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Abstract

This dissertation describes a method for systematic constraint-based test generation
for programs that take as inputs structurally complex data, presents an automated
SAT-based framework for testing such programs, and provides evidence on the fea-
sibility of using this approach to generate high quality test suites and find bugs in
non-trivial programs.

The framework tests a program systematically on all nonisomorphic inputs (within
a given bound on the input size). Test inputs are automatically generated from a given
input constraint that characterizes allowed program inputs. In unit testing of object-
oriented programs, for example, an input constraint corresponds to the representation
invariant; the test inputs are then objects on which to invoke a method under test.
Input constraints may additionally describe test purposes and test selection criteria.

Constraints are expressed in a simple (first-order) relational logic and solved by
translating them into propositional formulas that are handed to an off-the-shelf SAT
solver. Solutions found by the SAT solver are lifted back to the relational domain
and reified as tests.

The TestEra tool implements this framework for testing Java programs. Ex-
periments on generating several complex structures indicate the feasibility of using
off-the-shelf SAT solvers for systematic generation of nonisomorphic structures. The
tool also uncovered previously unknown errors in several applications including an
intentional naming scheme for dynamic networks and a fault-tree analysis system
developed for NASA.

Thesis Supervisor: Daniel Jackson
Title: Associate Professor
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Chapter 1

Introduction

1.1 Problem Description and Proposed Solution

Software testing, the most commonly used technique for validating the quality of
software, is a labor intensive process, and typically accounts for about half the total
cost of software development and maintenance [10]. Automating testing would not
only reduce the cost of producing software but also increase the reliability of modern
software. A recent report by the National Institute of Standards and Technology
estimates that software failures currently cost the US economy about $60 billion every
year, and that improvements in software testing infrastructure might save one-third
of this cost [2].

One might question why there is such room for improvement at all, given the
conceptually simple nature of testing: just create a test suite, i.e., a set of test inputs,
run them against the program, and check if each output is correct. The key issue with
the current practice of testing is the need to manually generate test suites. Generat-
ing an input manually requires considerable effort that is often wasted: executing a
program on an input and not detecting a bug does not help correct potential errors.
Sometimes the effort is so significant that developers resort to using a very small and
inadequate set of inputs to test their applications, even if they are used in building
mission critical systems. Indeed, such practice may result in erroneous applications
being used for extended periods of time before subtle errors lead to failures.

1.1.1 Test Generation is Burdensome

So why do developers need to create suites manually, rather than generating them
automatically? Generation would be straightforward if desired inputs were easy to
sample, e.g., if they belonged to a given range of integers. For most programs, how-
ever, inputs need to satisfy certain complex properties. Consider, for example, a
program that removes an element from a binary tree. For correct behavior the pro-
gram may require that its input tree is in fact a binary search tree, with the elements
in the tree appearing in the correct (search) order. As another example, consider
testing a word processor GUI by generating an event sequence as an input. Certain
sequences cannot be possible inputs, e.g., it may not be possible to change the font
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without first selecting the “Format” menu, and incorrect program behavior on such
a sequence most likely amounts only to a false positive.

1.1.2 Key Idea: Generating Tests from Constraints

A key idea in our work is to generate tests from logical constraints. Even though
manual input generation is laborious, describing properties of desired input data with
an input constraint is typically simple. In object-oriented programs, such constraints
are often already explicitly recorded in the code by developers. In particular, a
representation invariant [63] (also called class invariant) constrains the representation
of objects of the class and must be preserved by the operations that modify the
representation. A method typically has a precondition that defines allowed inputs and
a postcondition that states expected behavior; the class invariants implicitly forms a
part of the precondition and postcondition. The input constraint for a method is its
precondition.

An input constraint need not necessarily characterize the allowed program inputs.
It is often the case that programmers want to test the robustness of their programs on
inputs that violate certain properties; an input constraint then simply expresses the
negation of these properties. An input constraint may also state a test purpose, such
as that input trees should have at least three nodes, to focus testing of a particular
behavior of interest.

A key advantage of using input constraints is that the constraints typically define
a whole class of inputs and not just a small subset of that class. This enables using an
appropriate constraint solver to enumerate an entire class using the same constraint.
In contrast, a set of concrete inputs cannot (easily) be used to generate further inputs.

The use of constraints allows partiality in testing: a piece of code (or simply a
method) can be taken in isolation from the rest of the implementation and tested
by defining the constraints on program variables at the control point that represents
start of execution. For example, the method that removes an element from a binary
search tree can be tested without first having to implement the methods that build
such trees.

To test a program, we systematically solve its input constraint to generate all
inputs within a given bound on the input size, and test the program against the
resulting suite.

1.1.3 The Challenge of Complex Structures

To determine how to solve input constraints, it is important first to understand the
nature of the constraints. Prior techniques [19,42,56,74] for generating tests from con-
straints have considered constraints on primitive data, such as integers and booleans,
and used dedicated solvers for such constraints.

In object-oriented software, data with complex structure are pervasive. Such data
are defined by their structural constraints, e.g., in a binary tree, there are no directed
cycles, each node has a unique parent and no node has the same node as both left
and right child.
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Solving structural constraints is not the only challenge in generating complex
structures. Indeed, how to intuitively express these constraints by itself poses a
challenge. Further, if the constraints are expressed in an abstract logic, translating
solutions of constraints into actual tests poses another challenge.

1.1.4 Embodiment: The TestEra Tool

The TestEra tool presents an embodiment of how we address these challenges for
automated testing of Java programs. The constraints are expressed in a simple
(first-order) relational logic that allows the use of intuitive path expressions to build
specifications; the constraints are solved by translating them into propositional for-
mulas that are solved using an off-the-shelf SAT solver; the solutions found by the
SAT solver are lifted back to the relational domain using a concretization translation
and reified as tests.

Experiments on generating several complex structures indicate the feasibility of
using off-the-shelf SAT solvers for systematic generation of nonisomorphic structures.
The tool also uncovered previously unknown errors in several applications.

1.2 Example

To describe the problem domain and illustrate our framework, we introduce a simple
example that we use throughout this chapter. Consider the Java code in Figure 1-
1. The code declares a binary search tree and its remove method, which takes a
tree, and an element, which it supposedly removes. The code of remove is shown in
Appendix A.

Each object of the class BinarySearchTree represents a binary search tree; objects
of the inner class Node represent nodes of the trees. The method remove has two
inputs, i.e., the implicit this argument, which is a BinarySearchTree, and i, which
is an integer. We denote an input to remove as the pair (T , i), where T is the input
tree and i is the input element to delete.

Consider the following specification for this method: both precondition and post-
condition require implicitly that this satisfy the class invariant for BinarySearchTree,
which requires that the graph of nodes reachable from root indeed be a tree (i.e., have
no cycles), the elements in the tree appear in the correct (search) order, and that the
size field represents the number of nodes in the tree; further, the postcondition re-
quires that the element be removed correctly and that the method returns true iff
the element to remove (i.e., i) already exists in the input tree.

1.2.1 Generation at the Representation Level

How might we go about generating inputs to test the remove method? One way is to
generate inputs at the representation level: create objects and set their field values.
Consider, for example, manually generating the input tree bst that contains three
elements (i.e., 1, 2, and 3) as shown in Figure 1-2. Figure 1-3 (a) illustrates this

17



package testera.examples;

class BinarySearchTree {
Node root; // root node
int size; // number of nodes in the tree

static class Node {
Node left;
Node right;
int info;

}

// class invariant: ‘‘this’’ is a binary search tree: acyclicity;
// elements in search order; size is number of nodes

// precondition:
// postcondition: element ‘‘i’’ is not in the tree in the post-state;
// all other elements that were in the tree in the
// pre-state are still in the tree in the post-state
boolean remove(int i) { ... }

}

Figure 1-1: Java declaration of a class that implements binary search trees and a
method that removes the given element from the input tree. Appendix A gives an
implementation of remove.

BinarySearchTree bst = new BinarySearchTree();
bst.size = 3;
Node r = new Node();
bst.root = r;
Node l = new Node();
Node t = new Node();
r.left = l;
r.right = t;
r.info = 2;
l.info = 1;
t.info = 3;

Figure 1-2: Test generation at the representation level. Java code that generates a
binary search tree by explicitly allocating objects and setting values of their fields.

input tree.
A key issue with manual generation at the representation level is that we need to

manually establish structural invariants. This can be particularly cumbersome when
augmenting an existing test input. Consider, for example, adding a new element (4,
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Figure 1-3: (a) Binary search tree with three nodes; (b) adding a new node that
violates the search constraint. Each object has an identity, e.g., N0 is the identity
of the node object that represents the root node. Each node object contains an
integer element that represents the value of field info. The fields root, size, left
and right are appropriately labeled.

say) to bst:

Node lr = new Node();
l.right = lr;
lr.info = 4;

Figure 1-3 (b) displays the resulting tree. Since l.info = 1, lr.info must be larger
than 1 (as otherwise we violate the search order). Setting lr.info to 4, however, still
violates the search order since the node lr is in the sub-tree rooted at the left child
of the root, which has a value (i.e., 2) less than 4. Moreover, we need to update the
size value to 4, as now the tree has an additional node.

This example, despite its simplicity, illustrates the global nature of structural
constraints that are hard to maintain locally. At first glance, it may seem that a
sequence of random field value assignments is likely to generate a valid structure.
But such an approach is infeasible, since the ratio of the number of valid structures
to the number of candidate structures tends to zero as size is increased, and a random
assignment is thus very likely to violate at least one of the constraints. As an example,
consider arranging 3 nodes and 3 elements into a binary search tree using a random
assignment of values to fields; there are 4 ·4 · (4 ·4 ·3)3 (or about 1.8 million)1 possible
assignments, but of these, only 21 represent valid binary search trees.

1.2.2 Generation at the Abstract Level

Input generation does not need to proceed at the representation level. We can gen-
erate inputs at an abstract level, by using an appropriate construction sequence. If

1For a candidate structure, the fields root, left and right can have one of four values (null
or a reference to one of the three Node objects); the field size can have one of four values (0, 1, 2,
or 3); and the field info can have one of three values (1, 2, or 3).
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BinarySearchTree bst = new BinarySearchTree();
bst.add(1);
bst.add(2);
bst.add(3);

Figure 1-4: Test generation at abstract level. Java code that generates a binary
search tree using a construction sequence.
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Figure 1-5: Binary search trees resulting from insertion of elements into an empty
tree using the orders (a) [1, 2, 3], (b) [2, 1, 3], and (c) [2, 3, 1]. The trees
(b) and (c) are isomorphic; they have the same branching structure and differ only
in node identities.

we assume that we already have implemented a method, say add, to add new nodes
to an existing tree, we can build an input tree using, for example, the construction
sequence illustrated in Figure 1-4. It is now easy to add a fourth node: simply invoke
bst.add(4). The add method, assuming it is implemented correctly, automatically
maintains the structural invariants for us.

Let us consider using this approach to generate a test suite. At a first glance, it
may appear that it is sufficient to have one construction sequence for each tree size
to build a reasonable test suite. Notice, however, that for the same set of elements,
different orders of insertion can give rise to structurally different inputs. In our
example, the order of insertion [1, 2, 3] (into an empty tree) gives rise to a list-
like structure (where all nodes have their left fields set to null, Figure 1-5 (a)),
whereas the order [2, 1, 3] gives rise to a balanced tree structure (Figure 1-5 (b)).
To sufficiently test functionality of remove or another method that manipulates a
binary tree structure, we need to generate several structurally different inputs.

So why don’t we test on all sequences (up to a desired size)? Doing so typi-
cally produces many sequences that generate isomorphic2 (or structurally equivalent)
inputs. For example, the order of insertion [2, 1, 3] generates a tree that is isomor-
phic to the the tree that the order [2, 3, 1] generates (Figure 1-5 (c)). The problem
worsens as the tree grows; for 10 nodes there are 10! or about 3.6 × 106 sequences,

2Section 6.2 formally defines isomorphism.
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// binary tree
all n: this.root.*(left + right) {

n !in n.^(left + right) // no directed cycle
sole n.~(left + right) // at most one parent
no n.left & n.right // distinct children

}

// elements in correct order
all n: this.root.*(left+right) {

all nl: n.left.*(left + right) | nl.info < n.info
all nr: n.right.*(left + right) | nr.info > n.info

}

// size ok
this.size = #root.*(left + right)

Figure 1-6: Class invariant for BinarySearchTree.

whereas there are only 16,796 nonisomorphic (or structurally inequivalent) binary
search trees [81]. Two inputs that are isomorphic elicit identical program behavior,
for all programs. Therefore, there is no advantage in testing a program on more than
one input from a set of isomorphic inputs.

1.2.3 Our Approach: Representation-level Generation from
Constraints

The key idea in our approach is to generate structures at the representation level from
their defining constraints given as formulas in first-order logic. We enumerate tests by
solving the constraints using off-the-shelf SAT technology. To make systematic testing
practical for real systems, we restrict test generation to nonisomorphic inputs.

The TestEra framework [66] presents an embodiment of these ideas for testing
Java programs. TestEra generates tests using preconditions and checks correctness
using postconditions as test oracles.

Our notation for expressing constraints allows succinct and declarative descrip-
tions of a large class of graph-based structures [24] including both acyclic (e.g., red-
black trees) and cyclic (e.g., doubly-linked circular lists) structures and also array-
based structures such as hashtables or priority queues. In principle, we could express
structural constraints of any data structure that a Java program implements.

We next illustrate a usage scenario of TestEra.

Writing Constraints

Recall the BinarySearchTree example. To generate inputs for the method remove

the user provides the class invariant of BinarySearchTree. The invariant forms the
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precondition of remove and can be formulated in Alloy [43], a first-order logic based
on sets and relations3, as shown in Figure 1-6.

The invariant contains three formulas, implicitly conjoined. The first formula
uses universal quantification (all) to state that this is a binary tree, in particular:
(1) it is not possible to start traversal at any node in the tree and arrive at the same
node, i.e., there are no directed cycles; (2) each node has at most one incoming edge
labeled left or right; and (3) for each node, the left and right child cannot be the
same node. The second formula states that the elements in the tree appear in the
correct order, in particular, the element in a node is bigger (smaller) than all elements
in the subtree rooted at its left (right) child. The third formula states that the value
of the size field equals the number of nodes reachable from root.

The postcondition of remove includes the class invariant and additionally requires
that the element be removed correctly and the method return the correct boolean

value:

// element removed correctly

this.root.*(left + right).info = this.root`.*(left` + right`).info` - i

// result correct

@result = true <=> i in this.root`.*(left` + right`).info`

The backtick character ‘`’ denotes field traversal in the pre-state. All other field
traversals are in the default state, which is the pre-state for a pre-condition and
the post-state for a post-condition. The keyword @result refers to the result of
the method. This notation belongs to a veneer on Alloy that we have defined for
specifying Java programs. We describe the details of our veneer in Chapter 4.

Test Execution and Correctness Checking

Given the Java bytecode for BinarySearchTree and BinarySearchTree$Node, the class
invariant and postcondition above, and a bound on the input size, TestEra generates
test inputs and executes the method on each input to check the method’s correctness.

As an illustration of TestEra’s checking, consider erroneously replacing the con-
dition (info < current.info) with (info > current.info) in the body of remove

(Appendix A); this results in a failed search for input element unless the element be-
longs to the root node. Using the default bound4 of three, TestEra detects violation
of the correctness criterion.

A counterexample generated by TestEra consists of concrete Java input and output
objects, which can be displayed in textual form using their toString methods or
saved to disk using Java’s support for serialization. Figure 1-7 graphically illustrates
a TestEra counterexample that witnesses the error (we introduced) in remove. In this
counterexample, the element to be deleted, with value 2, still exists in the input tree

3For ease of exposition, we present a slight variant of Alloy. To compare integer values, we
actually use library functions, e.g., instead of a < b, we write LT(a, b).

4A bound of two is actually sufficient to reveal this bug.
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Figure 1-7: Counterexample to correctness of remove. Invoking remove on this and
i in (a) the pre-state returns false and results in (b) the post-state.

in the post-state and the method returns false despite that the element exists in the
input tree—a postcondition violation.

1.3 Contributions

This dissertation makes the following contributions:

• It describes a method for systematic constraint-based test generation for pro-
grams that take as inputs structurally complex data.

• For structure enumeration, where constraints are expressed in first-order logic,
it describes how to manually construct first-order logic formulas to completely
break symmetries, so that enumeration generates exactly one instance from each
isomorphism class.

• It presents the design and (prototype) implementation of TestEra, a novel frame-
work for automated specification-based testing of Java programs using SAT.

• It describes how to automatically translate data between an abstract domain
and a concrete domain. Even though we use these translations for testing, they
can be used in various other contexts, such as runtime monitoring and correcting
of program behavior.

• It gives experimental evidence on the feasibility of using off-the-shelf SAT solvers
for systematic generation of high quality test suites; the experiments witness ef-
ficient enumeration for complex data structures from the Java Collection Frame-
work and identification of significant bugs in standalone applications.

• It describes a compelling application of SAT solvers that suggests that solution
enumeration is an important feature that merits research in its own right. To
the best of our knowledge, this is the first such application in software testing.
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1.3.1 Test Generation as Constraint Solving

An input constraint defines desired inputs; for object-oriented programs these con-
straints often express structural properties.

Given the undecidable nature of these constraints, we bound the universe of dis-
course and find solutions that exist within the bound. Even though typically the
bounded universe of possible solutions is still very large say for an exhaustive search
to feasibly enumerate them, we show that it is practical to enumerate solutions to
such constraints using SAT technology: we translate constraints into propositional
formulas, solve the formulas using off-the-shelf SAT solvers, reify solutions into con-
crete test inputs. The ability to efficiently enumerate allows us to overcome a key
limitation of the current practice of testing: lack of a systematic way to generate a
sufficiently large number of tests.

Using constraints to represent inputs is not a new idea and dates back at least three
decades [19, 42, 56, 74]. Most of the prior work, however, has considered constraints
on primitive data, such as integers and booleans, and not on structurally complex
data.

Our approach generates tests from input constraints that specify the underly-
ing data structures at the concrete level. This form of specification often appears in
object-oriented software in terms of class invariants and method preconditions. Other
common forms are algebraic [38] and model-based specifications [83], which typically
introduce a level of abstraction. As we noted in Section 1.2.2, test generation for com-
plex structures at an abstract level can result in a very high proportion of isomorphic
structures.

1.3.2 Systematic Testing

Testing has traditionally been practiced in an ad hoc fashion. In cases where devel-
opers have a sufficiently large suite, they would run tests for as long as the time-to-
market permits. These tests, however, are typically constructed by hand using the
developers’ intuition and do not necessarily test the functionality of the program to
a desirable extent. We test the program systematically : the program is tested on all
inputs up to a given bound5.

Theoretically speaking, systematic testing guarantees program correctness only
for all inputs that are within the given bound. In practice, however, systematic
testing is likely to fare reasonably well in identifying subtle errors that are hard to
detect otherwise. This is particularly likely to be the case for testing programs with
structurally complex inputs. In such programs, the programmer typically implements
code that handles structurally different cases, e.g., the remove method should behave
correctly irrespective of whether a node in the input tree has zero, one, or two children.

5The notion of checking for errors systematically forms the foundation of the field of model
checking [18]: a finite state model of a system is constructed and exhaustively checked for errors.
Even though there is a lot of recent work in applying model checking techniques to software, the
focus of this work has been on checking properties of event sequences in closed reactive systems and
not on checking properties of data structures.
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A suite consisting of all small inputs is likely to contain a representative of several of
these cases. As a recent study indicates, for a variety of benchmark data structures,
it is indeed possible to achieve complete statement and branch coverage by testing
on all small inputs [65].

1.3.3 Inequivalent Inputs

The feasibility of systematic testing depends not only on the ability to generate inputs
but also on the ability to test the program against the generated suite. As we have
already illustrated, even for small input sizes, the set of all possible inputs may
be very large. To make systematic testing practical, we restrict generation to inputs
that are inequivalent (up to graph isomorphism) by conjoining, to the basic structural
constraints, constraints that (1) define a mapping from a structure to its canonical
form and (2) restrict generation to structures that map to themselves. Even though
we require the user to provide the canonicalization constraints, we show how to write
them using a simple idea of traversal. It is worth pointing out that our notion of
equivalence among inputs is independent of any particular implementation: whatever
program the inputs are passed to, the outcomes for equivalent inputs will be the
same.

1.3.4 State Encoding

Mutation of state is a key aspect of object-oriented programs. Correctness criteria
may relate states of a program at different control points during its execution. For
example, method postconditions may relate values of an object’s fields in the pre-state
with the corresponding values in the post-state. To allow using SAT for checking rich
behavioral properties, various encodings of mutable state of a Java program have
been developed [53, 66, 89]. We present a novel encoding here. An advantage of our
encoding is that it can be used in a modular fashion in a variety of domains, e.g., in
modeling systems that have states with structure and transitions between states.

