here (see [17] for an overview). Instead, we use a simple example in
an imperative subset of Java without objects or procedures to demonstrate the
essential aspects of PDGs, as needed to describe our CEGAR-based approach.
Consider the small program of Figure 1 (left). The PDG of this program
is given in Figure 1 (bottom). Nodes represent program statements, and there
are two kinds of arcs: control dependencies (given by dashed arcs) and data
dependencies (given by solid arcs). A statement s is control dependent on a
statement ¢ iff s will be executed only if a certain expression of ¢t has a specific
value. For example, the statements in the body of an if or a while statement
will be executed only if the condition expression evaluates to true. In Figure 1,
there are control dependencies from node 10 to nodes 11 and 13, and from node
11 to node 12. A statement s is data dependent on a statement ¢ iff a variable
is assigned in statement ¢ and is used in statement s without being re-assigned
in between. That is, data dependencies express nonlocal information transport.
In Figure 1, sum in statement 8 is used in statements 11 and 12, and sum in
the left-hand side of statement 12 is used in the right-hand side of the same
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0. int main(String[] argv) {

1. int[] a = new int[3];
// al0] PUBLIC
// al1l, a[2] PRIVATE int main(String[] argvy){
2 a[0] = System.in.read(); a; [0] = System.in.read();
3 al[1] = System.in.read(); as[1] = System.in.read();
4. a[2] = System.in.read(); az[2] = System.in.read();
5. assert(al0] > 0); int sum;= 0;
6 assert(al1] > 0); int i; = 0;
7 assert(al2] > 0); while [i, = & (i1,13);sumy = & (sum, sumg)]
8. int sum = 0; (i2<3) {
9. int i = 0; if (sump==0)
10. while (i < 3) { sumz = sump + az[is];
11. if (sum == 0) [sumg = & (sump, sumg)| iz = ip + 1;
12. sum = sum+ali]; }
13. i = i+1; System.out.println(sums) ;
}

14. System.out.println(sum);

— data dependence
— — » control dependence

Fig. 1. An example Java fragment, its SSA form, and its PDG.

statement. The latter represents both a so-called loop-carried dependency, and
a self-loop.

For simplicity, in this example, asserts are not part of the PDG, and addi-
tional control flow due to exceptions is not shown. In general, asserts, exceptions
and gotos make the construction of control dependencies much more difficult; the
same is true for complex data structures such as arrays, pointers, and objects.
Post-dominator trees and a precise points-to analysis are needed to compute
dependencies in those cases.

The fundamental property of PDG that makes it relevant for IFC is the
slicing theorem: If a statement x can influence a statement y in a program
P, there must be a path x —* y in the PDG of P. If there is no path, it is
guaranteed that z cannot influence y. In particular, classical noninterference
holds if none of the low security outputs can be reached via any path from a
high security variable. Noninterference means that if two initial program states
are equivalent on public variables (“low-equivalent”), the final program states
after execution must be low-equivalent as well. Noninterference is an effective, if
not too strict, security criterion (a discussion of different variants and extensions
of noninterference is out of the scope of this paper, see [20] for an overview).

The following theorem states that PDGs provide a sound criterion for non-
interference:

(Vz,y € FExpression : x € HIGH,y € LOW _Output — x 4/~ y)

= (Vs,s’ € State : s Zpow s’ = [P](s) Xrow [[P]](s'))
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Both the intraprocedural and the interprocedural versions of this theorem
have been shown correct using machine-checked proofs [26,27]. It should be
noted that in the presence of procedures, the simple concept of a PDG path
must be replaced by a so-called context-sensitive backward slice or chop, which
guarantees context-sensitivity [12].

Consider the example of Figure 1 again. Suppose that we need to know
whether the secret value in a[1] can flow to the public output sum or not. Since
the PDG contains a path (given by thick arcs in Figure 1) from the assignment
to a[1] in line 3 to the output of sum in line 14, it indicates the existence of
an illegal flow. This flow, however, is a false alarm. PDGs are precise, but yet,
cannot distinguish between different iterations of a loop. In this example, after
the first loop iteration, we have (sum > 0) and so a[1] is never added to sum.

