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Abstract

Random testing can quickly generate many tests, is easy to implement, scales to
large software applications, and reveals software errors. But it tends to generate
many tests that are illegal or that exercise the same parts of the code as other tests,
thus limiting its effectiveness. Directed random testing is a new approach to test
generation that overcomes these limitations, by combining a bottom-up generation of
tests with runtime guidance. A directed random test generator takes a collection of
operations under test and generates new tests incrementally, by randomly selecting
operations to apply and finding arguments from among previously-constructed tests.
As soon as it generates a new test, the generator executes it, and the result determines
whether the test is redundant, illegal, error-revealing, or useful for generating more
tests. The technique outputs failing tests pointing to potential errors that should
be corrected, and passing tests that can be used for regression testing. The thesis
also contributes auxiliary techniques that post-process the generated tests, including
a simplification technique that transforms a failing test into a smaller one that better
isolates the cause of failure, and a branch-directed test generation technique that aims
to increase the code coverage achieved by the set of generated tests.

Applied to 14 widely-used libraries (including the Java JDK and the core .NET
framework libraries), directed random testing quickly reveals many serious, previously
unknown errors in the libraries. And compared with other test generation tools
(model checking, symbolic execution, and traditional random testing), it reveals more
errors and achieves higher code coverage. In an industrial case study, a test team
at Microsoft using the technique discovered in fifteen hours of human effort as many
errors as they typically discover in a person-year of effort using other testing methods.

Thesis Supervisor: Daniel N. Jackson
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Software companies spend vast resources testing the software they build, to find and
remove as many errors as possible before they ship their products. An estimated thirty
to ninety percent of the total cost of developing software goes into testing [12, 33]. At
Microsoft, for example, there is roughly one test engineer for every software developer.
Still, software remains full of errors, resulting in billions of dollars in losses across the
economy: A 2002 report by the National Institute of Standards and Technology
estimates the yearly cost of inadequate software testing on the US economy to be
approximately sixty billion dollars [33]. One third of the cost is borne by software
companies, who must correct defects and distribute fixes, and two thirds by end
users, who suffer decreased productivity due to software malfunctions; for example,
software errors in the finance industry cause monetary losses due to aborted and
delayed transactions, system shut downs, and manual effort in correcting processing
errors.

Part of the reason for the cost and inadequacy of testing is that it remains a
largely manual process, even when many aspects of the process could benefit from
automation. This thesis presents a technique that automates the creation of test cases,
a primary testing activity. Directed random testing mechanically creates a set of test
cases that the engineer can use to start a test suite or complement an existing one.
The technique combines random generation of test inputs with systematic pruning of
the input space to avoid generating illegal and equivalent inputs.

Directed random testing can complement manual testing by automatically gener-
ating test cases that cover scenarios an engineer may have missed. Our experiments
and case studies show that the technique can reveal errors that evade manual testing
and other automated test case generation techniques, and that directed random test-
ing can increase the productivity of a team of test engineers working in an industrial
environment by orders of magnitude: using directed random testing, a test team at
Microsoft discovered, in fifteen hours of human effort, as many errors as are typically
discovered in a man-year of effort, using other testing methods.
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1.1 Problem Description and Previous Approaches

1.1.1 Test Suites are Valuable

Testing a software application involves executing the application on a set of inputs,
and evaluating whether it behaves as expected on the inputs. To do this, a test
engineer creates a set of test cases, or test suite. Each test case consists of an input
that drives execution of the software in a specific scenario, and an oracle that checks
for expected program behavior.

Software development organizations use test suites to assess the reliability of the
software they develop; a software artifact that leads to a large number of failing test
cases is bound to be unreliable in practice. Test suites are also valuable for discovering
and fixing errors, because failing test cases offer clues about their location in the code.
When testing a software artifact, a test engineer aims to create a test suite that is as
comprehensive as possible, i.e. a test suite that can reveal as many errors as possible
in the software under test.

1.1.2 Creating a Comprehensive Test Suite is Challenging

The input space of many realistic software artifacts is so large as to be practically
infinite, and creating a set of test cases representative of the important scenarios is an
intellectually challenging and time consuming task. Test engineers use a number of
methods [3] to help them create an adequate set of test cases (e.g. partition testing),
as well as coverage metrics that give some measure of the adequacy of a test suite
(e.g. statement or branch coverage) after it has been created. And yet, most test
suites miss important cases.

Consider for example the widely-used Java Development Kit [40], a set of libraries
for Java spanning several hundred thousand lines of code. Over the years, Sun has
developed a test suite for the JDK called the Java Compatibility Kit which, according
to Sun, is an “extensive test suite to ensure compatible implementations of the Java
Platform” [56]. Despite significant effort on Sun’s part to create a comprehensive test
suite, the test suite lacks many test cases that miss errors present in the JDK, as evi-
denced by the thousands of JDK “bug reports” in Sun’s bug database [88] and by our
experience using directed random testing to reveal errors in the libraries (Chapters 8
and 9). Our aim is not to pick on Sun; all software development companies face the
problem of inadequate test suites. For example, Chapter 9 describes a case study in
which a test team at Microsoft discovered missing important test cases in a test suite
for a core component of the .NET framework [74].

Automated test generation techniques can create many more inputs than an en-
gineer would have time to create by hand, revealing important scenarios missed by
manual efforts. Two well-established approaches to automated test generation are
random and exhaustive testing. Random testing generates inputs at random from
an input grammar. Despite its näıve generation strategy and lack of completeness,
random testing is surprisingly effective in producing error-revealing test cases [46].
At the other end of the spectrum, exhaustive testing generates all inputs up to some
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input size bound [21, 4, 87]. To improve efficiency, many exhaustive generators use
“pruning” techniques that prevent the generation of equivalent inputs on which the
software under test behaves identically, and illegal inputs that the software is not re-
quired to handle. When feasible, exhaustive testing is attractive because it provides
complete input coverage up to the bound. The downside of the approach is its limited
applicability due to the large input space of many software artifacts.

1.2 Directed Random Testing

1.2.1 Key Idea: Generate Randomly, Prune Systematically

For many programs, exhaustive testing is infeasible, even for small input size bounds.
Nevertheless, the idea of pruning can be applied to increase the effectiveness of non-
exhaustive approaches such as random testing. Directed random testing combines
random generation with input pruning.

Directed random testing generates tests for software whose input data can be built
compositionally from a set of operations. Examples include container data structures
like linked lists or hash tables that can be built by adding and removing items; XML
trees built from smaller XML subtrees (e.g. a table consisting of table rows); or
mathematical objects like matrices or polynomials that can be built from similar
objects by addition and multiplication.

We call the operations used to create input data builder operations. Directed
random testing generates new inputs incrementally, by applying builder operations
to previously-generated inputs. At each step, the technique creates a new input
by randomly selecting a builder operation, finding arguments from among previous
inputs. The technique executes new inputs and uses the result of the execution to
heuristically determine if an input is illegal or if two inputs are equivalent. It prunes
the input space by avoiding using such inputs as arguments to further operations.

1.2.2 Example

Consider the task of testing a procedure that adds a polynomial and a monomial; for
example, given the polynomial 2x3+1 and the monomial x2, the procedure returns the
polynomial 2x3+x2+1. The procedure takes as inputs an instance of a data type Poly
that represents a polynomial, and an instance of a data type Mono that represents a
monomial. Instances of this data type can be created using the operations and related
data types shown (as Java constructs) in Figure 1-1. The data types shown are based
on a real programming assignment given to undergraduate computer science students
at MIT.

Creating polynomial and monomial values using these operations is a recursive
task. For example, in order to create a polynomial, we must first create some mono-
mials (Mono values), and then call the operation Poly(Mono... elements) on the
monomial values, respecting the preconditions stipulated by the operation (e.g. that
the monomials are sorted in decreasing-exponent order). Similarly, to create a mono-
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public class Rat {

// Creates a Rat representing n/d. Requires: d is not 0.
public Rat(int n, int d) { ... }

}
public class Mono {

// Creates a monomial with the specified coefficient
// and exponent. Requires: c is not null, e is not negative.
public Mono(Rat c, int e) { ... }

}
public class Poly {

// Creates a new polynomial with the specified elements.
// Requires: elements array is not null, elements are sorted
// in order of decreasing exponent, and have non-zero coefficient.
public Poly(Mono... elements) { ... }

}

Figure 1-1: Three classes implementing polynomials. For brevity, we do not show all
methods declared in the classes and omit method bodies.

mial we must first create two values, a rational number (representing the coefficient)
and an integer (representing the exponent), and then call the operation Mono(Rat

coeff, int exp) on those values. We can represent this recursive process using
terms over the operations; for example, the term

Poly(Mono(Rat(2,1),3),Mono(Rat(1,1),0))

corresponds to the polynomial 2x3 + 1. We can create inputs to the procedure by
creating terms over builder operations, and evaluating the terms to obtain actual
runtime values.

Random Testing

A random input generator generates random terms over the polynomial operations.
There are two fundamental problems with this approach. First, without knowledge of
each operation’s preconditions, a random generator can generate many illegal terms;
for example, a term that calls the Poly operation with an unsorted list of monomials.
Illegal terms can result in arbitrary (but not error-revealing) behavior in the code
under test: the procedure under test expects well-formed polynomials as input, and
may behave unexpectedly given an invalid polynomial. Second, a random genera-
tor can produce many equivalent terms, i.e. terms evaluating to values that cause
the procedure under test to follow the same execution path, adding nothing to the
testing effort. For example, the Rat operation always reduces the rational number it
returns, making terms like Poly(Mono(Rat(2,1),3)) and Poly(Mono(Rat(4,2),3))

(both representing 2x3) equivalent, since their values elicit identical behavior on the
procedure under test.

14



Directed Random Testing

Directed random testing improves random testing by discarding illegal and equivalent
terms whenever they are generated. The technique maintains a set of previously-
generated terms called a component set. The component set initially contains only a
set of “seed” terms, e.g. terms representing primitive values like 0, 1, etc. The genera-
tion proceeds in steps. At each step, the generator randomly selects a new term among
the set of all terms achievable by applying a new operation to terms in the component
set, but restricts the selection to terms that are legal and non-equivalent to existing
terms. For example, the restricted set of legal and non-equivalent terms, given the
component set {1, -1, Rat(1,1)} is { Rat(1,-1), Rat(-1,1), Mono(Rat(1,1),1)}.
The set excludes Rat(1,1) because it is already in the component set, Rat(-1,-1)
because it is equivalent to a term in the component set, and Mono(Rat(1,1),-1)

because it is illegal.
By restricting the generation process, directed random testing prunes the in-

put space. For example, the generator never creates the illegal polynomial term
Poly(Mono(Rat(1,1),-1)), because the illegal sub-term Mono(Rat(1,1),-1) is never
added to the component set. The generator never creates both equivalent terms
Mono(Rat(1,1),1) and Mono(Rat(-1,-1),1) because only one of the two sub-terms
Rat(1,1) and Rat(-1,-1) is ever added to the component set. Because terms are
compositional (and assuming legality and equivalence are compositional as well), the
generator may prune an infinite number of illegal (equivalent) terms from the search
space by preventing a single illegal (equivalent) term from being added to the com-
ponent set.

To detect illegal and equivalent terms, directed random testing executes the terms
as it generates them, and uses the result of the execution to decided if they should
be discarded and not added to the component set. For instance, a term whose exe-
cution leads to an exception is judged illegal, and two terms that produce the same
result when used as arguments to observer procedures (e.g. an equals method) are
flagged as equivalent. The strategy is fully automatic, but potentially unsound. Our
evaluation shows that it is effective in practice.

1.3 Randoop

Randoop implements directed random testing for Java and .NET. (“Randoop”
stands for “Randomized Test Generator for Object-Oriented Programs.”) The tool
takes as input a set of classes, extracts their method signatures, and uses the methods
as builder operations to create test inputs. Randoop generates test inputs until a
user-specified time limit expires, and outputs the set generated inputs as compilable
code.

Randoop can be used as an end-to-end test case generator (inputs plus oracles)
to test a collection of methods. In this usage model, Randoop considers the methods
in the classes as being both builder operations and methods under test. As it executes
operations, Randoop checks a set of object validity properties (built into the tool,
and user-extensible), outputs property-violating inputs as failing tests, and property-
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Error-revealing test case Regression test case

// Fails on Sun 1.5.
public static void test1() {

LinkedList l1 = new LinkedList();
Object o1 = new Object();
l1.addFirst(o1);
TreeSet t1 = new TreeSet(l1);
Set s1 =
Collections.unmodifiableSet(t1);
Assert.assertTrue(s1.equals(s1));

}

// Passes on Sun 1.5, fails on Sun 1.6
public static void test2() {

BitSet b = new BitSet();
Assert.assertEquals(64, b.size());
b.clone();
Assert.assertEquals(64, b.size());

}

Figure 1-2: Two test cases output by Randoop, which implements directed random
testing.

satisfying inputs as regression tests. Figure 1-2 shows two examples of test cases
generated by Randoop. The first test case shows a violation of reflexivity of equals,
a property that all Java objects must satisfy. The test case shows a scenario that
creates an invalid set s1 that returns false for s1.equals(s1). The second test case
is a regression test case that violates no properties on version 1.5 of the Java JDK,
but when executed against version 1.6 of the JDK, reveals a regression error that
causes the same BitSet object to report a different size.

1.4 Evaluation

We have evaluated directed random testing with experiments and case studies that
compare it against other techniques. Our results indicate that directed random test-
ing can outperform random and exhaustive testing, in terms of coverage and error
detection. For example, when compared with model checking and random testing on
four complex data structures used previously in the literature [92], directed random
testing achieves higher or equal coverage than the other techniques, and on aver-
age achieves this coverage in one third of the time as systematic testing techniques.
On a set of 14 software component libraries (totaling more than 4,500 classes and
780KLOC), directed random testing reveals many previously-unknown errors that
the other techniques miss.

We have assessed the cost effectiveness of Randoop by conducting an industrial
case study. As part of the study, test engineers at Microsoft applied directed random
testing to a critical component of the .NET architecture. Due to its complexity and
high reliability requirements, the component had already been tested by 40 test engi-
neers over five years, using manual and automated testing techniques. Nevertheless,
directed random testing revealed errors in the component that eluded previous test-
ing, and did so two orders of magnitude faster than a test engineer would on average.
Directed random testing also revealed errors in other testing and analysis tools, and
deficiencies in the development team’s manual testing methodologies.
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1.5 Contributions

The thesis makes the following contributions.

1. Directed random testing, a new randomized test generation technique whose
goal is to preserve random testing’s strengths (e.g. error-revealing effectiveness,
scalability, and automation) while mitigating its deficiencies (e.g. its tendency
to generate illegal and equivalent inputs). Directed random testing combines
a bottom-up, incremental approach to generating test inputs with automated
heuristic pruning strategies to avoid illegal and redundant inputs.

2. Auxiliary techniques to increase the quality of the inputs generated by directed
random testing. Replacement-based simplification is a test simplification tech-
niques that aims to help the engineer isolate the cause of a failure. It removes
and replaces operations from a long failing test case to yield a smaller and
simpler failing test case. Branch-directed generation aims to increase the code
coverage achieved by directed random testing by monitoring the execution of
inputs that fail to follow specific branches in the software under test, and mod-
ifying with the goal of covering those branches.

3. A tool architecture that implements directed random testing for object-oriented
software. The Randoop test generator implements the architecture for object-
oriented software implemented in Java and .NET.

4. An experimental evaluation of directed random testing measuring its effective-
ness in revealing errors and achieving code coverage. The experiments compare
directed random testing’s effectiveness on these measures with random, exhaus-
tive, and manual testing. The subject programs include previous data structure
benchmarks and large Java and .NET applications.

5. A case study assessing directed random testing’s cost effectiveness in an in-
dustrial setting, which often has very different environmental conditions than
a research setting. The study describes the use of directed random testing by
experienced test engineers at Microsoft to generate new tests cases for a core
.NET component library.

Other researchers have used directed random testing as a component in new tech-
niques for test generation, test selection, and dynamic analysis [9, 78, 25, 57, 58, 64];
as a basis of comparison with manual and automated approaches to test genera-
tion [10, 5, 53]; as an experimental subject program [27]; and as a source of test cases
for evaluating techniques not related to test generation [85]. Figure 1-3 gives a brief
summary of the uses and evaluations of directed random testing that we are aware of
as of this writing. Randoop has also been used in software engineering courses at
Caltech, the University of Illinois, and Universidade Federal de Pernambuco in Brazil,
and has found industrial use at Microsoft and the Fraunhofer Center for Experimental
Software Engineering, where it is being applied to discover errors in NASA software.
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1.6 Thesis Organization

The thesis is logically divided into three parts.

� Preliminaries. Chapter 2 discusses basic concepts in software testing. The
chapter describes the qualities of a useful test suite, the random and exhaustive
approaches to automated test case generation, and unit testing.

� Approach. Chapters 3 through 7 describe directed random testing. Chapter 3
describes a formal framework for test generation and introduces top-down and
bottom-up generation, two basic strategies for creating terms over builder oper-
ations. Chapter 4 describes directed random testing, which extends bottom-up
generation by pruning illegal or equivalent inputs. Chapter 5 describes problems
with terms and extends the technique to address these problems. Chapter 6 de-
scribes post-processing techniques that modify the inputs generated by directed
random testing to make them simpler to debug and to increase the branch cov-
erage they achieve. Chapter 7 describes the architecture of Randoop, the
implementation of directed random testing for Java and .NET.

� Evaluation and discussion. Chapters 8 through 12 assess the effectiveness of
directed random testing in comparison with manual testing and with other au-
tomated test generation techniques, using experiments (Chapter 8), case studies
(Chapter 9), a discussion of directed random testing’s strengths and limitations
(Chapter 10), and a survey of related work (Chapter 11). Chapter 12 offers
concluding remarks.
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Reference Description

Artzi et al. [9]
Used Randoop as an input generation component in a technique imple-
menting an automated static/dynamic mutability analysis for Java.

Orso et al. [78]
Used Randoop as a component of a regression testing technique that
dynamically analyzes the execution of test inputs on two code versions
for behavioral differences.

d’Amorim et al. [25]
Extended Randoop to implement a new test generation technique that
identifies code changes in a set of classes, and uses the information to
limit the generation scope of random testing.

Jaygari et al. [57]
Extended Randoop with techniques that monitor code coverage for each
method under test and alters the selection distribution of methods based
on coverage information.

Jaygari et al. [58]
Used Randoop as an input generation component in a test generation
technique that combines directed random testing and adaptive random
testing [18].

Yu et al. [64]
Combined Randoop and the Racetrack [98] race condition/deadlock de-
tector to generate test inputs and analyze their execution for errors. Re-
vealed three serious errors in a released Microsoft product.

Bacchelli et al. [10]

Used Randoop in a case study evaluating the effectiveness of manual and
automatic unit test generation techniques. Randoop revealed 7 errors in
120 hours of manual effort (17 hours/error), compared with 14 errors in
490 hours for manual testing (35 hours/error).

Andrews et al. [5]

As part of the evaluation of a test generation technique based on genetic
algorithms, compared branch coverage achieved by Randoop, JPF [91],
and the authors’ tool. All three techniques achieve the same coverage.
(But Randoop achieves it in equal or less time.)

Inkumsah et al. [53]

As part of evaluating a test generation technique based on symbolic ex-
ecution and evolutionary testing, compared branch coverage achieved by
Randoop and five other test generation tools. Of 13 classes tested, Ran-
doop achieved the highest coverage for 6, better-than-average coverage
in 6, and worse-than average coverage in 5.

Daniel et al. [27]
Used Randoop as a subject program, to evaluate a machine learning
algorithm that predicts code coverage achieved by a test generation tool,
using as features metrics of the software under test.

Rayside et al. [85]
Used Randoop to generate tests used to evaluate a code generation tech-
nique for equals/hashCode. Used the test cases to check that generated
code preserves original behavior and fixes errors.

Figure 1-3: Recent uses and evaluations of directed random testing by other re-
searchers. The first six entries describe techniques that use the technique as a com-
ponent in other techniques. The next three entries use directed random testing as a
basis for comparison in the evaluation of other test generation techniques. The last
two entries use directed random testing to generate test cases used to evaluate other
techniques.
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Chapter 2

Software Testing

Software testing [3] is large and diverse field, reflecting the different requirements that
software artifacts must satisfy (robustness, efficiency, functional correctness, back-
ward compatibility, usability, etc.), the different activities involved in testing (writing
down requirements, designing test plans, creating test cases, executing test cases,
checking results, isolating errors) and the different levels at which software can be
tested (e.g. unit vs. system testing).

We present directed random testing in the context of a particular testing activity:
testing software components that export a collection of operations; examples include
container data types and object-oriented libraries. The goal of directed random test-
ing is to automate the creation of unit test cases that check the operations for expected
behavior, and that can complement a suite of manually-generated test cases. This
section discusses aspects of software testing important for better understanding this
context.

Since the goal of directed random testing is to generate test cases that comple-
ment a test suite, we starting by discussing the desired qualities of a test suite, and
factors to consider when assessing an automated test generation technique. To relate
directed random testing with other approaches to automated test generation, we give
an overview of two previous approaches to automated test generation, random and
exhaustive testing. To give the reader a better idea of the domain that directed ran-
dom testing targets, we also describe the process of unit testing, and the creation of
unit tests.