1.3.5 Experiments

We performed experiments to evaluate (1) the feasibility of using SAT solvers in solv-
ing complex structural constraints and generating nonisomorphic structures including
some that are implemented in the Java Collection Framework [87] and (2) the use of
TestEra in checking stand-alone applications. The initial experiments with TestEra
exposed bugs in a naming architecture for dynamic networks [51] and a part of the
Alloy 1.0 analyzer [66]; these bugs have now been corrected. More recently, we have
applied TestEra to test a fault-tree solver [31] developed for NASA; TestEra exposed
significant bugs in the fault-tree solver [86].
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1.3.6 SAT Application

Our work presents a novel application of SAT solvers in software testing. The appli-
cation requires a solver that can enumerate all solutions; this contrasts with previous
SAT applications in the domains of AI planning [49], hardware verification [12], soft-
ware design analysis [50], and code analysis [89]. These applications typically use a
solver to find one solution, e.g., one plan that achieves a desired goal or one coun-
terexample that violates a correctness property. Hence, most modern SAT solvers are
optimized for finding one solution, or showing that no solution exists. That is also
how SAT competitions [1] typically rank solvers.

Currently available versions of most modern SAT solvers, including zChaff [71],
BerkMin [33], Limmat [11], and Jerusat [72], do not support solution enumeration
at all6, let alone optimize it. We hope that our application will motivate research in
solution enumeration and will provide a new dimension at SAT competitions.

Our work provides a set of formulas that can be used to compare different solvers
in their enumeration; these formulas fall into the (satisfiable) “industrial” benchmarks
category for SAT competitions and are available online at:

http://mulsaw.lcs.mit.edu/alloy/sat03/index.html

We also present a performance comparison between mChaff and relsat in enumerating
a variety of benchmark data structures.

1.4 Organization

This dissertation has three fundamental components:

• A basic description of our approach, including how to express constraints, how
to solve constraints, and how to restrict test generation to inequivalent inputs
(Chapters 3, 4, and 6).

• The embodiment of our approach into the TestEra framework for testing Java
programs (Chapter 5).

• An assessment of our approach using a variety of case-studies and a comparison
with related work (Chapters 7, 8 and 9).

In a little more detail these components are as follows.
Chapter 2 describes some relevant basic notions of software testing and our crite-

rion for generating tests.
Chapter 3 gives the fundamentals of the Alloy specification language and its au-

tomatic tool support, and describes how we model a particular state (the heap) of
a Java program in Alloy. Readers already familiar with Alloy may want to skip the
sections on Alloy and the Alloy Analyzer.

6Support in zChaff is under development and available in an internal version. Support in BerkMin
is planned for the next version. There is no plan to add support to Jerusat. (Personal communication
with the authors of the solvers.)
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Chapter 4 describes our veneer on Alloy, which enables building, in first-order
logic, specifications of Java programs. We describe here how we model mutation of
state in Alloy, and we present our specification notation. This chapter also describes
some key aspects in which the semantic data model of Alloy differs from that of
Java; the TestEra user needs to take these differences into account while writing
specifications.

Chapter 5 presents the TestEra framework. We explain the key algorithms TestEra
implements to generate Alloy specifications and data translations for test execution.

Chapter 6 describes how TestEra users can construct Alloy formulas that allow
enumeration of exactly non-isomorphic instances.

Chapter 7 describes various case-studies that we have performed using our proto-
type implementation to evaluate the feasibility of using SAT for structure generation
and TestEra for testing standalone applications.

Chapter 8 presents a discussion of the testing approach taken by TestEra. In
particular, we point out both some salient features and inherent limitations. Also we
describe here some future extensions and applications of the basic approach.

Chapter 9 presents an overview of the related work, in particular related work on
specification-based testing, software model checking and static analysis.

Chapter 10 summarizes the dissertation and presents some final thoughts. This
chapter is self-contained.
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Chapter 2

Software Testing

The aim of testing a program is to find bugs. The process of testing consists of
generating a set of test inputs, called a test suite, running the program against these
inputs, and checking if each output is as expected. If an output is not as expected,
the corresponding input witnesses an error and reveals a bug in the program or an
error in the formulation of the correctness criterion.

This chapter describes some fundamental concepts in software testing, which are
relevant to understanding our approach to test generation. We also explain the key
properties that we desire of test suites.

2.1 Testing Using Preconditions and Postcondi-

tions

We aim to test the behavior of a given program against a correctness specification.
The specification states the precondition, which defines the properties that the pro-
gram requires of its inputs, and a postcondition, which describes expected outputs. A
precondition is a formula that can be evaluated on a given input. Inputs for which the
formula evaluates to true represent inputs that the program allows. A postcondition
is a formula that can be evaluated on a given input/output pair.

In object-oriented programs, class invariants define properties that objects of a
class must satisfy. Methods that classes implement require (as their preconditions)
the inputs to satisfy their respective class invariants and may require additional prop-
erties that relate different inputs with each other. The method postconditions can
be viewed as test oracles that relate pre-states (i.e., the program state immediately
before method invocation) and post-states (i.e., the program state immediately after
method invocation): the postcondition is a formula that can be evaluated on a given
pre-state and corresponding post-state.

It is worth emphasizing that a precondition is a property a method expects to be
true (and therefore need not check) of its inputs at the point of invocation. And cor-
rect behavior (as specified by the postcondition) is only guaranteed if the invocation
is on inputs that satisfy the precondition.
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2.1.1 Need Relevant Tests

For programs that only use elementary data-types, generating tests is simple. For
example, if a program considers as valid inputs any integer in a given range, it is
easy to sample a test suite. However, for programs that take as inputs structurally
complex data, generating even a few tests is non-trivial. Tests generated in a random
fashion are likely to violate some structural constraint and therefore be irrelevant
since such programs explicitly require inputs to satisfy all desired constraints.

Indeed, it may be desirable to observe the behavior of a program on inputs that
violate the precondition. Relevant tests in such a scenario are with respect to the
properties that the programmer desires the inputs to satisfy or violate.

2.1.2 What Tests to Use?

Given the ability to generate relevant tests, we need to determine what tests to use.
Non-trivial programs effectively have an infinite number of possible inputs. Testing
exhaustively on all inputs is not feasible. In practice, a program is typically tested
for as long as the available resources allow.

Recall that we view a test suite as a set of inputs. The time required to test a
program is determined by the size of the suite: the larger the suite, the longer it takes
for testing to complete. Thus, deciding what inputs to actually use is a key decision
to make when testing a program.

Suites can alternatively be viewed as sequences of inputs where the program is
first tested against inputs that are more likely to find bugs. In this case, deciding how
to order tests is a key decision to make. We do not consider ordering inputs here.

2.1.3 Test Adequacy

A test adequacy criterion—a set of conditions that a desired suite must fulfill—is
defined to determine whether a generated suite tests a program to a desirable extent.
Criteria can be defined both for white-box testing, where program implementation
guides test generation, and for black-box testing, where specifications alone are used
for selecting tests (and the program implementation is ignored) [10].

Common forms of criteria for white-box testing are to require that tests in a suite
cover some aspect of implementation code, i.e., exercise all statements, branches or
even paths (up to a certain length) in the program. A key advantage of white-box
testing is that by taking into account the details of the implementation, it allows
generating suites that are tuned to test a particular implementation. For example,
consider a typical specification of a program for sorting a list of integers. The actual
implementation might, for performance reasons, implement a combination of algo-
rithms, say bubble-sort for input lists with less than 5 elements and quicksort for
input lists with 6 or more elements. A black-box based approach, oblivious of the
actual implementation, might miss testing an input with 6 or more elements and
therefore fail to test the quicksort implementation. In this case statement coverage,
would suffice to rule out such a suite.
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In black-box testing, the structure of specification code is used to define the cri-
terion [15]. For example, for a specification of a square root program that specifies
how the program behaves if the input is less than, equal to, or greater than 0, we
could use the criterion that the suite should consist of some integer less than 0, the
integer 0, and some integer greater than 0. A key advantage of black-box testing is
that it catches errors of omission, or cases that the implementation does not handle
(and therefore fails on). For example, consider a program that is intended to compute
square root (to the nearest integer) but erroneously returns 0 on all inputs:

int squareRoot(int i) {
return 0;

}

A white-box based approach that aims to test all paths in the program may test
the program against the suite containing only the input zero and incorrectly deem
the program correct. Furthermore, the cost of selecting a test in black-box testing is
independent of the size of the implementation, which is typically (much) longer than
the specification.

Adequacy criteria may be based on both the specification and the implementation.
For example, a criterion could require covering all branches in the implementation
and all conditions in the specification.

The focus of our work is black-box testing, where specifications take the form of
input constraints and test oracles. Accordingly, we restrict our discussion to this case.

2.1.4 Redundancy in Test Suites

A test suite may contain redundancy in the following sense: it contains more than one
test that witnesses a single bug. Much as we would like to minimize the cost of test
execution by generating suites that do not have redundancy, for a given program and
correctness property, it is not possible, in general, to eliminate all such redundancy—
doing so would amount to determining program correctness [92].

Nonetheless, we can eliminate some redundant tests from the suite by disallowing
inclusion of equivalent tests. We consider two tests equivalent if they induce identical
observable behaviors on any (deterministic) program. For programs that operate only
on elementary data-types, only identical inputs are equivalent. For more general pro-
grams, inputs that are not identical may still be equivalent. Pointer-based structures,
such as a linked list or a binary search tree are examples of such inputs.

Testing on two (or more) inputs that are equivalent is a waste of resources: if the
program behaves correctly (respectively incorrectly) on one, it behaves correctly (re-
spectively incorrectly) on all that are equivalent to the one. The notion of equivalence
is presented in Weyuker and Ostrand’s work [92].

2.1.5 Dense Suites

For any two inputs that are not equivalent, it is possible to write a program that
exhibits different behaviors on them. Therefore, by leaving out an input that is not
equivalent to others already in use, we risk missing out on detecting a buggy behavior.
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Since the set of inequivalent inputs for (non-trivial) programs is effectively infinite,
exhaustive testing of a program is not possible even if test generation is restricted to
inequivalent inputs. However, it is feasible to test programs against dense suites, i.e.,
suites that contain all inequivalent inputs within certain bounds on the input size.
For inputs that can be represented using graph-based structures, we use the number
of nodes in the graph and the number of elements in relevant elementary domains as
a measure for the input size. As an example, a dense suite for testing a method that
removes the root node of a binary tree and arranges any remaining nodes into a tree
may contain all inequivalent trees with up to 5 nodes.

Of course, testing against dense suites checks program correctness only for those
inputs bounded by the given size. In practice however, such an approach is likely
to fare well in identifying subtle errors that are hard to detect otherwise (using the
traditional approach of manual test generation). This is particularly likely to be the
case for testing programs with structurally complex inputs. In such programs, the
programmer typically implements code that handles structurally different cases, e.g.,
the remove method should behave correctly irrespective of whether a node in the input
tree has zero, one, or two children. A suite consisting of all small inputs is likely to
contain a representative of several of these cases.

In contrast, testing against a randomly generated suite is not as likely to fare
well. First, for complex structures the ratio of the number of valid structures to the
number of candidate structures tends to zero as structure size increases. This makes
it hard to generate such data in a random fashion and we do not know how to do
so. Second, even if we assume that we have a stream of relevant tests available and
we can sample them randomly, the likelihood that a random sample would cover all
structurally different cases that the program handles is low.

2.2 Our Criterion

We test a program against dense suites for as long as time permits: our test adequacy
criterion is to test on all inequivalent inputs systematically (starting from the smallest
ones and iteratively increasing the input size) for as long as the available time permits.
One key difference between our approach and traditional manual approaches is the
sheer volume of tests: we typically test a program on several hundred thousand
(structurally complex) inputs; doing so using manual generation would simply be
infeasible.

A question that naturally arises is how effective this criterion is in increasing
the reliability of software. The experimental results indicate that suites that meet
this criterion are able to find subtle bugs that went unnoticed despite years of use
(Chapter 7). Also, a recent study indicates that it is feasible to generate suites
based on this criterion and achieve full statement and branch coverage in a variety of
benchmark data structure implementations [65].
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Figure 2-1: Binary search trees resulting from insertion of elements into an empty
tree using the orders (a) [1, 2, 3], (b) [2, 1, 3], and (c) [2, 3, 1]. The trees
(b) and (c) are isomorphic; they have the same branching structure and differ only
in node identities.

2.2.1 Equivalent Tests for Object-Oriented Programs

For object-oriented programs, we use the notion of structural isomorphism (which
we define formally in Chapter 6) to define equivalence among inputs. We assume
that object identities are used for comparisons only. In Java, it is possible to use
System.identityHashCode(...) to do operations with object identities besides com-
parison. However, such programs usually indicate bad style and are rare. They can
be identified using a simple static analysis and we do not consider them here.

As an illustration of equivalent inputs, consider BinarySearchTree’s remove method
(shown in Appendix A, which takes two inputs: a tree and an integer. The follow-
ing set consists of two inputs that are equivalent: {(Tb, i), (Tc, i)}, where Tb is the
balanced tree in Figure 2-1(b), Tc is the balanced tree in Figure 2-1(c) and i is an
integer, since Tb and Tc are structurally isomorphic as witnessed by the permutation
of nodes (N0 N1).

The set {(Ta, i), (Tc, i)}, where Tc and i are as before but Ta is the tree in Figure 2-
1(a), does not consist of equivalent inputs; this is because it is possible to implement
remove in a way that it performs correctly on the input (Ta, i) but incorrectly on
the input (Tc, i). To see this, consider as a witness the implementation that first
checks if the input tree is not balanced and if so (erroneously) raises an exception but
otherwise correctly removes the given element. Similarly the set {(Ta, i), (Ta, j)},
where Ta and i are as before but integer j 6= i, does not consist of equivalent inputs.

It is worth emphasizing that testing only on nonisomorphic inputs does not affect
the ability to detect bugs. Moreover, in object-oriented (such as Java) programs re-
running the same test (say for regression testing) does not necessarily test the program
on an input identical (with respect to identities of constituent objects) to the one
used before. For example consider a scenario for regression testing where we save a
concrete test to the disk using serialization [87] of its constituent objects. Loading the
test from the disk using de-serialization creates new objects, which generates a test
isomorphic (and not necessarily identical) to the one that was serialized. Similarly, if
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the test is saved to disk in an abstract form, such as a construction sequence, different
invocations of the same construction sequence generate distinct but isomorphic tests.

Furthermore, in generating inequivalent inputs, it is essential to take into account
isomorphism at the concrete representation level. Even though in certain cases it may
be possible to directly generate construction sequences that produce a set of noniso-
morphic structures, a priori determining such sequences requires program analysis of
the implementations of the methods and is not tractable in general.

In addition to isomorphism among inputs, we can exploit the developer’s intuition
in defining equivalent inputs (and further reducing the size of generated suites). In
particular, if the developer believes that program behavior (with respect to the cor-
rectness property being checked) is identical on a certain class of inputs, we can add,
to the original input constraints, constraints that restrict generation to not more than
one input from that class.
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Chapter 3

Modeling structures

Structurally complex data abound in modern software. The key issue in automating
testing is automating the generation of input data. Two issues that make generating
structures hard are that they involve references and sharing, and that only a small
proportion of arbitrarily selected structures are well-formed.

In this chapter, we first give some examples of how structures arise. Next, we
describe how we model states of an object-oriented program in a first-order setting.
We intuitively describe the basics of Alloy [43], a first-order declarative language
based on relations, as we introduce it. We illustrate how to model the structural
constraints of a variety of benchmark structures. We also explain relevant details of
Alloy and the Alloy Analyzer [46] at the end of this chapter.

Given user-provided precondition and postcondition constraints, TestEra, our tool
for testing Java programs, builds Alloy specifications, which include both the con-
straints for test generation and correctness checking, and also models of the classes
that are used in testing. This enables using the Alloy Analyzer for solving the con-
straints. We describe our notation for expressing preconditions and postconditions in
Chapter 4 and how TestEra builds Alloy specifications and translates data between
Alloy and Java domains in Chapter 5.

3.1 Structures are Pervasive

Think of testing a compiler. It requires generating input programs, which are struc-
tures that are constrained by the semantic and syntactic constraints of the underlying
programming language. Or consider a file system, whose structural integrity is con-
strained by various properties, such as that the root directory has no parent and that
no directory is an ancestor of itself.

Structural complexity may arise from performance concerns. For example, bal-
anced binary trees [24] provide efficient insertion and retrieval of (ordered) data.
Red-black trees are a common form of balanced binary search trees and have defin-
ing structural constraints, such as that red nodes have black children and that the
number of black nodes along any path from root to leaf is the same.

Hierarchy also gives rise to structures. Intentional naming [3] allows services to be
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accessed using a description of their properties, without a priori requiring knowledge
of their locations. Fault trees [31] use a hierarchical arrangement to represent the
overall failure of a system as a combination (using boolean gates) of failures of basic
components of the system.

In Java programs, structures consist of objects that are dynamically allocated on
the heap. Testing Java programs, therefore, has to take into account the heap. We
describe next our basic model of the heap.

3.2 Modeling the Heap

To model the heap of a Java program in Alloy, we take a relational view: we view the
heap of a Java1 program as a labeled graph whose nodes represent objects and whose
edges represent fields. The presence of an edge labeled f from node o to v says that
the f field of the object o points to the object v or has the primitive value v. Mathe-
matically, we treat this graph as a set (the set of nodes) and a collection of relations,
one for each field. We partition the set of nodes according to the declared classes2 and
partition the set of edges according to the declared fields. We model primitive values
also as nodes but define appropriate Alloy functions to support common operations
on them.

A particular program state is represented by an assignment of values to these sets
and relations. Since we model the heap at the concrete level, there is a straightforward
isomorphism between program states and assignments of values to the underlying
sets and relations. This isomorphism allows natural translations between data in the
abstract domain and the concrete domain, which are required for test generation and
correctness checking.

A key advantage of our model of the heap is that it is in accordance with the intu-
ition programmers typically have. Furthermore, our notation for writing constraints
allows path expressions, which represent heap traversals in an intuitive fashion. Also,
the relational view enables us to use the automatic analysis support of the Alloy
Analyzer.

3.2.1 Examples

Singly-linked list

Consider, as an example, the following class declaration of a singly-linked list of
integers:

class List {
Entry header; // first node

1For languages, such as C and C++, that allow pointer arithmetic and arbitrary conversions
between integer values and memory addresses, we would need a different view. For type-safe subsets
of such languages, we can still use the relational view.

2In this work, we do not address subclassing; it is discussed elsewhere [53].
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Figure 3-1: Singly-linked list with three elements shown as a graph. Each node
(shown as a box) is labeled with either an object identity or a primitive value that
the node represents. The edges are labeled according to the fields they represent.

static class Entry {
Entry next;
int element;

}
}

The list consists of Entry objects that represent the nodes of the list. The header
fields represents the (possibly null) first3 node in a list. The basic model of heap for
this example consists of three sets, each corresponding to a class or a primitive type4

declared above:

List
Entry
Int

and three relations, each corresponding to a field declared above:

header: List -> Entry
next: Entry -> Entry
element: Entry -> Int

Let’s assume the class invariant of List requires lists to be acyclic. The following
Alloy formula expresses this:

all e: this.header.*next | e !in e.^next

The path expression this.header.*next uses the reflexive transitive closure operator
(‘*’) to denote the set of all nodes reachable from the header node of the list referenced
by this. The operators ‘ˆ’ and ‘!’ denote respectively transitive closure and logical
negation. The first formula uses universal quantification (all) to state that this is

3Some common implementations of linked lists (e.g., as in Java Collection Framework) treat the
header node as a sentinel node. We take a simpler view here.

4We model primitive integers using the set Int, which is provided in the Alloy library.
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an acyclic list: it is not possible to start traversal at any node in the list and arrive
at the same node, i.e., there are no directed cycles.