2.1 Path Conditions

Path conditions are conditions over program variables, which are necessary for
flow along a set of PDG paths. They are computed on top of PDGs to increase the
IFC precision. If a path condition PC(z,y) is not satisfiable, it is guaranteed
that there is no flow from z to y, even if the PDG contains a path z —* y.
Path conditions are generated from the control conditions in the statements
that govern the execution of a PDG path. The full details are described in [23];
here we only give the essential ideas. As an example, consider the code fragment:

1. al[i+3] = x;
2. if (i>10 && j<5)
3. y = a[2xj-42];

The PDG of this code (not shown) contains an edge 1 — 3 because — depend-
ing on the values of i, j — the array element assigned in line 1 may be used in line
3. The path condition is PC(1,3) = (i > 10)A(j < 5) A (i +3 = 2j —42) = false,
proving that flow is impossible even though the PDG indicates otherwise. Note
that all variables in path conditions are implicitly existentially quantified.

In order to compute path conditions, the program must first be transformed
into static single assignment form (SSA) [7]. The SSA form of the example
program of Figure 1 (left) is given in Figure 1 (right). Note that assert statements
are not part of the SSA form, but contribute to path conditions (see below).

A path condition PC(z,y) is then computed by considering all PDG paths
from x to y, and collecting all the conditions that are necessary for each arc in
a particular path to be executed. These conditions can result from data flows,
control predicates, or the @ functions in the SSA form. In Figure 1, the path
condition for a flow from the initial value of a[1] in line 3 to sum in line 14 is
as follows:

PC(3,14) = (sum; = 0) A (i1 = 0) A (i2 = 1) A (sump = sumz) A (i2 < 3) A (sump = 0)
A (alo] > 0) A (a[l] > 0) A (a[2] > 0) A (ix = i1 V ir = i3)
A (sump = sum; V sum; = sumg) A (sumg = sum, V sums = sumg)
= (i1 =0) A (i = i3 = 1) A (sum; = sump = sums = sumg = 0)

A (a[0] > 0) A (a[1] > 0) A (a[2] > 0)
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The constraints sum; = 0 and i; = 0 come from the built-in constant propaga-

tion (lines 8, 9), iy = 1 is attached to the edge 3 — 12 (see [23]), sumy = sumg is
attached to 12 — 14 (see [23]), the “V” constraints come from & functions, and
the other constraints are control conditions of the path or the assert predicates.

This path condition is satisfiable, implying that the secret can allegedly flow
to the public output. Hence, although incorporating path conditions into PDG-
based IFC reduces many false alarms and makes the analysis considerably more
precise, it may still cause false alarms due to conservative abstractions. This
example was chosen to demonstrate the dynamic effects (multiple loop iterations)
that cannot be captured by static analysis alone, and thus path condition alone
cannot eliminate this false alarm. We will describe in the following section how
CEGAR refines the path condition, and eliminates the false alarms.

The actual implementation of path condition generation incorporates various
optimizations to make the technique scalable to large PDGs. In fact, this IFC
analysis is fully implemented in the tool JOANA, and is based on the precise
PDG algorithms for concurrent programs as described in [9,16]. The JOANA
PDG can handle full Java bytecode and scales up to 50kLOC. As of today, path
conditions can handle an imperative subset of Java and scale to a few kLOC.

3 Path Condition Analysis

The goal of our analysis is to make path condition-based IFC more precise, i.e. if
we report that a flow is possible, we will generate a witness whose execution truly
illustrates the information flow. To achieve this goal, we eliminate false witnesses
fully automatically. However, because analyzing the full code of a program often
becomes intractable, we introduce a novel approach in which the precision of the
analysis increases incrementally: the technique keeps looking for better witnesses
—those that represent the program behavior more closely — in an iterative fashion,
ensuring that only as much information about the code is analyzed as actually
necessary to establish or refute a flow between two certain program points.