2.1 Desired Qualities of a Test Suite

Test engineers spend a large portion of their time crafting test cases. When creating
a set of test cases (i.e. a test suite) for a software artifact, test engineers aim for
the suite to have qualities that make it effective in revealing errors. A test suite
should adequately test the multiple possible behaviors of the software under test; it
should be efficient in the amount of resources it requires to execute; its test scenarios
should represent legal uses of the software; and when it reveals an error, it should
give sufficient and succinct clues to help the engineer debug the software.
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� A test suite should be adequate. A test suite should sufficiently test the
software, covering important scenarios that are likely to arise in practice. An
ideal test suite contains a failing test case if and only if there is a failure in
the software under test. (As we discuss below, such a test suite is exceedingly
difficult to achieve.)

� A test suite should be efficient. An efficient test suite executes in reasonable
time, allowing the developer to run it more frequently and discover errors earlier
in the development cycle. One major source of inefficiency in test suites is the
presence of redundant test cases: a test case is redundant if all the errors it
reveals are revealed by other test cases. Redundant test cases increase the cost
of executing a test suite. They can also waste time by signaling multiple failures
that, upon manual inspection, are all caused by a single error.

� A test suite’s test inputs should represent legal uses of the software.
A test suite should test the software using inputs that it is required to handle
correctly. Illegal test inputs may cause the software to behave unexpectedly,
but not point to actual errors.

� A test suite’s test cases should give sufficient and succinct clues for
debugging. A useful test suite contains test cases that not only reveal errors in
the software under test, but also make the process of determining the location
of the erroneous code easier. For example, a test case that reveals an error
in a binary search routine by running the routine on a 1-element array makes
it easier to discover the source of the error than a test case that reveals the
same error using a 1000-element array. More generally, given two test cases
that reveal the same error, a more useful test case is a smaller test case.

It can be difficult to make the above properties precise, much less achieve them
fully. For example, creating a fully adequate test suite that has a failing test case
exactly when the software contains an error would actually constitute proof of the
program’s correctness [95], and proving a program correct is known to be difficult.
Thus, an ideal test suite is typically unachievable within reasonable time. Instead, test
engineers aim to create a test suite that test as many possible behaviors, preferably
behaviors that reveal critical errors rendering the system unusable or open to security
attacks. For example, when developing some of its products, Microsoft uses a four-
point severity scale when rating errors [70], with “1” for a fatal error that renders the
system unusable (and is always fixed prior to releasing the software, if discovered in
time) and “4” a minor error that may cause inconvenience but does not affect core
usability (and may never be fixed).

The other desired qualities can be equally difficult to achieve in practice. Detecting
redundant test cases can be challenging in the face of software modifications: a test
case that may be redundant in one version of the software may be non-redundant
in a different version. Similarly, creating succinct test cases is challenging because
extraneous test data for one version of the software may be crucial to revealing an error
in a different version. Finally, creating legal inputs to the software can be challenging
because what constitutes a legal input is often not written down precisely.
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2.2 Automated Test Generation

The complexity of modern software means that the number of possible execution
scenarios is extremely large. Manual test generation efforts often miss many important
scenarios; the resources available to a development team (most importantly, human
time) are usually not sufficient to cover all cases. Techniques that automate the
creation of new test cases can help an engineer discover scenarios that escape manual
testing, decreasing the cost of testing and increasing the quality of the software under
test.

A fundamental question to ask when assessing a new automated test generation
technique is whether a test engineer equipped with the new technique can be more
productive in creating a test suite with the qualities described in Section 2.1, in a
scalable and cost-effective manner.

� Scalability. The scalability of a technique refers to the technique’s ability to
give useful results even as the software under test grows in size or complexity.
For example, a technique may fail to scale if its algorithms take too long or are
unable to analyze language features present in the code.

� Cost effectiveness. For an automated test generation tool to succeed in a
real industrial environment, it must reveal errors important enough to be fixed,
and it must do so more economically than the engineer could do so without the
technique. A technique may fail to be cost effective if it requires the user to
spend manual effort disproportionate with the utility of the results.

The next three sections describe different approaches to automated test generation
and discusses their scalability, cost effectiveness, and ability in helping an engineer
create test cases. Sections 2.2.1 and 2.2.2 describe two established approaches to
automated test generation, random testing and exhaustive testing. Each section de-
scribes the distinguishing features of each approach, and discusses the strengths and
weaknesses that these features impart on techniques that implement the approach.
Section 2.2.3 describes directed random testing, a new approach that combines ele-
ments from random and exhaustive testing.

2.2.1 Random Testing

Random testing generates test inputs randomly from the input space of the software
under test [46]. Researchers and practitioners have implemented random test tools for
many domains, including Unix utilities [72], Windows GUI applications [34], Haskell
programs [20], and object-oriented programs [22, 82, 19].

The fundamental feature of a random test generation technique is that it generates
test inputs at random from a grammar or some other formal artifact describing the
input space. For example, “fuzz testers” [72] are tools that generate random sequences
of bits or characters that can be used as input to stream-processing programs (e.g.
Unix utilities). Random testers for file systems generate sequences of file system
operations from a predetermined grammar of operations [44]. Random test generators
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for object-oriented classes generate sequences of method calls from a grammar of valid
methods calls [22, 82, 19]. The distribution that a random tester uses when generating
inputs need not be uniform. Some generators allow the user to specify distributions
for selecting inputs or limit the domain of values [20]. The key is that when a choice
is to be made in constructing a test input, a random generator makes the choice
randomly, not deterministically.

Strengths of Random Testing

Random testing is an attractive test generation technique for two principal reasons.

� Random testing reveals errors. Many studies show that random testing is
effective in creating test cases that reveal errors not found by other methods.
For example, in a recent study researchers at NASA applied a random testing
tool to a file system used aboard the Mars rover [44]. The generator created
hundreds of failing tests that revealed previously unknown errors, despite the
fact that many other testing techniques (manual and automated) had already
been applied to the system. Section 11 describes many other studies that show
random testing to be effective in creating error-revealing test cases.

� Random testing is cost effective. Random testing tools are easy to imple-
ment, and require little or no up-front manual effort on the part of the user.
Together with their ability to reveal errors, this makes random testing attrac-
tive from a cost-benefit standpoint: a random testing tool can quickly generate
a large volume of inputs that explore a large number of behaviors, regardless of
the size or internal implementation of the software under test. For example, a
fuzz tester that checks for abnormal program termination given random input
can be applied to a stream-processing utility, a media player, or a web browser,
with little or no modification.

Pitfalls of Random Testing

Random testing tools can reveal errors in a cost effective manner. However, they also
suffer from deficiencies that can negatively impact their effectiveness.

� Random testing can create many illegal inputs. An illegal input is an
input that violates the requirements expected by the program or unit under
test. For example, a binary search procedure expects its input to be sorted, so
most inputs generated at random would be illegal. Most random test generator
generate inputs from a grammar that is easy to infer mechanically or hard-code
in the tool, but may produce illegal inputs. For example, fuzz testers create
random sequences of characters, but some Unix utilities expect input files with
specific formats; for such utilities, a fuzz tester will generate many illegal inputs.

� Random testing can create many equivalent inputs. Random testing
can produce many equivalent inputs that exercise the same behavior of the
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software, or that are indistinguishable for the purpose of revealing a certain kind
of error. For example, when testing a binary search routine, only the ordering
relationship among the elements in the array is important, not the actual values
of the elements. Two arrays containing different elements, but the same ordering
relationship among the elements, are equivalent. Most random testing tools
do not attempt to detect equivalent inputs, and can easily generate a large
number of them, wasting time by repeatedly exercising the same behaviors in
the software under test.

� Random testing creates long test cases. Random testing tools usually
produce test cases with large inputs (e.g. large streams of characters, large
files, or long sequences of operations). Studies suggest that random testing is in
fact more effective in revealing errors when it generates long tests, even when
such errors can be revealed with shorter test cases [28, 6]. Unfortunately, large
inputs can decrease the productivity of the engineer who may have to inspect
them. A simple, concise test case can help an engineer quickly discover the
cause of a failure. A long and complex test case can obfuscate the cause of the
failure and increase the amount of time spent debugging.

2.2.2 Exhaustive Testing

Exhaustive testing techniques generate all inputs up to some input size bound. Two
examples of exhaustive testing techniques are model finding (e.g. [60]) and model
checking [21]. Some exhaustive generation techniques enumerate all inputs up to a
given size [96, 4, 87], while others derive a set of constraints describing each non-
equivalent input, and attempt to solve the constraints to yield concrete inputs [62].
The fundamental feature distinguishing exhaustive testing from random testing is
that an exhaustive testing technique generates all inputs within a finite bound, typ-
ically in a deterministic fashion. Even for small bounds, the number of inputs can
be infeasible to generate within reasonable resources (time or space). To combat this
problem, exhaustive generation tools usually incorporate techniques to avoid gener-
ating illegal or equivalent elements from the input space. To avoid generating illegal
inputs, some tools require invariants (constraints that specify expected properties of
inputs) and restrict generation to inputs that satisfy the invariants. To avoid gen-
erating equivalent (or symmetric) inputs, exhaustive testing techniques may analyze
the internal implementation of the software under test, to determine when two inputs
might be indistinguishable to the software.

Strengths of Exhaustive Testing

� Exhaustive testing guarantees coverage. Because it tests the software on
all small inputs, exhaustive testing guarantees complete coverage of the input
space, up to the given bound. Some proponents of this approach argue, and
our own experience supports, that most errors can be revealed by small test

25



inputs [54, 4]. This suggests that testing a program exhaustively on small
inputs is an effective way of revealing many of the errors present.

� Exhaustive testing avoids generating useless inputs. By pruning the
input space, exhaustive testing techniques reap two benefits: they do not waste
computer time exploring useless portions of the inputs space, and they do not
waste human time because the engineer does not have to inspect false error
reports resulting from illegal inputs, or multiple failing tests resulting from
equivalent inputs.

Pitfalls of Exhaustive Testing

Exhaustive testing can suffer from scalability problems due to both the size of the
input space and the complexity of the software under test. It can also be expensive
in terms of human time required to write invariants, abstractions, and other artifacts
necessary to prune the input space.

� Exhaustive testing suffers from lack of scalability. Exhaustive testing
can fail to scale due to the size of input space or the complexity of the software
under test. For many software artifacts, the size of the input space is too large
even for relatively small input bounds, and even using techniques that prune the
input space. Techniques that analyze the code under test can fail to scale if the
code is too complex or uses features not handled by the analysis. For example,
in a previous study, we found that a symbolic-execution-based technique was
able to generate inputs for only 10% of the software artifacts used in the study
due to limitations of constraint solving and to code that used features of the
programming language not handled by the symbolic execution engine [26].

� Exhaustive testing can require a high level of manual effort. Most
exhaustive techniques require the user to create artifacts like specifications,
drivers, or abstractions. This can make exhaustive techniques costly to use and
less likely to be adopted. In a recent study we conducted at Microsoft [81], we
discovered that a team of test engineers was more receptive to using a directed
random test generator than an exhaustive test generator that could in principle
create a more comprehensive set of tests. The directed random test generator
required no up-front effort, and the exhaustive generator required the engineers
to write parameterized tests [89]. The team found errors using the random
generator because they were able to immediately run it on their code base.
They found no errors with the exhaustive generator because, not knowing if
their manual effort would be cost effective, they wrote few parameterized tests.

2.2.3 A New Approach: Directed Random Testing

Directed random testing combines features from random and exhaustive testing. In
particular, it combines random generation of inputs with pruning techniques that de-
tect and discard illegal or equivalent inputs. Previous to our work, pruning techniques
had only been applied in the context of non-random approaches [96, 4, 87].
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Like random testing, directed random testing randomizes the generation of test
inputs. Directed random testing generates new inputs incrementally by combining
previously-generated inputs with new operations. (The approach is applicable to
inputs that can be created via recursive applications of operations.) The generator
maintains a component set consisting of previously-created inputs. To create a new
input, the generator combines randomly-selected inputs from the component set,
using them as arguments to new operations.

Like exhaustive testing, directed random testing prunes the input space. It does
this by discarding an input from the component set if it is illegal or equivalent to
an input already in the pool. The pruning is heuristic: the generator executes the
software under test on a new input and determines if it is illegal or equivalent to
another input based on the software’s runtime behavior.

Strengths and Pitfalls of Directed Random Testing

By randomizing the generation of inputs, directed random testing aims to preserve
random testing’s scalability and effectiveness in revealing errors. Directed random
testing is also likely to share some of random testing’s pitfalls, such as its tendency to
generate long test cases that are difficult to understand, and a lack of coverage guaran-
tee. By heuristically discarding inputs that appear illegal and equivalent inputs, the
approach aims to benefit from a strength of systematic testing, namely the pruning of
large portions of the input space. To avoid systematic testing’s weakness—potentially-
intensive manual effort in specifying preconditions, abstractions, etc.—directed ran-
dom testing uses heuristics (based on observing the runtime behavior of the software
under test) to determine if an input is legal or illegal, and new or redundant. In
later chapters, we describe experiments and case studies shed more insight into the
strengths and weaknesses of the approach, and the effectiveness of the heuristics.

We develop the directed random testing approach in the context of unit testing.
A unit test case checks the behavior of a single component or a group of related com-
ponents in the software under test. To better understand the goal of the technique,
Section 2.3 discusses the purpose of unit testing and the process of creating unit test
cases.

2.3 Unit Testing

Most software applications are structured as collections of components, each imple-
menting part of the functionality of the application. Testing an application as a whole
is known as system testing, and testing each component individually is known as unit
testing. For example, consider a command-line Java application (call it “polyplot”)
that takes as input a polynomial and outputs a file containing a plot of the poly-
nomial. The polynomial, plot interval, and plot type are specified as command-line
arguments, for example:

> java Polyplot --interval=1:10 -output=myplot.pdf (1/2)x^2+x
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internal representation method Poly.add

of polynomial classes (contains an error)

public class Rat {
// numerator
public int num;
// denominator
public int den;
// approximation
public double approx;

}

public class Mono {
// coefficient

public Rat coeff;
// exponent
public int exp;

}

public class Poly {

// Array containing
// monomials elements.
public Mono[] ms;
...
}

1. public Poly add(Mono m) {
2.
3. // Will contain new monomial elements.
4. List<Mono> mList=new ArrayList<Mono>();
5.
6. // Go through the elements of this
7. // polynomial, inserting the monomial m
8. // in the appropriate place in mList.
9.
10. for (int i=0;i<ms.length;i++) {
11. if (ms[i].exp == m.exp) {
12. Rat sum = ms[i].coeff.add(m.coeff);
13. Mono msum = new Mono(sum, m.exp);
14. mList.add(msum); // ERROR
15. continue;
16. }
17. if (ms[i].exp < m.exp) {
18. mList.add(m);
19. }
20. mList.add(ms[i]);
21. }
22. return
23. new Poly(mList.toArray(new Mono[0]));
24. }

Figure 2-1: Left: fields of the polynomial classes. Right: the add method (defined in
class Poly) that adds a polynomial and a monomial and returns the result. Method
add contains an error: it should only add the monomial msum to the list mList if
the monomial has a non-zero coefficient, but it unconditionally adds the monomial
(line 14), leading in some cases to a violation of Poly’s representation invariant. See
Appendix A for a full code listing.

A system test case for polyplot would call the program on a command-line string like
the one above, and check that the correct plot was created. On the other hand, a
unit test for polyplot might check that a single component inside polyplot behaves
correctly; for example, that the Java method Poly.add that adds polynomials (Fig-
ure 2-1) functions correctly.

System and unit testing are complementary approaches to testing. System tests
can reveal errors in the end-to-end behavior of the application, while unit tests can
reveal errors in individual components earlier, before the components are assembled
into a larger system. The techniques presented in the thesis generate test cases at
the unit level.

Figure 2-2 shows a unit test case testAdd for method Poly.add. It checks that
the object returned by add satisfies the representation invariant [66] of class Poly,
shown in Figure 2-1. A representation invariant is a logical property specifying the
valid internal states of an object. A public methods like add should preserve the
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Unit test for Poly.add method repOk method in class Poly.

1. public static void testAdd() {
2.
3. // Input creation code.
4. Poly p =
5. new Poly(new Mono(new Rat(2,1),3));
6. Mono m = new Mono(new Rat(-2,1),3);
7.
8. // Test call.
9. Poly p2 = p.add(m);
10.
11. // Test oracle.
12. boolean inv = p2.checkRep();
13. Assert.assertTrue(inv);
14. }

public class Poly {

// Checks representation invariant:
// 1. Elements sorted in order of
// decreasing exponent.
// 2. No two monomials have the same
// exponent.
// 3. No monomial has 0 coefficient.
boolean repOk() {
for (int i=0 ; i<ms.length ; i++) {
if (i>0 && ms[i-1].exp<=ms[i].exp)
return false;

if (ms[i].coeff.num == 0)
return false;

}
return true;

}
}

Figure 2-2: Left: unit test case for method add in class Poly. The prep code consists of
method calls that create input to the method under test. The call of the method under
test is followed by a check that the object returned by add preserves the invariant of
the class. Right: class Poly defines a method repOk() that checks the representation
invariants of its argument, returning false if the invariant is violated. The unit test
uses the repOk() method as its oracle.

representation invariants of their inputs and return objects.

The test case shown is written in JUnit [68], a format for writing unit tests where
each test is written as a method in a test class. As the test case shows, a unit test
case has three components. The input creation code (lines 4–6) creates the objects
used as input to the call. The test call (line 9) calls the method under test. The test
oracle (lines 12–13) checks the expected behavior of the method under test.

When executed, testAdd reveals an error in the implementation of method add.
The method incorrectly adds a polynomial p and a monomial m, if m is the negation
of an element in p (for instance, if p = 2x3 + 1 and m = −2x3). The error is in lines
12–15 (Figure 2-1, right), which handle the case where m has the same exponent as
an element of p. Line 12 adds the coefficients of the monomial and the polynomial
element. At this point, the code should check if the resulting coefficient is zero,
indicating that the monomial and the polynomial element are equal; if they are, the
code should proceed to the next element without adding the zero-coefficient monomial
to the list mList. The code fails to do this, and adds the monomial unconditionally
to mList, which can result in a return value containing a monomial with a zero
coefficient. This in turn leads to the unit test failing (line 13 in testAdd, Figure 2-2).
Note that the oracle for a test case need not check for every required property of
a method under test to be useful. For example, testAdd does not check that add

returns the correct polynomial, only one that respects its object invariant.
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As the example shows, creating a unit test involves creating two artifacts: a test
input for the component under test, and a test oracle to check that the component
under test behaves as expected. This thesis addresses the input creation problem,
and assumes the existence of a procedure, like method Poly.repOk in the example,
that can check a correctness property of the component based on its execution. The
upcoming chapters address the problem of generating inputs that achieve high behav-
ioral coverage of the components under test and that reveal errors. The techniques
create test inputs by chaining together builder operations to create values of the sort
required as input to a component under test, much like testAdd chains together calls
constructor calls of Rat, Mono and Poly (lines 4–6 in the test) to create the inputs to
add.

We note here that chaining operations is not the only possible way of creating
input values for a component. For example, another approach, exemplified by tools
like TestEra [61] and Korat [16], is to create inputs by directly manipulating the
internal representation of objects (e.g., creating a Mono object by setting the coeff

and exp fields to particular values, instead of calling the constructor). The advantage
of a representation-level approach like TestEra or Korat’s is that it does not require
an existing set of operations to create input values, and it allows for direct creation
of input values that may be difficult (or even impossible) to achieve using a given
set of operations. The main disadvantage is that it typically requires a significant
amount of manual effort. Because arbitrarily setting fields results in many invalid
values (e.g. Rat objects with zero denominator), the user needs to specify constraints
that specify the values that constitute valid assignments to the fields. Näıvely chain-
ing together operations can also result in many illegal values. However, one of the
key insights in directed random testing is that the number of illegal (and redundant)
values can be reduced if the chaining of operations is enhanced by executing the oper-
ations and using the result of the execution to heuristically determine if a sequence of
operations represents a legal input. This works because operations leading to illegal
inputs often result in unexpected behavior. For example, calling Rat’s constructor
with a 0 denominator results in an IllegalArgumentException. A field-oriented
approach could also benefit from runtime information, by executing operations on
generated values and observing the result of the execution to learn if the values are
illegal. However, a field-oriented approach may not be able to leverage operations to
create legal values; for example, by calling a 0-argument constructor for a class, an
operation-based approach may easily obtain a legal object for the class that may be
difficult to create with a field-based approach. Also, a field-oriented approach does
not benefit form the pruning that an incremental, operation-based approach achieves
by discarding illegal or redundant inputs from the generation process.
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Chapter 3

Generating Inputs with Terms

This chapter describes how to generate test inputs by viewing operations as functions,
and generating terms over those functions. Terms are useful because they provide a
language for constructing input values: we can construct a new test input by generat-
ing a new term, evaluating the term, and using the value resulting from the evaluation
as a test input.