Figure 3-1 illustrates a list that represents the following valuation of the sets and
relations that we use in our model:

List = { L0 }
Entry = { E0, E1, E2 }
Int = { 0, 1, 2 }

header = { (L0, E0) }
element = { (E0, 0), (E1, 2), (E2, 1) }
next = { (E0, E1), (E1, E2) }

Binary search tree

As another example, consider the class declaration of BinarySearchTree (introduced
in Section 1.2):

class BinarySearchTree {
Node root; // root node
int size; // number of nodes in the tree

static class Node {
Node left;
Node right;
int info;

}
}

The basic model of heap for this example consists of three sets, each corresponding
to a class or a primitive type declared above:

BinarySearchTree
Node
Int

and five relations, each corresponding to a field declared above:

root: BinarySearchTree -> Node
size: BinarySearchTree -> Int
info: Node -> Int
left: Node -> Node
right: Node -> Node

Recall the class invariant for binary search trees: acyclicity, orderedness of ele-
ments, and representation of the number of nodes by the size field. This can be
represented in Alloy as:

// binary tree
all n: this.root.*(left + right) {
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n !in n.^(left + right) // no directed cycle
sole n.~(left + right) // at most one parent
no n.left & n.right // distinct children

}

// elements in correct order
all n: this.root.*(left+right) {

all nl: n.left.*(left + right) | nl.info < n.info
all nr: n.right.*(left + right) | nr.info > n.info

}

// size ok
this.size = #this.root.*(left + right)

The invariant contains three formulas, implicitly conjoined. The path expression
this.root.*(left + right) denotes the set of all nodes reachable from root of the
tree referenced by this. The operator ‘#’ denotes set cardinality. The operator ‘˜’
denotes backward traversal. In Alloy, the formula no e is true when e denotes a
relation containing no tuples. Similarly, some e, sole e, and one e are true when e

has some, at most one, and exactly one tuple respectively.

The first formula above uses universal quantification (all) to state that this is a
binary tree, in particular: (1) it is not possible to start traversal at any node in the
tree and arrive at the same node, i.e., there are no directed cycles; (2) each node has
at most one incoming edge labeled left or right; and (3) for each node, the left and
right child cannot be the same node. The second formula states that the elements
in the tree appear in the correct order, in particular, the element in a node is bigger
(smaller) than all elements in the subtree rooted at its left (right) child. The third
formula states that the value of the size field equals the number of nodes reachable
from root.

3.2.2 Handling Null

We model the value null as the empty set. Fields of a reference type thereby become
partial functions. In particular, to say the value of field f in object o is non-null, we
use the formula some o.f; similarly for null, we write no o.f.

This approach is not sufficient in general. For example, it does not allow correctly
expressing in a direct fashion the formula null in S, for some set S. In many cases,
however, specifications for Java programs that talk about membership of null in a
set can still be formulated, often at the expense of representation exposure and more
complex formulas. As an example, suppose that we have a red-black tree [24] imple-
mented as a Java TreeMap. Consider expressing the formula that null belongs to the
set of all values in a TreeMap t. We cannot write the formula as null in values(t),
where values is a function that returns the set of values in the given map. However we
can instead write the formula as some n in t.root.*(left + right) | no n.value,
which says that there exists a node in the tree that has the value null.
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Figure 3-2: Heap snapshot that shows two trees T0 and T1 that share a node.
The values of field info are shown inside the nodes. All other fields are labeled
appropriately.

A more general approach is to model null explicitly [53]. We can model null as
the only atom that is common to all distinct classes; class hierarchies can be modeled
using subsignatures.

3.2.3 Aliasing

Our model accounts naturally for aliasing (or sharing) of objects on the heap. Con-
sider, for example, the particular heap snapshot illustrated in Figure 3-2, which show
two trees that share a node. According to our model they are represented by the
following valuation of sets and relations:

BinarySearchTree = { T0, T1 }
Node = { N0, N1, N2 }
Int = { 1, 2, 3 }

root = { (T0, N0), (T1, N2) }
size = { (T0, 3), (T1, 1) }
info = { (N0, 2), (N1, 1), (N2, 3) }
left = { (N0, N1) }
right = { (N0, N2) }

Cyclic Structure Example: Doubly-linked list

Structures that have cycles can, of course, be captured using our model. As an
illustration consider doubly-linked circular lists with sentinel header nodes, as imple-
mented by java.util.LinkedList. In a sentinel node, the element field always has
the value null, the next field points to the first element of the list and the previous
points to the last element of the list; for an empty list, the next and previous fields
of the header node point to the sentinel node itself. The following Java code gives
the class declaration:

class LinkedList {
Entry header;
int size;
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Figure 3-3: Doubly-linked circular list with size 2. List L0 has sentinel header node
E0 whose element is the value null.

static class Entry {
Object element;
Entry next;
Entry previous;

}
}

The class invariant can be expressed as follows.

// size ok
this.size = #(this.header.*next - this.header)

// header is sentinel
some this.header && no this.header.element

// next is transpose of previous
all e1, e2: this.header.*next |
e1 in e2.next <=> e2 in e1.previous

// list is circular
all e: this.header.*next | some e.next && some e.previous

The invariant contains four formulas, implicitly conjoined. The set operator ‘-’ de-
notes set difference. Alloy provides the standard logical operators: && (conjunction),
|| (disjunction), => (implication), <=> (bi-implication), and ! (negation).

The constraint above requires that the size of the list is the number of nodes
other than the sentinel node; header is the sentinel node of the list and contains no
element; values of next and previous are consistent; and list is circular or simply
every node has non-null values of the fields next and previous. Figure 3-3 illustrates
a list of size 2.

3.2.4 Handling Arrays

We model single-dimensional arrays as follows. The array-type T[], where T is not
an array-type is modeled by the set T’, where each atom of T’ represents an array
object, and the relations

41



length: T’ -> Int
contents: T’ -> Int -> T

A tuple (a, l) in relation length represents that array a has length l. A tuple (a, i, t)
in relation contents represents that array a has element t at index i. The relations
are constrained to represent valid arrays: (1) each array has a length, (2) an array
contains one element (which may be the value null) at any (valid) index, and (3)
arrays can only indexed using (positive) integers that are less than the length.

If a field f in class C is of a single-dimensional array-type T[], we model f as the
relation f: C -> T’. We describe the model for multi-dimensional arrays once we
introduce more details of Alloy (in Section 3.3.3).

A consequence of our model of null and arrays is that any expression that
dereferences null or accesses an array index that is out of array bounds evalu-
ates to the empty set and not a Java exception such as NullPointerException or
ArrayIndexOutOfBoundsException. We do not present a treatment of exceptions in
this work.

To avoid building erroneous specifications, TestEra users need to take the model
of null and arrays into account. For example, the formula v.f.g = w.h[i] (for
quantified variables v and w, fields f, g and h, and integer i) evaluates to true if
v.f is null and index i is out of bounds of array w.h, whereas according to Java
semantics the left-hand-side and the right-hand-side of the above equality do not
represent the same value. In other words, TestEra users may need to explicitly
check for relevant exceptions in building their specifications (as the example that
follows illustrates). However, in common cases that use path expressions to build sets
of reachable objects, these checks are not necessary.

Array-based Structure Example: Heap-array

We next illustrate specifying an array-based structure, using the heap (or priority
queue) data structure [24].

The (binary) heap data structure can be viewed as a complete binary tree—the
tree is completely filled on all levels except possibly the lowest, which is filled from
the left up to some point. Heaps also satisfy the heap property—for every node n
other than the root, the value of n’s parent is greater than or equal to the value of
n. The following Java code declares an array-based heap:

class HeapArray {
int size; // number of elements in the heap
int[] array; // heap elements

}

The class invariant can be defined as follows5.

// array is not null
some this.array

5As pointed out before, the actual constraints on integers we write for test generation use Alloy
functions for arithmetic operations. For ease of exposition, we use common arithmetic notation.
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// size is within array bounds
this.size >= 0
this.size <= this.array.length

// the array elements that are in the heap are not null
// and follow the right ordering
all i: Int |
i >= 0 && i < this.size =>
some this.array[i] && (i > 0 => this.array[i] <= this.array[(i-1)/2])

// the array elements that are not in the heap are null
all i: Int | i >= this.size && i < this.array.length => no this.array[i]

We next explain relevant details of the Alloy specification language and point out
how, in an Alloy specification, constraints that define structures fit together with
declarations of sets and relations that model the heap. We also describe relevant
details of the Alloy Analyzer.

3.3 Alloy

Alloy is a declarative specification language based on relations. An Alloy specification
is a sequence of paragraphs that can be of two kinds: signatures, used for construction
of new types and declaration of sets and relations, and a variety of formula paragraphs,
used to record constraints. Each specification starts with a module declaration that
names the specification; existing specifications may be imported into the current one
using open declarations. Figure 3-4 presents a specification that brings together our
model of binary search tree. We use this example to explain the basics of Alloy.

3.3.1 Signature Paragraphs

A signature paragraph introduces a basic (or uninterpreted) type, and a collection of
relations (called fields) and constraints on field values. For example,

sig BinarySearchTree {
root: option Node,
size: Int

}

sig Node {
left, right: option Node,
info: Int

}

introduces BinarySearchTree and Node as sets of atoms. BinarySearchTree has two
fields: root and size. Node has three fields: left, right and info. The field root
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module bst

sig BinarySearchTree {
root: option Node,
size: Int

}

sig Node {
left: option Node,
right: option Node,
info: Int

}

fun BinarySearchTree::ClassInvariant() { with this {
// binary tree
all n: root.*(left + right) {
n !in n.^(left + right) // no directed cycle
sole n.~(left + right) // at most one parent
no n.left & n.right // distinct children

}

// elements in correct order
all n: root.*(left+right) {
all nl: n.left.*(left + right) | nl.info < n.info
all nr: n.right.*(left + right) | nr.info > n.info

}

// size ok
size = #root.*(left + right)

} }

fun Main() {
all b: BinarySearchTree | b..ClassInvariant()

}

run Main for 3 but 1 BinarySearchTree, 4 Int

Figure 3-4: Alloy specification for a binary search tree.

introduces a relation of type BinarySearchTree -> Node. The keyword option indi-
cates that for each BinarySearchTree atom b there is at most one Node atom n such
that the tuple (b, n) belongs to the relation root; the absence of a keyword indicates
exactly one.

The field size introduces a relation that has the type BinarySearchTree -> Int.
Similarly, the fields left and right each introduce a relation of type Node -> Node,
and the field info introduces a relation of type Node -> Int. Int is a library signature
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that models integers.
Fields of signatures may represent relations of arbitrary arity. For ternary re-

lations, field declarations may include the cardinality markings ‘?’ and ‘!’. The
declaration

sig S {
f: A ->? B

}

indicates that for each S atom s and each A atom a, there is at most one B atom
b such that the tuple (s, a, b) belongs to the relation f; the cardinality markings ‘!’
likewise indicates exactly one.

A signature declaration may introduce a subset using the keyword extends:

sig T extends S {} // T is a subset of S

A singleton set may be declared using the keyword static:

static sig U {} // U is a (basic) set with cardinality one

Scalars are modeled as singleton sets.

3.3.2 Formula Paragraphs

We next describe Alloy expressions, operators and quantifiers that turn expressions
into formulas, and the different kinds of formula paragraphs.

Relational Expressions

The value of every expression in Alloy is a relation—that is a set of tuples of atoms.
A relation may have any arity greater than zero and is typed. Sets are represented
by unary relations and scalars as singleton sets. Scalars are viewed as singleton sets.
Therefore, no distinction is made between a, {a}, {(a)}, where a is an atom, and all
are represented as {(a)}.

Relations can be combined with a variety of operators to form expressions. The
standard set operators—union ‘+’, intersection ‘&’, and difference ‘-’—combine two
relations of the same type, viewed as sets of tuples.

The dot operator ‘.’ is relational composition. For relations p and q where p has
type T1 -> ... -> Tm and q has type U1 -> ... -> Un, if:

1. Tm = U1 and

2. m + n > 2

then p.q is a relation of type T1 -> ... -> Tm-1 -> U2 -> ... -> Un such that
for each tuple (t1, ..., tm) in p and each tuple (u1, ..., un) in q where tm = u1, the tuple
(t1, ..., tm−1, u2, ..., un) is in p.q. When p is a unary relation (i.e., a set) and q is a
binary relation, p.q represents the standard image of p under q.
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The unary operators ‘~’ (transpose), ‘^’ (transitive closure), ‘*’ (reflexive transitive
closure) and ‘^’ (transitive closure) have their standard interpretation and can only
be applied to binary relations.

For example, the path expression root.*(left + right) uses the reflexive tran-
sitive closure operator (‘*’) to denote the set of all nodes reachable from the root

node.

The unary operator ‘#’ denotes set cardinality.

Formulas and Declarations

Expression quantifiers turn an expression into a formula. The formula no e is true
when e denotes a relation containing no tuples. Similarly, some e, sole e, and one e

are true when e has some, at most one, and exactly one tuple respectively. Formulas
can also be made with relational comparison operators: subset (written ‘:’ or in),
equality (‘=’) and their negations (!:, !in, !=). So e1: e2 is true when every tuple
in (the relation denoted by the expression) e1 is also a tuple of e2. Alloy provides
the standard logical operators: && (conjunction), || (disjunction), => (implication),
<=> (bi-implication), and ! (negation); a sequence of formulas within curly braces is
implicitly conjoined.

A declaration is a formula v:e consisting of a variable v and an arbitrary expression
e. Quantified formulas consist of a quantifier, a comma separated list of declarations,
and a formula. In addition to the universal and existential quantifiers all and some,
there is sole (at most one) and one (exactly one).

Functions, Facts and Assertions

A function (fun) is a parameterized formula that can be “invoked” elsewhere. For
example, the function f declared as:

fun f(p1: T1, ..., pn: Tn) { ... }

has n parameters: p1, ..., pn of types T1, ..., Tn respectively. A function (with
at least one parameter) may equivalently be declared as:

fun T1::f(p2: T2, ..., pn: Tn) { ... }

and its first parameter can then be referred to using the keyword this within the
function body. The function f may be invoked as f(a1, ..., an) or alternatively
using the receiver syntax as a1..f(a2, ..., an). In the function body, the return
value is referred to using the keyword result.

A fact is a formula that takes no arguments and need not be invoked explicitly; it
is always true. An assertion (assert) is a formula whose validity is checked, assuming
the facts in the model.
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3.3.3 Example: Modeling Multi-dimensional Arrays

We next re-visit our model of single-dimensional arrays (Section 3.2.4) and describe
how we model multi-dimensional arrays. The single-dimensional array-type T[] is
modeled6 by the signature:

sig T’ {
length: Int,
contents: Int ->? T

}
{
all i: Int | i >= length => no i.contents

}

Each atom of T’ models an array object, which has a length and contains elements.
The elements of an array object are modeled by the relation contents. For object o

of class C that declares a field f of type T[], the ith element of array o.f, written
o.f[i] in Java, is modeled by i.(o.f.contents).

Multi-dimensional arrays are modeled in a similar way7. We model the k-dimensional
array-type T[]· · ·[], where T is not an array-type, by the (new) signature T’k in a
fashion similar to our model of T[] above except that8:

• the last column of the contents relation now is T’(k−1), which models the k−1-
dimensional array-type T[]· · ·[]; and

• recursively a signature corresponding to each of the following array-types is also
declared: k − 1-dimensional T[]· · ·[], . . . ,1-dimensional T[].

For example, the following Alloy specification models a two-dimensional array
type T[][]:

sig T’’ {
length: Int,
contents: Int ->? T’

}
{
all i: Int | i >= length => no i.contents

}

where T’ is as defined above.

We next describe the Alloy Analyzer that provides the basic technology we use
for solving structural constraints.

6We could alternatively model arrays using Alloy’s library support for modeling sequences
7Our current prototype does not handle multi-dimensional arrays.
8The notation T’k stands for T followed by k primes ‘’’.
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3.3.4 Alloy Analyzer

The Alloy Analyzer [46] is an automatic tool for analyzing formulas in Alloy specifica-
tions. Since first order logic is undecidable, the analyzer limits its analysis to a finite
universe of discourse. Given a formula and a scope—a set of numeric bounds that
define the number of atoms for each basic type—the analyzer determines whether
there exists a model of the formula (that is, an assignment of values to the sets and
relations that makes the formula true) that uses no more atoms than the scope per-
mits, and if so, returns it. The analysis [46] is based on a translation to a boolean
satisfaction problem, and gains its power by exploiting state-of-the-art SAT solvers.
The analyzer provides two kinds of analysis: simulation in which the consistency of
a fact or function is demonstrated by generating a model of the constraints that the
function represents, and checking, in which a consequence of the specification is tested
by attempting to generate a model that represents a counterexample.

The models of formulas are termed instances. Consider our specification for
BinarySearchTree (Figure 3-4). The function Main invokes the function ClassInvariant
to constrain all trees to satisfy the binary search tree properties. The command:

run Main for 3 but 1 BinarySearchTree, 4 Int

instructs the analyzer to generate valuations of sets and relations that satisfy the
constraints enforced by the function Main and are within a scope of 3 for each basic
set except BinarySearchTree (whose bound is set to 1) and Int (whose scope is set
to 4). Setting the scope of Int to k allows instances to have integer values from the
set {0, 1, . . . , k − 1}9.

The analyzer can enumerate all possible instances of an Alloy model. Since Alloy
formulas are solved (via a translation) by off-the-shelf SAT solvers, the order of enu-
meration is essentially arbitrary and follows the particular algorithm implemented by
the solver used. Figure 3-5 presents two of the instances the analyzer enumerates
on simulating Main. Figure 3-6 (a) and (b) illustrate respectively Instance 1 and
Instance 2, which (as noted before) are isomorphic.

9Instances have non-negative integers.
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Instance 1:
-----------
Int = { 0, 1, 2, 3 }

BinarySearchTree = { T0 }
Node = { N0, N1, N2 }

// fields of BinarySearchTree
root = { (T0, N0) }
size = { (T0, 3) }

// fields of Node
left = { (N0, N1) }
right = { (N0, N2) }
info = { (N0, 2), (N1, 1), (N2, 3) }

Instance 2:
-----------
Int = { 0, 1, 2, 3 }

BinarySearchTree = { T0 }
Node = { N0, N1, N2 }

// fields of BinarySearchTree
root = { (T0, N1) }
size = { (T0, 3) }

// fields of Node
left = { (N1, N0) }
right = { (N1, N2) }
info = { (N1, 2), (N0, 1), (N2, 3) }

Figure 3-5: Two Alloy instances that represent isomorphic trees.
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Figure 3-6: Isomorphic binary search trees.
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Chapter 4

Specification Language

We define a veneer on the Alloy specification language [43] to write specifications
of Java programs. The veneer introduces notation that translates into Alloy. This
chapter describes our veneer, in particular:

• how we model mutation of state in Alloy (Section 4.1);

• how we model parameters and return value of a Java method in Alloy (Sec-
tion 4.2); and

• our notation for writing specifications (Section 4.3).

Our model of mutable state lets us, through automatic translation, use the Alloy
Analyzer for checking correctness of Java programs. It is worth pointing out that
TestEra users need not be aware of the details of the underlying model and various
other models (that have a relational basis) [45, 53, 66, 89] may be used instead. The
users need to be familiar only with the notation, say for referring to the desired state.
The translation automatically desugars TestEra specifications into the underlying
model. Users, however, do need to be aware of the underlying semantics of the
expressions in our notation. We point out the key aspects in which the semantics
differ from Java semantics here.

At OOPSLA 2002 [53], we presented an annotation language similar in spirit to
the veneer we present here.

4.1 Mutation

We model mutation of state simply by associating a distinct graph with each state.
Mathematically, we treat non-array fields as ternary relations, each of which maps an
object to an object in a given state.

We introduce State as a set of atoms:

sig State {}

Now, our model of a field f of type T declared in class C is the relation
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f: C -> T -> State

where a tuple (c, t, s) in f says that object c has value t in state s. This relation is
modeled by the following signature declaration:

sig C {
f: T -> State

}

Now, to access the value of field f of an object o of class C in state s, we write
the expression o.f.s. It is worth noting that in this expression a relation on the
right-hand-side of the dot operator has arity one.

Likewise, we update our model of arrays to include state. An array-type T[] is
now modeled as:

sig T’’ {
length: Int !-> State,
contents: Int -> T -> State

}
{
all t: State | all i: Int {
sole (i.contents).t // originally encoded using a cardinality marking
i >= length.t => no (i.contents).t

}
}

For the binary search tree example, we model the Java class and field declarations
as the following Alloy signatures and fields:

sig BinarySearchTree {
root: Node ?-> State,
size: Int !-> State

}

sig Node {
left: Node ?-> State,
right: Node ?-> State,
info: Int !-> State

}

The field root introduces a relation of type BinarySearchTree -> Node -> State (Fig-
ure 4-1 illustrates a valuation of this relation). A tuple (b, n, s) denotes that the value
of field root of tree b in state s is n. Recall that the cardinality marking ‘?’ indicates
that for each BinarySearchTree atom b and each State atom s, there is at most one
Node atom n such that the tuple (b, n, s) belongs to the relation root; similarly, the
marking ‘!’ indicates exactly one.

The model of state we have described is general in terms of the number of states.
A method specification relates two states: the pre-state and the post-state. We
model these states as follows. State consists of two distinct atoms Pre and Post, each
modeled as a singleton subset of State:
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static sig Pre extends State {}
static sig Post extends State {}

fact { Pre != Post } // pre-state and post-state are distinct
fact { Pre + Post = State } // there are only two states

An artifact of our implementation is that we require the atoms Pre and Post to be
distinct. This allows us to differentiate between values of an object’s field in the
pre-state and the post-state.