Our analysis is a novel instantiation of the counterexample guided abstraction
refinement (CEGAR) framework [6]. It starts with an initial (possibly imprecise)
path condition, and follows a fully automatic solve-validate-refine loop until
either a definite outcome is reached, or the analysis time exceeds a user-provided
threshold. In the former case, an absolutely valid witness is returned, or the
program is guaranteed not to contain a flow. In the latter case, the last witness
found will be returned as a potential witness. Figure 2 gives an overview of the
technique. It consists of the following steps:

— Generating path conditions. The technique described in the previous sec-
tion is used to generate path conditions as an initial approximation of the
conditions necessary for an information flow to occur.

— Checking path conditions. A constraint solver, namely a SAT Modulo Theory
(SMT) solver, is used to check the satisfiability of the path condition. Since
the input logic of the SMT solver is decidable, the solver is guaranteed to find
a solution when one exists. If the solver cannot find a solution that satisfies
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Fig. 2. Path Condition Refinement Loop
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SMT solver

no information
flow

the path condition, no flow exists between the two program points, and the
analysis terminates. This is because path conditions soundly abstract the
necessary conditions for flow.

— Checking validity of a solution. If the solver finds a solution, it represents a
potential information flow. The solution will be checked for validity to ensure
that it is real and not just a spurious alarm. This is done by executing the
program code, setting input variables according to the solution provided by
the SMT solver, and monitoring the program state as the code runs. If the
solution conforms to the actual execution, the analysis terminates, and the
solution is returned as an absolutely valid witness to the flow.

— Refining path conditions. If the execution of the solution fails, i.e. we arrive
at a program state that contradicts the solution, the path condition must be
refined to exclude the current solution. To do this, the SMT solver is used
again, to compute a proof of unsatisfiability [28] out of the failed execution
attempt. The proof encodes those parts of the program that make the current
solution spurious. It is conjoined with the previous condition to form a refined
path condition which will be solved by the next iteration of our analysis loop.

Each iteration of the algorithm monotonically extends the path condition.
The path condition is an abstraction of the code, so in the limit, it is equivalent to
the code, and termination is therefore guaranteed for all terminating programs.
In practice, however, the path condition can become intractable, and thus, a
user-defined run-time threshold is needed for termination.

3.1 Path Condition Checking

A path condition is an expression in a quantifier-free fragment of first-order logic
involving equalities and inequalities, arithmetic (linear and non-linear, integer
and floating point), arrays, and uninterpreted functions (to model object at-
tributes). Many quantifier-free fragments of first-order logic are decidable. For
example, when arithmetic operations are limited to linear arithmetic, or when
the data types are represented by fixed-length bit-vectors (e.g. by modeling Java
integers as bit vectors of size 32), the formulas become decidable. Combinations
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of such decidable first-order logics (theories) can be solved using SMT (satisfi-
ability modulo theory) solvers (see e.g. [4,5,8]). Common combinations include
QF_AUFLIA (quantifier-free linear integer arithmetic, integer arrays, and unin-
terpreted functions) and QF_AUFBV (quantifier-free formulas over the theory
of bitvectors, bitvector arrays, and uninterpreted functions).

Translation of path conditions to the input language of an SMT solver re-
quires handling scalars, arrays, object attributes, and their operations. For these
purposes, a solver for the theory QF_AUFBYV is sufficient, as it can handle in-
tegers (with a fixed bit-width), arrays, and object-oriented attributes (via un-
interpreted functions). Using range-restricted integers is an advantage for our
application, as it (i) enables a precise handling of Java integers, including range
overflows, and (ii) supports non-linear operations such as multiplication, divi-
sion, or bit-operations.

Arrays in SMT solvers for QF _AUFBV are modeled as functions mapping
bit-vectors (the indices of the array) to bit-vectors (the values of the array)?.
The array o of Figure 1, for example, is represented as a : B> — B32 where B2
denotes a bit-vector of size 2 that encodes the indices, and B3? denotes a bit-
vector of size 32 that encodes the integer values. Object attributes are translated
using uninterpreted functions over fixed-sized bit-vectors, following a relational
view [24] of the heap.

3.2 Code Execution and Witness Validation

Having found a solution to the path condition, we know that there is a potential
information flow. To check whether the solution represents a real flow or not, we
only need to check whether it gives a valid execution of the code; the conditions
necessary for the flow were already encoded in the initial path condition, and thus
hold in any solution. We execute the program, setting input values as indicated
by the solution®. During the execution, we compare the program state to the
variable assignment provided by the solution, looking for discrepancy.