After formally describing the syntax and interpretation of terms, we describe
two strategies for mechanically generating terms. Top-down generation creates terms
recursively, starting from the outermost operation and recursively creating arguments
for the operation. Bottom-up generation begins by creating constant terms that
require no arguments, and combines smaller terms to yield larger ones. Each approach
has unique advantages; the advantage of bottom-up generation, which is the basis of
directed random testing, is that it enables greater control in the generation process,
as we explain at the end of the chapter.

3.1 Signatures

Terms are composed of recursive operation applications, with each operation taking
a collection of input terms and producing a larger term. Before describing terms
formally, we describe signatures, which describe the kinds of inputs operations take,
and the kind of output they produce. (The concepts of signatures and terms are
not our creation; they are a formalism used often in computer science, for example
in the data type specification literature [67].) To motivate the definitions, recall the
operation Mono(Rat,int) that creates a monomial. The operation takes two inputs:
a Mono value, and an int value, and produces as output another Mono value. A
signature describes the input/output constraints of an operation. Signatures are used
by a term generator to create meaningful terms with consistent input and outputs.

An operation signature is a tuple of symbols 〈opname, r1, . . . , rk, rout〉. We refer
to the first element as the name of the operation, to the elements r1, . . . , rk as the
arguments of the operation, and to rout as the result of the operation. We refer to
r1, . . . , rk, and rout as sorts. (Sorts correspond to “types” in programming languages.)
For better readability, we typically write an operation 〈opname, r1, . . . , rk, rout〉 as
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“opname : r1 × . . . × rk → rout.” As an example, the following set of operation
signatures describes the operations from Figure 1-1:

C = { Poly : Mono[]→ Poly, Mono : Rat× int→ Mono, Rat : in× int→
Rat }.

Some additional terminology:

� We use the terms operation signature and operation interchangeably when there
is no potential for confusion.

� Given an operation op, we denote its name as op.name, its arguments as op.args
and its result as op.result.

� We say an operation op is k-ary if |op.args| = k.

3.2 Terms

A term is a tree that represents a value obtained by the recursive application of
operations; it yields an input value when the operations are evaluated. For example,
the following tree (written serially, with parentheses to show the structure) represents
the construction of the polynomial value 2x3+1 using the polynomial operations from
Figure 1-1:

Poly(Mono(Rat(2,1),3),Mono(Rat(1,1),0)).

We define the set of terms over a set of signatures ops inductively, as the smallest
set satisfying the following properties.

1. If op is a 0-ary operation, then 〈op〉 is a term.

2. If op = opname : r1 × . . .× rk → rout for k > 0, and for 1 ≤ i ≤ k, ti is a term
whose outermost operation has result sort ri, then 〈op, t1, . . . , tk〉 is a term.

Term-related terminology:

� We write terms(ops) to denote the set of all terms over an operation set ops.

� We call the terms defined via rule 1 constant terms, and denote them constants(ops).
For example, the term Poly() is a constant term. We treat integer literals as
constant terms. For example, we associate with the literal 1 a 0-ary operation
0 :→ int, and represent the literal as the term 〈0 :→ int, 〈〉〉. (Below we may
write a constant term like 〈0 :→ int, 〈〉〉 informally, and more briefly, as “0.”)

� We say a term is an r-term if its outermost operation has result sort r.

For ease of reading, when writing a term in the text, we use the parenthesized
syntax with typewriter font we have used informally so far (e.g. Rat(1,1)), not the
more verbose tuple representation (e.g. 〈Rat : int× int→ Rat, 1, 2).

32



3.3 Interpreting Terms

The recursive structure of terms reflects the compositional creation of values us-
ing operations. For example, to create a Poly value, we must first create a num-
ber of Mono values. These, in turn, require creating some Rat values. The term
Poly(Mono(Rat(2,1),3), Mono(Rat(1,1),0)) expresses the construction process
that yields 2x3 + 1. However, terms alone are syntactic constructs that have no
meaning: they are only valuable because of their connection to runtime values. To
formalize the connection between terms and values, we assume the existence of a
universe of values Vals, and associate with each sort r a set Vr of values (of the given
sort). This is a straightforward analogy to the connection between sorts and values
in real code. For example, associated with each sort Rat, Mono and Poly is a set of
values corresponding to the runtime values corresponding to rational, monomial and
polynomial objects.

We view operations as mappings that generate values from other values. With
each operation op = opname : r1 × . . . × rk → rout, we associate a mapping Mop :
Vr1 × . . . × Vrk

→ Vrout . Given a term t, the value for t, denoted [t], is defined
as a recursive application of mappings based on the structure of t, in the obvious
way. We may also say that t evaluates to or produces [t]. The syntactic structure of
terms along with the functional interpretation we just gave is known as a many-sorted
algebra, a basic concept in data type specifications [67].

Given a set of operations, there may be values in the universe that cannot be
created by a recursive application of operations, and will thus be outside the scope
of any technique that creates values by generating terms over the set of operations.
For example, given an operation set consisting of the operations from our polynomial
example and constants { -10, . . . , 10 }, the polynomial x11 will be outside the scope
of any term-based generator, since polynomial multiplication is not defined. (The
real classes on which the example is based do provide multiplication.) This is a
fundamental limitation of any approach that uses operations to create values, and
it can prevent a term-based generator from revealing errors. In our experience, the
space of values achievable via operations is typically very large, and techniques that
explore within this space are effective in revealing many errors in the software artifacts
under test. Another issue is that the operations under test for a given software
artifact may not behave like functions, which we assume in our interpretation. For
example, in Java, calling the Rat constructor twice on identical inputs (e.g. Rat(2,1))
returns two different objects. For now, we ignore this, and assume that operations
can be interpreted as functions; this makes it easier to describe the key ideas in our
approach. In Chapter 5, we deal with problems with our interpretation of operations,
and propose a more general interpretation that handles non-determinism and side
effects.

3.3.1 Illegal Input Values

An operation may impose additional requirements on its inputs not captured by the
operation’s argument sorts. For example, Figure 1-1’s comments indicate that the
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operation Poly(Mono... elements) requires that the elements array be not null
and be sorted in order of decreasing exponent. Validity constraints on inputs are also
known as preconditions. Preconditions limit the set of values that constitute legal
input to an operation beyond the input’s sort.

To account for the presence of preconditions, we associate with each operation
op = opname : r1 × . . .× rk → rout, a set of k-tuples

LI = {〈v1, . . . , vk〉 : vi ∈ Vri
for 1 ≤ i ≤ k}

representing the input value tuples that are legal inputs for each argument of the
operation. We call this set the legal input set of the operation. We say that a term is
a legal term if the inputs to every operation evaluate to values within the legal input
set of the operation.

A term generation technique that avoids illegal terms can be more effective in
revealing errors for two reasons. First, executing a component under test with illegal
input values often causes early termination of the component. For example, calling
method Poly.add(Mono) with a null argument results in a NullPointerException

when the second statement (for (int i=0;i<ms.length...) is executed for the
first time (Figure 2-1). Inputs that result in early termination fail to properly exercise
code deeper in the component under test, and can result in low behavioral coverage.
Second, calling a component under test with illegal inputs can result in arbitrary
behavior that may appear to (but does not) reveal an error. For example, a test
case that reports a potential error because add results in a NullPointerException

indicates a potential error in the method, until the culprit is discovered to be a null

input value. Spurious error reports cause a test engineer to spend time inspecting
false alarms.

3.3.2 Error Values

The goal of the techniques presented in the thesis is to generate test inputs that reveal
errors. We model errors by identifying some values in the universe as error values. To
identify error values, our techniques require as input an oracle: a predicate on values
O(v) that returns false when a given value is an error value. We say that a term t
is error-revealing if O([t]) = false. (Our use of the term “oracle” is slightly more
restricted than other uses in the literature [52] that define an oracle as a predicate
O(v, f(v)) that returns true if the result f(v) of an operation on a value v is as
expected.)

We already saw an example of an oracle: Figure 2-2 showed method Invariant-

Checker.check(Poly) that returns true when the given polynomial value satisfies
the object invariant for class Poly. A component under test (like Poly.add) that
returns an error value (given legal inputs) is likely to contain an error in its imple-
mentation.

When developing techniques that generate terms, we assume the testing goal is
to ensure proper behavior of an operation that is given valid inputs. In some cases, it
makes sense to test software on illegal inputs, to check for incorrect or missing validity
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Figure 3-1: A technique that creates test cases for a component under test (CUT)
by generating terms. The technique takes as input the CUT, a set of operation used
to create terms, and an oracle to determine if the CUT returns an error value. The
technique outputs a set of passing test cases (tests that pass the oracle) and failing
test cases (that fail the oracle).

checks in the software under test. (This testing activity is sometimes called “robust-
ness testing.”) Robustness testing can be useful because many software artifacts are
supposed to check the legality of their inputs and fail gracefully if preconditions are
violated. For example, this is usually the case in the core utility libraries for languages
like Java and .NET. In this case, a failure of the software resulting from illegal op-
eration applications may reveal a legitimate error in the legality-checking code. Our
techniques can be used for robustness testing, by assuming there are no preconditions.

3.4 Generation Strategies for Terms

This section presents two basic strategies for generating terms over a set of operations.
The strategies are examples of undirected random testing: they generate terms purely
based on the signatures of the operations. In later chapters, we explore directed
random testing techniques that use additional information to direct the generation
away from illegal and redundant inputs.

The term generators we present can be used as part of a simple test case generation
technique, shown in Figure 3-1. The technique takes as input a component under test
(CUT), a set of operations, and an oracle that determines error values. The technique
first extracts the desired sorts, meaning the input sorts to the component under test.
Next, it uses a term generator (which takes as input a desired sort and the set of
operations) to generate terms of the desired sorts. Finally, the technique evaluates
the terms to obtain input values, executes the component under test on the input
values, and checks the oracle after each execution. Terms that cause oracle failures
are output as failing test cases, and other terms are output as passing test cases. An
example of a test case that may be generated by this process is the unit test case
from Chapter 2 (Figure 2-2).

3.4.1 Top-Down Generation

Terms are defined inductively, so a natural approach to generating them is to use
recursion. A top-down generator creates terms recursively. To create a term of a
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Procedure Td
Input: Operation set ops, desired sort r, time limit t, maximum depth dmax ≥ 0.
Result: A set of r-terms.

1 terms← {}
2 while time limit t not expired do

3 t← Gen(ops, r, 0, dmax)

4 terms← terms ∪ {t}

5 return terms

Procedure Gen
Input: Operation set ops, sort r, depth d, maximum depth dmax ≥ 0.
Result: An r-term.

1 if d = dmax then

2 return rchoose {t ∈ constants(ops) : t is an r-term}

3 op← rchoose {op ∈ ops : op.result = r}
4 let opname : r1 × . . .× rk → r be op

5 return 〈op,Gen(ops, r1, d + 1, dmas), . . . ,Gen(ops, rk, d + 1, dmax)〉

Figure 3-2: A top-down random generator for terms. The operator rchoose selects
one element uniformly at random from a set.

desired sort, a top-down generator selects an operation, and recursively generates
terms to use as arguments to the operation. Figure 3-2 shows a procedure, Td (“top-
down”), that implements a random version of the strategy. Td takes as input a set
of operations ops, a desired sort r, a time limit t, and a maximum depth dmax that
bounds the recursion. Td returns a set of r-terms, containing as many terms as the
procedure is able to generate within the specified time limit.

To generate a term, Td repeatedly calls sub-procedure Gen (which generates a
single r-term), and adds the new term to the term set that is eventually returned.
Procedure Gen takes a depth parameter d as input (Td passes 0 as the initial depth).
If d is equal to the depth limit dmax (the base case), Gen returns a constant term,
selected uniformly at random from all constant terms. We assume that for every
sort r in ops, there is at least one constant r-term in terms(ops). Otherwise, if
d < dmax, Gen selects an operation with result sort r (again uniformly at random),
and recursively calls itself to generate an ri term for every argument i of the operation.

To illustrate how Td works, suppose that Td calls Gen with (1) the polynomial
operations, augmented with operations yielding primitive terms like 1 and 2, (2)
desired sort Rat, (3) depth 0, and (4) maximum depth 10. Since d < dmax, Gen
selects an operation at random from any of the operations with return sort Rat.
There are two possibilities, Rat(int,int) and Rat.add(Rat). Suppose Gen selects
the add operation. In that case, it will recursively invoke itself twice, to generate
two Rat terms. Consider the first recursive call, and suppose this time Gen selects
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Rat(int,int). Two more recursive calls of Gen will yield integer terms (say, 2

and 3), yielding the term Rat(2,3). Now, consider the second recursive call, and
suppose it also selects Rat(int,int) and yields Rat(1,2). The final term will thus
be add(Rat(2,3),Rat(1,2). Note that the depth limit simply prevents an infinite
recursion in Gen, but it does not prevent Td from generating terms of depth less than
dmax because the recursion can always terminate if a constant operation is selected.
For example, the depth of the example term generated is 3.

Td is only one of several possible ways of implementing a top-down strategy. For
example, a different implementation might use a different distribution when selecting
operations, or even replace some or all random choices (lines 2 and 3 in Gen) with
loops that iterate through all the possible choices. The common characteristic of
a top-down implementation is that a term is generated recursively, starting with a
desired sort r, and creating sub-terms that provide inputs to an operation that returns
an r value.

JCrasher [22], a popular term-generation tool, is an implementation of top-down
random generation. It generates terms in a manner similar to Td. Chapter 8 evaluates
JCrasher against other generation approaches, including directed random testing.

3.4.2 Bottom-Up Generation

A top-down generator creates terms recursively. A bottom-up generation strategy in-
volves instead generating terms incrementally, combining previously-generated terms
with new operations to yield larger ones. To describe the strategy, it is useful to
define the set of all terms that are achievable by combining other terms. The image
of a set of terms C with respect to a set of operations ops, denoted I(C, ops), is the
set of terms whose sub-terms are elements of C:

I(C, ops) = {t ∈ terms(ops) : t = n(t1, . . . , tk) and ti ∈ C for 1 ≤ i ≤ k}

A bottom-up generator maintains a set of terms called a component set, initially
empty. It generates new terms by iteratively augmenting the component set with
elements from its image. Figure 3-3 shows a procedure, Bu (“bottom-up”), that
implements the bottom-up strategy. Bu takes as input an operation set ops, a desired
sort r, and a time limit t. (Because Bu does not use recursion, it needs no recursion
limit parameter.) Next, Bu repeatedly performs a sequence of two steps, until the
time limit expires. The first step selects a term from the image of the component
set at random, and the second step adds the term to the component set. When the
time limit expires, Bu returns the set of r-terms in the component set. To illustrate
the procedure, we consider the first few iterations of a sample run of Bu, using
the polynomial operations. In the first step, the component set is empty, so only
constant terms are part of the image. Suppose Bu first selects the constant term
Poly() and adds it to the component set. The image of the component set in the
second iteration is the same as that in the first iteration, because no new terms can
be generated using Poly() alone. Suppose that term “1” is selected next and added
to the component set. In the third iteration, the image of the component set contains
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Procedure Bu
Input: Operation set ops, desired sort r, time limit t.
Result: A set of r-terms.

1 C ← {}
2 while time limit t not expired do

3 t← rchoose I(C, ops)

4 C ← C ∪ {t}

5 return { t ∈ C : t is an r-term }

Figure 3-3: A bottom-up random term generator. The generator maintains a com-
ponent set of terms C, which it repeatedly augments with elements from C’s term
image.

term Rat(1,1). Suppose that term is selected and added to the component set. In
the fourth iteration, the image contains all the terms in the previous image, plus two
new terms add(Rat(1,1),Rat(1,1)) and Mono(Rat(1,1),1). Notice that as new
terms are added to the image, the set of possible new terms increases.

As with Td, other ways of implementing random bottom-up generation are pos-
sible. For example, the procedure could at each step augment C with several random
terms in the image, instead of a single term, or even augment it with the entire image
at each step (yielding a deterministic algorithm).

3.4.3 Random Generation: Top-Down vs. Bottom-Up

The top-down and bottom-up approaches to generation represent two points in the
design space of term generation approaches. Each approach has relative advantages.
We begin by discussing two advantages that top-down generation enjoys compared
to bottom-up generation.

Top-Down Generation Produces More Diverse Terms

Because it generates every new term from scratch, a top-down generator can generate
a more diverse set of terms than a bottom-up generator. The latter generates terms
by composing previously-generated terms, and this can result in many terms with
common sub-terms. To illustrate this phenomenon, Figure 3-4 shows the first ten
terms generated in two actual runs of Td and Bu for the polynomial data types.
Both runs use Poly as the desired sort, use arbitrary random seeds, and augment the
polynomial operations with operations representing integer values -10 to 10. Also,
when creating a term for operation Rat(Mono...), we implemented both procedures
to randomly select between 1 and 4 monomials as input. The implementation of Bu
differs from Figure 3-3 in that it initially seeds the component with constant terms
corresponding to primitive values, thus making them immediately available to create
new terms.
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First ten terms generated in a run of Td
illegal Poly(Mono(Rat(-8,-2),-8),Mono(Rat(4,7),0))

illegal Poly(Mono(Rat(1,1),7),Mono(Rat(4,0),5))

legal Poly()

illegal
Poly(Mono(add(Rat(6,1),Rat(-10,-9)),0),Mono(sub(Rat(2,7),

Rat(0,1)),-4),Mono(sub(Rat(1,2),Rat(1,4)),-4))

illegal Poly(Mono(Rat(3,3),0),Mono(add(Rat(-4,2),Rat(1,7)),3),Mono(Rat(-7,-4),-1))

legal Poly(Mono(sub(Rat(1,2),Rat(4,3)),5))

legal Poly()

legal Poly()

legal Poly(Mono(Rat(-5,2),7))

illegal Poly(Mono(add(Rat(-9,-9),Rat(5, -6)),-5))

First ten terms generated in a run of Bu
legal Poly()

legal Rat(-9,9)

legal Rat(7,4)

legal Rat(-1, -7)

legal add(Rat(-9,9),Rat(7,4))

legal Mono(Rat(-1, -7),9)

illegal Rat(4,0)

legal Poly(Mono(Rat(-1, -7),9))

illegal add(Rat(7,4),Rat(4,0))

legal Poly(Mono(Rat(-1, -7),9),Mono(Rat(-1, -7),9))

Figure 3-4: First ten terms generated by a run of algorithms Td and Bu, using an
arbitrarily-chosen seed. The label next to each term indicates if it is legal or illegal
with respect to the preconditions specified in Figure 1-1.

As the figure shows, many of the terms that Bu generates have common sub-
terms. For instance, the term Rat(-1,-7) appears five times, and the Mono term
Mono(Rat(-1,-7),9) appears four times. Td, on the other hand, generates every
term randomly; the first 10 terms generated by Td contain 13 distinct monomial
terms. The repetitive nature of Bu-generated terms means that a technique using
Bu may waste testing resources by repeatedly exercising identical behavior in the
software under test.

Top-Down Generation is More Goal-Directed

A second advantage of Td is that it is more goal-directed in generating terms for
the desired sort. Each term generated in Td’s main loop is guaranteed to produce a
term for the sort of interest. On the other hand, Bu’s incremental nature may make
it impossible to generate n terms for a desired sort r in the first n iterations of its
main loop, because operations producing r-terms may be disabled until terms of the
appropriate input sorts are present in the component set. We can see this effect in
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Figure 3-4 as well. In ten iterations through its main loop, Td generates ten Poly

terms (8 syntactically distinct ones), while Bu generates only 3.
This advantage of Td over Bu is important when the goal is to generate inputs

of a specific sort like Poly, as in the examples we have seen so far. However, the
techniques we present in the following chapters have as their goal testing the oper-
ations themselves. In other words, we view operations as both building blocks for
input values, and as the components under test. In this context, the advantage of
Td over Bu disappears. For example, suppose that the testing goal is not to test the
single component Poly.add(Mono), but to test all the components (i.e. operations)
declared in the Rat, Mono and Poly data types. Thus, we think of terms as both a
means to build polynomial, monomial and rational input values, and as test inputs
that exercise the operations they contain. In this case, all ten terms generated in the
example run of Bu are useful test inputs. As a more realistic example, we have used
Randoop (a tool based on bottom-up generation) to test the Java JDK library [40],
and view the methods declared in the library both as operations used to create inputs,
and as the components under test.

In the rest of the thesis, we assume that the testing goal is to test the set of
operations given as input, not a single operation in particular. Thus, the procedures
presented take as input a set of operations under test.

At this point, we have yet to explain why we base directed random testing on
bottom-up generation. The following section explains our rationale.

Bottom-Up Generation Facilitates Pruning

The great advantage of bottom-up generation over top-down generation is that bottom-
up generation has the crucial feature that it generates new terms from old ones. While
not useful in a basic procedure like Bu, this feature is useful for directed random test-
ing because it makes it possible to influence the generation process by restricting the
terms allowed to be in the component set. This can be helpful in directing the gen-
eration process towards useful test inputs.