4.1.1 Other Models of Mutation

There are various ways of modeling mutation in a relational logic [45, 53, 66, 89].
Recall that we have introduced State as the last column in a relation. Instead, we
could have introduced it as some other column, e.g., the first one [53]. That would
require introducing, in the State signature, a field corresponding to each of the fields
declared in the relevant classes, which would result in one signature that has all
the fields. Even though this representation is not visible to the TestEra users, this
approach for modeling mutation in general is not modular.

When a bound on the number of states is known a priori, an alternative model
of mutation is to duplicate fields [66, 89]. As a particular illustration consider the
case with two states. We can model a field f of type T declared in class C using the
two relations f1, f2: C -> T, where f1 models field values in the pre-state and f2

models the field values in the post-state. Notice that this approach avoids introducing
ternary relations for (all) reference fields and therefore in cases where not all fields are
updated in each state, it can provide more efficient checking by the Alloy Analyzer
by generating smaller formulas with fewer boolean variables.

Our model of mutation that introduces a new state column in the relations is
more elegant (since for example, it allows building compact specifications and treats
state as a first-class entity) and presents a modular way to model mutation in general:
each of the signature that models a class declares fields that model the corresponding
fields of the class, and signature declarations from existing modules can simply be
included in new modules. As stated before, from the perspective of the TestEra user,
the details of the actual model of mutation used are irrelevant.

Fields do not have to be modeled as relations. Instead, we can model the heap
using explicit references [45]. This approach also allows capturing object interactions,
sharing and aliasing.

Even though these approaches offer similar expressivity, for testing or even static
analysis of code using the Alloy Analyzer, it is worth investigating how the approaches
compare with each other in performance.
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4.2 Method Parameters and Return Value

Recall that the signature State consists of two distinct atoms Pre and Post, which
are modeled as singleton sets. We model method parameters1 and return values by
introducing appropriate relations in Pre and Post as follows2. Consider a method m

(declared in class C) with parameters p1, ..., pn of types T1, ..., Tn respectively.
Let the type of the return value of m be R. We model each parameter pi with relation
pi: Pre -> Ti and (for instance methods) the implicit parameter this with relation
This: Pre -> C. We model the return value with relation Result: Post -> R.

As an illustration, consider the remove method for BinarySearchTree. We declare
the Pre and Post states with fields that correspond to method parameters and return
value:

static sig Pre extends State {
This: BinarySearchTree, // implicit parameter "this"
i: Int // parameter "i"

}

static sig Post extends State {
Result: Boolean // return value

}

It is worth noting that the declaration of fields This and i in Pre is faithful to
Java’s call-by-value semantics. Since the references (or primitive values) that method
arguments hold in the pre-state remain the same in the post-state, we do not need the
model to allow fields that model the parameters to have different values in different
states—the pre-state values are used throughout.

To illustrate an instance of an Alloy specification that models the pre-state and
post-state of a method invocation, consider the valuation of the signatures State,
Pre, Post, BinarySearchTree and Node and their fields (as declared above) given in
Figure 4-1. Figure 4-2 illustrates this instance graphically, where we project relevant
portions of the instance on (a) pre-state and (b) on post-state.

The user need not be familiar with how the parameters and return value of a
method are modeled. We have packaged parameters together in the signature Pre

as this allows simpler definition of isomorphisms among method inputs (Chapter 6).
Next, we present notation that is automatically translated to the underlying model.

4.3 Notation for Writing Specifications

To allow users to talk about the pre-state in postconditions, we introduce the following
notation: a field name followed immediately by a back-tick character ‘`’ denotes

1Note capitalized This as a field of Pre.
2Following our treatment of single-dimensional arrays, if a method parameter is of an array-type

T[], we declare its type in Pre as T’’. For a method return value that has an array-type, the
treatment in Post is identical.
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State = { S0, S1 }
Pre = { S0 }
Post = { S1 }

Boolean = { true, false }
Int = { 0, 1, 2, 3 }

BinarySearchTree = { T0 }
Node = { N0, N1, N2 }

// fields of Pre
This = { (S0, T0) }
i = { (S0, 2) }

// fields of Post
Result = { (S1, true) }

// fields of BinarySearchTree
root = { (T0, N1, S0),

(T0, N0, S1) }
size = { (T0, 3, S0),

(T0, 2, S1) }

// fields of Node
left = { (N1, N0, S0) }
right = { (N1, N2, S0),

(N0, N2, S1) }
info = { (N1, 2, S0), (N0, 1, S0), (N2, 3, S0),

(N0, 1, S1), (N2, 3, S1) }

Figure 4-1: An Alloy instance that represents the pre-state and post-state of an
invocation of method remove.
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Figure 4-2: An example invocation of method remove. (a) Input tree and integer in
pre-state of invocation. (b) The tree in post-state and the method return value.
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traversal in the pre-state; all other traversals are in the default state, which is pre-
state for preconditions and post-state for postconditions. We require all field names
in an expression to follow the composition operator ‘.’. In particular, we require the
explicit use of this in an expression.

Recall that we use @result to refer to the return value of a method. To allow
easier parsing of expressions in our implementation, we refer to method parameters
by prepending the formal name by ‘@’.

To allow users to conveniently access array elements3, we write o.a[i] for the ith
element of array o.a. To access the element in the pre-state, we write o.a`[`i].

As an illustration, the postcondition of remove:

// element removed correctly

this.root.*(left + right).info = this.root`.*(left` + right`).info` - @i

// result correct

@result = true <=> i in this.root`.*(left` + right`).info`

desugars to:

// element removed correctly

(Pre.This).(root.Post).*((left.Post) + (right.Post)).(info.Post) =

(Pre.This).(root.Pre).*((left.Pre) + (right.Pre)).(info.Pre) - (Pre.i)

// result correct

(Post.Result) = true <=>

(Pre.i) in (Pre.This).(root.Pre).*((left.Pre) + (right.Pre)).(info.Pre)

The class invariant desugars similarly: when the class invariant is used for test
generation, the desugaring is with respect to the pre-state; when the class invariant
is used to check structural invariants once the method returns, the desugaring is with
respect to the post-state.

4.4 Comparison with JML

The Java Modeling Language [59] (JML) is a rich behavioral interface specification
language designed for Java. Expressions in JML specifications are based on Java ex-
pressions. In addition, JML specifications may relate pre- and post-states or specify
constraints on method return values, and support various design-by-contract con-
structs, including inheritance of contracts, and contracts that define exceptional be-
havior. JML also supports a range of quantifiers, including universal and existential
quantifiers. The JML tool-set supports mainly runtime-assertion generation from
JML formulas. JML has also been combined with JUnit—a popular test execution

3In Alloy, square-brackets are used for parameterized signatures and as an alternative way to
write the join operator. We allow square brackets to be used for arrays only; the parameterized
signature expression S[T] can be written as S\T\, and join is expressed using ‘.’.
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and error reporting framework—to allow testing of programs on user-provided in-
puts [16].

Here, we present how some aspects of expressions in our veneer compare with
those of JML expressions.

4.4.1 Evaluation in Pre-state

JML provides the construct \old to refer to the pre-state value of an expression. In
particular, for an expression e, \old(e) evaluates to the value that e would evaluate
to in the pre-state. The expression

this.root`.left`

that refers to the pre-state left child of the pre-state root node of this in our veneer
could be expressed in JML as

\old(this.root.left)
However, the expression

this.root.left`

that refers to the pre-state left child of the post-state root node of this in our veneer
cannot be directly expressed in JML. The expression this.root.\old(left) is ill-
formed since the expression left cannot be evaluated on its own in the pre-state.
Even though the JML language allows the use of temporary variables to state the
desired expression, the tool-set does not support the evaluation of such expressions.

4.4.2 Relations and Navigation

Recall that an Alloy expression always denotes a relation. This is a key difference
between Alloy and JML expressions. The Alloy expression o.f for object o and field
f evaluates to a (possibly empty) set of objects. Following Java semantics, the same
expression in JML evaluates to either the value null or an object reference.

JML provides the class JMLObjectSet, which can be used to build sets of objects.
JML library defines this class using axioms in the spirit of algebraic specifications [38].
JML implements this class in Java; this implementation can be used for runtime
checking.

4.4.3 Reachability

JML provides the construct \reach, akin to the transitive closure operator of Alloy,
to express reachability. In particular, the expression \reach(o) for object o denotes
the smallest JMLObjectSet that contains o and all objects that are accessible through
any field of o and all objects that are accessible through any field of those objects
and so on, recursively. However, the path expression

this.root.*(left + right)
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is not expressible directly using the \reach construct since nodes also have the field
info in addition to left and right. Such a set can, nonetheless, be constructed in
JML by implementing a traversal algorithm that visits all nodes reachable via left

or right fields only and returns a set of those nodes. But the construction would
be more verbose. A veneer on JML could allow easier representation of such path
expressions.

4.4.4 Comparison Summary

JML is conceptually founded on algebraic specifications. Our veneer is based on a
simple first-order logic with relational operators, and is thus more in the tradition of
semantic data modeling (now called “object modeling”).

Our veneer and JML also differ in the evaluation of expressions that relate pre
and post states. In our veneer, expressions are evaluated after both the pre and post
states are available (in an abstract form). In JML, expressions that refer to pre-state
are actually evaluated in the pre-state and their values are stored to be accessed later
in the post-state, in which the expressions referring to post-state are evaluated. Thus
in our veneer, we can state expressions that freely interleave pre and post states,
whereas the JML tool-set requires that evaluation of any expression enclosed in \old
must be possible in the pre-state itself.

Another difference is that JML allows Java expressions and evaluates them accord-
ing to Java semantics. Even though JML does not support general path expressions,
a veneer can be defined to provide the support.

JML is a full-fledged specification language and provides a wide range constructs,
such as ghost and model fields and inheritance of specifications, that our veneer does
not support. The JML tool-set, however, mainly targets runtime assertion generation
and does not provide some of the automatic analysis capabilities, including checking of
specifications themselves and test generation from input constraints, that our veneer
allows. We discuss in Chapter 9, a more recent approach [13] that enables automatic
test generation from JML preconditions.
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Chapter 5

Translations

In TestEra, structures are described in an abstract logic. These descriptions are
used to generate concrete tests as Java objects. To bridge the gap between the
abstract domain and the concrete domain, TestEra provides algorithms that translate
between the domains. These translations provide a way to bring fully automatic
analysis to Java programs that manipulate structures. It is worth noting that the
these translations need not be used only for testing programs. The same algorithms
can be used for implementing various other techniques that ensure software reliability,
say by monitoring conformance or by maintaining crucial invariants at runtime.

In the context of testing, TestEra implements various algorithms in addition to
concretization and abstraction translations of data. To enable using the Alloy An-
alyzer [46] for test generation and correctness checking, TestEra creates Alloy [43]
specifications that consist partly of the user-provided constraints and partly of auto-
matically generated declarations that TestEra builds from given Java classfiles. To
enable test execution, TestEra creates a Java driver that appropriately invokes the
method to test.

The chapter describes the basic architecture of TestEra and its key algorithms.
To test a method, TestEra performs the following three steps:

1. Create Alloy specifications for test generation and correctness checking;

2. Create Java driver for translating data between Alloy instances and Java ob-
jects; and

3. Generate tests, execute method and check correctness.

We also describe our prototype implementation in this chapter.
TestEra was first presented at ASE 2001 [66]. A more detailed account is to appear

at the Journal of Automated Software Engineering [52].

5.1 Architecture

Figure 5-1 shows the main components of TestEra. Boxes represent processes that
generate inputs and check correctness; ellipses represent programs and specifications
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Figure 5-1: Basic TestEra framework. The user provides “TestEra spec”, which
consists of the input constraint, the correctness criteria, the name of the method to
test and its implementation, and the scope. All subsequent steps are automatic.

that are given by the user, and inputs and outputs that are generated and used to
check correctness. A TestEra specification for the method to test provides the method
declaration (i.e., the method return type, name, and parameter types), the name of
the Java classfile (or sourcefile) that contains the method body, the class invariant,
the method precondition, the method postcondition, and a bound on the input size.
In principle, the method postcondition is not required. If the post-condition is not
given, TestEra reports inputs that raise exceptions; these inputs are also reported
when actual post-conditions are given. Java assertions that may be present in the
code are also checked automatically.

Given a TestEra specification, TestEra creates three files. Two of these files are
Alloy specifications: one specification is for generating inputs and the other specifi-
cation is for checking correctness. The third file consists of a Java test driver, i.e.,
code that translates Alloy instances to Java input objects, executes the Java method
to test, and translates Java output objects back to Alloy instances.

TestEra’s automatic analysis proceeds in two phases:

• In the first phase, TestEra uses the Alloy Analyzer to generate all nonisomorphic
instances of the Alloy input specification.

• In the second phase, each of the instances is taken in turn. It is first concretized
into a Java test input for the method. Next, the method is executed on this
input. Finally, the method’s output is abstracted back to an Alloy instance.
TestEra uses the Alloy Analyzer to check if the output Alloy instance and the
original input Alloy instance satisfy the constraints in the input/output (or
correctness) specification. If the check fails, TestEra reports a counterexample.
If the check succeeds, TestEra uses the next Alloy input instance for further
testing.

These phases can be interleaved: for each input that TestEra generates, it can execute
the method to test and check the resulting input/output pair for correctness.
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5.2 Building Alloy Specifications

TestEra parses Java classfiles and builds Alloy specifications by combining signature
declarations with Alloy functions that express method pre and postconditions that
are given by the user. These specifications explicitly introduce state following the
approach we described in Section 4.1.

5.2.1 Input Generation Specification

The algorithm for creating the Alloy specification that represents the method’s pre-
condition and is used for test generation proceeds in two steps. Recall that the
precondition expresses a constraint on the pre-state. Therefore, in the first step the
algorithm introduces the signature declaration for the pre-state. In the second step
the algorithm creates an Alloy function that represents the method precondition.
The precondition that is given in the veneer is appropriately translated to an Alloy
formula that represents the input constraint.

To test a method m in a jar file jar, where m’s input constraint is prem, the first
step proceeds as follows. Signature (and field) declarations are created for each of

• The special State signature (see Section 4.1);

• Pre-state, where there is a field corresponding to each parameter of m;

• Every single-dimensional array type that is a field type or a parameter type or
the result type of m;

• Every class C in jar (which does not have a library spec). For each class
the fields of the corresponding signature are declared as follows. For a field f
declared in C;

– if f is of a non-array reference type T , declare the field as f: T ?-> State;

– if f is of a single-dimensional array type T [], declare the field as f: T’’ ?-> State;

– if f is of primitive type T , declare the field as f: T !-> State.

In the second step the function declaration for InputConstraint is created such that:

• The parameter list of the function is empty;

• The body of the function is prem, where we replace every occurrence of

– field f by (f.Pre);

– parameter @p of m by (Pre.p);

– array access o.f[i] by i.(o.(f.Pre).(contents.Pre)).
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module testera/mutation/State

sig State {}

Figure 5-2: Signature declaration for State.

Since the precondition expresses a constraint on the pre-state, the algorithm system-
atically introduces dereferencing in the pre-state to translate the veneer into Alloy.

Our TestEra implementation generates a separate Alloy module for each signature
(that corresponds to a class) and uses Alloy’s facility of re-using existing specifications
to include modules in the current specification using the open command. State is a
pre-defined signature in the module testera/mutation/State (Figure 5-2).

To illustrate generation of Alloy specifications, recall the binary search tree exam-
ple of Section 1.2 and the method remove. The method had the following declaration:

boolean remove(int i) { ... }

The class invariant of BinarySearchTree was given as:

// binary tree
all n: this.root.*(left + right) {
n !in n.^(left + right) // no directed cycle
sole n.~(left + right) // at most one parent
no n.left & n.right // distinct children

}

// elements in correct order
all n: this.root.*(left+right) {
all nl: n.left.*(left + right) | nl.info < n.info
all nr: n.right.*(left + right) | nr.info > n.info

}

// size ok
this.size = #root.*(left + right)

This de-sugars to:

// binary tree
all n: this.(root.Pre).*((left.Pre) + (right.Pre)) {
n !in n.^((left.Pre) + (right.Pre)) // no directed cycle
sole n.~((left.Pre) + (right.Pre)) // at most one parent
no n.(left.Pre) & n.(right.Pre) // distinct children

}

// elements in correct order
all n: this.(root.Pre).*((left.Pre)+(right.Pre)) {
all nl: n.(left.Pre).*((left.Pre) + (right.Pre)) | nl.info < n.info
all nr: n.(right.Pre).*((left.Pre) + (right.Pre)) | nr.info > n.info
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}

// size ok
this.(size.Pre) = #this.(root.Pre).*((left.Pre) + (right.Pre))

To generate inputs for the method remove, TestEra builds the specification that
consist of the modules shown in Figures 5-3, 5-4, and 5-5.

5.2.2 Correctness Checking Specification

The algorithm for creating the Alloy specification that represents the method’s post-
condition and is used in checking the method’s correctness proceeds in two steps.
Recall that the postcondition relates the pre-state and the post-state. Therefore, in
the first step the algorithm introduces the signature declaration for the post-state. In
the second step the algorithm creates an Alloy function that represents the method
postcondition. The postcondition that is given in the veneer is appropriately trans-
lated to an Alloy formula.

To test a method m in a jar file jar, where m’s postcondition is postm, the first
step proceeds as follows. Signature (and field) declarations are included for

• Each signature that was declared in the input generation specification

• Post-state, where there’s a field corresponding to the return type of m if m is
not void

In the second step, the function declaration for MethodOk is created as follows.

• The function has no parameters

• postm is the body of the function, where we replace every occurrence of

– field f` (i.e., field that has a backtick) by (f.Pre)

– field f (i.e., field that does not have a backtick) by (f.Post)

– array element o.f`[`i] by i.(o.(f.Pre).(contents.Pre))

– array element o.f[i] by i.(o.(f.Post).(contents.Post))

• method parameter @p by (Pre.p)

• method return value @result by (Post.result)

Since a postcondition may express a constraint that relates pre-state and post-state,
the algorithm introduces dereferencing in the appropriate state following the conven-
tion that backticks identify pre-state components.

For checking correctness of remove, TestEra builds the Alloy specification given
in Figure 5-6.

To generate input instances TestEra simulates InputConstraint using the Al-
loy Analyzer for the input scope1. To check correctness, TestEra uses the analyzer

1The scope of State for input generation is fixed at 1.
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module testera/examples/BinarySearchTree

open testera/mutation/State
open testera/examples/Node

sig BinarySearchTree {
root: Node ?-> State,
size: Int !-> State

}

Figure 5-3: Signature declaration for BinarySearchTree.

module testera/examples/Node

open testera/mutation/State

sig Node {
left: Node ?-> State,
right: Node ?-> State,
info: Int !-> State

}

Figure 5-4: Signature declaration for Node.

module testera/examples/BinarySearchTree/remove_input

open testera/mutation/State
open testera/examples/BinarySearchTree
open testera/examples/Node

static sig Pre extends State {
This: BinarySearchTree,
i: Int

}

fun BinarySearchTree::ClassInvariant() { ... }

fun InputConstraint() { (Pre.This)..ClassInvariant() }

Figure 5-5: Alloy specification for generating inputs for remove.
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module testera/examples/BinarySearchTree/remove_output

open testera/mutation/State
open testera/examples/BinarySearchTree
open testera/examples/Node

static sig Pre extends State {
This: BinarySearchTree,
i: Int

}
static sig Post extends State {

Result: Boolean
}

fact { Pre != Post and Pre + Post = State }

fun BinarySearchTree::ClassInvariant() { ... }

fun MethodOk() {
// class invariant preserved
(Pre.This)..ClassInvariant()

// element removed correctly
(Pre.This).(root.Post).*((left.Post) + (right.Post)).(info.Post) =
(Pre.This).(root.Pre).*((left.Pre) + (right.Pre)).(info.Pre) - (Pre.i)

// result correct
(Post.Result) = true <=>
(Pre.i) in (root.Pre).*((left.Pre) + (right.Pre)).(info.Pre)

}

Figure 5-6: Alloy specification for checking correctness of remove.

to check whether the given input/output pair satisfies the constraints expressed in
methodOk for the output scope2.

5.3 Translations

We next discuss the test driver that TestEra generates to test the specified method. A
test driver consists of Java code that performs abstraction and concretization transla-
tions and invokes the method to test. The translations are generated fully automati-
cally if the method specification is given at the representation level of method inputs.
If the specification introduces a level of data abstraction, the translations have to be

2The scope of State for correctness checking is fixed at 2.
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manually provided.

Concretization, abbreviated a2j, translates Alloy instances to Java objects (or
data structures). Abstraction, abbreviated j2a, translates Java data structures to
Alloy instances.