We run the program step by step, like a debugger does, and at each step
observe the variables that also occur in the path condition. In order to check
for a contradiction with the solver’s solution, we have to map program variables
to variables present in the path condition. To achieve this, we use a function
SSA(x, ), which associates a program variable x at program location 7 with its
SSA counterpart z; = SSA(x, 7). This function can be created during the SSA
transformation of the program.

As the solution from the SMT solver provides concrete values for all variables
occurring in the path condition, it can easily be checked against the variables’
values of the current program state. Having found a contradiction at some pro-
gram state, we store that program state, say 7;,, and stop the witness validation

2 Note that arrays with large index ranges are not a problem, as the computational
complexity depends on the number of array accesses, and not the range of the indices.
3 If an input variable is not in the path condition, it can be set to any arbitrary value.
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process. (For statements inside loops we have to check further iterations to de-
tect a contradiction because the flow into the loop need not happen in the first
iteration.) If no contradiction occurs and the program terminates, the program
run is valid, and thus an information flow really occurs. We can thus report the
SMT solver’s solution as a witness for this information flow.

3.3 Path Condition Refinement

The refinement phase strengthens the current path condition to guarantee that
the current spurious solution (witness) will never be found by the solver again. It
conjoins the path condition with additional constraints that encode the reason
that this solution does not represent a valid behavior of the program.

In order to compute those additional constraints, we perform a symbolic exe-
cution of the program. The symbolic execution mimics the actual concrete trace
that was executed in the validation phase (see Sec. 3.2), but starts from symbolic
inputs rather than concrete ones. During the execution, when a variable (or an
object attribute) is updated, its value is computed symbolically. The computed
symbolic expressions, however, are valid only for this particular execution trace;
the values of variables in other traces are unknown. Therefore, the symbolic
execution also keeps track of all branch conditions that are taken during this
execution trace. Consider the following code fragment as an example:

1. x = input(Q);
2. if (x>0)

3. y = x+5;
4. z =y +1;

Suppose that the concrete execution trace uses x=5 as the actual input and
thus, the branch condition holds in this trace. The symbolic execution starts by
using a symbolic, uninterpreted constant for the input, namely X0, and mimics
the concrete trace. That is, after line 2, it collects the condition (X0>0), after
line 3, it computes X0+5 for the variable y, and after line 4, it computes X0+6 for
z. The final symbolic values of x, y and z, denoted by x’, y’> and z’ respectively,
are given by:

x’ :X:XO (1)
y’ = if (X0 > 0) then X0+ 5 else ANY (2)
z’ =if (X0 > 0) then X0 + 6 else ANY (3)

We define an execution point oy to refer to a point in an execution trace t. Since
a trace can execute the same program point several times — for example, those
that are included in a loop body — several execution points can correspond to the
same point in the program. We use exec;(m) to denote the set of all execution
points of a trace ¢ that correspond to a program point 7. Furthermore, we use
sym(v, ;) to represent the symbolic expression computed for a variable v at
an execution point «y, and guard(a;) to denote the conjunction of all symbolic
branch conditions under which the control reaches an execution point «; of a
trace .
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Assuming that the current solution represents a false witness, the concrete
execution trace contains an invalid program point 7;, whose executions do not
match the variable assignment of the solution. Consequently, the symbolic state
at none of the executions of m;, will match the SSA variables of m;, either.
More precisely, at any execution point «; that corresponds to ;,, the symbolic
expression sym(v;, o) of some variable v; will not be equal to SSA(v;, 7;, ). Thus,
the following logical formula will be unsatisfiable with respect to the current
solution:

\/ /\ (SSA(vi,mo) = if guard(a:) then sym(v;, ;) else ANY)