For example, notice that both Td and Bu generate a large number of illegal
terms. In the runs from Figure 3-4, Td generates five (out of ten) illegal term, and
Bu generates two (out of ten) illegal terms. (The fewer illegal terms of Bu are due
to random luck; another random seed might have resulted in more.) As we discuss
in Chapter 2, illegal inputs can be a problem with random testing techniques, and
methods to avoid generating them could improve the effectiveness of random testing.
The next chapter shows that, given a means of determining if a single term is illegal, a
small modification to Bu that discards a term (and does not add it to the component
set) if it is illegal yields a new bottom-up generation procedure that discards illegal
terms like Rat(4,0) (generated in the run of Bu from Figure 3-4), but also prunes the
term space, by preventing any term that has the illegal term Rat(4,0) as a sub-term,
from being generated. The chapter also shows how a similar idea can result in pruning
the space from redundant terms that lead to the same behavior in the software under
test as terms already in the component set and can waste generation effort.

40



Chapter 4

Directed Random Testing for
Terms

Directed random testing is a novel approach to test input generation. It extends
bottom-up generation by discarding illegal terms (terms that the software under test is
not required to handle) and redundant terms (terms that do not lead to the discovery
of new errors) from the component set. The effect of discarding an illegal or redundant
term term is not that a single term is removed from the space, but rather—due to the
inductive nature of bottom-up generation—that useless portions of the term space
are pruned, i.e. many useless terms are never generated.

This chapter presents directed random testing. The chapter introduces the dif-
ferent ideas making up directed random testing in phases, by presenting a series of
techniques that add functionality to a basic bottom-up term generator. The first
technique uses a user-supplied legality predicate that specifies what are legal input
values for each operation, and uses the predicate to discard illegal terms from the
component set. The second technique additionally uses an equivalence relation on
terms, which it uses to discard a term if it is equivalent to one already in the com-
ponent set. The concept of equivalence depends on the software artifact under test
as well as the test oracle; we describe formally the desired property that an equiva-
lence relation must satisfy, namely that discarding a term based on the relation does
not prevent the generator from revealing an error. Using a legality predicate and an
equivalence relation on terms, the bottom-up generator is able to prune illegal and
redundant portions of the input space.

The second key idea behind directed random testing is the notion of heuristic
pruning, which consists in approximating definitions of terms legality and equiva-
lence based on the runtime behavior of the software under test. Heuristic pruning
is important because it makes directed random testing a fully automated procedure,
requiring only the software under test as input. One practical advantage of random
testing tools is that they are typical fully automated, making them cost effective and
easier to adopt.
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Procedure Bu/L
Input: Operation set ops, time limit t, legality predicate Leg.
Result: A set of terms.

1 C ← {}
2 while time limit t not expired do

3 img ← { 〈op, t1, . . . , tk〉 ∈ I(C, ops) : Leg(op, t1, . . . , tk) }
4 t = rchoose img;

5 C ← C ∪ {t}

6 return C

Figure 4-1: A bottom-up generator that avoids illegal terms.

4.1 Pruning Illegal Terms

Applying an operation to illegal inputs rarely constitutes a useful test. Illegal inputs
usually lead to early termination or arbitrary but not error-revealing behavior. For
example, evaluating the illegal term Rat(1,0) leads to an exception at runtime. The
exception reveals no errors, but simply indicates that Rat’s precondition has been
violated. It is wasteful for a test generation technique to generate illegal inputs: the
time spent generating them could be better spent generating legal inputs that exercise
the software under conditions that it is expected to handle correctly.

Figure 4-1 shows a procedure, Bu/L, that augments the basic bottom-up gener-
ation procedure from last chapter so that it avoids generating illegal terms. Bu/L
requires as input a legality predicate Leg that determines if the inputs to a new term
are illegal. Given an operation op = opname : r1× . . .×rk → rout and terms t1, . . . , tk
(of sort r1, . . . , rk, respectively), Leg(op, t1, . . . , tk) should return true if t1, . . . , tk rep-
resent valid arguments to op. For example, Leg(Rat : int× int → Rat, 1, 0) should
return false, because the operation Rat(int,int) requires its second argument to be
non-zero.

The procedure discards from the image any term that is illegal according to the
legality predicate. This discarding not only prevents the selected term from being
illegal, but it also prevents many illegal terms from ever being considered. For exam-
ple, by discarding the illegal term Rat(4,0), Bu/L prevents the future generation of
illegal terms like Mono(Rat(4,0),1) or add(Rat(7,4),Rat(4,0)) that use Rat(4,0)
as a sub-term, because the sub-terms will never be in the component set. In other
words, discarding a useless term early in the process can prune a large number of other
useless terms later in the process. Notice that this kind of pruning is not possible in
a top-down approach like Td that does not generate new terms from old ones. Other
than filtering illegal terms after they were generated, it is not easy to prune illegal
portions of the space with Td, because the algorithm maintains no information about
previously-generated terms that it can use to direct the generation of new ones.

An ideal legality predicate Leg returns true exactly when the input terms represent
legal input values to the operation. In other words, an ideal predicate is one that
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returns true on Leg(op, t1, . . . , tk) if and only if 〈[t1] . . . [tk]〉 is in the operation’s
legal input set (see Section 3.3). A non-ideal legality predicate can deviate from
the ideal in two ways. Fist, it can return true on an illegal term t. In this case,
the component set may become populated with illegal terms (any term using t as a
sub-term). Second, it can return false on a legal term. This will prevent Bu/L from
exploring potentially useful portions of the term space. Creating an ideal legality
predicate can be challenging, and in some cases, a predicate that is not ideal can
also be effective. Section 4.4 describes a way to automate the creation of a non-ideal
predicate that is effective in practice.

4.2 Pruning Equivalent Terms

The last section described a way to make bottom-up generation more effective by
discarding illegal terms that are less likely to reveal errors. This section explores a
second criterion for discarding terms, based on a concept of term equivalence, meant
to capture the idea that for the purposes of creating error-revealing test inputs, it
may be sufficient to explore only a subset of all terms, and that discarding new terms
equivalent to already-generated terms can improve the error-revealing effectiveness of
a bottom-up generator.

We begin our discussion of equivalence in Section 4.2.1 by introducing the con-
cept in a simple setting, where the purpose is to discard useless terms generated by a
term generation procedure, without altering the procedure itself. Next, we consider
the more complex scenario of discarding equivalent terms inside a bottom-up term
generator, which can result in pruning of the term space. We define safety, a desired
property of an equivalence relation on terms. An equivalence relation is safe if dis-
carding terms based on the equivalence relation does not cause a term generator to
miss errors. Section 4.2.2 describes a method to establish safety for an equivalence
relation, by decomposing the proof that a relation is safe into smaller proofs that
separately link the equivalence relation with the oracle and each operation. Finally,
Section 4.2.4 describes efficiency, an additional desired quality of an equivalence re-
lation.

4.2.1 Safe Equivalence

The purpose of an equivalence relation on terms is to discard terms that do not
contribute to the goal of discovering an error. For simplicity, we assume for now that
there is a single error in the software under test revealed by an oracle O, thus it
suffices to find one term t such that O([t]) = false.

To gain some intuition for the notion of equivalence, we begin by describing term
equivalence, and the desired properties of an equivalence relation, in the simple con-
text of filtering a collection of terms that have already been generated.
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Equivalence for Filtering

Imagine that we are using a term generation procedure (e.g. Td, Bu, or Bu/L) that
produces candidate terms, with the goal of discovering a term that reveals the error,
i.e. a term t where O([t]) = false. When a new candidate term is generated, we
evaluate the term and check the oracle. Since there is a single error in the software
under test, we stop processing new terms after we find the first error-revealing term.

We could make the process more efficient if we had a means of discarding non-
error-revealing terms, before we have to evaluate them and the oracle. Suppose we
define an equivalence relation ∼ on terms, and discard a new candidate term if it
is equivalent to an old term. What properties should the equivalence relation have?
The most important desired property of ∼ is that discarding a term based on the
relation should not make us miss the error. We say that an equivalence relation is
safe if it does not lead to discarding an error-revealing term. It is easy to see that a
relation that satisfies the following oracle consistency property is safe:

t1 ∼ t2 ⇒ O([t1]) = O([t2]). (4.1)

Discarding terms based on an oracle-consistent equivalence relation ∼ is safe: if
a term is equivalent to an old (thus non-error-revealing) term, oracle consistency
implies that the new term is also not error-revealing. However, oracle consistency
is not the only desired property of an effective equivalence relation: if it were, we
could simply define term equivalence as term equality (t1 ∼ t2 iff t1 = t2), which is
easily shown to be oracle consistent but leads to few discards. The missing desirable
property of an equivalence relation is efficiency : an efficient equivalence relation is
both oracle-consistent and as coarse as possible, putting as many terms in the same
equivalence class, and leading to the greatest number of discards. In fact, the ideal
equivalence relation on terms would satisfy the following property:

t1 ∼ t2 iff O([t1]) = O([t2]). (4.2)

Given such a relation, we could avoid evaluating and checking the oracle on all
but the first term: if we are lucky and the first term reveals the error, we need not
consider any other terms, and otherwise, to determine if a new candidate term reveals
the error, we only need to check whether it is equivalent to the first term. Such a
relation is ideal in the sense that it requires the fewest number of term evaluations
and oracle checks (one), and it is guaranteed not to miss the error.

Equivalence for Pruning

The last section discussed the use of an equivalence relation for filtering out useless
terms after they are generated using a term generation procedure. However, a pro-
cedure that generates many equivalent terms in the first place is wasteful: equivalent
terms do not get us any closer to finding the error. It would be more efficient if we
could use an equivalence relation to prevent the procedure from generating equivalent
terms, rather than filtering already-generated terms. This section explores the use
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Procedure Drt
Input: Operation set ops, time limit t, oracle O, legality predicate Leg,

equivalence relation on terms ∼.
Result: An error-revealing term, or ⊥ if none is generated within time limit.

1 C ← {}
2 while time limit t not expired do

3 img ← { t = 〈op, t1, . . . , tk〉 ∈ I(C, ops) : Leg(op, t1, . . . , tk) ∧ ∀t′ ∈ C : t′ � t }
4 t = rchoose img;

5 if ¬O([t]) then
6 return t

7 C ← C ∪ {t}
8 return ⊥

Figure 4-2: The final directed random testing algorithm Drt. It improves on Bu/L
by discarding equivalent terms from the image. This is reflected in the computation
of the image subset img. The underlined text shows where equivalence pruning is
performed.

of an equivalence relation by a bottom-up generator, to avoid generating equivalent
terms.

Figure 4-2 shows procedure Drt (“directed random testing”), which extends
Bu/L by discarding terms based on an equivalence relation given as input. Drt
takes five inputs: an operation set, a time limit, an oracle, a legality predicate, and
an equivalence relation on terms. Drt combines term generation with evaluation
and oracle checking, thus the additional input oracle. The procedure starts with an
empty component set. It repeatedly and randomly selects and element from the com-
ponent set’s image, but first discards from the image terms that are illegal, as well as
terms that are equivalent to a term already in the component set. If a term is error-
revealing, Drt returns the term and halts the generation process. This behavior is
appropriate under our current assumption that there is a single error in the software;
it also makes the formal treatment below clearer. Section 4.2.3 addresses the presence
of multiple errors.

What properties should an equivalence relation used by Drt have? Like in the
previous section, we would like the relation to be safe—discarding a term based on
the relation should not prevent Drt from discovering the error—and to be sufficiently
coarse, allowing for the greatest possible number of discards. The rest of this section
and Sections 4.2.2–4.2.4 discuss safety and coarseness in the context of Drt.

In the previous section, where we used the equivalence relation to discard already-
generated terms, safety was simple to understand: an equivalence relation should not
lead to an error-revealing term being discarded. The concept is trickier when using
the equivalence relation to discard terms from the component set, because discarding
a term from the component set can affect the scope of terms that may be generated
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in the future. For example, discarding the term Rat(1,2) from the component set
may prevent the subsequent creation of Poly(Mono(Rat(1,2),3)); if the latter is the
only error-revealing term, then Rat(1,2) should not be discarded. A definition of
safety should express the idea that the “scope” of possible terms that can be created
by Drt after discarding a particular term always contains an error-revealing term,
if one exists. (Recall that we are currently assuming only one error exists, so it
only matters that an error-revealing term exists, and do not care about the specific
operation that reveals the error.)

Before formally defining safety, we first define the notion of an execution of Drt,
which captures the state of the algorithm at some point in time, and then define the
notion of scope, which describes the terms that Drt is capable of generating in a
given execution. If at a point during the algorithm’s execution a term goes out of
scope, it means that there is no possible series of generation steps that can produce
the term; in other words, the generator is no longer able to produce the term.

Definition (execution). An execution is a sequence of terms 〈t1, . . . , tn〉 corre-
sponding to the terms generated (line 4) during a partial or complete run of Drt, in
the order that they were generated. If the execution represents a complete run, the
last term in the sequence is an error-revealing term.

Note that because Drt takes as input an equivalence relation on terms, the definition
of an execution is implicitly parameterized over an equivalence relation. As a simple
example, using a trivial equivalence relation based on term equality (t1 ∼ t2 iff t1 =
t2), the sequence 〈1, Rat(1,1)〉 is a valid execution of Drt. Assuming O(Rat(1,1)) =
true, the sequence 〈1, Rat(1,1), 2, Rat(1,2)〉 is also an execution. On the other hand,
the sequence 〈1, Rat(1,1), Rat(1,1)〉 is not an execution: the algorithm would not
select the last term, because it is equivalent to the second term. We say execution e2

extends execution e1 if e1 is a prefix of e2; we denote all the extensions of e as exts(e).
We use the concept of an execution to define, at a given point in the algorithm’s

execution, the set of all terms that it is possible to generate in the future.

Definition (scope). The scope of an execution e is the set of terms that can be
generated across all possible extensions of e, i.e. scope(e) = {t | t ∈ e′, for some e′ ∈
exts(e)}.

Safety states that an error-revealing term is always in scope (if there exists an error-
revealing term), regardless of the particular execution. Recall we are currently assum-
ing that there is no more than a single error in the software under test, and we care
only to find one term that is error-revealing. (Section 4.2.3 generalizes safety beyond
this setting.) Also assume an operation set ops, unlimited time limit t, oracle O, ideal
legality predicate Leg, and an equivalence relation ∼ on the terms in terms(ops).

Definition (safe equivalence on terms). The relation ∼ is safe iff for any ex-
ecution e of Drt(ops, t, O, Leg,∼), if there is some term t ∈ terms(ops) such that
O([t]) = false, then there is a term t′ ∈ scope(e) such that O([t′]) = false.
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ops = { a:→A, b:A→A, c:A→C, d:→D }

not safe safe safe

all other terms c(a())

¬Err Err

a() b(a()) b(b(a())) c(a())b(b(b(a()))

¬Err Err

all other terms all other terms

c(a())

¬Err Err

a()

Figure 4-3: Example equivalence relations showing that oracle consistency is neither
necessary nor sufficient to establish safety of Drt. The left relation is oracle consistent
but not safe. The right relation is not oracle consistent but safe.

In other words, an equivalence relation is safe if, for any execution, there is always
an error-revealing term in scope—assuming there is at least one error-revealing term
in the universe. An equivalence relation on terms used by Drt should be safe: if it
is not, it can render Drt unable to generate an error term on a given execution. (In
practice, an unsafe relation can nevertheless be useful in guiding random generation;
we discuss this in in Section 4.4.)

To illustrate the definition, Figure 4-3 shows three equivalence relations for an
operation set where the term c(a()) is the only error-revealing term. The first
equivalence relation (left) is the “ideal” relation from last section: it contains two
equivalence classes, one containing the single error-revealing term, and another con-
taining all other terms. This relation is not safe. For example, any execution of Drt
that starts by generating and adding to the component set the term d() will never
be able to generate the error-revealing term c(a()), because a() (which is equivalent
to d()) will never be in the component set. The example shows that oracle consis-
tency, which was sufficient to establish safety when filtering terms, is not sufficient
to establish safety when the relation is used for pruning terms.

The second equivalence relation (middle) shows, perhaps surprisingly, that oracle
consistency is in fact not even necessary to establish safety. The relation puts an error-
revealing and a non-error-revealing term in the same equivalence class, yet guarantees
that the error term c(a()) can always be generated, no matter what terms are
discarded. The relation is safe because a() is in its own equivalence class, thus can
always be added to the component set, and the term b(b(b(a()))), which is non-
error-revealing but in the same equivalence class as the error-revealing term c(a()),
can never be generated, and thus cannot mask the error-revealing term. The last
example (right) shows a relation that is both oracle consistent and safe.

4.2.2 Establishing Safety

Safety captures the requirement that an equivalence relation should not cause Drt
to miss an error. Proving an equivalence relation safe involves reasoning about all
executions of Drt and the connection between the relation and the oracle. In this
section, we describe two lemmas that can be used to break down the task of establish-
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compositional

oracle-consistent

scope-preserving
reliable

⇒
⇒∧

Figure 4-4: Lemmas used to establish that an equivalence relation on terms is safe.

ing safety into separate concerns. Figure 4-4 summarizes the properties and lemmas
involved. As the figure shows, oracle consistency is one of the properties used to
establish safety. We saw in the last section that oracle consistency is neither neces-
sary nor sufficient to establish safety. However, together with scope preservation, it
is sufficient. Scope preservation states that for any term (not just an error-revealing
term), an equivalent term is always in the scope of Drt’s execution. Again, assume
an operation set ops, unlimited time limit t, oracle O, ideal legality predicate Leg,
and an equivalence relation ∼ on the terms in terms(ops).

Definition (scope-preserving). The relation ∼ is scope-preserving iff for any ex-
ecution e and any term t ∈ terms(ops), there is a term t′ ∈ scope(e) such that
t ∼ t′.

Figure 4-3 shows examples of relations that are and are not scope-preserving. The
first relation (left) is not scope-preserving: the term c(a()) is not is scope for every
execution: in particular, if the first term generated in an execution is d(), then the
term c(a()) goes out of scope because a() will always be discarded (it is equivalent
to d()), which makes it impossible to subsequently generate c(a()). It is easy to see
that the two other relations (middle and right) are scope-preserving.

Lemma 4.1. If ∼ is scope-preserving and oracle-consistent, then ∼ is safe.

Proof. The fact that ∼ is safe follows easily. Suppose there is some error-revealing
term in terms(ops), and consider any execution e. We must show that there is an
error-revealing term in scope(e). Pick any term t ∈ terms(ops) that is error-revealing.
Since ∼ is scope-preserving, there is some t′ ∈ scope(e) where t′ ∼ t. Since ∼ is oracle-
consistent and t is error-revealing, t′ is also error-revealing. Thus, there is a term in
scope(e) that is error-revealing. �

Lemma 4.1 gives us a way to break down the proof that an equivalence relation
is safe into smaller proofs that deal with separate concerns: oracle consistency deals
with the connection of the equivalence relation to the error terms, and scope preserva-
tion establishes that the equivalence relation does not “lose” any equivalence classes.
Lemma 4.1’s implication does not go the other way (as demonstrated by the middle
example from Figure 4-3).

A second property, compositionality of equivalence, lets us further decompose a
proof of safety by establishing a connection between ∼ and each operation. Compo-
sitionality states that using equivalent terms as inputs to an operation results in an
equivalent term.
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Definition (compositionality). Consider an operation set ops and equivalence
relation ∼ on terms(ops). We say that ∼ is compositional iff for every operation
o : r1 × . . .× rk → rout in ops and 1 ≤ i ≤ k,

ti ∼ t′i → o(t1, . . . , ti, . . . , tk) ∼ o(t1, . . . , t
′
i, . . . , tk).

Compositionality is attractive for two reasons. First, it is independent of the Drt
algorithm. (Scope and safety are both defined in terms of an execution of Drt.)
Second, it lets us reason locally about a single operation and a single composition
step, and as the next lemma shows, this local reasoning can be lifted to reasoning
about all the possible executions of Drt to establish scope preservation.

Lemma 4.2. A compositional equivalence relation is scope-preserving.

Proof. Suppose ∼ is compositional. We prove that for any term t and execution e,
we can extend e to an execution e′ that contains a term t′ equivalent to t. Then, since
scope(e) includes all the terms in e′, it follows that t′ ∈ scope(e), establishing that ∼
is scope-preserving.

Now, we prove that for any term t and execution e, we can extend e to an execution
e′ that contains a term equivalent to t. The proof is by induction on the number of
operations in t. For the base case, t has a single operation (i.e. it is a constant
term). If e has already yielded a term equivalent to t, let e′ = e. If not, let e′ =
e � 〈t〉, which represents a valid execution of Drt (the “ � ” operator denotes sequence
concatenation). In both cases, e′ contains a term equivalent to t. (The base case does
not require compositionality.)

For the induction step, suppose that for all terms of size less than N , we can
extend an execution to one containing an equivalent term. We show that the same
is true for any term of size N . Let t = op(t1, . . . , tk) be such a term, and e be an
arbitrary execution. By the induction hypothesis, we can extend e to an execution
e1 containing a term t′1 ∼ t1, then extend e1 to an execution e2 containing a term
t′2 ∼ t2, etc. until we reach an execution ek that contains terms t′1, . . . , t

′
k, which

are equivalent to t1, . . . t
′
k respectively. Let t′ = op(t′1, . . . , t

′
k) and e′ = ek � 〈t′〉. By

compositionality (applied k times, once per input terms, since compositionality only
applies to one input term), t′ ∼ t, so e′ is an execution that contains a term equivalent
to t. �

In summary, we can establish that an equivalence relation ∼ is safe by establishing
that it is compositional and oracle-consistent, properties that allow us to reason
independently about the equivalence relation’s connection to each operation and to
the oracle.