5.3.1 Concretization

Concretization a2j operates in two stages. In the first stage, a2j creates, for each
atom in the Alloy instance, a corresponding object of the Java classes, and stores this
correspondence in a map. In the second stage, a2j establishes the relationships among
the Java objects created in the first stage and builds the actual data structures.

Figure 5-7 describes a generic concretization algorithm a2j. The algorithm takes
as input an Alloy instance and returns an array of Java objects that represent a test
input and maps that are used in checking correctness. The algorithm maintains two
maps to store correspondence between Alloy atoms and Java objects: mapAJ maps
atoms to objects and mapJA maps objects to atoms. In the first step, a2j creates Java
objects of appropriate classes for each atom in the instance3. In this step objects
of single-dimensional array-types are also appropriately initialized by setting their
lengths and contents. In the second step, a2j sets values of objects according to
tuples in the input relations; notice that all tuples represent values in the pre-state.
Finally, a2j builds an array of objects that represents a test input: for an instance
method, input[0] represents the object on which to invoke the method, input[1]

represents the first declared parameter, and so on.

5.3.2 Abstraction

Abstraction j2a operates by traversing, in the post-state, the structures that were
input to the method or returned by it, and creating relations of the Alloy instance
that represents the structures in the post-state.

Figure 5-8 describes a generic abstraction algorithm j2a. The algorithm takes
as input the method return value (result), imap constructed during concretization
and the instance that was concretized, and adds tuples to this instance to build an
instance that represents the corresponding input/output pair. The algorithm adds
the output component to io by traversing the structures referenced by result and
inputs in imap (in the post-state). This traversal is a simple work-list algorithm that
tracks the set of visited objects. For each object that is visited for the first time,
j2a adds tuples to io according to field values of that object. If an object that did
not exist in the pre-state is visited, a new atom is created and imap updated; this
accounts for cases when a method allocates new objects. Single-dimensional array
objects are handled appropriately by updating the appropriate length and contents

relations.

3For atoms that represent primitive values, TestEra uses library classes testera.primitive.*; for
other atoms TestEra invokes appropriate constructors.

66



InputsAndMaps a2j(Instance a) {
Map mapAJ = new HashMap(), mapJA = new HashMap();

// for each atom create a corresponding Java object

// non-array types
foreach (sig in a.sigs() such that sig represents a non-array type)
foreach (atom in sig) {
SigClass obj = new SigClass();
mapAJ.put(atom, obj);
mapJA.put(obj, atom);

}

// 1-dim array types
foreach (sig in a.sigs() such that sig represents a 1-dim array type)
foreach (atom in sig) {
int length = a.getLength(atom, Pre);
SigClass[] obj = new SigClass[length];
for (int i = 0; i < length; i++)
obj[i] = mapAJ.get(a.getContent(atom, i, Pre));

mapAJ.put(atom, obj);
mapJA.put(obj, atom);

}

// establish relationships between created Java objects
foreach (rel in a.relations())
foreach (<x,y> in rel::Pre)
setField(mapAJ.get(x), rel, mapAJ.get(y));

// set inputs
Object[] inputs = new Object[a.numParams(repOk)];
for (i = 0; i < a.numParams(repOk); i++)
inputs[i] = mapAJ.get(a.getParam(repOk, i));

result = (inputs, mapAJ, mapJA);
}

Figure 5-7: Concretization algorithm a2j.

This completes our description of the key algorithms TestEra provides to auto-
matically generate Alloy specifications and perform abstraction and concretization
translations.
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j2a(Object result, InputsAndMaps imap, Instance io) {
Set visited;
List worklist = result + imap.inputs;

while (!worklist.isEmpty()) {
Object current = worklist.getFirst();
if (!visited.add(current)) continue;

if (current is not of an array type)
foreach (field in getFields(current)) {
Object to = getValue(field, current);
if (to == null) continue;
Atom toAtom = !mapJA.containsKey(to) ? getNewAtom(to, imap) :

imap.mapJA.get(to);
io.addTuple(field, imap.mapJA.get(current), toAtom, Post);
if (!visited.contains(to)) worklist.add(to);

}

if (current is of a 1-dim array type) {
int length = Array.getLength(current);
Atom fromAtom = imap.mapJA.get(current);
io.addTuple(length, fromAtom, length, Post);
for (int i = 0; i < length; i++) {
Object to = Array.get(current, i);
Atom toAtom = !mapJA.containsKey(to) ? getNewAtom(to, imap) :

imap.mapJA.get(to);
io.addTuple(contents, fromAtom, i, toAtom, Post);

}
}

}
}

Figure 5-8: Abstraction algorithm j2a.

5.3.3 Traversing the Heap

The abstraction algorithm traverses the entire part of the heap reachable from method
inputs, following instance fields, and assigns values to relations accordingly. This
traversal is oblivious of the postcondition and therefore could result in needlessly
abstracting parts of heap that do not influence the evaluation of the postcondition.
A more efficient translation can (statically) analyze the postcondition to identify
relevant parts of the heap and focus the abstraction on those parts.

If some fields are irrelevant for a particular testing purpose (say because they
are not used in the code being tested), users can instruct TestEra to ignore those
fields: (1) the underlying Alloy specifications then do not represent those fields, which
reduces the size of boolean formulas and allows faster test generation and correctness
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checking; (2) the translation algorithms ignore the values of those fields (i.e., they are
set to null or appropriate default primitive values).

Recall that Alloy formulas may include the transpose operator. Notice that the
abstraction algorithm builds relations using a forward traversal of the heap and thus
assumes that the components of the heap relevant to evaluating given formulas are
reachable from the given root-set. This is particularly worth noting when using the
transpose operator in the case when TestEra is explicitly directed to ignore certain
fields. The default is to model all fields.

5.4 Implementation

Our prototype implements these algorithms in Java. For bytecode parsing we use the
ByteCode Engineering Library [26]. For solving SAT formulas we use the mChaff [71]
solver. We have also explored the relsat [7] solver but experiments on enumerating
a variety of benchmark data structures show that mChaff outperforms relsat (Sec-
tion 7.1).

TestEra can currently be used only by providing command line arguments: to test
a method the user provides the method signature, the name of the class that declares
it, (filenames for text files containing) the class invariant, method precondition and
method postcondition, and the scope. To enable testing programs that use interfaces,
TestEra allows users to provide actual (concrete) types for fields and method param-
eters and return value; these types override the declared types and are used in test
generation and correctness checking; the default is to use the declared types. For
example, to test java.util.TreeMap where keys in nodes need to be Comparable, we
direct TestEra to use Integer as the actual type.

TestEra provides a variety of libraries that can be reused when generating spec-
ifications. These libraries include models of several data structures (some of which
are discussed in Chapter 7) and models of non-negative integers and booleans, which
were not supported by default in the version of Alloy Analyzer that was available at
the time of our experiments.

5.4.1 Translation Optimizations

In our prototype, boolean solutions generated by the SAT solver are translated to
Alloy instances, which are then concretized into Java tests using the Alloy API. It
really is the boolean solutions that determine what Java tests are generated and these
boolean solutions can be directly concretized into tests. Therefore, a more efficient
way to perform concretizations is to generate code that performs the translation for a
given benchmark and a given scope. Similarly, to check correctness, we could directly
translate Java outputs into boolean assignments and use SAT to check satisfiability.

Therefore, a more efficient approach than the one we have implemented is to
use the Alloy Analyzer for compiling first-order logic specifications into propositional
formulas and then directly using SAT together with (automatically generated) spe-
cialized translations for test generation and correctness checking. We can optimize
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this further by using algorithms that generate translations that do not use Java’s
reflection.

5.4.2 Beyond Java Programs

Even though TestEra is implemented in Java, it can be used to test programs that are
implemented in other languages, such as C++. For example, a program that takes as
input a text file can be tested by generating files in appropriate format. The Galileo
case-study (Section 7.2.2) illustrates such a scenario. When testing such programs
with TestEra, the abstraction and concretization translations need to be written
manually because the automatic translations that TestEra currently implements can
parse only Java classfiles.
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Chapter 6

Nonisomorphic Generation

This chapter explains our technique for nonisomorphic generation. We first give a
definition [13] of nonisomorphism among structures in a Java program. Next, we out-
line the default support [79] that the Alloy Analyzer provides for symmetry breaking,
which can be used to enumerate nonisomorphic structures but is inefficient. Finally,
we describe our technique that efficiently generates exactly nonisomorphic inputs.

Our technique for generating nonisomorphic inputs appears in SAT 2003 [54].

6.1 Object Identities

In object-oriented languages, each object is assigned an identity that can be used for
comparison with other object identities (and the constant null). This comparison is
typically implemented by comparing memory addresses. In safe languages, such as
Java, an actual address, however, cannot be directly used in computation. This usage
contrasts with that of the memory addresses in C/C++, where addresses may freely
be used in computation. Even though a Java program does not have direct access to
the address of an object, the program behavior may still depend on the actual identity.
This is possible through the use of System.identityHashCode(...). This method is
rarely used explicitly by programmers, but hashtables often do computations based on
it. Since the hashcode of an object can take any integer value, it is simply not feasible
to systematically deal with the source of nondeterminism that hashcodes represent.

For testing Java programs, we assume that object identities are not used in any
operation other than comparisons among identities. Notice that test generation (at
the representation level or at the abstract level) cannot generally dictate exactly what
identities objects have. For example, executing the construction sequence

BinarySearchTree bst = new BinarySearchTree();
bst.add(1);
bst.add(2);
bst.add(3);

twice will generate two structures that are isomorphic but not necessarily identical.
Similarly, writing a structure to disk using Java’s object serialization and reading
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Figure 6-1: Isomorphic trees.

it back twice generates isomorphic but not necessarily identical structures. The as-
sumption guarantees that the same test produces the same result on any number of
runs of a program.

6.2 Definition

Before we define the notion of structural isomorphism, let us illustrate some of the
concepts we use in the definition. Figure 6-1 shows two binary search tree structures.
Both structures consist of the set {T0} of tree objects, the set {N0, N1, N2} of node
objects and the set {1, 2, 3} of primitive values.

We say a structure is rooted if it has a unique object o such that all objects (and
primitive values) in the structure are reachable via 0 or more field traversals from o;
the object o is called the root. For example, the tree in Figure 6-1(a) is rooted at T0.

Let S be a structure rooted at s. We write R(S, s) for the set of all objects
reachable from s within S. If the field f of object o ∈ R(S, s) has the value v, we
write o.f =S v. We write fields(o) to denote the set of all fields that are declared
in the class that o belongs to. For example, if S is the structure in Figure 6-1(a),
R(S, T0) = {T0, N0, N1, N2} and fields(T0) = {root, size}.

Let O1, . . . , On be sets of objects from n classes. Let O = O1∪. . .∪On and let P be
the set containing all values of primitive types. Let S and T be two structures rooted
at s and t respectively and consisting only of objects from O and primitive values. S
and T are isomorphic if and only if there exists a permutation π on O ∪ P that is
identity on P and that maps objects from Oi to objects from Oi for all 1 ≤ i ≤ n,
such that π(s) = t and

∀o ∈ R(S, s) · ∀f ∈ fields(o) · ∀v ∈ O ∪ P · o.f =S v ⇔ π(o).f =T π(v).

The structures in Figure 6-1 are isomorphic: witness the permutation
(T0T0)(N0N1)(N1N0)(N2N2)(11)(22)(33).

Figure 6-2 shows 15 structures that represent all nonisomorphic binary search
trees with up to 3 nodes (where info field takes a value between 1 and 3).
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Figure 6-2: Trees generated for scope three. The identity of the tree object is omitted
for clarity.

6.2.1 Method Inputs

We next describe how the definition of isomorphism among structures extends to the
definition of isomorphism among method inputs, where each input can be a tuple
consisting of several structures. Consider, for example, generating nonisomorphic
inputs for the remove method in BinarySearchTree (Section 1.2). Using a scope of 3
(i.e., 3 nodes and field info and parameter i taking a value between 1 and 3), there
are 45 nonisomorphic inputs: each input is a pair (t, i) where t is one of the 15 trees
shown in Figure 6-2 and i ∈ {1, 2, 3}.

For a method m with n formal parameters f1, ..., fn of types T1, ..., Tn re-
spectively, isomorphism among method inputs is defined as isomorphism among the
structures that are represented by the class:

class Input_m {
T1 f1;
...
Tn fn;

}

where the precondition of method m defines the structural constraints for instances
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of class Input m. For any structure that represents an instance of Input m we can
generate an input for m. Nonisomorphic instances of Input m define nonisomorphic
inputs for method m.

Recall our model of method parameters (Section 4.2). The construction of signa-
ture Pre models precisely Input m. It is worth pointing out that this approach handles
aliasing among method parameters. For example, if a class method merges two input
lists, the model allows both the inputs to reference the same list. Of course, if desired,
aliasing can be ruled out by explicitly ruling it out in the method precondition.

6.3 Default Support in Alloy Analyzer

The Alloy Analyzer adapts the symmetry-breaking predicates of Crawford et al. [25]
for faster solving. The original boolean formula is conjoined with additional clauses
in order to produce only a few instances from each isomorphism class [79]. The basic
idea in this technique is to take a structure’s binary encoding and fix an ordering of
the bits in the encoding. This induces a strict lexicographical ordering on the set of
all structures. Then, by constructing a symmetry-breaking predicate that is true only
on the lexicographically smallest structure in each isomorphism class and conjoining
the original formula with this predicate, generation is restricted to nonisomorphic
structures. Even though the analyzer allows generating such a complete symmetry-
breaking predicate, doing so in general is NP-complete [25] and infeasible in practice
because the resulting formulas become very large even for small scopes and choke the
solvers.

As an example of how the analyzer constructs its symmetry-breaking predicates,
consider generating all non-isomorphic sets. The following specification defines a set:

module set_def

sig S {}

Let us fix the scope to 2, i.e., in any instance of S, atoms are selected from say
{s0, s1}. A simple boolean encoding would represent an instance as two bits b0b1,
where bi = 1 ⇔ si ∈ S in the corresponding instance. The propositional formula
(without symmetry-breaking) that corresponds to the specification set def is just
true. Let’s fix the ordering 0 < 1 on bits and induce the lexicographic ordering
00 < 01 < 10 < 11 on all solutions. The only (non-identity) permutation, which
permutes b0 and b1, defines the symmetry-breaking constraint, which encodes

b0b1 ≤ b1b0

Thus, the propositional formula that represents symmetry-breaking boils down to

b0 ⇒ b1

Conjoining this formula with the original formula (i.e., true) and enumerating so-

74



lutions of the resulting formula generates three nonisomorphic solutions: {}, {s1},
{s0, s1}, which represent the only three nonisomorphic sets that contain at most two
elements.

To enable practical enumeration, the Alloy Analyzer allows users to control the
extent to which symmetries are broken. Although the analyzer can be set to enumer-
ate exactly nonisomorphic instances, the resulting formulas tend to grow large, which
slows down enumeration.

Moreover, the built-in symmetry breaking of the analyzer (without explicit addi-
tion of further constraints) breaks isomorphisms with respect to the whole instance.
Indeed, isomorphism, in general and in Alloy, is defined with respect to the whole
instance and not with respect to just the component reachable from a root. For
test generation, however, we are only interested in the component that is reachable
from a given root and thus require symmetry-breaking with respect to this particular
component.

We next describe how to manually construct Alloy formulas that completely elim-
inate isomorphs (with respect to desired components) and also provide efficient enu-
meration for a variety of benchmark data structures [54].

6.4 Efficient Symmetry Breaking

The basic idea behind our technique is to use total orders and define a canonicalization
of the underlying data structure. We conjoin the original Alloy formula that defines
structural constraints with a symmetry-breaking formula that is also written in Alloy
(and not at the level of propositional logic) and requires the generated structures
to be in the canonical form for their respective isomorphism classes. Unlike the
built-in symmetry breaking of the analyzer, this technique provides domain specific
symmetry-breaking, which generates fewer clauses to break symmetries, but at the
cost of requiring the user to add symmetry-breaking predicates manually.

It is worth pointing out that our aforementioned definition of isomorphism is for
Java structures. The symmetry-breaking formulas, however, are written in Alloy.
Our model of state (that views objects as atoms and fields of objects as relations)
allows the definition of isomorphism between rooted structures in the Java domain
to trivially carry over to the Alloy domain.

6.4.1 Total Orders in Alloy

The analyzer’s standard library of models provides a polymorphic signature Ord[t],
which we use in writing our symmetry-breaking formulas. Each instantiation of Ord

with some Alloy signature t imposes a total order on the elements in t. These elements
no longer are indistinguishable, and the analyzer does not break symmetries further
on that set. And the analyzer considers only one total order, instead of (#t)! possible
total orders. In addition to the definition of total order, the analyzer’s standard library
also provides several Alloy functions for totally-ordered sets. To write constraints for
nonisomorphic generation, we use the functions OrdPrevs and OrdNexts, which take
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an element as input and return a set of elements: OrdPrevs (respectively OrdNexts)
returns the sets of all elements that are smaller (respectively larger) than the given
element. The function OrdFirst returns the first element in the given signature.

6.4.2 Adding Symmetry-breaking Formula

Our symmetry-breaking Alloy formula defines a traversal that deterministically visits
all reachable nodes and requires that the nodes are visited in an a priori fixed order.
Such a traversal has the effect of implicitly defining a mapping from a structure to
its canonical representation and restricting generation to only those structures that
map to themselves.

For structures that can be represented using edge-labeled directed rooted graphs
where each edge connects a node to exactly one node1, we build the symmetry-
breaking Alloy formula by:

• Defining a linear order on atoms;

• Defining a traversal (from the root) that linearizes the whole instance, i.e., de-
terministically visits all the reachable nodes; since the traversal is deterministic,
it typically defines an order in which to traverse the fields;

• Requiring that all these nodes (expect for those that represent primitive values)
are visited (for the first time) in the pre-defined linear order.

Then, any structure for which the formula does not hold will not be generated.

Example

As a simple illustration, consider enumerating nonisomorphic singly-linked lists of
nodes (that contain no data) as defined by:

class List {
Entry header;

static class Entry {
Entry next;

}
}

Consider generating lists using the nodes {E0, E1, E2}. To build the symmetry-
breaking formula, we first order the nodes say [E0, E1, E2]. Next, we define the
traversal to start at the root node and follow the next field. We capture the essence
of the constraint that the traversals visits the nodes in order as:

// uses library function to instantiate Ord[Node]
// header is the first node (or null)
header in OrdFirst(Entry)

1These graphs can represent at the concrete level any structure that can be implemented in Java.
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Figure 6-3: Isomorphic lists.

// traversal visits all nodes in order
all n: root.*next | some n.next => n.next = OrdNext(n)

Expressing these constraints allows generation of the list illustrated in Figure 6-3(a)
but rules out generation or the list illustrated in Figure 6-3(b) since the next node of
E0 can only be E1.

Argument for Correctness

We next argue informally why our technique is correct. The argument has three
parts:

• Soundness, i.e., no invalid structures are generated. Symmetry-breaking formula
is conjoined with the original structural constraints therefore any structure that
is generated satisfies the original structural constraints.

• Completeness, i.e., at least one valid structure from each isomorphism class is
generated. The proof of completeness proceeds by contradiction. Assume that
the algorithm does not generate any structure from an isomorphism class C
of valid structures. Let structure S ∈ C have n nodes {N1, . . . , Nn} and the
node ordering be N1 < . . . < Nn. Let the traversal of S visit the nodes in the
order [Ni1 , . . . , Nin ] (where 1 ≤ i1, . . . , in ≤ n). Consider now the structure S ′

that is generated by applying the permutation (Ni1N1)(Ni2N2) . . . (NinNn) to
S. Since the traversal algorithm is deterministic, nodes in S ′ are visited in the
order [N1, . . . , Nn], which is the allowed order. Since S ′ is isomorphic to S and
S is valid, S ′ is also valid. (This is because the structural constraints treat node
identities as atoms.) Thus S ′ is generated. Contradiction.

• Optimality, i.e., exactly one structure from each isomorphism class is generated.
For any two distinct structures that are isomorphic, the traversal algorithm
cannot visit all reachable nodes in the same order in both the structures because
the traversal algorithm is deterministic and an edge connects a node to exactly
one node. Since nodes are totally ordered, the traversal order of nodes in one of
the structures must be lexicographically smaller than that for the other structure
that will, therefore, not be generated.
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Our traversal technique is valid only for rooted directed graphs where an edge
connects a node to exactly one node (as is the case with our model of the heap of a
Java program). For arbitrary graphs where an edge may connect a node to a set of
nodes, it is possible to define a deterministic traversal, for example traverse in a depth
first fashion, breaking choices among nodes by picking the smallest one (according to
node ordering) that is not visited so far. However, such a deterministic traversal on
two isomorphic (but not identical) graphs may visit the nodes in the same order and
may therefore allow generating both. This violates optimality. The arguments for
soundness and completeness still remain valid.