VaiEexect (7ri0 ) Vg

The use of the guard conditions ensures that the symbolic expressions computed

along different execution traces do not contradict each other, and thus the con-
straints that will be added to refine the path condition are sound. The above
formula is then simplified by transforming if expressions to logical implications,
and normalized so that the top-level operator is a conjunction. We use the SMT
solver again to solve the resulting formula with respect to the current solution
sol. The solution sol defines a partial instance for this formula: it defines val-
ues for those variables of the formula that occurred in the path condition, i.e.
SSA(v;, m;, ). Since the program point ;, is invalid, none of the executions of m;,
gives a program state equal to the one defined by sol, and the above formula is
unsatisfiable with respect to sol*. A solver capable of generating proofs (e.g. [8])
can be asked for a proof of unsatisfiability [28] — a formula weaker than the solved
formula that is still unsatisfiable with respect to the given partial instance. Sup-
pose that a formula f is unsatisfiable with respect to a partial instance 7, and
that, in the normal form, it consists of a conjunction of a set of clauses C, then
the unsatisfiability proof will be a subset C’ C C which is still unsatisfiable with
respect to 1.

Consider again the above-mentioned example fragment along with the values
x=5 for the initial input, and x’=5, y’=3, z’=18 for the final values. We can
solve the formulas (1)-(3) with respect to these values. However, because the
values do not represent a valid execution of the code, the solver cannot find a
satisfying solution. Instead, it returns an unsatisfiability proof like (x = X0) A
(X0 >0 = y = X0+ 5), which is equivalent to (r >0 = y = x+5).
It highlights a small portion of the original formula that contradicts the given
values, i.e. it is still unsatisfiable with respect to the values.

Intuitively, the unsatisfiability proof encodes the reason that the current so-
lution sol is not consistent with the program. Because the proof is unsatisfiable
with respect to sol, when conjoined with the current path condition, it prevents
this invalid solution from ever being found again. The conjunction of the path
condition and the proof constitutes the refined path condition and will be solved
for a solution in the next iteration of our algorithm.

An ideal unsatisfiability proof is “minimal”, meaning that any formula strictly
weaker than the proof is satisfiable with respect to the partial instance. A min-

4 Since the guard conditions evaluate to true given the current solution, leaving the
else branches unconstrained does not affect the satisfiability of the formula.



Information Flow Analysis via Path Condition Refinement 11

1. int[] a = new int[3];
2. al0] = System.in.read(); [a[0] = 15] [a[0] — AO0]
3. a[l] = System.in.read(); [.., a[l] = 5] [..,a[1] — A1]
4. a[2] = System.in.read(); [.., a[2] = 42] [..,a[2] — A2]
5. assert(a[0] > 0); {(A0 > 0)}
6. assert(a[l] > 0); {..AN (A1 > 0)}
7. assert(a[2] > 0); {..A (A2 > 0)}
8. int sum = 0; [.., sum = 0] [.., sum — 0]
9. int i = 0; [..,i=0] [..,i—0]
10. if (i < 3) { . A(0<3)}
11. if (sum = 0) {..A(0=0)}
12. sum = sum + ali]; [.., sum = 15] [.., sum — AQ]
13. i=i4+ 1 [ i=1] [ i 1]
14. if (i < 38) { {.A(1<3)}
15. if (sum = 0) {..A=(A0=0)}
16. sum = sum + ali];
17, i=i+ 1 [, i=2] )
18. if (i < 3) { {.A(2<3)}
19. if (sum = 0) {..A=(A0=0)}
20. sum = sum + alif;
21, i=i+ 1 [, i=3] [, 3]
22. if (i< 3){ {.A=(3 < 3)}
23. if (sum = 0)
24. sum = sum + alil;
25, i=i+1;

323,
26. System.out.println(sum);

(a) ()

Fig. 3. (a) Execution trace of the code for the given solution, (b) its symbolic execution.

imal proof guarantees that each iteration of our algorithm grows the path con-
dition by only a minimal amount of information about the code. No proof-
generating SMT solver, however, is guaranteed to produce minimal proofs. Nev-
ertheless, experiments show that the generated proofs are small enough to be
used in practice [24].

4 Example

Consider again the program of Figure 1, together with its SSA form and its PDG.
The question was whether the secret value in a[1] could flow to the public output
sum or not. As mentioned before, the path condition PC(3,14) given in Section 2
is satisfiable, indicating a potential illegal flow. But this is a false alarm, caused
by the fact that the PDG cannot distinguish between different iterations of a
loop. In fact, because the input values are expected to be positive, after the first
iteration, we have sum>0, and thus the secret value a[1] is not added to sum,
hence does not influence the public output.