4.2.3 Multiple Errors

We have developed Drt assuming we care only to obtain one term that causes the
oracle to fail. This suffices if there is at most one error in the software under test.
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ops = { a:→A, b:A→A, c:A→C, d:→D }

all other terms

c(a())

¬Err Err

a()

d()

Figure 4-5: An equivalence relation that is safe according to the definition of safety
from Section 4.2.1, but may prevent the generation of the error-revealing term d().

Suppose the opposite is true: we care to obtain as many different error-revealing
terms as possible—perhaps because each distinct term may reveal a different error.

A simple modification to Drt would enable it to return more than one term.
When it discovers an error-revealing term, instead of returning it and halting, Drt
adds the term to a set of terms Errors and continues the generation process. When
the time limit expires, Drt returns the set Errors.

The above modification means that any error-revealing term that is generated
will be output. However, another obstacle stands in the way of generating multiple
error-revealing terms: our current definition of safety stipulates only that some error-
revealing term be in scope, which is may not be sufficient to ensure that distinct
errors are revealed For example, consider the relation shown in Figure 4-5. There are
two error-revealing terms, c(a()) and d(), both in the same equivalence class. The
relation is safe according to our current definition of safety: the term c(a()) can be
generated in any execution. However, only one of the two error-revealing terms will
be generated in an execution, because the two error-revealing terms are equivalent.

Fortunately, a small modification to the definition allows us to define safety for
the case where we are interested in generating more than one term. First, we gen-
eralize the notion of an oracle to distinguish among different error-revealing val-
ues. Let ErrorClasses be an arbitrary set of symbols; we use elements of the
set to classify error values. A distinguishing oracle is a function (not a predicate)
O : Vals → ErrorClasses that maps a value to an error class c ∈ ErrorClasses.
A distinguishing oracle generalizes the concept of an oracle: we can convert a “tra-
ditional” oracle into a distinguishing oracle by letting ErrorClasses = {true, false}.
However, using a distinguishing oracle lets us group error values into error classes, to
signal that error values from different classes are considered different, and should not
be masked by the equivalence relation. For example, an oracle that maps every error
value to a different class means that every error value is considered to be a different
error. As a convention, we always use the error class true to represent non-error
values.

A definition of safety using distinguishing oracles is very similar to our original
definition. Assume an operation set ops, unlimited time limit t, a distinguishing
oracle O, ideal legality predicate Leg, and an equivalence relation ∼ on the terms in
terms(ops). The modified parts of the definition are underlined.

Definition (safe equivalence on terms with distinguishing oracle). The re-

50



lation ∼ is safe iff for any execution e of Drt(ops, t, O, Leg,∼), if there is some
term t ∈ terms(ops) such that O([t]) = c (where c 6= true), then there is a term
t′ ∈ scope(e) such that O([t′]) = c.

Other definitions from Section 4.2.1 remain unchanged.

Referring back to the example from Figure 4-5, if we are interested in distinguish-
ing between the two error-revealing terms, we stipulate that the equivalence relation
be safe with respect to an oracle that puts the two error-revealing terms in different
error classes. The relation shown in the figure is not safe under such an oracle.

4.2.4 Efficiency

Earlier in the chapter we argued that safety alone does not yield a useful equivalence
notion; the relation should also be coarse, because larger the equivalence classes
result in greater potential for discarding terms. It takes little effort to define an
equivalence relation that is safe but not coarse (e.g. term equality) or one that is
coarse but not safe (e.g. the relation where every term is equivalent). Defining an
equivalence relation, whether by hand or via program analysis, typically involves a
tradeoff between safety, coarseness, and human effort. For example, we could spend
time studying the software under test, and define an equivalence relation that we can
prove is safe and also coarse; this would likely require significant effort.

An automated technique that derives an equivalence relation is likely to sacrifice
efficiency, safety or both. Section 4.4 describes heuristic pruning, a technique that
automates equivalence and can suffer from a lack of both safety and efficiency, but is
nevertheless effective in practice.

4.2.5 Discarding Terms and Knowledge of Errors

Throughout this section, we have stated as a matter of fact that discarding equiva-
lent terms is always beneficial, i.e. it increases the chances that Drt will generate an
error-revealing term. Strictly speaking, this may not be true. For example, suppose
that we knew that the error-revealing terms are exactly those terms that evaluate to
the polynomial “2x.” In that case, keeping in the component set more than one equiv-
alent Rat term that represents the rational coefficient “2” (e.g. Rat(2,1), Rat(4,2),
Rat(6,3), etc.) may actually increase the odds of discovering the error (the chances
of creating a polynomial with exponent 2 would increase).

Another way of viewing this problem is by observing that the effect of discarding
equivalent terms makes Drt’s generation uniform over the space of equivalent terms
(recall that the rchoose operator selects uniformly at random). Depending on the
location of the errors, a different distribution could result in increased probability of
revealing an error. However, lacking advance knowledge about the location of errors
in the space of terms or values (as is usually the case), uniform selection among
equivalent terms is a reasonable choice.
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method Legmethod

Poly(Mono... ms) ms 6= null ∧
(∀i : 0 ≤ i < ms.length : ms[i] 6= null)∧
(∀i : 0 ≤ i < ms.length : ms[i].coeff.num 6= 0)∧
(∀i : 1 ≤ i < ms.length : ms[i− 1].exp <= ms[i− 1].exp)

Poly.add(Mono m) m 6= null
Mono(Rat c, int e) c 6= null ∧ e ≥ 0
Rat(int n, int d) d 6= 0
Rat.approx() true
add(Rat r) r 6= null

Figure 4-6: Legality predicates for polynomial data types.

class For o1, o2 of the given class o1 ∼ o2 iff:
Rat o1.num = o2.num ∧ o1.den = o2.den
Mono o1.coeff ∼ o2.coeff ∧ o1.exp = o2.exp
Poly o1.ms.length = o2.ms.length ∧ ∀i : 0 ≤ i ≤ o1.ms.length :

o1.ms[i] ∼ o2.ms[i]

p0

elements
m0

  coeff
  exp=3

m1

  coeff
  exp=0

r0

 num=2
 den=1
 appr=2.0

r1

 num=1
 den=1
 appr=1.0

p1

elements
m2

  coeff
  exp=3

m3

  coeff
  exp=0

r2

 num=2
 den=1
 appr=2.0

r3

 num=1
 den=1
 appr=1.0

Figure 4-7: Top: an equivalence relation on polynomial values. Bottom: two values
that are equivalent according to the definition.

4.3 Example

This section grounds the concepts we have presented in the chapter by applying
directed random testing to the polynomial operations in Rat, Mono and Poly and
oracle from Figure 2-2, reproduced for convenience in Figure 4-8. First we define a
legality predicate and an equivalence relation. Figure 4-6 shows the legality predicate,
separated for each operation, translated from the method comments in Figure 1-1.
Establishing the predicate to be ideal, i.e. that for every operation op it returns
true on Leg(op, t1, . . . , tk) if and only if [ti] ∈ LV op

i for 1 ≤ i ≤ k, is made difficult
by the fact that the only documentation of preconditions is found in the informal
comments. (This is not an uncommon problem in practice.) In our case, the methods
and preconditions are small enough that a simple inspection can convince us that
they are accurately captured by the predicates in Figure 4-6.

The next step is to define an equivalence relation. We do this by defining an
equivalence relation on values, and lifting the relation to terms by saying that two
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public class Poly {
boolean repOk() {
for (int i=1 ; i<ms.length ; i++) {
if (ms[i-1].expt <= ms[i].expt)
return false;

if (ms[i].coeff.numer == 0)
return false;

}
return true;

}
}

Figure 4-8: Code representing the polynomial value oracle (reproduced for conve-
nience from Figure 2-2).

terms are equivalent iff the values they evaluate to are equivalent. Figure 4-7 shows
the equivalence relation on values of the three polynomial data types. The relation
is defined recursively. For example, equivalence of Poly values is defined in terms of
equivalence of Mono values.

We can establish that the relation is safe by establishing that it is oracle-consistent,
and that it is compositional for each method. To illustrate at least one part of the
proof process, we informally argue that it is oracle-consistent for the oracle Inva-

riantChecker.check(Poly) (Figure 4-8).

Lemma. The equivalence relation ∼ given in Figure 4-7 is oracle-consistent with
respect to the oracle InvariantChecker.check(Poly).

Proof (informal). Suppose t1 and t2 are equivalent, [t1] = p1, and [t2] = p2. Then,
by the definition of equivalence, the ms fields of p1 and p2 have the same length. If
their length is 0, the oracle returns true on both (the for-loop is never entered).
Suppose their length is greater than 0, and the oracle returns false for one of the
polynomials. This means that for some i, either the first or second if-clause in the
for-loop of the oracle evaluates to false. Then, by the definition of equivalence, it
follows easily that for the other polynomial, the for-loop also evaluates to false for
the same index i, and the oracle returns true for the other polynomial as well. The
argument for the oracle returning false is analogous. �

A proof of compositionality for each method would follow a similar structure;
assuming that the inputs to a given method are are equivalent, we must show that the
result will also be equivalent. For example, we could prove that compositionality holds
for the receiver argument of method Poly.add(Mono) (recall that compositionality is
over an individuals argument) by assuming two equivalent Poly terms t1 and t2, and
showing that t1.add(m) ∼ t2.add(m).

Using these definitions of legality and equivalence, a directed random test gener-
ator avoids generating many useless terms. For example, no terms with the illegal
sub-term Rat(1,0) are ever generated, because the term is never added to the com-
ponent set. The generator also avoids generating equivalent terms like Rat(1,1) and
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Legal, distinct Poly objects generated
length 1 2 3 4 5 6 7 8 9 10 > 10
Drt 126 133 68 26 8 3 4 0 10 1 0
Td 141 70 3 0 0 0 0 0 0 0 0

Figure 4-9: Number of legal, non-equivalent polynomials of varying lengths generated
by Drt and Td in one minute.

Rat(2,2), or equivalent compositions like Mono(Rat(1,1),1) and Mono(Rat(2,2),1),
because the component set would never contain both Rat(1,1) and Rat(2,2). On
the other hand, the generation process is constrained to terms already in the com-
ponent set, and as we discussed in Chapter 3, this could in result in repetitive test
inputs.

To understand Drt’s performance versus another random testing technique, we
performed an experiment using implementations of Drt and Td to generate Poly

objects for 1 minute. We used a larger number of seeds terms, including the integers
−100, −10, −1, 0, 1, 10, and 100. We also used operations not shown in the example,
including methods that add, subtract, and multiply polynomials.

In one minute, Drt generated approximately 10,000 distinct, legal terms, of which
380 were of type Poly. In the same amount of time, Td also generated approximately
10,000 terms, all of type Poly, but only 200 of them legal and distinct. (These results
are averages over 10 runs, executed in a 2.4 GHz Intel Core 2 Duo with 2GB memory.)
Despite the fact that Drt is less focused on generating terms for the sort of interest,
the procedure is able to generate more useful Poly terms.

Drt also generated a larger variety of polynomial lengths (number of monomials)
than Td. Figure 4-9 shows the distribution of polynomial lengths for a 1-minute
run of Drt and Td. The probability that Td generates a legal polynomial of some
large length N remains constant throughout the execution of the procedure; on the
other hand, the probability that Drt generates a legal polynomial of length N in-
creases as the component becomes populated with more legal, distinct monomials and
polynomials.

4.4 Heuristic Pruning

The first key idea in directed random testing is to combine random generation with
pruning of illegal and redundant inputs. The second key idea is pruning based on
automatically-derived (if potentially inaccurate) predicates. The aim of heuristic
pruning is to increase directed random testing’s cost effectiveness by making it fully
automatic.

Heuristic pruning determines term legality and equivalence based on the runtime
behavior of the software under test. To determine term legality, the generator exe-
cutes the term. If the term executes normally, the generator heuristically determines
that the term is legal. The definition of “normal execution” may depend on the par-
ticular programming context. To determine the equivalence of two runtime values,
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public class Mono {

public Mono(Rat coeff, int exp) {
if (coeff == null || exp < 0)
throw new IllegalArgumentException("Invalid arguments.");

this.coeff = coeff;
this.exp = exp;

}

public boolean equals(Object o) {
if (this == o) return true;
if (o == null || !(o instanceof Mono)) return false;
Mono m = (Mono)o;
return this.coeff.equals(m.coeff) && this.exp == m.exp;

}
}

Figure 4-10: Excerpts from class Mono showing code constructs used in heuristic
pruning.

the generator observes their state directly or indirectly, e.g. via observers defined in
the software under test.

Randoop, a directed random testing tool for Java described in Chapter 7, judges
an execution normal if it raises no exceptions. To determine object equivalence,
Randoop leverages the notions of object equality already present in the software:
it calls two values equivalent if they have the same type and calling that type’s
equals method on the two objects returns true. An example of a class for which
these heuristics work well is class Mono. Figure 4-10 shows how Mono’s constructor
checks the validity of its arguments and throws an IllegalArgumentException if the
constructor’s preconditions are violated. The equals method in Mono is consistent
with the notion of equivalence from the previous section: it returns true when the
two monomials’ coefficients are equivalent and their exponents are the same.

Depending on the strategy to determine legality or equivalence, and on the soft-
ware artifact under test, heuristic pruning may be inaccurate. Procedures can fail to
check the legality of their inputs due to programmer omission or performance consid-
erations, causing operations to be passed invalid inputs and not exhibit externally-
observable abnormal behavior. Equivalence checking based on observer procedures
like equals can yield inaccurate results if the procedure ignores portions of a value’s
state relevant for an operation, or if observer procedures contain errors. The key
hypothesis behind heuristic pruning is that despite its probable inaccuracy, it can
usefully prune the input space and increase the ability of directed random testing to
achieve greater coverage and reveal errors. We validate this claim experimentally in
Chapter 8.
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Chapter 5

Directed Random Testing for
Sequences

Terms are a natural language for describing the creation of values using operations.
Up to now, we have viewed operations as functions that map input values to an output
value. In a purely functional programming language (e.g. Haskell [20]), this func-
tional model captures all possible behaviors obtainable via operations, and terms are
a perfectly matched language for test input generation. However, for non-functional
programming languages like C++, Java, or C#, a simple term language is limited
in expressiveness and cannot express important behaviors, including patterns of mu-
tation and aliasing that can arise by chaining together sequences of operations. For
software written in these languages (which is the majority of software), generating
inputs that are terms (i.e. operation trees, as opposed to sequences) restricts testing
to a subset of all possible behaviors. This limitation can prevent a test generator
from revealing important errors.

This chapter extends the ideas behind directed random testing to a more expres-
sive language of operation sequences. We begin by describing expressiveness deficien-
cies of terms. In a nutshell, terms are unable to express certain aliasing patterns, such
as using the same object reference twice as input to method that takes more than one
input. Terms are also unable to express patterns of side effects (i.e. the modification
by an operation to the state of its inputs), for example particular scenarios where a
sequence of operations is performed using a value as input multiple times not for the
values the operations return, but for the side effects of the operations on the value.

After discussing these problems with terms, We show that sequences of operations
are able to express patterns of behavior inexpressible with terms. We revisit the
ideas that make up directed random testing, including bottom-up generation, legality,
equivalence, and heuristic pruning, adapting the ideas to work on operation sequences
instead of terms. Finally, we discuss two problems that arise when trying to adapt
equivalence from terms to sequences, and present index pruning, which addresses one
of these problems.
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Description of scenario Test input that creates
scenario

Reason(s) scenario
cannot be created with a

term.

A call of Mono.equals is
made on the same object.

Mono m = new Mono();
m.equals(m);

Cannot refer to m twice in
the same operation.

Figure 5-1: An important aliasing scenario impossible to create with a term.

5.1 Deficiencies of Terms

Terms are insufficient to express patterns of aliasing and side effects that can arise
using a set of operations. These problems arise because in most languages, opera-
tions do not match the traditional functional interpretation of terms. For instance,
in Java, the same method or constructor invocation (e.g. “new Rat(1,1)”) returns
two distinct values (objects) when invoked twice on identical inputs. In other words,
Rat is non-deterministic. Also, a Java method may mutate the state of its inputs, a
possibility not accounted for by the functional interpretation of terms. This section
discusses concrete examples that illustrate patterns of aliasing and mutation inex-
pressible with terms, and why this can decrease the error-revealing effectiveness of a
test generation procedure based on terms.

Non-Determinism and Aliasing

Aliasing refers to the situation where two symbolic names refer to the same region in
memory. Aliasing can arise in most programming languages, and programmers often
write code to account for the possibility of aliasing. For example, recall the equals

method of the Mono class from Figure 4-10:

public boolean equals(Object o) {
if (this == o) return true;
if (o == null || !(o instanceof Mono)) return false;
Mono m = (Mono)o;
return this.coeff.equals(m.coeff) && this.exp == m.exp;

}

The if-condition in the first line in the body of equals (“if (this == 0) ...”) is
an aliasing check: it checks if the memory location that the receiver object this refers
to is the same location that the argument o refers to. If it is, this and o are equal
(in fact, identical), so equals returns true. Figure 5-1 shows a test input that drives
execution through the true branch of the if-condition. While in this example the code
following the true branch is simple and obviously correct, it could easily contain a
larger or more complex body of code, making it important to include a test input
that follows the branch.

Unfortunately, no term over polynomial operations would drive execution through
this branch, because to do so it would have to specify the same object (which is
different from the same term) twice as input to method equals. In a term, if we wish
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to specify the same value twice as input, we do this by replicating the same sub-term,
e.g. equals(Mono(),Mono()), because under the functional interpretation of terms
(Section 3.3), equal terms result in identical values. The tactic does not work for
Mono() (or for any other polynomial operation that returns an object) because the
operations are not functions: two calls of Mono() in a test input result in two distinct
objects.

Notice that the test input in Figure 5-1 that manages to follow the true-branch
of the aliasing check does this by assigning a name m to the result of the constructor
call, and using the name to refer to the value in the next method call. The language
of operation sequences we develop in Section 5.2 gives a name to the value resulting
from an operation, and uses the name to specify that the value be used as input to
later operations, allowing aliasing patterns to be expressed.

Side Effects

A side effect refers to the situation where an operation modifies the state of one
or more of its inputs (or any reachable program state, including global program
state). Terms cannot express some patterns of mutation that may be important
to adequately test a software artifact. To illustrate this problem, we augment our
running polynomial example with a new data type and new operations. Figure 5-2
shows class PStack, which implements a stack of polynomials. A PStack object holds
a collection of Poly objects that can be accessed using stack operations push(Poly)
and pop(). In addition, a polynomial stack provides operations to perform polynomial
arithmetic on the top elements of the stack. For example, the add() method pops
two polynomials from the stack, adds them, and pushes the result on the stack. Like
the polynomial data types, PStack is based on a real programming assignment given
to undergraduate computer science students at MIT.

Unlike the data types we have seen so far, PStack has mutable state: the value
of its fields can change as a result of an operation. Thus some stack methods, in
addition to returning a value, have an additional side effect : they modify the state of
the stack. For example, the pop() operation, in addition to returning a polynomial
object, modifies the stack’s state, decrementing the value of the size field by 1.

Side effects present a representational problem for terms. In the absence of side
effects, it is natural to think of the result of an operation as its return value. With side
effects, the result of the operation is less clear: is the result if pop() a polynomial, or a
“new stack” in a different state from the original? Our term language from previous
chapters always designates the result of an operation as the return value. In the
case of the polynomial stack class, this designation makes it impossible for an input
generation to generate important values. Figure 5-3 shows examples of mutation-
related scenarios that cannot be created using terms. The first example demonstrates
that a very basic scenario—pushing more than one element on the stack—is impossible
to express with terms, because the return value of a push operation is a boolean value.

Other researchers have attempted to overcome this problem by adding syntax that
make it possible for the result of term to be interpreted as either the result of the
operation, or one of its (possibly-mutated) input arguments. For example, Henkel
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public class PStack {

// representation invariant:
// stack != null,
// 0 <= size <= stack.length
private Poly[] stack;
private int size;

// Construct a new stack.
// Initial capacity will be 10.
public PStack() {
this(10);

}
// Construct a new stack with
// the given capacity.
public PStack(int capacity) {
stack = new Poly[capacity];
size = 0;

}

// Pushes p on the stack.
// Returns true if the value
// was added successfully.
public boolean push(Poly p) {
if (size == stack.length)
return false;

stack[size-1] = p;
size++;
return true;

}

// Pops top of the stack.
// Requires: stack is not empty.
public Poly pop() {
return stack[--size];

}

// Pops the two top elements of
// the stack, adds them, and
// pushes result on the stack.
// Requires: size of stack >= 2.
public void add() {
// ...

}

// Pops the two top elements of
// the stack, subtracts them, and
// pushes result on the stack.
// Requires: size of stack >= 2.
public void sub() {
// ...

}
public PStack copy() {
PStack s2 = new PStack();
s2.stack = stack; // ERROR
return s2;

}
}

Figure 5-2: A polynomial stack class PStack, used in the implementation of a stack-
based polynomial calculator.

and Diwan [50] propose a term-based representation for Java that augments the term
language with new notation: given a term t = m(t1, . . . , tk), state(t) refers to the
state of the first argument (i.e. the receiver) instead of the return value. With this
new notation, it becomes possible to write a term that describes consecutive pushes
on a stack, as demonstrated by the term

push(state(push(PStack(), Poly())), Poly()).