In the context of test generation, notice that an instance generated by the Alloy
Analyzer may have components that are not reachable from the root(s). For exam-
ple, an instance that represents a binary search tree may have edges between nodes
that are not connected to the root and are therefore irrelevant to the concretization
of the actual test. To restrict generation to instances that are nonisomorphic on
the component reachable from the root we add to, symmetry breaking constraints,
constraints that force fields of disconnected objects to take pre-defined fixed values.
Hence any two instances that have isomorphic components reachable from the root,
have identical components that are not reachable from the root.

6.4.3 Example

Let’s consider defining a canonicalization for our binary search tree specification
(which is reproduced in part in Figure 6-4). This specification represents one bi-
nary search tree—the scope of BinarySearchTree is set to 1. Since for any instance
we are interested only in the component reachable from root we define symmetry
breaking for that component in the following steps:

• Declare Node to be totally ordered;

• Order the fields [root, left, right];

• Define a traversal according to the ordering; in particular, when there is an op-
tion of which outgoing to edge follow, traverse with respect to the field ordering;
and

• Require that the traversal visits (new) nodes in the expected order.

As an illustration of the traversal, consider traversing the structure in Figure 6-
1(a). Figure 6-5 illustrates it. First, the field root of T0 is traversed, then the field
left of N0 is traversed and finally the field right of N0 is traversed. Therefore,
we visit the nodes in the order [N0, N1, N2], which is the desired order. Thus this
structure is among those that are generated. When we perform the traversal on the
structure in Figure 6-1(b), we visit the nodes in the order [N1, N0, N2], which is not
the desired order and therefore this structure is not generated.

We add the following fact to break symmetries:
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module bst

sig BinarySearchTree {
root: option Node,
size: Int

}

sig Node {
left: option Node,
right: option Node,
info: Int

}

fun BinarySearchTree::ClassInvariant() { ... }

fun Main() {
all b: BinarySearchTree | b..ClassInvariant()

}

run Main for 3 but 1 BinarySearchTree, 2 Int

Figure 6-4: Alloy specification for a binary search tree.
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Figure 6-5: Traversing the nodes of a binary search tree. Fields are labeled addition-
ally with a number that indicates the order in which a particular field is traversed.
For clarity we do not show the field size of T0.

fact BreakSymmetries {
// if tree is non-empty, root is the first node in linear order
BinarySearchTree.root in OrdFirst(Node)

all n: BinarySearchTree.root.*(left + right) {
// define traversal and require nodes to be visited in order
some n.left => n.left = OrdNext(n)
some n.right && no n.left => n.right = OrdNext(n)
some n.right && some n.left => n.right in OrdNext(n.left.*(left + right))

}
}
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The addition of this fact to our binary search tree specification rules out generation
of the structure illustrated in Figure 6-1(b) but not of the structure illustrates in
Figure 6-1(a).

Default Values for Unreachable Nodes

For the component of a BinarySearchTree instance that is not reachable from root,
we do not care about the field values and therefore we express the following fact to
assign pre-defined fixed values to fields of unreachable nodes:

fact Unreachable {
all n: Node - BinarySearchTree.root.*(left + right) {
// fields have pre-defined fixed values
n.info = 0
no n.left
no n.right

}
}

6.4.4 Implementing Traversals for Graphs with an Acyclic
Backbone

The above example inspires a specific technique, which we next present, for writing the
traversal constraints for a whole class of structures, in particular for rooted structures
that have nodes of the same type and that have an acyclic backbone. Of course,
traversals for this class and for other classes of structures can be written in several
other ways.

A structure S rooted at s has an acyclic backbone if there exists a set F of fields
such that all nodes in the structure are reachable from s via 0 or more traversals of
fields in F and S has no undirected cycles that traverse only the fields in F . For
example, red-black trees have an acyclic backbone: F consists of all fields except
parent. Doubly-linked circular lists, however, do not have an acyclic backbone.

A traversal on structure S rooted at s with an acyclic backbone along the set of
fields F = {f1, . . . , fn} may be defined in two steps as follows. One, express a formula
for breaking symmetries on the reachable component:

• linearly order the nodes

• s is the first node in order

• for all reachable nodes n, for all i, either n.fi is null or n.fi is the node that
comes immediately after the largest node that is reachable from n along a
traversal that first traverses a field fj where j < i and then traverses fields in
F zero or more times.

Two, express a formula for setting default values for any unreachable component.
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6.5 Summary

The user can efficiently break all symmetries by: (1) defining a total order on atoms
and fields; (2) defining a traversal from the root that linearizes the structure; and (3)
requiring that elements not reachable from the root have given default values. This
process forces generation to produce the canonical structure for each isomorphism
class, but it requires the user to manually add symmetry-breaking predicates.

Defining traversals using a set of visited nodes in an imperative notation is
straightforward. However, in a declarative notation, such as Alloy, defining traver-
sals can be more involved. This is because for structures that do not have acyclic
backbones, traversals need to keep explicit track of visited nodes so that the ordering
constraints are enforced only when a node is first visited. Nonetheless, for common
data structures, it is straightforward.

Our traversal technique is valid for generating nonisomorphic structures that can
be represented using rooted directed graphs where an edge connects a node to exactly
one node. Allowing an edge to connect a node to more than one nodes compromises
the optimality.
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Chapter 7

Case Studies

This chapter presents case studies that evaluate (1) the feasibility of using SAT solvers
in solving complex structural constraints and generating nonisomorphic structures
(including some from the Java Collection Framework); and (2) the use of TestEra in
checking stand-alone applications including a Java implementation of an intentional
naming scheme for mobile networks and a C++ implementation of a fault-tree analysis
system developed for NASA. The chapter concludes with a summary of the lessons
learned and key aspects of our studies.

The studies with stand-alone applications enabled us to identify some useful mod-
eling patterns. For example, in both the studies the Alloy model of data structures
abstracts details of the structures in the implementation and the (manually written)
concretization translation generates appropriate inputs.

We use the mChaff [71] solver in the experiments. It is worth pointing out that
even though the version of mChaff we use supports solution enumeration, it is not
optimized for enumeration. Despite that, the experimental results indicate that it is
still feasible to generate high quality test suites using off-the-shelf SAT technology.
Naturally, as more efficient solvers become available, the performance of our test
generation technique would improve accordingly.

We have published results on structure generation at SAT 2003 [54] and the In-
tentional Naming Scheme study at SoftMC 2001 [51].

7.1 Structure Generation Using SAT

Recall the two key computational steps involved in test generation: (1) using a SAT
solver to solve structural constraints and (2) concretizing the solutions found by SAT
into actual tests. For a variety of data structures, we report the results on using off-
the-shelf SAT technology to perform the first step and on using our TestEra prototype
to perform the second step. We present the results of mChaff’s performance in solving
structural constraints and compare its performance with that of relsat [7], another
off-the-shelf solver that supports enumeration. To discount the time it takes to write
solutions to a file, we slightly modified the standard distributions of mChaff and
relsat to disable solution reporting so that the solvers, despite actually computing
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the solutions, report only the total number of solutions found for each formula. (In
Section 7.1.4, we tabulate results for test generation and these results include the
times for file I/O.) We have also conducted a preliminary investigation on using Binary
Decision Diagrams in place of SAT and we present those results in this section also.

To evaluate the overall cost of test generation and correctness checking using our
prototype, we report also the cost of performing abstraction translations and the cost
of checking whether a method preserves the class invariant.

The experiments were performed on a 1.8 GHz Pentium 4 processor with 2 GB of
RAM.

7.1.1 Benchmarks

Table 7.1 presents the results of mChaff for a set of benchmark formulas that repre-
sent structural invariants. Each benchmark is named after the class for which data
structures are generated; the structures also contain objects from other classes.

BinarySearchTree is our running example. LinkedList is the implementation of
linked lists in the Java Collections Framework, a part of the standard Java libraries.
This implementation uses doubly-linked, circular lists that have a size field and a
header node as a sentinel node [24]. (Linked lists also provide methods that allow
them to be used as stacks and queues.) TreeMap implements the Map interface using
red-black trees [24]. Each node has a key and a value. HashSet implements the Set

interface, backed by a hash table [24]; this implementation builds collision lists for
buckets with the same hash code. HeapArray is an array-based implementation of
a heap (or an implementation of a priority queue) [24].

7.1.2 Example benchmark

To give a flavor of the Java benchmarks we use, we describe the red-black tree [24]
benchmark as implemented in the Java Collection Framework. (Appendix B describes
the properties of red-black trees and how we express them in Alloy.)

The class java.util.TreeMap implements red-black trees. Part of the TreeMap
class declaration is:

class TreeMap {
Entry root;
...
static class Entry {

Object key;
Entry left;
Entry right;
Entry parent;
boolean color;
...

}
}
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manual symmetry breaking automatic symmetry breaking
benchmark size #prim #vars #clauses #sols time #vars #clauses #sols time

6 86 2120 6686 132 1.05 2333 7018 357 1.50
7 114 3165 10375 429 6.46 3439 10786 1866 7.45

BinarySearchTree 8 146 4504 15216 1430 40.46 4831 15682 10286 64.40
9 182 7775 29618 4862 548.69 8141 30103 60616 1049.93
6 146 2017 6597 203 0.38 2520 7419 5975 3.46
7 191 2834 9834 877 1.04 3559 11021 52392 68.71

LinkedList 8 242 3837 14007 4140 4.76 4432 14939 734296 4637.99
9 299 5852 24411 21147 36.52 6629 25630 — —
6 203 5203 15162 20 9.10 5542 15668 322 10.85
7 263 7578 22095 35 110.42 8076 22842 1160 69.09

TreeMap 8 331 10578 30896 64 254.13 11265 31930 4185 583.62
9 407 16111 51115 122 741.55 17017 52482 16180 3873.99
6 285 5254 19079 462 6.06 5798 19865 693 7.04
7 373 7540 28881 1716 31.52 8270 29918 3172 30.04

HashSet 8 473 10392 41430 6435 151.42 11102 42342 15011 167.30
9 585 15380 63308 24310 511.51 16277 64441 73519 1587.72
5 56 544 1178 1919 0.55
6 72 704 1611 13139 5.10

HeapArray 7 90 884 2128 117562 62.62
8 110 1084 2735 1005075 1171.64

Table 7.1: Performance of mChaff. All times are in seconds (of total elapsed wall-clock
time). For sizes larger than presented, enumeration of solutions for automatically
constructed symmetry-breaking predicates takes longer than 1 hour.

TreeMap implements a mapping between keys and values and an Entry has two
data fields: key and value (which is not shown above). The field value represents the
value that the corresponding key is mapped to and does not constrain the structure
of a red-black tree. TreeMap has some other fields that we have not presented above.
Some of these fields are constants, e.g., the field RED is the constant boolean false, and
some are not relevant for testing commonly used methods (such as remove, get and
put), e.g., the field modCount is used to detect co-modification. For test generation,
TestEra allows users to specify which fields to exclude from the Alloy models it builds.

The declared type of key is Object. However, key objects need to be compared
with each other as red-black trees are binary search trees. For comparisons, either an
explicit Comparator for keys can be provided at the time of creation of the tree or the
natural ordering of the actual type of key objects can be used. We define the actual
type of the field key to be java.lang.Integer. Recall that, TestEra allows users to
assign to a field a type (different from the declared type) that is actually used in test
generation.

7.1.3 SAT Performance

mChaff

Table 7.1 shows results for several input sizes for each benchmark. All bound param-
eters are set exactly to the given size; e.g., all lists have exactly the given number of
nodes and the elements come from a set with the given size. For each size, we use
mChaff to enumerate solutions for two CNF formulas:

• one with symmetry-breaking predicates generated fully automatically (using the
default values of the Alloy Analyzer);
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• one with symmetry-breaking predicates added entirely manually to Alloy spec-
ifications (as described in Chapter 6).

We tabulate the number of primary variables (i.e., the variables that directly represent
the values of signatures and relations in the corresponding Alloy specification), the
total number of variables (which includes the number of variables that are introduced
as a result of translation to CNF), the number of clauses, the number of solutions,
and the time it takes to generate all solutions. The time shows the total elapsed
time from the start of mChaff’s execution to the end of generation of all solutions
(without writing them in a file). It is worth noting that the time to generate solutions
often accounts for more than one-half of the time TestEra takes to test a benchmark
data structure implementation; thus, improving the efficiency of solution enumeration
would significantly improve TestEra’s overall performance.

For BinarySearchTree, LinkedList, TreeMap, and HashSet, the numbers of
nonisomorphic structures are given in the Sloane’s On-Line Encyclopedia of Inte-
ger Sequences [81]. For all sizes, formulas with manually added symmetry-breaking
predicates have as many solutions as the given number of structures, which shows that
these predicates eliminate all symmetries. For HeapArray, no symmetry-breaking is
required: two array-based heaps are isomorphic if and only if they are identical,
since they consist only of integers (i.e., array indices and heap elements) that are not
permutable. For testing, it is desirable to generate only nonisomorphic inputs since
without breaking isomorphisms it would be impractical to systematically test on all
inputs. The factor by which the total number of solutions (including isomorphic so-
lutions) is more than the total number of nonisomorphic solutions is exponential in
the input size. For example, for TreeMap and size nine, there are more than 44 million
total solutions, whereas there are only 122 nonisomorphic solutions.

In all cases, formulas with automatic symmetry breaking (using default parameter
values) have more solutions than formulas with manual symmetry breaking. Also, in
most cases it takes longer to generate the solutions for formulas with automatic sym-
metry breaking; a simple reason for this is that enumerating more solutions usually
takes more time. This is not always the case, however: for HashSet and TreeMap of
size seven, it takes less time to enumerate more solutions. This illustrates the gen-
eral trade-off in (automatic) symmetry breaking: adding more symmetry-breaking
predicates can reduce the number of (isomorphic) solutions, but it makes the boolean
formula larger, which can increase the enumeration time. Note that merely the num-
ber of variables and clauses does not dictate how many symmetries are broken. For
example, in all examples but HeapArray, the manual approach generates fewer vari-
ables and clauses than the automatic approach, yet the manual approach breaks more
symmetries. This is because a manual predicate rules out more isomorphic instances
per literal of the predicate, so it is “denser” [79]. The Alloy Analyzer allows users to
tune symmetry breaking; we have experimented with different parameter values and
the analyzer’s default values seem to achieve a sweet spot for our benchmarks.

Note that we do not present numbers for LinkedList of size nine with automatic
symmetry breaking; for this formula mChaff runs out of memory (2 GB). This sug-
gests that for enumeration, the scheme for clause learning in mChaff [71] may need
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benchmark size # sols mChaff time relsat time
6 132 1.05 4.81

BinarySearchTree 7 429 6.46 36.28
8 1430 40.46 268.22
6 203 0.38 1.21

LinkedList 7 877 1.04 9.08
8 4140 4.76 78.40
6 20 9.10 19.22

TreeMap 7 35 110.42 128.27
8 64 254.13 665.50
6 462 6.06 52.49

HashSet 7 1716 31.52 475.00
8 6435 151.42 4100.99
5 1919 0.55 6.71

HeapArray 6 13139 5.10 77.12
7 117562 62.62 1073.49

Table 7.2: Performance comparison of mChaff with relsat in solution enumeration for
benchmark formulas with manually added symmetry breaking predicates. All times
are in seconds (of total elapsed wall-clock time).

to be modified to (dynamically) adjust according to the available memory perhaps at
the expense of performance, when enumerating all solutions. If there is no effective
pruning or simplification of clauses added in order to exclude the already found solu-
tions, complete solution enumeration can become infeasible. For all other benchmark
formulas, mChaff is able to enumerate all solutions, even when there are more than
a million of them.

Comparison of mChaff with Relsat

Table 7.2 presents the performance comparison of mChaff with relsat in enumerating
all solutions for benchmark formulas with manually added symmetry breaking con-
straints. Enumeration by mChaff is dramatically more efficient than that of relsat
for the benchmark data structures. For these benchmarks, it happens that mChaff’s
default enumeration does not generate any solutions with “don’t care” bits. However,
we believe mChaff’s enumeration technique of obtaining partial solutions with don’t-
care variables (such that any completion of the solution satisfies the CNF) would also
be useful for complete enumeration as grounding out partial solutions with “don’t
care” bits takes time linear in the number of new solutions generated. Perhaps this
technique would outperform relsat’s technique of always producing complete solu-
tions.
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benchmark size # # gen # conc # abst # check
structures per sec per sec per sec per sec

BinarySearchTree 6 731 111 637 416 34
LinkedList 6 19608 1392 1241 551 98
TreeMap 6 327 83 405 210 3
HashSet 6 3384 232 534 237 6
HeapArray 6 13139 2171 2431 411 91

Table 7.3: Test generation performance. Number of structures represents the number
of all structures up to the tabulated size. The number of boolean solutions per second
generated by mChaff, the number of Java tests concretized per second, the number
of Java outputs abstracted per second and the number of input/output pairs checked
for correctness are tabulated.

Binary Decision Diagrams

We also conducted some very preliminary experiments using Binary Decision Dia-
grams (BDDs) in place of SAT solvers. Intuitively, BDDs seem attractive because
they make it easier to read off all solutions, once a BDD for a formula has been ob-
tained. Of course, the construction of a BDD itself may be infeasible and can take
a long time (and exponential space). We experimented with the CUDD [82] BDD
package. We constructed BDDs bottom-up, using automatic variable reordering via
sifting [14], from the boolean DAGs from which the CNFs were produced. For all
benchmarks, the BDD approach scaled poorly; for nontrivial sizes (over five), the
BDD construction led to unmanageably large BDDs (over a million nodes) and did
not finish within the allotted time limit of 10 minutes. These results are preliminary
and we believe BDD experts might be able to fine tune the performance of BDDs to
provide efficient enumeration.

7.1.4 Test Generation

In test generation, the structures enumerated by a SAT solver are concretized into
actual Java objects, on which methods can be invoked. This section presents results
of generating actual Java objects using the automatic translations that TestEra pro-
vides. For structure enumeration, we use a version of mChaff that outputs solutions
to CNF formulas to disk. We included, in the times for structure generation and
concretization, the time to perform disk operations.

We also present results for abstracting Java outputs into Alloy instances and the
results for correctness checking by using post-conditions as test oracles, where the
post-condition simply requires preservation of the class invariant. Since the times for
generation, concretization, abstraction, and checking are independent of the time it
takes for the method under test to execute, we tabulate, for each benchmark, the
results for testing the method that takes one input—the benchmark structure—and
has an empty body.

Table 7.3 tabulates the experimental results, for structures up to size 6. A recent
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study [64] shows that structures no larger than this size are required to get full
statement and branch coverage on a range of methods for the tabulated benchmarks.

Concretization

As we would expect, concretization of an instance on average is faster than its actual
generation in most cases. The only exception is the LinkedList benchmark, which is
partly due to the fact that our translations as currently implemented are generic and
can be significantly optimized through automatic generation of dedicated translations
that target a specific benchmark for a specific scope, and partly due to the fact
that the structural constraints of a doubly-linked list represent the simplest of the
constraints among our benchmarks. Naturally, the time to generate a structure is
influenced by the complexity of the structural constraints. On the other hand, the
time to concretize is determined simply by the size of an instance.

The results show efficient enumeration even by a solver that is not (at present)
optimized for enumeration. Notice that the overall test generation performance varies
from a few dozen to a few hundred tests per second. This time compares favorably
with the time it would take to generate suites manually even by experienced testers.

Abstraction

For the tabulated benchmarks, abstraction translates a few hundred instances per sec-
ond but is slower than concretization. Recall that abstraction builds a set of visited
nodes to avoid getting into an infinite cycle, which is not required in concretization.
Even though we use hash sets and therefore concretizations and abstractions should
have asymptotically the same running time, the observed difference is due to differ-
ences in the constants involved in the running times and perhaps also due to the use
of reflection in obtaining field names.

Paradoxically, the operation that actually evaluates boolean formulas for given so-
lutions is a bottleneck in the overall performance of TestEra. The reason is that in the
Alloy Analyzer, this operation is intended to be used for one instance at a time and not
for checking thousands of instances, and is supported only as a secondary feature—the
primary use of the analyzer, of course, being to solve constraints. This operation can
be significantly optimized. Indeed, checking whether a formula evaluates to true on a
given solution, theoretically speaking, is a much less expensive operation than finding
a solution for the formula. It is also worth pointing out that testing can be performed
even in the absence of checking given post-conditions. In particular, if desired, we can
simply execute the method and check whether any execution raises a runtime excep-
tion, such as NullPointerException or ArrayIndexOutOfBoundsException. Of course,
we can also simply check runtime assertions on automatically generated inputs.