Suppose that an SMT solver produces the following solution to the path
condition: al0] = 15,a[l] = 5,a[2] = 42,i; = 0,ip = i3 = 1,sum; = sumy =
sumz = sumy = 0, which is in fact a false witness for flow. This solution is checked
for validity by executing the original code. The execution trace is given in Figure
3(a): executed statements are given in bold, and updates to the program state
after each statement are given in square brackets.
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During the execution, the program state is monitored and compared against
the solution to determine invalid program points. Here the first invalid point
is the loop entry. That is because, based on the semantics of the SSA form of
Figure 1, the values is = 1 and sumy = 0 must happen at the beginning of some
loop iteration. But that is not the case, and thus this program point is invalid.

Based on the trace of Figure 3(a), a symbolic execution is performed as shown
in Figure 3(b). The symbolic execution maintains (1) a mapping from variables
to their symbolic expressions, and (2) a collection of all branch conditions taken.
Figure 3(b) uses square brackets to represent the updates to the mapping after
each statement is executed, and curly braces to represent branch conditions as
added to the collection. The execution starts by introducing the symbolic con-
stants A0, Al, and A2 for the initial values of the input variables, which are
then used to compute subsequent expressions. Numerical expressions are sim-
plified on the fly. The branch conditions are computed symbolically and denote
which branch of a conditional has been taken. That is, any time an else branch
is taken, the negation of the condition is stored.

At the end of the symbolic execution, a formula is generated to express the
fact that sums and is must be the same as the symbolic values computed for sum
and i at the beginning of some loop iteration. A conjunction of branch conditions
is necessary for soundness. Conditions over constant values are evaluated on the
fly. The resulting formula is given below:

(a[0] = A0) A (a[l] = A1) A (a]2] = A2) A (Initial symbolic values)
let ¢ = (A0 > 0) A (Al > 0) A (A2 > 0) and ¢’ = c A =(A40 = 0) in
((sumg = if c then 0 else ANY) A (iz = if c then 0 else ANY)) (Line 10)
V ((sumg = if ¢ then AQ else ANY) A (iz = if c then 1 else ANY)) (Line 14)
V ((sumy = if ¢’ then A0 else ANY) A (ip = if ¢’ then 2 else ANY)) (Line 18)
V ((sumz = if ¢ then A0 else ANY) A (i = if ¢’ then 3 else ANY)) (Line 22)

The intermediate variables ¢ and ¢’ are used only to improve readability of
the formula. Note that, in this example, ¢ and ¢’ are equivalent and thus, all
expressions use the same guard condition. The formula is then transformed to
use logical implications rather than ternary if expressions. A proof-generating
SMT solver is used to solve this formula with respect to the witness, which was
a[0] = 15,a[l] = 5,a[2] =42,i; = 0,1z = i3 = 1, sum; = sumy = sumz = sumy =
0. Since the witness is spurious, the solver cannot find a solution. Instead, it
produces the following proof of unsatisfiability:

Proof =((a[0] > 0) A (a[1] > 0) A (a[2] > 0)) = ((sumz =0 A iz =0) V sumy = a[0])

The proof is a consequence of the solved formula that is still unsatisfiable with
respect to the given witness. Intuitively, it expresses the fact that if the program
is executed (i.e. the assert conditions hold), the values of sum and i at the loop
entry must both be 0 (for the very first loop iteration), or the value of sum must
be the same as a[0] (for any subsequent loop iterations). Neither of these cases
is true for the given witness, and that is why it is spurious. This proof is then
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conjoined with the original path condition to form the refined path condition.

PC'(3,14) = PC(3,14) A Proof
= (a0] > 0) A (a[]l] > 0) A (a[2] > 0) A (i1 =0) A
(i2 = i3 = 1) A (sum; = sump = sumz = sumy = 0) A
((a]0] > 0) A (a[1] > 0) A (a[2] > 0)
= (sumz = 0A iz = 0)V sumg = af0])

This refined path condition is again solved for a satisfying solution. This time
the path condition is unsatisfiable, and thus, the analysis terminates with no
solutions found, proving that there are no flows from a[l] to sum. Although in
this example, the path condition became unsatisfiable after the first refinement,
that is not always the case. In general, depending on the order in which the
solver searches the space and the richness of the unsatisfiability proofs that it
generates, several refinements might be needed to reach a conclusive outcome.