Unfortunately, the notation only partially solves the problem. Figure 5-3 (second
example) shows an important error-revealing scenario that is not expressible us-
ing Henkel and Diwan’s augmented notation. The scenario creates a new stack s1

and pushes a polynomial on it. It then copies the stack, obtaining a new stack s2,
pops s2’s top element, and then attempts to pop s1’s top element, resulting in an
IndexOutOfBounds exception on the last pop. The exceptional execution cannot
be induced by a traditional term, nor by Henkel’s augmented terms, because it is
impossible to refer to stack s1 more than once after the copy operation. Henkel’s
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Description of scenario Test input that creates
scenario

Reason(s) scenario
cannot be created with a

term.

Two polynomials are
pushed on the stack.

Poly p = new Poly();
Rat r = new Rat(1,1);
Mono m = new Mono(r,1);
Poly p2 = new Poly(m);
PStack s = new PStack();
s.push(p); // *
s.push(p2);

Cannot refer to s after *.

A stack’s state is (erro-
neously) modified by an
operation on a copied
stack.

PStack s1 = new PStack();
PStack s2 = s1.copy();// *
Poly p1 = new Poly();
boolean b1 = s1.push(p);
Poly p2 = s2.pop();
Poly p3 = s1.pop();

Cannot refer to s1 after *.

Figure 5-3: Two Important mutation scenarios impossible to create with terms.

augmented terms suffer from the same problem as traditional terms: it allows only a
single use of a value.

The representational problems we have shown are all due to the inability to refer
to the result of an operation more than once in later operations. The following section
describes a language of operation sequences that assigns names to the result of each
operation, allowing for multiple reference.

5.2 Operation Sequences

In order to express scenarios not expressible using terms, we define a language of
operation sequences that lets us to refer to the result of an operation multiple times.
An operation sequence represents a series of operations applications, where the inputs
to each operation can be values returned by previous operations. All the test inputs
in Figures 5-1 and 5-3 are actually operation sequences, demonstrating that operation
sequences can represent scenarios impossible to represent with terms.

To be able to refer to the result of an operation multiple times, we develop a
naming mechanism that identifies the result value of an operation in a sequence. We
assume an infinite universe Names of symbols. We associate a unique name with
each operation in a sequence, which we use to refer to the result of the operation.
Using this mechanism, we define a sequence of operation invocations as a sequence
of triples, with each triple (op, inputs, output) consisting of an operation op ∈ ops,
a list of symbols inputs ∈ Namesk specifying the inputs to the operation, and a
new symbol output ∈ Names specifying the result of the operation. We denote the
i-th element of a sequence s as s[i], and its operation, inputs and output names as
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s[i].op, s[i].inputs and s[i].output respectively. The names of a sequence s, denoted
names(s), consist of the set of all names that are outputs for some operation in
the sequence; because each name is unique, there are as many names as there are
operations in the sequence. The sort of name n in sequence s, denoted sort(n, s), is
the result sort of the operation whose result the name represents. The index of name
n in the sequence, denoted idx(n, s), is the index of the operation that the name is
associated with.

More formally, we define the set of operation sequences over an operation set ops
inductively, as the smallest set satisfying the following properties.

1. The empty sequence is an operation sequence.

2. Consider:

(a) An operation sequence s,

(b) an operation op = opname : r1 × . . .× rk → rout,

(c) Names n1, . . . , nk ∈ names(s), where sort(ni, s) = ri for 1 ≤ i ≤ k, and

(d) A name nout /∈ names(s).

Then s � 〈op, 〈n1, . . . , nk〉, nout〉 is an operation sequence over ops.

For simplicity, we may write a sequence as abbreviated pseudocode, using primitives
directly as operation arguments, e.g.

n3 = Rat(2,3) ; n5 = Mono(n3,1)

instead of the proper but more verbose sequence of triples

〈〈2, 〈〉, n1〉, 〈〈3, 〈〉, n2〉, 〈Rat, 〈n1, n2〉, n3〉, 〈1, 〈〉, n4〉, 〈Mono, 〈n3, n4〉, n5〉.

Shortly, we show that specific names in a sequence do not affect its interpretation,
e.g. the sequence “n3 = Rat(2,3) ; n5 = Mono(n3,1)” is equivalent to

r = Rat(2,3) ; m = Mono(r,1).

5.3 Interpreting Sequences

The interpretation of operations in the world of terms (Section 3.3) associates with
an operation op = opname : r1 × · · · × rk → rout a function

Mop : Vr1 × . . .× Vrk
→ Vrout

that takes as input k values and returns one value. However, as we saw in previous
sections, an operation can have side effects on other values, including values other
than those used as input to the operation.
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To motivate our new interpretation of operations, recall the operation sequence
from Figure 5-3, which creates two stacks that share a single polynomial array:

1. PStack s1 = new PStack();
2. PStack s2 = s1.copy();
3. Poly p1 = new Poly();
4. boolean b1 = s1.push(p);
5. Poly p2 = s2.pop();
6. Poly p3 = s1.pop();

Consider the last operation, s1.pop(). It takes as input a stack and returns a
polynomial. As we saw in Section 5.1, the last invocation of pop also has as a side
effect: it modifies the two stack values represented by s1 and s2.

Another way of viewing pop is as an operation that takes as input the state of a
program consisting of 6 values (one for each value in the sequence), and returns a new
(different) state, consisting of 7 values (including the new return value of pop). The
values in the new state have the same sort as they did in the previous state, but the
values themselves may be different. In other words, the pop operation takes as input
a state 〈s1, s2, p1, b1, p2, 〉, and returns a new state 〈s′

1, s
′
2, p1, b1, p2, p3〉, that contains

a new value (p3) returned by the operation, and two modified stacks (s′
1 6= s1 and

s′
2 6= s2). In summary, viewing an operation as a function on states lets us account for

the possibility of side effects on other portions of the state. (Although not shown in
the above example, viewing an operation as a function on states also lets us account
for aliasing: a tuple may have multiple elements with different names in the sequences
that have the same value.)

As a second example, consider the sequence r1 = Rat(1,1) ; r2 = Rat(1,1).
Viewing Rat’s constructor as an operation that takes as input a state and returns a
new state, the first application takes as input the empty state 〈〉 and returns a new
state 〈r1〉 with a single Rat value. The second operation takes as input the state
〈r1〉, and returns a new state 〈r1, r2〉, where r1 6= r2. Thus, viewing an operation as
a function on states also lets us account for the fact that the same application can
return different values, depending on the context of the application.

The above examples illustrate the benefit of a state-based interpretation of oper-
ations. Next we make the interpretation of an operation sequence more precise. Call
a finite sequence of values a state, and let States be the set of all possible states. We
associate with each operation op = opname : r1 × · · · × rk → rout a function

Mop : States× Nk → States

that takes as input a state and k input indices, and outputs a new state. The purpose
of the indices is to specify the values in the input state that are used as immediate
arguments to the operation. For example, letting st = 〈p1, p2, m〉 be a state consisting
of two Polys p1 and p2 and one Mono m, and letting op be the Poly.add(Mono)

operation, the application Madd(st, 1, 3) refers to the addition of p1 and m, and the
application Madd(st, 2, 3) refers to the addition of p2 and m. Naturally, we restrict an
operation to produce states with compatible sorts: if Mop(st, i1, . . . , ik) = st′, then
elements at the same index in st and st′ have the same sort.
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Given the new interpretation of operations, we can define the interpretation of a
sequence. We view a sequence of operations as representing the state obtained by the
repeated application of functions given by the operations in the sequence. The state
for sequence s, denoted [s], is defined as follows:

� If s is the empty sequence, then [s] = 〈〉 (the empty state).

� If s = s′
� 〈op, 〈n1, . . . , nk〉, nout〉, then [s] is Mop([s

′], idx(n1, s
′), . . . , idx(nk, s

′)).

We also say that a sequence s evaluates to or produces [s]. To refer to the i-th
element in the state, we write [s, i].

Note that the particular names in a sequence do not affect its interpretation, only
the relation of the names to the results of specific operations. For example, given a
fixed interpretation of polynomial operations, the sequences i=1; j=2 ; r=Rat(i,j)

and a=2; j=2; x=Rat(a,j) evaluate to the same state, even though they have dif-
ferent names.

5.3.1 Error-Revealing Sequences

In Chapter 4 we assumed that the user provides an oracle O that determines if a value
is error-revealing. From here on, we assume that an oracle O takes as input a sequence
of values and determines if the sequence is error-revealing. Such an oracle matches
better with sequences. It is also more powerful: an oracle that operates on a sequence
of values can check correctness properties over relationships between the values. A
common example, for object-oriented languages, is the equals/hashCode property,
stating that two objects that are equal should have the same hash code. (Note that
an oracle that operates on single values can be converted to a value-sequence oracle
that operations on each element individually.)

The rest of the chapter adapts directed random testing to operation sequences.
Much of the adaptation consists simply of recasting definitions and algorithms in the
new vocabulary of sequences. However, Section 5.7 shows a problem that can make
pruning based on equivalent sequences less effective than pruning based on equivalent
terms. Section 5.8 discusses index pruning, a new pruning strategy that addresses
the problem.

5.4 Composing Sequences

We initially proposed terms as a generation language because they naturally express
the compositional nature of generating values using a set of operations. For example,
both Td and Bu generate a term of a given sort r by composing sub-terms; the
sub-terms are recursively generated, or found in a component set. For example, we
can create a Poly term via the operation Poly : Mono... → Poly, by applying the
operation to sub-terms Mono(Rat(2,1),3) and Mono(Rat(1,1),1) to obtain

Poly(Mono(Rat(2,1),3),Mono(Rat(1,1),1).
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We can also think of sequences as compositional entities that can be combined to
generate a value of a desired sort. For example, to generate a sequence that produces a
value of sort r, we can find an operation opname : r1×. . .×rk → rout, then recursively
generate (or, as we show shortly, find in a component set of sequences) one or more
sub-sequences that, when concatenated, yield a sequence that produces values for all
the desired input sorts s1, . . . , sk, and finally, append a call of the operation to the
concatenated sequence, selecting appropriate names as input arguments. For example,
we can build a sequence that creates a Poly via the operation Poly : Mono... →
Poly, by (1) concatenating the two sequences “r1=Rat(2,1); m1=Mono(r1,3)” and
“r2=Rat(1,1); m2= Mono(r1,1),” and (2) appending a call of Poly(Mono...) to
the end of the concatenated sequences, resulting in

r1=Rat(2,1); m1=Mono(r1,3); r2=Rat(1,1); m2=Mono(r2,1); Poly(m1,m2).

Thus, sequences can be composed just like terms; they also have the additional
benefit of greater expressiveness.

The notion of concatenating sequences is straightforward. The only complication
arises from possible name clashes: if two sequences have one or more common names,
concatenating them may not result in a valid sequence. For example, concatenating
the sequences r = Rat(2,3) and r = Rat(2,1) would result in the sequence r =

Rat(2,3); r = Rat(2,1), which is not a valid operation sequence, because it does
not have unique names in every index. To solve this problem, we assume that the con-
catenation operation for sequences, before concatenating two sequences, “renames”
the names in all the input sub-sequences so that every sub-sequence has a unique set
of names. Recalling from Section 5.3 that the result of evaluating a sequence is not
affected by the specific names used, it is easy to see that this version of concatenation
yields the expected result.

5.5 Directed Random Testing for Sequences

Having defined a notion of sequence composition, we can adapt directed generation to
the domain of sequences. Figure 5-4 shows the modified directed random testing pro-
cedure, DrtS. The procedure is similar to directed random testing for terms. It takes
six inputs: (1) a set of operations, (2) a time limit, (3) an oracle, (4) a legality predi-
cate on sequences (Section 5.6), (5) an equivalence relation on sequences (Section 5.7),
and (6) an index pruner p (described in Section 5.8). DrtS maintains a component
set of sequences, initially containing only the empty sequence. It repeatedly generates
a sequence from the image of the component set, using the legality and equivalence
predicates to discard illegal and equivalent sequences. If a sequence is error-revealing,
DrtS outputs the sequence. If no error-revealing sequence is discovered and the time
limit expires, the procedure outputs ⊥ to signal that no error-revealing sequence was
discovered.

Let seqs(ops) be the set of all sequences over operations ops. We define the image
of a component set of sequences, denoted I(C, ops), as:

I(C, ops) = {s1 � . . . � sk � op(n1, . . . , nk) ∈ seqs(ops) : si ∈ C}
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Procedure DrtS

Input: Operation set ops, time limit t, oracle O, legality predicate Leg,
equivalence relation on sequences ∼, index pruner p.

Result: An error-revealing sequence, or ⊥ if none is generated within time limit.

1 C ← {〈〉}
2 while time limit t not expired do

3 img ← {s′ = spre � op(n1, . . . , nk) ∈ I(C, ops) :
4 Leg(op, spre, n1, . . . , nk) ∧ ∀s2 ∈ C : s′ � s2}
5 s = rchoose img;

6 if ¬O([s]) then
7 return s

8 for i = 1 to length of s do

9 s[i].reusable← p([s, i])

10 C ← C ∪ {s}
11 return ⊥

Figure 5-4: Directed random testing for sequences.

Note that we do not require each name to come from a different sub-sequence. This
allows for situations where a single sub-sequence provides more than one argument to
the operation. Otherwise, we might miss important sequences from the image. For
example, the sequence

p = Poly(); p.equals(p)

could not be generated if we insisted that every name come from a different sub-
sequence. The sequence p = Poly(); p.equals(p) is in the image of any component
set that contains p=Poly(): supposing C contains p=Poly(), then

p=Poly();〈〉; p.equals(p) ∈ I(C, ops).

The role of the empty sequence is to satisfy the requirement in the definition that
there be k input sequences for an operation with k input arguments. The component
set is always initialized to contain the empty sequence, to allow compositions like the
above.

5.6 Pruning Illegal Sequences

Like Drt, DrtS takes as input a legality predicate Leg, but the predicate takes
slightly different arguments. The legality predicate for sequences takes as input an
operation op, a sequence s, and a vector of names 〈n1, . . . , nk〉 from the sequence s.
The application Leg(op, s, n1, . . . , nk) returns true if the values specified by n1 through
nk in s represent legal arguments to op. For example, letting op be the Rat(int,int)
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constructor, s be the sequence i=0; j=1, and Leg be a predicate that reflects the
preconditions for Rat(int,int), then Leg(op, s, i, j) = true because (0,1) are legal
inputs to the constructor, and Leg(op, s, i, j) = false because (1,0) are illegal inputs
to the constructor.

5.7 Pruning Equivalent Sequences

The notion of equivalence for sequences is analogous to equivalence for terms. An
equivalence relation should be safe, i.e. not cause DrtS from discovering an error. It
should also be efficient (i.e. coarse), to allow for the greatest possible number of dis-
cards. The definitions from Section 4.2 carry over to sequences without modification
other than changing “terms” to “sequences.” An equivalence relation on sequences
is oracle-consistent if s ∼ s′ implies O([s]) = O([s′]). An execution is a run of
DrtS, and is represented as a series of sequences corresponding to the sequences that
were added to the component set during the execution. The scope of an execution
is the set of sequences that can be generated across all possible extensions of the
execution. An equivalence relation on sequences is scope-preserving if for every
execution e and sequence s, there is a sequence s′ ∈ scope(e) where s′ ∼ s. Finally,
the crucial definition, safety, is also analogous:

Definition (safe equivalence for sequences). The relation ∼ is safe iff for any
execution e of DrtS, if there is some sequence s ∈ seqs(ops) such that O([s]) = false,
then there is a sequence s′ ∈ scope(e) such that O([s′]) = false.

Chapter 4 presented compositionality, a property that can be used together with
oracle consistency to show that an equivalence relation is safe. The basic idea is
the same: using equivalent inputs to an operation results in equivalent output. The
definition is slightly more complicated because it must account for names.

Definition (compositional equivalence for sequences). We say that ∼ is com-
positional iff for every operation opname : r1 × . . .× rk → rout in ops, if s1 ∼ s2 and
s1 � op(n1, . . . , nk) is a valid sequence, then there are names m1, . . . ,mk in s2 such
that

s2 � op(m1, . . . ,mk) ∼ s1 � op(n1, . . . , nk).

This recast definition of compositionality yields a lemma connecting compositionality
with scope preservation. The proof follows the same structure as the proof of the
lemma 4.2 in Section 4.2.2.

Lemma 5.1. A compositional equivalence relation is scope-preserving.

Proof. Suppose ∼ is compositional. We start by proving that for any sequence
s and execution e, we can extend e to an execution e′ that contains a sequence s′

equivalent to s. Finally, since scope(e) includes all the sequences in e′, it follows that
s′ ∈ scope(e).
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Now we prove that for any sequence s and execution e, we can extend e to an
execution e′ that contains a sequence equivalent to s. The proof is by induction on the
length of s. If s is the empty sequence we are done, because every execution contains
the empty sequence. Now (induction step), suppose that for all sequences of length
less than N , we can extend an execution to one containing an equivalent sequence. We
show that the same is true for any sequence of size N . Let s = s1 � op(n1, . . . , nk) be
such a sequence, and e be an arbitrary execution. Using the induction hypothesis, we
can extend e to an execution e1 containing a sequence s2 ∼ s1. By compositionality
there is some m1, . . . ,mk such that s = s1 � op(n1, . . . , nk) ∼ s2 � op(m1, . . . ,mk).
Extending e1 to contain s2 � op(m1, . . . ,mk), we get an execution that contains a
sequence equivalent to s. �

The possible effects of mutation by an operation are obscured in the proof, because
the definition of compositionality already accounts for mutation. Notice that a rela-
tion is compositional if, assuming two arbitrary equivalent states s1 and s2, applying
an operation to the states results in equivalent states. The operation could mutate val-
ues other than those used directly as input to the operation, but for compositionality
to hold in this case, the resulting sequences s1 � op(n1, . . . , nk) and s2 � op(m1, . . . ,mk)
would have to be equivalent, meaning that any significant side effects (e.g. those af-
fecting the result of the oracle) on one would have to be also present in the other. In
other words, the lack of mention of mutation in the proof of Lemma 5.1 is due to the
fact that mutation is already accounted for in the definition of compositionality.

To show that an equivalence relation over value tuples is safe, we can show that it is
compositional and error-consistent, under the new definitions of these concepts. The
notion of compositionality for an equivalence relation on sequences is less attractive
(and may be more difficult to establish) than compositionality for terms, because
it requires reasoning reasoning about the operation’s inputs, output, and its effect
on an arbitrary state. In contrast, establishing compositionality for terms requires
reasoning only about the operation immediate inputs and output. In going from a
setting where operations are functions mapping input values to a single output value
without side effects, to a setting where side effects are possible on other values, we
gain expressive power, but lose some simplicity in reasoning about equivalence.

5.8 Heuristic Pruning for Sequences

A key idea in directed random testing (and crucial for obtaining a scalable, automated
implementation) is to approximate a legality predicate and an equivalence relation
based on the runtime behavior of the software under test. A heuristic strategy for
determining sequence legality can be essentially the same as for term legality: execute
a new sequence, and if the execution completes normally, consider the sequence to
be legal. If the execution does not complete normally (e.g., throws an exception),
consider the sequence to be illegal.

A heuristic pruning strategy for equivalence is more difficult to translate effec-
tively from the world of terms to that of sequences. Recall the “equals-based”
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strategy for terms described in from Section 4.4: two terms t1 and t2 are equivalent
if [t1].equals([t2]) returns true. Since each term evaluates to one value, and since
the equals method takes two values as input and returns a boolean, equals is a good
match (in terms of input and output) for heuristically determining term equivalence.

A natural way to lift the strategy to operation sequences, which produce a sequence
of values, is element-wise: two sequences s1 and s2 are equivalent if they are element-
wise equivalent, i.e. if [s1] = 〈u1, . . . , uk〉, [s2] = 〈v1, . . . , vk〉, and ui.equals(vi)

returns true for 1 ≤ i ≤ k. Unfortunately, two problems arise when using this
equals-based strategy on sequences:

1. Equivalent sequences with important differences. An equals-based ap-
proach may consider two sequences equivalent despite important differences
arising from relationships between elements in the sequence that are ignored
when determining equivalence in an element-wise way. An example is shared
state: different elements in a sequence may share state that could be important
in revealing an error. For example, consider the two sequences

s1=PStack();s2=PStack()

and

s1=PStack();s2=s1.copy().

On an element-wise basis, both sequences are equivalent: the first evaluates to a
state 〈s1, s2〉 with two empty stacks, as does the second (let its state be 〈s3, s4〉),
and using the PStack.equals method (which determines two stacks to be equal
if they contain the same elements), both s1.equals(s3) and s2.equals(s4)

evaluate to true. However, the two sequences yield objects with important
structural differences: The first stack pair consists of two stacks with separate
underlying arrays, while the second stack pair shares the same underlying array,
because copy (erroneously) assigns the receiver’s array to the stack copy. Dis-
carding the second one based on element-wise equals can lead the generator to
discard the second sequence (which can reveal the copy error) if it is generated
after the first one.