7.2 Testing Stand-alone Applications

We next present experiments on using TestEra to test two stand-alone applications:
(1) the Intentional Naming System (INS, implemented in Java) and (2) the Galileo
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fault-tree analysis tool (implemented in C++)1. In both systems, we discovered
significant bugs that were not known to the system designers2.

7.2.1 Intentional Naming System

The Intentional Naming System (INS) [3] is a naming architecture (implemented in
Java) for resource discovery and service location in dynamic networks. We focused
on testing the core naming infrastructure of the system and in particular on the
Lookup-Name algorithm that allows clients to locate services of interest. We tested
some key partial correctness properties of the algorithm, which include published
claims.

For test generation, we built an Alloy model of the key data structures of INS
and for correctness checking, we modeled in Alloy the relevant correctness criteria.
TestEra identified significant flaws in the INS implementation. These flaws also ex-
isted in the INS design [50], and we first corrected the design. We then modified the
implementation of INS and checked its correctness using TestEra. (See [51] for details
of the study.)

The original Java implementation of the core naming architecture of INS [78]
consists of around 2000 lines of code.

Intentional Names

Services, in INS, are referred to by intentional names, which describe properties that
services provide, rather than by their network locations. An intentional name is a tree
consisting of alternating levels of attributes and values. The Query in Figure 7-1(a)
is an example intentional name; hollow circles represent attributes and filled circles
represent values. The query describes a camera service in building NE-43. A wildcard
may be used in place of a value to show that any value is acceptable.

Name resolvers in INS maintain a database that stores a mapping between service
descriptions and physical network locations. Client applications invoke a resolver’s
Lookup-Name method to locate services of interest. Figure 7-1(a) illustrates an example
of invoking Lookup-Name. Database stores description of two services: service R0

provides a camera service in NE-43, and service R1 provides a printer service in NE-
43. Invoking Lookup-Name on Query and Database should return R0.

Methodology

We performed this study using the Alloy 1.0 tool-set. In particular, the input con-
straints and test oracle were written in the Alloy 1.0 language [44]. We re-used the
constraints we had written previously in our analysis [50] of the design of INS. These

1The Galileo case-study is joint work with David Coppit of College of William and Mary, and
Kevin Sullivan and Jinlin Yang of the University of Virginia.

2For the INS, we had also previously discovered these bugs [50] at the design level using a hand-
built Alloy model of the data structures and key algorithms of INS; we reused that model of data
structures in this study.
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Figure 7-1: (a) Intentional names in INS. Query describes a camera service in build-
ing NE- 43. Database stores descriptions of two services: service R0 provides a
camera service in NE- 43, and service R1 provides a printer service in NE- 43. In-
voking Lookup-Name on Query and Database should return R0. (b) TestEra’s coun-
terexample to wildcard claim. IQueryNoWC is the same as IQuery, except for the
omission of the wildcarded attribute A0. Different results of the two invocations of
Lookup-Name contradict the claim. (c) TestEra’s counterexample to monotonicity
of addition. Both services R0 and R1 are considered conforming to IQuery by the se-
mantics of INS, but their co-existence in IDatabase makes both of them erroneously
non-conforming to IQuery.

constraints were not expressed at the concrete representation level but instead at the
abstract level [3]. For example, in a database at the abstract level, an attribute has a
corresponding set of values, whereas in the implementation the set is implemented us-
ing a vector (or simply an array). Abstracting the implementation details allowed us
(1) to write the structural constraints in a more intuitive fashion and (2) to generate
smaller boolean formulas with fewer variables, which provided efficient enumeration.
However, doing so necessitated writing the concretization and abstraction translations
manually. We found these translations straightforward to write because it was simple
to define an isomorphism between structures represented by the Alloy specification
and those represented by the Java implementation. It took us about 8 hours to write
the Java code that performed the translations.

To illustrate the nature of translations that we wrote by hand, consider once again
the aforementioned property that an attribute in a database can have several children
values. In the Java implementation of INS, each attribute has a children field of type
java.util.Vector. We model this property in Alloy as a relation from attributes to
values. To concretize, we systematically translate tuples of the relation by adding
elements to the children field of appropriate attribute objects. Similarly, to abstract
we systematically iterate over the elements of children and add tuples to the relation.

91



Properties Checked and Results

Our checking of INS using TestEra focuses on the Lookup-Name method. Lookup-Name

returns the set of services from the input database that conform to the input query.
To investigate the correctness of Lookup-Name, we test its soundness (i.e., if it returns
only conforming services) and completeness (i.e., if it returns all conforming services).
The INS inventors did not state a formal definition of conformance, but only certain
properties of Lookup-Name.

The published description of Lookup-Name claims: “This algorithm uses the as-
sumption that omitted attributes correspond to wildcards; this is true for both the
queries and advertisements.” TestEra disproves this claim; Figure 7-1(b) illustrates
a counterexample. IQueryNoWC is the same as IQuery, except that the wildcarded
attribute A0 is removed. Different results of the two invocations of Lookup-Name con-
tradict the claim.

TestEra also shows that addition in INS is not monotonic, i.e., adding a new service
to a database can cause existing services to erroneously become non-conforming.
Figure 7-1(c) illustrates such a scenario: both services R0 and R1 are considered
conforming to IQuery by the semantics of INS, but their co-existence in IDatabase

makes both of them erroneously non-conforming to IQuery. In other words, if we
consider resolving IQuery in a database that consists only of advertisement by R1,
Lookup-Name returns R1 as a valid service; however, in IDatabase which includes both
advertisements by R1 and R2, the algorithm returns the empty-set. This flaw points
out that INS did not have a consistent notion of conformance. Both preceding flaws
exist in the original design and implementation of INS.

To correct INS, we first defined what it means for a service to conform to the
client’s query. A service s conforms to a query q if q is a subtree of the name of s,
where the wildcard matches any value. This means that a service is conforming to q
if it provides all the attributes and (non-wildcard) values mentioned in q in the right
order. TestEra’s analysis of the original implementation of Lookup-Name with respect
to this definition of conformance reported several counterexamples. We modified
the implementation and re-evaluated the correctness of Lookup-Name using TestEra.
This time TestEra reported no flaws, increasing the confidence that our changes have
corrected the problems with INS. The corrected algorithm now forms a part of the
INS code base.

Table 7.4 summarizes the results. It illustrates the effectiveness of systematic
testing in finding subtle errors even using small input bounds.

7.2.2 Galileo

Galileo [22] is a fault-tree analyzer developed (in C++) for NASA. We used TestEra
to generate input fault-trees for Galileo. To check correctness, we ran another fault-
tree analyzer, NOVA [21], on the same inputs and compared the outputs of Galileo
and NOVA for each input. NOVA is a more recently developed fault-tree analysis tool
that has been based on a formal Z specification of fault-trees with the aim of using the
tool as a test oracle. If the output of Galileo differed from NOVA, we knew there was
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phase 1 phase 2
method/property tested size # gen # check

test [sec] pass [sec]
published claim 3 12 9 10 6
addition monotonic 4 160 14 150 9
Lookup-Name (original) 3 16 8 10 6
Lookup-Name (corrected) 3 16 0 16 6

Table 7.4: TestEra’s analysis of the Intentional Naming System. All times are in
seconds. A generation time of 0 sec indicates previously generated tests were re-used.

A

B C

A

B C

(a) (b)

Figure 7-2: (a) Static fault tree; system level failure is an AND gate: if both events
B and C occur, the system fails. (b) Dynamic fault tree; system level failure is a
priority AND gate: if first event B occurs and then event C occurs, the system fails.

a flaw and we investigated further whether the bug was in Galileo or in NOVA or the
specification itself was incorrect. TestEra found 20 distinct bugs that were not pre-
viously known. The section summarizes our methodology and tabulates performance
results and presents an illustrative counterexample generated by TestEra.

Fault Trees

Fault trees [88] model system failures; a fault tree represents the overall failure of
a system as a combination of failures of basic components of the system. A static
fault tree models how boolean combinations of component-level failure events produce
system failures. Every fault tree has a top-level event that represents system level
failure (and is graphically drawn as the root of the tree). Figure 7-2 (a) illustrates
a static fault tree. The interior nodes of a tree are boolean gates and the leaves are
basic events. The failure of basic events is characterized probabilistically by basic
event model that consists of:

• the rate parameter (lambda) that defines the exponential distribution that char-
acterizes the basic event’s failure;

• the coverage model that defines the probabilities that the component masks
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an internal failure (res), that a component fails in a way that can be detected
by the system (cov) and that the component fails and brings down the system
(sing); the sum of these three probabilities is 1; and

• the dormancy value (dorm) that defines the probability of failure if the basic
event is used as an input to a gate to replace one of its failed inputs.

A basic event may have a replication value (repl), which allows the event to represent
identical events connected to the same location(s) in a fault tree.

Dynamic fault trees augment static fault trees with constructs that allow modeling
fault-tolerant systems; these constructs allow modeling, for example, how a sequence
of events causes failure, and functional dependencies, such as failure of a trigger event
causes failure of all dependent events. Figure 7-2 (b) illustrates a dynamic fault tree.

Fault trees can be represented graphically or with a fault tree grammar [21]. For
example, the tree in Figure 7-2 (b) together with its basic event model can be textually
represented as:

toplevel A;
A pand B C;
B lambda = .01 cov = .75 res = 0 repl = 1 dorm = .25;
C lambda = .05 cov = .5 res = 0.1 repl = 1 dorm = .5;

A fault tree analyzer computes, for a given fault tree and its failure models, the
probability of system-level failure.

Methodology

We used TestEra to generate test inputs in fault tree grammar. We based our Alloy
model of fault trees on the Z specification. For input generation, we manually wrote
a concretization translation (in Java) from Alloy instances to input strings.

Even for a very small bound there are a very large number of fault trees. For a
bound of 4, there are in the order of a hundred million fault trees—part of this huge
number is due to the choice in probabilistic models of failure. This necessitates gener-
ation to be restricted to exactly nonisomorphic trees to enable feasible enumeration.
We manually add simple symmetry breaking predicates (as explained in Chapter 6)
to enable such generation.

Despite symmetry breaking, the current version of mChaff was unable to enumer-
ate all trees for a bound of 3 or more and ran out of (1 GB of) memory. To reduce
the total number of inputs, we imposed additional constraints based on test purposes.
In particular, we added constraints that ruled out generation of instances that un-
covered previously known bugs. For example, we disallowed generation of trees that
have both one or more priority-AND gate(s), and that have at least one priority-AND
gate with input a basic event that has non unary replication.

A novel technique we employ in this study is to model in Alloy partial input
trees that abstract away components that can be computed directly without the need

94



bound time (sec) #
to generate generated

3 20291 1276324
4 322180 9529400

Table 7.5: Performance of TestEra in test generation for Galileo.

toplevel Event0;
Event0 2of2 Event1;
Event1 lambda = .01 cov = .5 res = 0 repl = 2 dorm = .5;

2
2
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Figure 7-3: An input fault tree generated by TestEra. This input tree witnesses a
bug in (the dynamic solver of) Galileo. The tree is a kofm gate (with k=m=2): the
gate triggers if at least k out of its m inputs trigger. The basic event Event1 has a
replication value of 2 and the rate parameter, the coverage model and the dormancy
value as given above.

for constraint solving. This helps the underlying SAT solver in enumerating the de-
sired structures efficiently. Given an instance of the partial model, the concretization
translation computes the remaining derived components (such as, whether the input
denotes exactly one connected component) to generate a complete fault-tree.

Results

Using a test suite with inputs within a bound of 4, we discovered bugs in not only
NOVA and Galileo, but also the specification of fault trees. Table 7.5 tabulates a
summary of the results. TestEra generates 1860 fault-trees per minute on average,
which provides efficient enumeration. Using all generated inputs using the bound of
4, we discovered 20 bugs. It is worth pointing out that several of these bugs indicate
significant semantic errors.

Figure 7-3 illustrates an input that exposes a bug in (the dynamic solver of)
Galileo. For this input, the outputs of Galileo and NOVA differ. Galileo’s gate
evaluation function, which for an input gate determines whether any of its inputs
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have failed or whether they are all functional, behaves incorrectly on certain input
gates. The original implementation of this function has an if-then-else block in
which the code in the if block is, for correct behavior, not to be executed in mutual
exclusion with the code in the else block.

7.3 Lessons

The following summarize the key lessons and aspects of the studies we have presented
in this chapter:

• Systematic testing is feasible for real systems. Even though an input constraint
is required for test generation, such constraints, even for real systems, often are
simple to formulate. Further, correctness specifications can be as partial (or
complete) as desired.

• Systematic testing can identify subtle bugs that have gone unnoticed despite
years of use.

• Even though the current versions of SAT solvers are not optimized for enumer-
ation, it is feasible to use them for enumerating complex structures. In some
cases, however, mChaff crashed after generating an order of a million structures.
This points to the need for further advancements in enumeration technology.

• Symmetry breaking plays a crucial role in enumeration. Writing symmetry
breaking constraints for common data structures is simple but can become more
involved for arbitrary structures.

• In modeling structures, it is often useful to identify derived components of a
structure that can be computed directly (without the need for constraint solv-
ing) given values of the other components. Structure generation then proceeds
in two steps. First, a constraint solver solves the desired constraints and sec-
ond, an explicitly written program assigns appropriate values to the derived
components.

• The ability to incorporate test purposes in input generation is a key requirement
for developing tools for testing real systems.
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Chapter 8

Discussion

This chapter discusses some limitations of the TestEra framework and our current
implementation. We also address some feasibility issues of a systematic black-box
testing approach based on first-order logic.

8.1 Unit Testing

TestEra is a framework designed primarily for unit testing of sequential Java pro-
grams. The notion of a unit, however, is not limited to one method. A sequence of
method invocations can be tested identically to how a single method is tested. The
unit can even represent an entire system as illustrated in the case-study for testing the
command-line-interface of the Galileo fault-tree analyzer. However, TestEra cannot
currently be used for system-level testing in a scenario where the user may interact
with the system, for example a system that has a GUI front-end.

8.2 Unhandled Language Constructs

8.2.1 Primitive Types

To allow users to build specifications that include primitive types, we need to provide
Alloy models for operations that Alloy does not support by default. Note that the
use of SAT solvers as the underlying analysis technology necessitates a non-trivial
treatment of such operations. For example, to support the addition operation for
integers, we need to explicitly build a formula that encodes all valid triples (within
the given scope) that represent the result of adding two integers.

Our current implementation provides limited support for (non-negative) integer

and boolean types, including library code that automatically generates formulas for
common integer operations, given an input scope. Support for (non-negative) integers
is now also provided by default in Alloy itself.

We envision enabling the TestEra framework to use (in conjunction with SAT
solvers) specialized decision procedures for handling operations on a variety of prim-
itive types. One way to do so is to partition the constraints that describe an input
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according to whether they constrain fields of a primitive type or of a reference type,
and to use a SAT solver for solving the structural constraints on reference fields, and
appropriate decision procedures for solving constraints on primitive data. Since we a
priori impose bounds on generated inputs, solving constraints is decidable simply by
virtue of having a bounded space of candidate inputs.

8.2.2 Exceptions, Arrays, Inheritance etc.

Even though our current implementation does not support checking exceptional be-
havior of programs and generating inputs with multi-dimensional-array-based com-
ponents, doing so is straightforward in principle. For example, to check whether a
program correctly raises a certain exception on particular inputs, we could introduce
a signature to model the exception and modify the abstraction algorithm accordingly.
Programs that can raise exceptions or that use array-based structures internally can,
nonetheless, be tested for their normal behavior.

Also, we do not currently support automatic initialization of field values (e.g., for
final fields), which would require building an Alloy model corresponding to the Java
code that does the initialization.

In object-oriented programs, inheritance plays a fundamental role. So far we have
not addressed how to utilize class hierarchy in test generation. We have proposed
a systematic treatment of inheritance in a first-order setting elsewhere [67]; we have
not yet implemented this approach.

8.2.3 Multi-threadedness

Dynamically checking the correctness of multi-threaded programs for deadlocks and
race conditions requires the ability to control thread scheduling. We envision using
a model checker in conjunction with a SAT solver (and perhaps other decision pro-
cedures) to check for multi-threaded programs that operate on complex structures
(similar to [55]).

8.3 Ease of Specification

Even though the use of expressions that represent heap traversals using operators,
such as transitive closure, is intuitive and allows building succinct formulas, the use of
quantifiers in building a specification can provide a learning challenge for developers
who are not adept at programming in a declarative style.

A key issue with building specifications that define complex structures is to cor-
rectly write constraints that precisely define the desired structure. For example, it
may be easy to recognize structures that are and are not trees, but hard to characterize
them formally. There are various strategies we can use to enhance our confidence in
the specification and to detect whether the specification is under- or over-constrained:
1) the Alloy tool-set allows users to visualize instances that satisfy given constraints;
users can scroll through different instances to inspect for violation of an expected
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property; 2) users can formulate the same constraint as different formulas and use
the Alloy Analyzer to check whether these formulas are equivalent; 3) for several com-
mon data structures, the number of nonisomorphic structures for various benchmark
data structures (including red-black trees) and sizes appears in the Sloane’s On-Line
Encyclopedia of Integer Sequences [81]; for these structures, users can simply compare
the number of structures enumerated by the analyzer with the published number; 4)
users can employ existing libraries of common data structures. We used these strate-
gies for building specifications for the presented studies; we built each specification
within a day’s work.

A recently proposed approach [64] to building specifications is to directly support
common specification patterns, such as acyclicity, in the specification language. These
patterns not only allow users to easily specify common data structure properties, but
also provide more efficient generation of structures. In the context of TestEra, we
would like to investigate how we can guide the SAT solver’s search to exploit these
patterns; as a first step, we would like to define a pattern-aware translation from first-
order logic to boolean logic. We would also like to explore identifying such patterns
automatically from a given an input constraint—quantified formulas built using path
expressions seem to provide a notation that is amenable to such synthesis1.

8.4 Systematic Black-box Testing

TestEra performs black-box [10] (or specification-based) testing. In other words, when
testing a method the implementation of the method is not exploited in the generation
of tests.

8.4.1 Test Generation from Input Constraints

The input constraints that TestEra uses for test generation can include constraints
derived (manually, or automatically, if possible) from an implementation to support
white-box testing but we do not present in this work a treatment of white-box testing.

As noted before, the input constraints can be manually strengthened to include
test purposes, say to generate more useful instances. For example, we can rule-out
generation of inputs that witness previously identified bugs—this also allows us to
identify new bugs without having to fix the ones previously discovered.

8.4.2 Testing on All Small Nonisomorphic Inputs

TestEra’s approach to testing is to systematically test the program on all nonisomor-
phic inputs within a small input size. A clear limitation of this approach is that it fails
to explore program behaviors that are witnessed by large inputs only. For example, to
test a program that sorts an input array using different sorting algorithms depending
on the size of the array, it would be natural to test on inputs within a range of sizes to
check each of the algorithms (at least) on a few inputs. A strategy TestEra users can

1Observation contributed by Daniel Weise.
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apply is to test systematically on all small inputs and test selectively on a few larger
inputs. Clearly, this strategy can be guided by the structural coverage of the program
to give users more confidence about the correctness of their programs. Users can also
gain confidence by iteratively increasing the bound and testing on larger inputs as
permitted by time constraints.

8.4.3 Program Coverage on Small Inputs

A recent application [64] of the Korat testing framework [13, 64] evaluates how pro-
gram coverage varies with bound on the input size for implementations of several
benchmark data structures. (See Section 9 for more details on Korat.) The experi-
ments show that it is feasible to achieve full statement and branch coverage for several
benchmarks by testing on all inputs within a small input size.

8.4.4 Combining Small and Large Inputs

Even though these experiments indicate that systematic testing on all inputs is useful
for testing data structure implementations, for certain kinds of programs, e.g., pro-
grams that manipulate arrays or programs that employ different algorithms for inputs
of different sizes, certain kind of errors, e.g., array index out of bounds errors, can
only be found on inputs that are sufficiently large. In some cases, it may be possible
to scale down the constants used (for resource bounds) in a program and increase the
effectiveness of testing on small inputs. However, this requires the ability to analyze
an implementation and even exploiting the implementation details may be hard if
the constant values have (implicit) dependencies. An approach that combines suites
containing all small tests with suites containing some (randomly sampled) larger tests
seems likely to provide a sweet spot for finding bugs.

8.5 Application of SAT

We have developed an unconventional application of SAT solvers, for software test-
ing. Our application requires a solver that can enumerate all satisfying assignments;
each assignment provides a (non-isomorphic) input for the program. In this context,
symmetry breaking plays a significant, but different role from its conventional one:
rather than reducing the time to finding the first solution, it reduces the number of
solutions generated, and improves the quality of the suite of test inputs.