5 Related Work

Most IFC tools are based on security type systems [2,3,14,18,22], which opened
the door into the whole field of language-based security. The Mobius project [2]
developed a complete security infrastructure based on type systems and proof-
carrying code. However, extending security type systems with a CEGAR ap-
proach seems difficult, as type systems do not generate logical formulae which
can be refined as in our approach. On the PDG side, the TAJ project [25] imple-
mented an IFC for full Java which scales to 500MLOC; but since TAJ is based
on thin slicing, it does not discover implicit flow.

As classical noninterference is very restrictive, many information flow sys-
tems allow declassifications. Declassifications are controlled violations of legal
flow. Our PDG-based IFC allows declassification at any PDG node, thus of-
fering fine-grained control “where” declassification should take place. We have
shown that PDG-based declassification respects monotonicity of release [12]. If
path conditions are computed for declassification paths, they answer “when” a
declassification happens. If a witness can be generated from the condition, this
gives insight into the “what” of a declassification.

CEGAR-based program analysis has had tremendous success over the past
few years. The software model checker SLAM [1], for example, analyzes C pro-
grams by iteratively refining a predicate abstraction of code, represented as a
boolean program. BLAST [13] applies lazy abstraction and local refinements
to achieve better performance. ARMC [19] uses a Prolog system with CLP
extensions to perform predicate abstraction refinement. Although these tools
have been successfully applied to substantial programs, they focus on checking
code against temporal safety properties. We have previously used unsatisfiability
proofs to refine abstractions of Java code in order to check precise data structure
properties [24]. This paper builds on a similar approach of using unsatisfiability
proofs, but in the context of information flow analysis. To our knowledge, this
is the first time that CEGAR has been applied to IFC and software security.
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6 Conclusion and Future Work

We presented the foundations of a new approach to IFC that improves the pre-
cision of our previous PDG-based analysis by incorporating a fully automatic
refinement technique. The technique is a novel instantiation of CEGAR built
on path conditions. It follows a solve-validate-refine loop to find witnesses for
flow, check their validity, and eliminate the false ones. While our previous path
condition-based IFC was already context-sensitive, flow-sensitive, and object-
sensitive, it was purely static and could generate false alarms. The new approach
uses constraint solving, concrete and symbolic executions, and unsatisfiability
proofs to detect and eliminate false alarms, and thus to increase IFC’s precision.

Currently, our PDG-based IFC is fully implemented, and a path condition
generator for Java is available as a prototype. As mentioned above, the imple-
mentation supports declassification. The implementation of the new CEGAR-
based approach, however, has just begun. Once a prototype implementation is
completed, we can evaluate its precision and scalability on large programs. We
expect the approach to be much more expensive than the PDG-based IFC alone,
as it includes many solver queries and detailed dynamic and symbolic program
runs. The run-time, however, is not really an issue for IFC where the analysis
of a critical core may as well run overnight. We expect the approach to scale to
a few kKLOC — enough to check security-critical software cores. Note also that
declassification is not yet integrated into our CEGAR approach.

We will explore two options for translating undecidable program expressions
to the decideable solver logic. First, for many program constructs, such as 32-
bit arithmetics, there are precise translations to bitvectors, which can be solved
efficiently. Second, undecideable subexpressions can always be abstracted away
using uninterpreted variables — but this may reduce precision again. Future work
will investigate and evaluate these methods.

In case the scalability of the approach is shown to be insufficient, some tech-
niques are possible to decrease the complexity of the generated constraints, and
thus to reduce the time spent by the constraint solver. One such technique is to
partition the symbolic execution into smaller pieces and introduce intermediate
uninterpreted constants to simplify the expressions computed in each piece. Eval-
uating the effects of such optimizations is left for future work. The fundamental
idea of a CEGAR-based IFC, however, opens the door to an IFC precision that
cannot be achieved by a static analysis alone, neither type systems nor PDGs.
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