Any strategy that determines equivalence in an element-wise way can suffer from
the same problem. For example, using other observer methods (e.g. size(),
toString()) to heuristically equivalence among elements from two sequences
would suffer the same problem as using equals. Unfortunately, observers and
equality methods present in code that can be used to perform heuristic pruning
are typically designed to operation over single values, or pairs of values, which
is a good match when dealing with terms (which evaluate to a single value), but
presents the problem that the methods may not be used to detect important
relationships between values in a sequence.

2. Non-equivalent sequences with element-wise similarities. A second
problem with using element-wise equals computations as a basis for heuris-
tic pruning is that it can introduce a significant amount of redundancy in the
component set, even if the component set contains no equivalent sequences.
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1

Rat r = Rat(2,3);

2

Rat r2 = Rat(1,1);

3

Rat r = Rat(2,3);
Mono m = Mono(r,1);

4

Rat r = Rat(2,3);
Mono m = Mono(r,1);
Poly p = Poly(m);

5

PStack s = PStack();

6

Rat r = Rat(2,3);
Mono m = Mono(r,1);
Poly p = Poly(m);
PStack s = PStack();
boolean b = s.push(p);

Figure 5-5: Six sequences representing an example component set. The sequences
are not equivalent, but together they introduce redundancy in the component set.
For example, There are four sequence indices that yield the rational number 2/3
(sequences 1, 3, 4 and 6), but only one that yields the rational number 1 (sequence
2).

More specifically, while two sequences may be non-equivalent, they may never-
theless contain many redundant elements, and this can result repeated testing
of the operations with the same input values. This is best seen with an exam-
ple. Suppose the first steps in a run of DrtS results in the sequences shown
in Figure 5-5 (in the order shown). Using the element-wise notion of equiva-
lence we just discussed (or even one that allows for equivalent values to be at
different indices), all six sequences are non-equivalent; most create collections
of values different in both the number of values and their sort. Despite being
non-equivalent, the sequences introduce a significant amount of redundancy in
the component set, at the element level. For example, four elements across all
sequences yield the rational value “2/3,” but only one element yields the ratio-
nal value “1.” Similarly, three indices across all sequences yield monomials (in
sequences 3, 4 and 6), but all three actually yield the same monomial. Element
redundancy can cause a directed random testing tool to repeatedly execute op-
erations using the same input values, or distort the distribution towards some
values and away from others. For example, when running an early version of
Randoop (that did not account for this problem) on object-oriented libraries
of containers classes, many of the sequences created empty containers, which are
easier to generate than non-empty ones. This caused Randoop to repeatedly
test methods on empty containers, wasting time that could have been spent
executing methods on more diverse container states.

Both problems can decrease the effectiveness of a directed random test generator,
the first by preventing the generation of important test scenarios, and the second
by reducing the efficiency of the generator. We address the second problem in this
thesis (but not the first). The next section describes index pruning, a technique that
addresses the problem of redundant elements among a set of sequences. Index pruning
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attacks this problem by allowing a more fine-grained notion of pruning based not on
discarding an entire sequence, but preventing certain elements in a sequence from
being reused when creating a new sequence.

Index Pruning

The goal of index pruning is to reduce the number of redundant values present in a
component set. As we discussed above, discarding equivalent sequences may not be
enough to avoid redundancy in the component set, because a set of non-equivalent
sequences can nevertheless contain many redundant elements. The idea is to mitigate
this redundancy by (1) detecting elements in a sequence that are redundant (with
respect to equals) because they can be produced by another sequence already in the
component set, and (2) preventing these elements from being reused when generating
new sequences. Index pruning is a way to realize, in the context of sequences, the
original goal of equals-based heuristic pruning: avoiding testing an operation re-
peatedly on equivalent inputs. We describe index pruning in steps, by describing the
three extensions to directed random testing involved: the first extends the definition
of a sequence, the second incorporates a pruning step when processing a sequence,
and the third modifies the generation of a new sequence to be aware of redundant
elements.

� Reusable element flags. We modify slightly the definition of an operation
sequence, and associate with each element a boolean flag indicating whether the
given index can be used when extending the sequence. We can view a sequence
as a generator of values; the boolean flags indicate which values the sequence
makes available for use in new test inputs. The goal is to prevent multiple
sequences from making equivalent values available. Formally, we redefine an
operation sequence so that every element is a 4-tuple (operation, input names,
output name, and boolean flag). To denote that index i in sequence s has its
flag set to true, we will write s[i].reusable = true. The flags essentially restrict
the space of sequences that are generated: the generator never creates a new
sequence that uses the given element as input to a new operation.

� Index pruning procedure. We augment the directed random testing tech-
nique with an index pruner, a procedure sets the reusable element flags of a
new sequence based on whether an element yields a new value. Throughout the
execution of directed random testing, the index pruner maintains an value set
(not to be confused with the component set), containing every distinct value
that has been created across the execution of all sequences, since the start of
the generation process.

DrtS invokes the index pruner (lines 8–9 in Figure 5-4) after a new sequence
s is generated, and before it is added to the component set. For each element
[s, i] of the evaluated sequence, DrtS queries the index pruner to determine if
the reusable flag at i should be set to true (the value is new) or false (the value
is redundant). The pruner determines this by comparing the given value with
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1

T Rat r = Rat(2,3);

2

T Rat r2 = Rat(1,1);

3

F Rat r = Rat(2,3);
T Mono m = Mono(r,1);

4

F Rat r = Rat(2,3);
F Mono m = Mono(r,1);
T Poly p = Poly(m);

5

T PStack s = PStack();

6

F Rat r = Rat(2,3);
F Mono m = Mono(r,1);
F Poly p = Poly(m);
T PStack s = PStack();
T boolean b =s.push(p);

Figure 5-6: The same sequences from Figure 5-5, showing boolean flag values obtained
through index pruning. The pruning predicate used is heuristic, and it relies on the
equals method to determine if a value has been created before.

all the values in its value set: if there is no value v in the value set such that
v.equals([s, i]) returns true, the pruner determines the value to be new, but
if for some value in the value set the equals method returns false, the pruner
determines the value to be redundant. (For greater efficiency, the pruner uses
a hash set to store values.)

� Index-aware generation. The flags affect the generation process as fol-
lows: the generator never creates a new sequence that uses a non-reusable
element as input to a new operation. We can state this in terms of the im-
age: to do index pruning, we redefine the image of a component set (lines
3–4) to exclude sequences that use any names corresponding to non-reusable
indices. For example, consider a component set with two sequences C =
{ r1=Rat(2,3), r2=Rat(2,3);m=Mono(r2,1) } and suppose that the first
element of the second sequence shown (the element associated with name r2)
has been flagged as non-reusable. Then, the sequence

r2=Rat(2,3);m=Mono(r2,1);m2=Mono(r2,2)

will not be generated, because it uses the element as input to a new operation.
(Note that the given monomial can still be generated, by extending the first
sequence (which provides an element equivalent to that at m2), yielding the se-
quence r1=Rat(2,3);m2=Mono(r2,2). (In the case of the polynomial classes,
index pruning does not hinder the generation of new polynomials; in general,
index pruning, like heuristic pruning, has the potential of preventing the gen-
eration of useful input values.) To illustrate how index pruning mitigates the
problem of redundant elements, Figure 5-6 shows the example execution from
Figure 5-5, but also shows the boolean flags of the sequence indices, with index
pruning based on the heuristic strategy using equals. As Figure 5-6 shows,
index pruning in this case solves the repetitive-value problem. For example, the
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rational value 2/3 has the same number of reusable indices (i.e. one) as the
value 1/1, and the repeated monomial value has a single reusable index.

The general concept of preventing certain elements of a sequence from being reused
when generating longer sequences can be applied in other useful ways. For example,
if an operation returns null, Randoop makes the element non-reusable, based on
our experience that using null values as input to methods often result in arbitrary,
but not error-revealing, behavior.
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Chapter 6

Post-Processing Techniques

This chapter presents two techniques that post-process the test inputs generated by
directed random testing (or any technique that generates operation sequences), to
make the output more useful to a test engineer. The first technique, replacement-
based simplification, aims to help the engineer isolate the root cause of a failing test
input results in a failure, and attempts to remove operations from the sequence, or to
replace a set of related operations in the sequence with a smaller set, while preserving
the failing behavior of the sequence. The result of the technique is a smaller, simplified
version of the original sequence that makes it easier to isolate the cause of failure.
Simplification is particularly important for directed random testing, which tends to
produce long sequences that can be difficult to understand.

The second technique, branch-directed generation, aims to increase the code cover-
age achieved by the set of generated inputs. The technique takes as input a collection
of operation sequences, and modifies the sequences with the goal of driving execution
through new, uncovered branches in the software under test.

While they have different goals, both techniques share a modification-based ap-
proach: they modify existing test inputs in order to yield new, more useful inputs
e.g. inputs that are smaller and easier to debug, or inputs that cover new branches
in the software under test.

6.1 Replacement-Based Simplification

When a test case fails, an engineer must study the test case to find the cause of
the failure and fix the underlying error. Directed random testing—and other ran-
dom testing approaches—tends to generate long failing test cases that include many
operations irrelevant to the failure, and which can make it difficult to isolate the
failure cause. For example, Figure 6-1 (left) shows an example of a typical test case
generated by Randoop, our tool implementing directed random testing. The test
input shown is a slightly-modified version of a test input generated by the tool when
testing the Java JDK. (We mainly removed operations to make the example fit in
the page.) The test input contains 32 operations, and reveals an error in method
Collections.unmodifiableSet that causes it to return an object (var30) that fails
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original test input

long[] var1 = new long[] 1L, 10L, 1L;

Vector var2 = new Vector();

PriorityQueue var3 = new PriorityQueue();

Object var4 = var3.peek();

boolean var5 = var2.retainAll(var3);

long[] var6 = new long[] ;

Arrays.fill(var6, 10L);

IdentityHashMap var7 = new IdentityHashMap(100);

Object var8 = var7.remove(var7);

Set var9 = var7.keySet();

Vector var10 = new Vector(var9);

Vector var11 = new Vector();

IdentityHashMap var12 = new IdentityHashMap(100);

String var13 = var12.toString();

Vector var14 = new Vector();

IdentityHashMap var15 = new IdentityHashMap(100);

char[] var16 = new char[] ’ ’, ’#’, ’ ’;

int var17 = Arrays.binarySearch(var16, ’a’);

Object var18 = var15.remove(var16);

boolean var19 = var14.equals(var15);

boolean var20 = var10.addAll(0, var14);

Collections.replaceAll(var11, var17, var14);

int var21 = Arrays.binarySearch(var1, var17);

Comparator var22 = Collections.reverseOrder();

TreeSet var23 = new TreeSet(var22);

boolean var24 = var23.isEmpty();

Object var25 = var23.clone();

Object[] var26 = new Object [] var21 ;

List var27 = Arrays.asList(var26);

ArrayList var28 = new ArrayList(var27);

boolean var29 = var23.add(var28);

Set var30 = Collections.unmodifiableSet(var23);

assert var30.equals(var30); //fails at runtime

removal-minimal input

long[] var1 = new long[] 1L, 10L, 1L;

char[] var16 = new char[] ’ ’, ’#’, ’ ’;

int var17 = Arrays.binarySearch(var16, ’a’);

int var21 = Arrays.binarySearch(var1, var17);

Comparator var22 = Collections.reverseOrder();

TreeSet var23 = new TreeSet(var22);

Object[] var26 = new Object [] var21 ;

List var27 = Arrays.asList(var26);

ArrayList var28 = new ArrayList(var27);

boolean var29 = var23.add(var28);

Set var30 = Collections.unmodifiableSet(var23);

assert var30.equals(var30); //fails at runtime

after replacement-based simplification

TreeSet var1 = new TreeSet();

Object var2 = new Object();

var1.add(var2);

Set var30 = Collections.unmodifiableSet(var1);

assert var30.equals(var30); //fails at runtime

Figure 6-1: Three failing test inputs all of which reveal the same error in the JDK
method unmodifiableSet, namely a failure of reflexivity of equals fails for the set
denoted by variable var30 (last method call).

the basic reflexivity of equality contract expected from all Java objects. The same
error can be revealed by much shorter sequences of operations, for instance the two
sequences on the right-hand side of the figure.

Two previous approaches to test input simplification are delta debugging [99] and
dynamic slicing [2]. Delta debugging is a general minimization procedure that isolates
failure-inducing program input by systematically removing portions of the input and
checking whether the failure still occurs on the smaller input, until a minimal input
is reached. Dynamic slicing discards program statements that do not contribute to
a particular computation. Delta debugging and dynamic slicing can identify opera-
tions that can be safely removed from a sequence without affecting its error-revealing
behavior.

Both delta debugging and dynamic slicing are fundamentally limited to removing
operations from a failing sequence. However, a semantically extraneous operation
may be impossible to remove, if its removal causes the sequence to be syntactically
invalid. For example, recall the error in method Poly.add (Figure 2-1) that causes
the method to incorrectly add a polynomial p and a monomial m if m is the negation
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of an element in p (e.g. p = 2x3 + 1 and m = −2x3). The following sequence reveals
the error:

1. Rat r1 = new Rat(1,1); // r1: 1
2. Rat r2 = new Rat(2,1); // r2: 2
3. Rat r3 = new Rat(-2,1); // r3: -2
4. Mono m1 = new Mono(r1,2); // m1: x^2
5. Mono m2 = new Mono(r2,3); // m2: 2x^3
6. Mono m3 = new Mono(r3,3); // m3: -2x^3
7. Poly p1 = new Poly(m1); // p1: x^2
8. Poly p2 = p1.add(m2); // p2: 2x^3 + x^2
9. Poly p3 = p2.add(m3); // p3: 0x^3 + x^2 (breaks rep. invariant)

The sequence is removal-minimal, meaning that no operations (i.e. lines) can be
removed from the sequence without making it syntactically invalid, and no longer
error-revealing. For example, removing line 1, which defines variable r1, would cause
line 4’s call new Mono(r1,2) to refer to a non-existent variable, and the resulting
sequence would not be well-typed.

We can simplify the sequence further if we replace some of the operations. For
example, replacing operations 1, 4 and 7 by a new operation (indexed R below), we
obtain a smaller error-revealing sequence:

2. Rat r2 = new Rat(2,1); // r2: 2
3. Rat r3 = new Rat(-2,1); // r3: -2
5. Mono m2 = new Mono(r2,3); // m2: 2x^3
6. Mono m3 = new Mono(r3,3); // m3: -2x^3
R. Poly p2 = new Poly(m2); // p2: 2x^3
9. Poly p3 = p2.add(m3); // p3: 0x^3 (breaks rep. invariant)

Replacement-based simplification is a novel test simplification technique that removes
and replaces operations in a failing sequence. The technique can be more effective in
reducing the size of a sequence than previous approaches to test case simplification
based exclusively on removing operations. For example, the top-right sequence in
Figure 6-1 is the removal-minimal version of the original sequence (on the left por-
tion of the figure), representing the best-possible result that can be obtained by delta
debugging or slicing. The bottom-right sequence in the figure shows the result of ap-
plying replacement-based simplification, which both removes and replaces operations.
The resulting sequence has only 4 operations, which is in fact the smallest number
of operations that reveals this particular error. (In general, the technique may not
always produce a minimal sequence.)

To perform replacements, the technique requires a replacement set of sequences
that it can splice into the failing sequence when attempting to simplify it. This makes
the technique a natural step to follow directed random testing: the latter can supply
as a replacement set the component set of sequences generated during the run of the
generator.

Simplification Technique

A component-based simplifier takes three inputs: (1) a test oracle O, (2) a target
sequence s that fails the oracle, and (3) a set of sequence SR, which we call the “re-
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placement set.” We assume that the oracle is a distinguishing oracle (Section 4.2.3),
i.e. a function that maps a runtime value to a failure class. In other words, O is
a function O : Vals → ErrorClasses, where Vals is the universe of runtime values.
When the simplification technique modifies the failing sequence s (obtaining a new
sequence s′), it uses the oracle to check whether the modification preserves the fail-
ing behavior. It does this check using the oracle: if O([s′]) = O([s]), the simplifier
determines that the failing behavior is preserved by the modified sequence s′. The
simplifier outputs either the original target sequence (if it was not able to simplify
the sequence), or a new sequence guaranteed to be smaller than the target sequence,
and to exhibit the same failing behavior.

The simplifier works in two phases: the first is a removal phase, and the second is
a replacement phase. The removal phase consists in using a removal-based technique
to remove as many operations as possible from the input sequence. The simplifier can
use a technique like delta debugging or dynamic slicing to perform this phase. Our
implementation uses a simpler removal technique that proves to be quite effective
in practice. The technique attempts to remove one operation at a time, processing
operations in the order that they appear in the sequence, but starting from the last
operation and working towards earlier operations. The simplifier only removes an
operation from the sequence if the sequence after the removal is syntactically valid:
a sequence is syntactically valid if every use of a variable in the sequence is preceded
by an operation that produces the variable, and all variable uses are sort-consistent.
After removing an operation, the simplifier executes the sequence and evaluates the
oracle to check if the failing behavior is preserved. If not, it reinstates the operation.
An example of the sequence that this technique yields is the removal-minimal sequence
from Figure 6-1.

The second phase is the replacement phase, and is the core of the simplification
technique. Like the removal phase, the simplifier processes the operations in the
sequence in reverse, starting from the last operation, and stopping after it is done
processing the first operation. The simplifier maintains an index idx that denotes
the operation being currently processed. To process one operation, the simplifier
performs the following steps.

a. Remove operation. The first step removes the operation at index idx, and
replaces it with a placeholder symbol “2”, to be filled in a later step. For example,
let the sequence to be simplified be the polynomial sequence we discussed earlier
in the section:

1. Rat r1 = new Rat(1,1);
2. Rat r2 = new Rat(2,1);
3. Rat r3 = new Rat(-2,1);
4. Mono m1 = new Mono(r1,2);
5. Mono m2 = new Mono(r2,3);
6. Mono m3 = new Mono(r3,3);
7. Poly p1 = new Poly(m1);
8. Poly p2 = p1.add(m2);
9. Poly p3 = p2.add(m3); // breaks rep. invariant
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removing operation 7 removing related operations
(step a) (step b)

1. Rat r1 = new Rat(1,1);
2. Rat r2 = new Rat(2,1);
3. Rat r3 = new Rat(-2,1);
4. Mono m1 = new Mono(r1,2);
5. Mono m2 = new Mono(r2,3);
6. Mono m3 = new Mono(r3,3);
7. Poly p1 = new Poly(m1);
8. Poly p2 = 2;
9. Poly p3 = p2.add(m3);

Rat r3 = new Rat(-2,1);

Mono m3 = new Mono(r3,3);

Poly p2 = 2;
Poly p3 = p2.add(m3);

Two examples of step (d)
successful replacement unsuccessful replacement

// new operations
Rat r = new Rat(2,1);
Mono m = new Mono(r,3);
Poly p = new Poly(m);

// old operations
Rat r3 = new Rat(-2,1);
Mono m3 = new Mono(r3,3);
Poly p2 = 2;
Poly p3 = p .add(m3);

//new operations
Poly p = new Poly();

// old operations
Rat r3 = new Rat(-2,1);
Mono m3 = new Mono(r3,3);
Poly p2 = 2;
Poly p3 = p .add(m3);

Figure 6-2: Example of particular steps in the simplification technique.

Figure 6-2 (left) shows the sequence after this step performed, assuming idx = 8.
We call the variable associated with the placeholder operation (p2 in the example)
the placeholder variable. For the purpose of explanation, we consider a sequence
containing a placeholder operation to be syntactically valid.

b. Remove related operations. After the operation has been replaced with 2, it
may be possible to remove additional operations in the sequence and still preserve
syntactic validity, because operations providing inputs to the (removed) operation
at idx are no longer necessary. This step removes all operations from the sequence
that can be removed while preserving syntactic validity. Figure 6-2 (top right)
shows the example sequence after this step, which results in 5 additional operation
removals.

c. Select replacement candidates. Let N be the number of operations removed
in steps (a) and (b). The goal of the remaining steps is to find a sub-sequence
(to be inserted in the target sequence) of length less than N that provides an
operation to replace the placeholder, while preserving the failing behavior. If such
a sub-sequence is found, the resulting sequence will be shorter in length than the
original, constituting progress.

To find such a sub-sequence, the simplifier selects a set of candidate sub-sequences
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from the replacement set SR. Candidate sub-sequences must have length less
than N and assign a variable of a type compatible with the uses of the place-
holder variable. In other words, a candidate sub-sequence must declare a variable
that, when substituted for the placeholder variable in the target sequence, yields
a syntactically-valid sequence. For example, a candidate sub-sequence for the ex-
ample target sequence in Figure 6-2 would be the following sequence that declares
a variable p of sort Poly, because p can replace the placeholder variable p2.

Rat r = new Rat(1,1);
Mono m = new Mono(r4,3);
Poly p = new Poly(m4);

If the simplifier finds no candidate sub-sequences in the replacement set, it decre-
ments idx to idx− 1 and processes the next operation.

d. Attempt replacements. At this point, the simplifier has a collection of candidate
sub-sequences. Next, the simplifier iterates through every candidate sub-sequence
sr in order of increasing length. Since sr is a candidate sub-sequence, it declares one
or more replacement variables of a sort compatible with all uses of the placeholder
variable. The simplifier iterates through the candidate variables in sr.