We envision various other applications of solution enumeration. One natural ap-
plication is in checking certain classes of logic formulas. For example, consider the
formula ∀x ∈ D. P (x) ⇒ Q(x), where D is some (finite) domain, and P and Q are
arbitrary predicates. We simply use a solver to enumerate all x that satisfy P (x) and
then, for each such x, check that Q(x) holds. Alternatively, we check the validity of
the implication (without requiring solution enumeration) by using a solver to directly
check satisfiability of the negation: P (x) ∧ ¬Q(x). Usually, the latter approach is
preferred because it “opens” Q for the sophisticated optimizations that SAT solvers
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perform. However, when Q is a very large formula (or a formula that cannot be easily
constructed explicitly) and when P is very constraining, the approach with solution
enumeration may work better.

A desirable feature for solvers that can enumerate solutions is to allow users to
control the order of enumeration. For example, for testing databases, we would like
to get “similar” test cases one after the other so that we can restore the state by using
“deltas” and built-in support for rollback, instead of always building the state from
scratch. For checking programs, it is desirable to have a solver generate all solutions
in the neighborhood (as defined by a given metric) of a particular solution; this would
enable testing, for example the entire neighborhood of an execution that gets “close”
to a bug.

As input size increases, the number of inputs typically grows quite significantly. If
for a certain desired input size, there simply is too huge a number of inputs, one could
test on a random sample of them by using a solver that supports enumeration in a
random order. Alternatively, to test for such a size, one could first define a stronger
notion of isomorphism, which takes into account the domain of application or even the
implementation code, and then enumerate inputs (which are now potentially fewer in
number than before). For example, consider generating all trees with at most three
nodes that contain integer elements. Let us assume that it is only the structure of
the tree that is relevant with respect to the code being tested. Then for a tree with
two nodes it does not matter whether the actual elements are 1 and 2 or they are 1
and 3 and what matters is the order in which they appear in the tree.

Indeed, various test purposes can be incorporated to strengthen constraints and to
reduce the number of possible solutions. Thus even though it may seem that solvers
that support enumeration would always suffer due to the requirement of having to
explicitly generate solutions, developing solvers that provide efficient enumeration is
still useful since the number of solutions can generally by reduced to a manageable
size.
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Chapter 9

Related Work

There is a large body of research on specification-based testing. We are not aware,
however, of any work prior to TestEra that allowed systematic generation of struc-
turally complex tests from constraints that define the structures at the representation
level.

In this chapter, we first discuss how TestEra relates to other projects on
specification-based testing. Next, we compare TestEra with static analysis (and in
particular model checking of software); although TestEra performs testing, i.e., dy-
namic analysis, it does so systematically for all inputs within a given scope, which
makes it more like some static analyses.

9.1 Specification-based Testing

Using constraints to represent inputs is not a new idea and dates back at least three
decades [19,42,56,74]; the idea has been implemented in various tools including EF-
FIGY [56], TEGTGEN [57], and INKA [35]. But the focus of prior work has been to
solve constraints on primitive data, such as integers and booleans, and not to solve
constraints on complex structures, which requires very different constraint solving
techniques. Some of the more recently developed frameworks do support genera-
tion of complex structures. Most notably, Korat [13, 64] provides an algorithm for
nonisomorphic generation of complex structures from constraints given as imperative
predicates. (We describe Korat in more detail below.)

An early paper by Goodenough and Gerhart [34] emphasizes the importance of
specification-based testing. Various projects automate test case generation from spec-
ifications, such as Z specifications [30,41,83,85], UML statecharts [73,75], ADL spec-
ifications [15, 77], or AsmL specifications [36, 37]. These specifications typically do
not involve structurally complex inputs, such as linked data structures illustrated in
TestEra’s case studies. Further, these do not address advanced programming con-
structs, such as polymorphic types.

The first version of AsmLT Test Generator [36] was based on finite-state ma-
chines (FSMs): an AsmL [37] specification is transformed into an FSM, and different
traversals of FSM are used to construct test inputs. Korat adds structure generation
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to generation based on finite-state machines [36]. AsmLT was successfully used for
detecting faults in a production-quality XPath compiler [84].

Dick and Faivre [29] were among the first to use an FSM-based approach: their
tool first transforms a VDM [48] specification into a disjunctive normal form and
then applies partition analysis to build an FSM. This work influenced the design
of tools such as CASTING [4] and BZTT [60]. Unlike TestEra, these tools readily
handle sequences of method calls. But these tools cannot handle structurally complex
inputs.

There are many tools that produce test inputs from a description of tests.
QuickCheck [17] is a tool for testing Haskell programs. It requires the tester to
write Haskell functions that can produce valid test inputs; executions of such func-
tions with different random seeds produce different test inputs. TestEra differs in
that it requires only an invariant that characterizes valid test inputs and then uses a
general-purpose search to generate all valid inputs. DGL [68] and lava [80] generate
test inputs from production grammars. They were used mostly for random testing,
although they can also systematically generate test inputs. However, they cannot
easily represent structures with complex invariants. Even though DGL is Turing-
complete and in theory it is possible to specify complex structures, doing so for a
structure would essentially be the same as (and require as much effort as) writing a
dedicated generator for that particular structure.

AETG [20] is a popular system for generating test inputs that cover all pair-wise,
or k-wise (where k is less than or equal to the number of parameters) combinations
of test parameters. These parameters correspond to object fields in TestEra. Using
pair-wise testing is applicable when parameters are relatively independent. However,
in object-oriented programs object fields are dependent. This dependence allows SAT
solvers to prune their search, which enables TestEra to provides efficient enumeration
of inputs for such programs. Additionally, TestEra takes into account isomorphism
and generates only one input from each isomorphism partition. In theory, AETG
can generate structures by exhaustively checking all possible structures for validity.
However, such an approach is infeasible in practice.

Cheon and Leavens developed jmlunit [16] for testing Java programs. They use
the Java Modeling Language (JML) [59] for specifications; jmlunit automatically
translates JML specifications into test oracles for JUnit [9]. This approach automates
execution and checking of methods. However, the burden of test case generation is
still on the tester who has to provide sets of possibilities for all method parameters
and construct complex data structures using a sequence of method calls.

9.1.1 Korat

The Korat [13,64,65] framework uses JML specifications and automates both test case
generation and correctness checking. Input constraints are written as Java predicates.
For a given predicate and a finitization (that bounds the predicate’s input space),
Korat uses a novel search algorithm to systematically explore the predicate’s input
space and generate all nonisomorphic inputs (within the given finitization bound)
for which the predicate returns true. The heart of Korat is to monitor executions
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of the predicate on candidate inputs and to prune the search based on the fields
accessed during executions. The key observation behind Korat’s pruning is that a
(deterministic) predicate1 that returns false without reading certain fields of its input
would return false for any values of those fields. A conventional SAT solver prunes
its search in a similar fashion: if a CNF clause evaluates to false and the clause
contains only a subset of the boolean variables in the formula, the whole formula is
false irrespective of any assignment of values of the variables that do not appear in
the clause.

Korat has primarily been used for black-box testing [13], but it can be also used
for white-box testing [64]. In black-box testing, the predicate given to Korat typi-
cally represents the method precondition, and thus inputs that satisfy the predicate
represent valid inputs for the method under test. In white-box testing, the predicate
represents, in addition to the precondition, the method body and the (negation of
the) method postcondition, and thus it “opens up” the method body, which assists
in searching for counterexamples in a goal-directed fashion. One way to similarly
“open up” the method body in a TestEra-like approach is to translate the body into
a first-order logic formula (akin to [89]). Such a translation provides a static way of
checking for bugs but generates very large boolean formulas and it is not clear how
well it scales to testing real systems.

TestEra and Korat can be primarily compared in two aspects: ease of specifica-
tion and performance of testing. There is no clear winner in any aspect so far, and
we view TestEra and Korat as complementary approaches. For beginner users of
TestEra and Korat, the users familiar with Java find it easier to write specifications
in JML (for Korat) than in Alloy (for TestEra)–this is not surprising, because JML
specifications are based on familiar Java expressions–whereas the users familiar with
Alloy typically find it easier to write Alloy specifications that also tend to be more
succinct than their JML equivalents. Regarding the performance of testing, the main
factor is the performance of test input generation. Generation in Korat is more sensi-
tive to the actual way a specification is written: for any two equivalent specifications
(where the TestEra specification includes manually added symmetry breaking predi-
cates), TestEra takes about the same time to generate inputs. But with specifications
written to suit Korat, it generates inputs faster than TestEra. Korat is amenable to
the use of dedicated generators that make the generation even faster, while making
the specifications easier to write. It is worth noting that Korat does not require any
symmetry breaking to be provided by the user. Korat’s generation of nonisomorphic
structures is fully automatic and provably correct [64]. Having said that, a speci-
fication written not to suit Korat would make generation in Korat slower than in
TestEra.

9.2 Static Analysis

Several projects aim at developing static analyses for verifying program properties.
The Extended Static Checker (ESC) [28] uses a theorem prover to verify partial cor-

1Korat does not require predicates to be deterministic.
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rectness of classes annotated with JML specifications. ESC has been used to verify
absence of errors such as null pointer dereferences, array bounds violations, and di-
vision by zero. However, ESC cannot verify complex properties of linked data struc-
tures, such as invariants of red-black trees, because the decision procedures in the
underlying theorem prover are not powerful enough to prove the formulas that arise
in verification of code that operates on red-black trees. There are some recent re-
search projects that attempt to address this issue. The Three-Valued-Logic Analyzer
(TVLA) [62, 76] is the first static analysis system that can verify preservation of list
structure in programs that perform list reversals via destructive updates to the input
list. TVLA has been used to analyze very small programs that manipulate doubly-
linked lists and circular lists, as well as some sorting programs. The pointer assertion
logic engine (PALE) [70] can verify a large class of data structures that can be rep-
resented by a spanning tree backbone, with possibly additional pointers. These data
structures include doubly-linked lists, trees with parent pointers, and threaded trees.
While TVLA and PALE are primarily intraprocedural, Role Analysis [58] supports
compositional interprocedural analysis and verifies similar properties.

While static analysis of program properties is a promising approach for ensuring
program correctness in the long run, the current static analysis techniques can only
verify limited program properties. For example, none of the above techniques can
verify correctness of implementations of balanced trees, such as red-black trees. Test-
ing, on the other hand, is very general and can verify any decidable program property
for realistically large implementations, but for inputs bounded by a given size.

9.2.1 Checking by Translating Code to SAT Formulas

Conceptually, TestEra checks that the code under test satisfies the formula ∀i ∈
I. pre(i) ⇒ (∀o ∈ O. code(i, o) ⇒ post(i, o)), where pre is precondition, I is input
domain, O is output domain, code(i, o) denotes execution on input i that results in
output o, and post is postcondition.

It is possible in some cases to translate (Java) code into a formula code and look
for a counter-example using a SAT solver (see e.g. [12, 61, 90]). A nice property of
such an approach is that it allows using any SAT solver, whereas TestEra requires a
SAT solver that can enumerate all solutions. However, translation-based approaches
typically build a formula, namely pre ∧ code ⇒ ¬post, which is much bigger than
the formula that TestEra builds, namely pre. Therefore, TestEra works better for
larger code that does not have many inputs, whereas translation-based approaches
work better for smaller code that has many possible inputs.

The translation-based approach of Vaziri and Jackson allows analyzing Java meth-
ods that manipulate linked data structures [47, 89, 90]. This approach translates a
bounded computation sequence into an Alloy model and checks the model exhaus-
tively with the Alloy Analyzer. Although static, this approach requires specifications
for all helper methods and is unsound with respect to both the size of input and the
length of computation. Since TestEra checks actual executions, it does not require
specifications for helper methods, and it checks entire computations for larger inputs.
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9.3 Software Model Checking

There has been a lot of recent interest in applying model checking to software. Java-
PathFinder [91] and VeriSoft [32] operate directly on a program and systematically
explore its state space to check correctness. Bandera [23] and JCAT [27], translate
Java programs into the input language of existing model checkers, such as SPIN [40]
and SMV [69]. They handle a significant portion of Java, including dynamic allo-
cation, object references, exceptions, inheritance, and threads. They also provide
automated support for reducing a program’s state space through program slicing
and data abstraction. SLAM [5,6] uses predicate abstraction and model checking to
analyze C programs for correct calls to API.

Most of the work on applying model checking to software has focused on checking
event sequences, specified in temporal logic or as “API usage rules” in the form of
finite state machines. These approaches offer strong guarantees: if a program is suc-
cessfully checked, there is no input/execution that would lead to an error. However,
they typically did not consider linked data structures or considered them only to re-
duce the state space to be explored and not to check the data structures themselves.
TestEra, on the other hand, checks correctness of methods that manipulate linked
data structures, but provides guarantees only for the inputs within the given bound.

A recent backtracking-based technique [55] combines a novel algorithm for solv-
ing (on-the-fly) structural constraints with traditional symbolic execution [56], and
enables systematic testing of multi-threaded programs with linked structures. To
our knowledge, this is the first technique that shows how to enable an off-the-shelf
model checker to check simultaneously for properties of structures and properties of
thread interleavings. An implementation of this technique in the Java PathFinder
model checker has been used to systematically generate inputs for flight control soft-
ware [39].
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Chapter 10

Conclusion

This chapter points out the importance of testing, summarizes our work on automat-
ing testing of modern (object-oriented) software and concludes the thesis with some
final thoughts.

10.1 Importance of Testing

Software systems are steadily growing in complexity and size. At the same time, reli-
ability is becoming a more vital concern. To meet this demand for reliability, a great
deal of progress is needed in building software checking techniques that developers
would be willing to adopt.

Testing, the most widely used technique for validating software quality, is a labor-
intensive process. Inadequate testing is blamed for $60 billion in annual costs incurred
by users and vendors, according to a study conducted last year by the Commerce
Department’s National Institute of Standards and Technology. The study estimates
that an improved testing infrastructure might save a third of these costs.

10.2 Constraint-based Test Generation

The key idea in this dissertation is systematic generation of structurally complex test
data from declarative constraints that characterize the tests. For testing a method
in an object-oriented program, these constraints represent the class invariants of the
method inputs. But these constraints can additionally represent test purposes and
test selection criteria. The ability to generate tests from constraints thus provides a
powerful technique for testing real systems.

The TestEra tool implements this technique for testing Java programs. TestEra
uses a SAT solver for test generation and correctness checking. Given a method
precondition (that characterizes allowed inputs) and (optionally) a postcondition,
and a bound on input size, TestEra (1) uses SAT to solve the constraint represented
by the precondition, (2) translates each boolean solution into a concrete test input, (3)
executes the method on each input, (4) translates each output into a boolean solution
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of the constraint represented by the postcondition, and (5) uses SAT to check if each
input/output pair satisfies the postcondition.

We have performed various experiments to evaluate (1) the feasibility of using
SAT solvers for solving constraints that represent structurally complex data and (2)
the practicability of using systematic testing for checking the correctness of real ap-
plications. The experiments with generating complex data structures, including some
that are implemented in the Java Collection Framework, indicate that it is feasible
to use off-the-shelf SAT solvers for enumerating structures. The experiments with
testing real applications uncovered significant flaws (that had gone unnoticed despite
years of use) in an intentional naming scheme developed for dynamic networks and a
fault-tree analyzer developed for NASA.

The use of SAT solvers for test generation presents a compelling application that
suggests that solution enumeration in SAT is an important feature that merits re-
search in its own right.

10.3 Final Thoughts

Writing constraints that express crucial properties of code, even before the code has
been implemented, has great benefits. The success of test-first programming [8], a
key practice of Extreme Programming, indicates not just the importance of having
regression tests and having them early, but also the value of focusing on intent before
coding. Even though test-first programming does not require the developer to write
a specification, the act of devising test cases forces a consideration of what behavior
is intended. And writing a constraint that defines a complex structure is often,
surprisingly, much less work than building manually a reasonable test suite for a
method that manipulates such a structure. This approach thus promises to bring the
benefit of test-first programming at lower cost.

Writing a constraint formally nonetheless incurs a non-trivial cost. A key to en-
abling wide use of constraint-based testing is to develop techniques that allow build-
ing constraints without a huge overhead in terms of cost of writing. Such techniques
need to provide well-founded (mathematical) notations that are accessible and cost-
effective to non-experts, and to provide functionality that minimizes the burden of
building specifications, for example by allowing developers to validate their specifica-
tions.

Among the notations that are currently in use, object models are becoming pre-
dominant, particularly for object-oriented design. They allow developers to reason
about code at a more intuitive and abstract level. An object modeling notation, such
as Alloy, that is based on a simple first-order logic of sets and relations, seems to
provide a solid platform to build a notation that both has a mathematical foundation
and is likely to gain wide acceptability among the developers. By writing an input
constraint in Alloy, the developer can rely on the analyzer not only to generate a high
quality set of test inputs but also to check crucial properties of the specification itself.

Our work on systematic testing provides, more generally, a technique for establish-
ing a relationship between object models and code. Developing such techniques have
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various benefits. They not only allow establishing conformance of code to models but
also allow developers to use a model as a surrogate for code and to have confidence
that properties inferred from the model hold also for the code itself.

It is worth exploring how systematic testing might be extended for checking system
level properties of industrial-scale applications that take arbitrary inputs. A fusion of
black-box testing, white-box testing and symbolic-execution-based techniques, where
input constraints are conjoined with constraints from code and solved using a com-
bination of solvers, is worth investigating.
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Appendix A

Implementation of remove

boolean remove(int i) {
Node parent = null;
Node current = root;
while (current != null) {

if (info == current.info) break;
if (info < current.info) {

parent = current;
current = current.left;

} else {
// (info > current.info)
parent = current;
current = current.right;

}
}
if (current == null) return false;
Node change = removeNode(current);
if (parent == null) {

root = change;
} else if (parent.left == current) {

parent.left = change;
} else {

parent.right = change;
}
return true;

}

// helper method
Node removeNode(Node current) {

size--;
Node left = current.left, right = current.right;
if (left == null) return right;
if (right == null) return left;
if (left.right == null) {

current.info = left.info;
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current.left = left.left;
return current;

}
Node temp = left;
while (temp.right.right != null) {

temp = temp.right;
}
current.info = temp.right.info;
temp.right = temp.right.left;
return current;

}
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Appendix B

Generating Red-black Trees

Red-black trees [24] are binary search trees with one extra bit of information per
node: its color, which can be either “red” or “black”. By restricting the way nodes
are colored on a path from the root to a leaf, red-black trees ensure that the tree is
balanced, i.e., guarantee that basic dynamic set operations on a red-black tree take
O(lg n) time in the worst case.

A binary search tree is a red-black tree if:

1. Every node is either red or black.

2. If a node is red, then both its children are black.

3. Every simple path from the root node to a descendant leaf contains the same
number of black nodes.

The Java Collection Framework, in particular the class java.util.TreeMap, im-
plements red-black trees. Part of the TreeMap class declaration is:

class TreeMap {
Entry root;
...
static class Entry {

Object key;
Entry left;
Entry right;
Entry parent;
boolean color;
...

}
}

TreeMap implements a mapping between keys and values and an Entry has two
data fields: key and value (which is not shown above). The field value represents the
value that the corresponding key is mapped to and does not constrain the structure
of a red-black tree. TreeMap has some other fields that we have not presented above.
Some of these fields are constants, e.g., the field RED is the constant boolean false, and
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// binary search tree
// ...

// parent ok
all e, f: root.*(left+right) |

e in f.(left + right) <=> f = e.parent

// red black tree
// 1. every node is red or black, by construction
// 2. red node has black children
all e: root.*(left + right) |

e.color = false && some e.left + e.right =>
(e.left + e.right).color = true

// 3. all paths from root to NIL have same # of black nodes
all e1, e2: root.*(left + right) |

(no e1.left || no e1.right) && (no e2.left || no e2.right) =>
#{p: root.*(left+right) | e1 in p.*(left+right) && p.color = true} =
#{p: root.*(left+right) | e2 in p.*(left+right) && p.color = true}

Figure B-1: Structural constraints for red-black trees.

some are not relevant for testing commonly used methods (such as remove, get and
put), e.g., the field modCount is used to detect co-modification. For test generation,
TestEra allows users to specify which fields to exclude from the Alloy models it builds.

The declared type of key is Object. However, key objects need to be compared
with each other as red-black trees are binary search trees. For comparisons, either an
explicit Comparator for keys can be provided at the time of creation of the tree or the
natural ordering of the actual type of key objects can be used. We define the actual
type of the field key to be java.lang.Integer. Recall that, TestEra allows users to
assign to a field a type (different from the declared type) that is actually used in test
generation.

The structural constraints for red-black trees are readily expressible in Alloy (Fig-
ure B-1). The constraints require the tree to be a binary search tree, the parent field
to be consistent with the fields left and right, and the tree to satisfy the properties
of red-black trees given above.

The symmetry breaking constraints for red-black trees are identical to those for
binary search trees (Section 6.4.3) since the field color has a type with values that
are not permutable and the value of field parent is determined entirely by the values
of left and right fields.
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