Let s be the target sequence, vp be the placeholder variable in s, sr be the can-
didate sub-sequence, and vr be the replacement variable in sr. The simplifier
(1) creates the new sequence sr � s consisting of the target sequence prepended
with the candidate sub-sequence, (2) replaces every occurrence of the placeholder
variable vp with the replacement variable, vr, and (3) removes the placeholder op-
eration. Figure 6-2 (bottom) shows two examples of this step; the first example is
for the candidate sub-sequence

Rat r = new Rat(1,1); Mono m = new Mono(r,3); Poly p = new Poly(m)

and replacement variable p, and the second example is for the candidate sub-
sequence

Poly p = new Poly().

and replacement variable p. After performing a replacement, the simplifier re-
executes the modified sequence and uses the oracle to determine if the failure is
preserved. If not, the simplifier undoes the modification. The two replacements
in Figure 6-2 exemplify a successful replacement (failure is preserved) and an
unsuccessful one.

The simplifier iterates through all candidate sequence/replacement variable pairs.
It does this until it either succeeds in replacing the operation at index idx (and
its related operations) with a smaller set of operations that preserves the failure,
or until no more pairs remain.
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Steps in the replacement-based simplification of a JDK failing sequence.

long[] v1 = new long[]1L,10L,1L;
char[] v16 = new char[]’ ’,’#’,’ ’;
int v17 = Ar.binarySearch(v16,’a’);
int v21 = Ar.binarySearch(v1,v17);
Comparator v22 = reverseOrder();
TreeSet v23 = new TreeSet(v22);
Object[] v26 = new Object[] v21 ;
List v27 = asList(v26);

idx ArList v28 = 2 new ArList(v27);
boolean v29 = v23.add(v28);
Set v30 = unmodSet(v23);

Object o = new Object();

Comparator v22 = reverseOrder();
TreeSet v23 = new TreeSet(v22);

boolean v29 = v23.add( o );
Set v30 = unmodSet(v23);

Object o = new Object();

Comparator v22 = reverseOrder();
idx TreeSet v23 = 2 new TreeSet(v22);

Object v28 = o;
boolean v29 = v23.add(o);
Set v30 = unmodSet(v23);

Object o = new Object();

TreeSet t = new TreeSet();

boolean v29 = t .add(v28);

Set v30 = unmodSet( t );

Figure 6-3: Steps in the replacement phase for the sequence from Figure 6-1. For
brevity, only steps resulting in a successful replacement are shown. A line preceded by
idx indicates the index of the current variable whose value is being replaced, crossed-
out lines represent the statements removed, and boxed lines represent replacement
sub-sequences and variables. We abbreviate JDK class and method names for space
reasons.

e. Update index. Finally, the simplifier updates the index idx in order to process
the next operation. If the simplifier failed to perform a replacement in step (d),
it sets idx to idx − 1. If it succeeded in performing a replacement, it sets idx to
idx−N + |sr|, where N is the number of operations removed in steps (a) and (b),
and |sr| is the length of the replacement sequence. For example, in the bottom-
left example in Figure 6-2, the new index after the successful replacement will be
8− 6 + 3 = 5, which points to the next operation to be processed, i.e. Mono m3 =

new Mono(r3,3).

At the end of the above process, the simplifier returns the modified sequence.

Figure 6-3 shows the simplification procedure applied to the removal-minimal se-
quence from Figure 6-1. For brevity, we only show the two steps that resulted in a suc-
cessful replacement. The top row shows the first replacement, which replaces the oper-
ation associated with v28 variable, plus five related operations, with the simpler sub-
sequence o=new Object(). The bottom rows show the second replacement, which re-
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places the operation associated with v23, plus one related operation, with the simpler
sub-sequence t = new TreeSet(). Two examples of unsuccessful replacements that
preceded the successful ones: (1) when replacing v29, the simplifier first attempted
to use as replacement the sequence int i = 1; (2) when replacing v23, the simplifier
first attempted to use as replacement the sequence t = Collections.emptySet().

The simplifier iterates through a set of candidate sub-sequences (step d) in order
of increasing length, to guarantee that if there is a successful replacement, it will be
minimal in length. Among all sub-sequences with the same length, our implementa-
tion of the technique additionally uses a partial order among sub-sequence/variable
pairs where 〈s1, v1〉 < 〈s2, v2〉 iff v1’s type is a super-type of v2’s type. The simplifier
iterates through pairs in arbitrary order as long as it respects this partial order. The
strategy causes replacement variables with more general types to be attempted ear-
lier. The rationale for the strategy is that given the choice between two replacements
of the same length, the one that yields a value with a more general type can make it
easier to isolate the cause of a failure, because general types tend to have a smaller
set of behaviors. The most compelling example of this is the sub-sequence o=new

Object() which, due to the partial ordering, is usually one of the first sub-sequences
tried, and can lead to significantly simpler sequences, as in the simplified sequence
from Figure 6-3.

6.2 Branch-Directed Generation

Branch-directed generation is a test generation technique whose goal is to gener-
ate test inputs that cover branches left uncovered by a previous input generation
technique. A branch-directed generator takes an input set (e.g. one produced by
a previous run of directed random testing) and outputs a new input set containing
inputs that cover branches left uncovered by the old set. Its generation strategy is to
select inputs from the old set that reach but do not follow a particular branch in the
code, and to make small, targeted modifications to the inputs, guided by a dynamic
data flow analysis of values that impact the branch condition.

A key assumption of the technique is that small, simple modifications to an input
can be sufficient to achieve new code coverage. Unlike dynamic generation techniques
that use constraint solvers to exactly solve path constraints and yield a new input
that covers a new branch (like DART [39] or concolic testing [86]), branch-directed
generation performs simple modifications selected from a fixed set of strategies, e.g.
changing the sign of an integer value, or incrementing the value by a constant. Our
preliminary evaluation of the technique (Section 8.4) suggests that such modifications
can be effective in flipping a branch condition. The rest of this section describes the
technique and illustrates it with an example.

Branch-Directed Generation Technique

A branch-directed generator takes as input a set of sequences. The first step in the
technique computes the branch coverage in the software under test achieved by set
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Suppose the underlined condition is a frontier
condition: an input set covered the false branch,

but never covered the true branch.
public class Poly {
public Poly add(Mono m) {
List<Mono> mList = new ArrayList<Mono>();
for (int i=0 ; i< ms.length ; i++) {
if (ms[i].exp == m.exp) {
Rat sum = ms[i].coeff.add(m.coeff);
Mono msum = new Mono(sum, m.exp);
mList.add(msum);
continue;

}
...
}

}
}

This input is a witness for the frontier.
Boxed values are influencing variables.

int i1 = 2;
int i2 = 1;
Rat r1 = new Rat(i1,i2);
int i3 = 2;
Mono m1 = new Mono(r1,i3);
Poly p1 = new Poly(m1);
int i4 = 1;
int i5 = 1;
Rat r2 = new Rat(i4,i5);
int i6 = 1;
Mono m2 = new Mono(r2,i6);
Poly p2 = p1.add(m2);

Modifying i3 yields an input that
covers the frontier’s true branch.
int i1 = 2;
int i2 = 1;
Rat r1 = new Rat(i1,i2);
int i3 = 1;
Mono m1 = new Mono(r1,i3);
Poly p1 = new Poly(m1);
int i4 = 1;
int i5 = 1;
Rat r2 = new Rat(i4,i5);
int i6 = 1;
Mono m2 = new Mono(r2,i6);
Poly p2 = p1.add(m2);

Figure 6-4: Example artifacts used by a branch-directed generator. The bottom right
box shows an input that would be generated by the technique.

of sequences, and classifies branch conditions into fully-covered conditions (both true
and false branches are covered), fully-uncovered conditions (no branches are covered),
and frontier conditions (one branch branch is covered, but not the other). It also
computes the set of witness sequences : sequences whose execution reaches a frontier
condition. Figure 6-4 shows an example of a frontier condition (top half, condition
is underlined) resulting from a hypothetical set of sequences, and a witness sequence
(bottom left) that reaches the frontier condition.

The next step in the technique modifies the witness sequences with the goal of
covering uncovered branches in the frontier conditions. The generator focuses on
frontier conditions because, as their name suggests, they represent the boundary of
coverage: fully-covered conditions can be ignored, and fully-uncovered conditions may
be more difficult to cover because there is no sequence that reaches them. Covering
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uncovered branches in frontier conditions can also lead to new coverage, including new
coverage of fully-uncovered conditions. As an example of a modification performed
by the technique, Figure 6-4 (bottom right) shows a modification to the witness
sequence that covers the missing branch in the condition. The modification (changing
the variable’s value from 2 to 1) is one of several that the branch-directed generator
attempts, and which we describe below.

To perform modifications, the branch-directed generator iterates through the fron-
tier conditions. For each frontier condition C, it collects all the witness sequences
for the condition, and attempts to modify each in turn, until the uncovered branch
in C is covered or no witness sequences are left. To modify a witness sequence, the
generator performs the following steps.

a. Collect runtime information. The generator executes the sequence and collects
runtime information that it uses to guide the modifications, including dynamic data
flow information and information about values that were compared at runtime. To
perform dynamic data collection, we use a modified version of DynCompJ [45], a
tool that can track the flow of values during the execution of a Java program.
The tracker associates with every runtime value v (primitive or pointer) a tag
that uniquely identifies the value. Tags allow the tracker to determine the flow of
values stored at different locations, even when the values are identical, e.g. the
values stored in variables i1 and i3 of the example sequence in Figure 6-4. As the
sequence executes, the tracker maintains three pieces of data associated with each
tag.

� Related tags. The set of related tags for a tag t, denoted rel(t), is a set of
tags representing values that contributed to the computation of t’s value. As
the sequence executes, the tracker updates these sets to reflect the dynamic
data flow occurring during the execution. For example, when a value is first
created, the tracker assigns a new tag t to the value, and sets rel(t) to {}.
When an assignment statement like x=y+z occurs, the tracker creates a new
tag t for the value resulting from the addition, and sets rel(t) to rel(x)∪rel(y)
(where x and y are the operand values of the addition), to reflect the fact
that the operands (and, transitively, values related to them) contributed to
the result of the addition.

� Source variable. The name of the source variable for tag t, denoted var(t),
specifies the variable in the sequence that is associated with a tag, if there is
one. For example, when the value associated with variable i1 in the sequence
from Figure 6-4 is created, the tracker creates a new tag t for the value and
sets var(t) to i1. Not all tags are associated with a sequence variable—
for example, there is no association for tags representing intermediate values
inside an operation that are never assigned to an externally-visible variable
in the sequence.

� Compared values. The compared-value set for tag t is the set of all runtime
values that the value of t was compared to (using a comparison operation like
==, <, etc.) during the execution of the operations in the sequence.
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b. Derive influencing variables. An influencing variable is a variable in the se-
quence whose runtime value contributes to the result of the frontier condition. Fig-
ure 6-4 shows a witness sequence for a frontier branch in the Poly.add method. It
also shows (in boxes) the influencing variables i3 and i6, representing the sequence
variables whose runtime values are compared in the frontier branch condition. By
discovering influencing variables, the generator can determine variables that affect
the outcome of the frontier condition and focus its effort on modifying the values
of those variables, with the goal of flipping the condition’s result.

The generator determines the influencing variables of a sequence by inspecting
the related tags and source variable data computed in step (a). When execution
of the sequence reaches the frontier condition, the tracker inspects the operand
values v1, . . . , vk associated with the conditional operation, determines their tags
t1, . . . , tk, and obtains the set of tags rel(t1) ∪ . . . ∪ rel(tk) representing those
values that flowed to the condition’s result. It uses the source variable information
to determine the influencing variables, i.e. variables in the sequence associated
with the set of tags.

c. Modify influencing variables. The set of influencing variables represent vari-
ables in the sequence whose value flowed to the result of the frontier condition,
making these variables promising candidates for modification. The generator sys-
tematically modifies the values of influencing variables with the aim of flipping
the result of the branch condition. It loops through a fixed set of modification
strategies, described below. For each strategy, it modifies the sequence accord-
ing to the strategy and re-executes it to check if the uncovered branch of the
frontier is covered by the modified sequence. The generator has two kinds of mod-
ification strategies: unary modifications modify the value of a single influencing
variable, and binary modifications simultaneously modify the values of two influ-
encing variables. The modification strategies below are the ones we have currently
implemented, but they could be extended.

� Unary modifications. For every influencing variable with runtime value v,
try the following modifications:

• set the variable to v′ for every element v′ in the compared-value set of v.

• For variables with numeric sort (e.g. int or double in Java), set the
variable to −v, 0, and v + n for n ∈ {−1, 1,−10, 10,−100, 100, ...} up to
some user-settable limit.

• For variables with pointer sort, set the variable to null.

� Binary modifications.

• For every pair of influencing variables v1 and v2 with compatible numeric
sorts (the value of one can be assigned to the other and vice-versa) and
runtime values v1 and v2 (i.e. v1 has value v1 and v2 has value v2), set
v1 to v2 and set v2 to v1.

• For every pair of influencing variables v1 and v2 with compatible refer-
ence sorts, syntactically replace all uses of v1 in the sequence by v2, and
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vice-versa. (If the variable to be replaced is used before the replacement
variable is defined, the modification is not performed because it would
result in an invalid sequence.)

If a modification results in an input that goes through the uncovered branch in C
when executed, the generator has succeeded in covering the uncovered branch in
the frontier condition. It proceeds to the next frontier condition, collects a set of
witnesses for the new condition, and repeats the process for each witness, starting
from step (a).

At the end of this process, the generator outputs the set of modified sequences (if
any) whose execution covered a branch not covered by the original input set. The
output set may cover more branches than those in the frontier conditions: a sequence
that covers a previously-uncovered branch b may also cover other branches previously
guarded by b.

The bottom boxes in Figure 6-4 show a successful instance of the unary modifi-
cation strategy that sets the value of an influencing variable (i3) to a different value
(1) found in the variable’s compared-value set. Variable i3’s compared-value set con-
tains the value 1 because i3’s value is compared to 1 in the frontier branch condition
of Poly.add shown in the figure. Section 8.4 shows more successful modification
examples from the application of the technique to the Java JDK.
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Chapter 7

Randoop: Directed Random
Testing for Java and .NET

The previous chapters have introduced the ideas and techniques that make up the
directed random testing approach. To get the key ideas across, we described the tech-
niques at a level of abstraction that omits details specific to a particular programming
language or environment. This chapter bridges the gap between the abstract concepts
we have developed and a concrete implementation. We now describe Randoop, a tool
that implements directed random testing for testing object-oriented software at the
unit level. We have implemented two versions of the tool, one targeting Java [40, 41]
(developed at MIT and publicly available [84]), and the second targeting .NET [74]
(used internally at Microsoft). The .NET version of the tool differs from the Java
version in a few respects; below, we describe the differences as they arise.

In implementing Randoop, our goal was to create a tool that could generate a
large volume of test cases in a relatively short amount of time, and that would do
so completely automatically (at least in its default usage mode). In other words, we
wanted Randoop to preserve automation and scalability, characteristics that make
random testing tools attractive and easy to adopt. This influenced key decisions in
the design of the tool. For example, Randoop executes test inputs via reflection
in the same process that Randoop runs, which while less safe (Randoop occasion-
ally crashes due to execution problems with the software under test), is an order
of magnitude faster than compiling and executing tests in a separate process. This
makes Randoop able to generate thousands of test cases in minutes, compared with
hundreds using separate compilation of tests. To make Randoop fully automatic,
we implemented a set of default, general heuristic pruning techniques that work ef-
fectively in many cases, even if they are not ideal for every software artifact under
test. The user can tailor the tool to specific uses, using a visitor-based extension
mechanism that can be used to add new test oracles and pruning heuristics.
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Figure 7-1: High-level overview of Randoop, including its input and output artifacts.

7.1 Object-Oriented Directed Random Testing

Object-oriented programming is a style of programming in which an object is a core
abstraction that encapsulates state and behavior. An object stores its state in named
variables called fields and exposes its behavior via methods, which are like functions in
other programming languages. A programmer defines the blueprint for an object by
defining a class declaring the fields and methods that specify the state and behavior
for instance objects of the class.

We have already seen examples of Java classes in the examples used to motivate
the techniques in previous chapters. As previous chapters show, there is a natural
mapping from the abstract concepts of operations, sorts, and values used to describe
our techniques to object-oriented artifacts like methods, classes, and objects. Our
implementation of directed random testing uses this natural mapping. One aspect of
an object-oriented language like Java that is not captured precisely by our abstrac-
tions is that of primitive values versus objects; in our treatment, we make no such
distinctions, and simply have operations. Our implementation treats primitive values
as (0-argument) operations; for example, Randoop treats the Java integer 0 as an
operation that takes no inputs and returns the corresponding value.

7.2 Randoop Input and Output

Figure 7-1 shows a high-level view of Randoop’s input and output. The only required
input to the tool is a set of classes under test. Optional arguments include a time limit
(the default is 2 minutes), a random seed (the default is “0”), test oracles in addition
(or replacing) the tool’s default oracles (Section 7.7), and the desired output format
(e.g. JUnit, Java, plain text, etc). Randoop outputs two tests suites. One contains
contract-violating tests that exhibit scenarios where the code under test leads to the
violation of an API contract. For example, Figure 7-2, (reproduced from Chapter 1)
shows a contract-violating test that reveals an error in Java’s collections framework.
The test case shows a violation of the equals contract: a set s1 returned by unmodi-
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Error-revealing test case Regression test case

// Fails on Sun 1.5.
public static void test1() {

LinkedList l1 = new LinkedList();
Object o1 = new Object();
l1.addFirst(o1);
TreeSet t1 = new TreeSet(l1);
Set s1 =
Collections.unmodifiableSet(t1);
Assert.assertTrue(s1.equals(s1));

}

// Passes on Sun 1.5, fails on Sun 1.6
public static void test2() {

BitSet b = new BitSet();
Assert.assertEquals(64, b.size());
b.clone();
Assert.assertEquals(64, b.size());

}

Figure 7-2: Example Randoop output, including a contract-violating test cases (left)
and regression test cases (right).

fiableSet(Set) returns false for s1.equals(s1). This violates the reflexivity of
equals as specified in Sun’s API documentation. This test case actually reveals two
errors: one in equals, and one in the TreeSet(Collection) builder, which fails to
throw ClassCastException as required by its specification. Randoop uses a default
set of contracts (including reflexivity of equality) that the user can extend.

Randoop implements test oracles using API contracts, or correctness properties
specified at the application programming interface (API) level. Randoop uses two
types of contracts. An object contract expresses an invariant property that should
always hold of an object. A method contract expresses a property that must hold
after a method is executed. Figure 7-3 (top) shows Randoop’s default method and
object contracts, most of which we based on the expected behavior Java and .NET
classes documented in the API specification of the classes.

The second suite that Randoop outputs contains regression tests. which do
not violate contracts but instead capture an aspect of the current implementation.
For example, the second test in Figure 1-2 shows a regression test that records the
behavior of the method BitSet.size(). Regression tests can discover inconsistencies
between two different versions of the software. For example, the regression test shown
reveals an inconsistency between Sun’s JDK 1.5 (on which the test was generated,
and succeeds by construction) and Sun’s JDK 1.6 Beta 2 (on which the test fails).
Contract-violating tests and regression tests both have as their purpose to reveal
errors: the former reveal potential errors in the current implementation of the classes
under test, while the latter may reveal errors in future implementations.

7.3 Heuristic Pruning in Randoop

Randoop does not require as input an oracle, legality predicate, an equivalence
relation on sequences, or an index pruning predicate, because it uses default versions
of these artifacts. The defaults are extensible; our experience (Chapters 8 and 9)
suggests that they are effective to reveal errors in a large set of classes. However,
other users of the tool have found it useful to extend them with ad hoc constructs
more appropriate to their classes under test. (For an example, see Bacchelli et al.’s
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Randoop’s Oracle
Method
contract description
Exception Method throws no NullPointerException if no null input parameters.
(Java) method throws no AssertionError.
Exception Method throws no NullReferenceException if no null input parameters.
(.NET) method throws no IndexOutOfRangeException

method throws no AssertionError

Object
contract description
equals reflexive o.equals(o) returns true
equals/null o.equals(null) returns false
equals/hashCode if o1.equals(o2), then o1.hashCode()=o2.hashCode()
equals symmetric if o1.equals(o2), then o2.equals(o1)
hashCode o.hashCode() throws no exception
toString o.toString() throws no exception

Randoop’s Legality Properties (term is judged illegal if...)
null Throws NullPointerException, and null was used as input to some call.
exception Throws an exception not covered by any other cases in this table.
termination Sequence execution appears non-terminating.

Figure 7-3: Top: default contracts checked by Randoop. Users can extend these
with additional contracts, including domain-specific ones. A contract is created pro-
grammatically by implementing a public interface. Bottom: Randoop’s heuristics
for determining legality.

case study of Randoop and other testing tools [10].)

Legality

Figure 7-3 (bottom) shows the heuristic legality properties that Randoop uses to
determine if a method call execution was illegal. In summary, a method calls is
deemed illegal if it results in an exception not covered by the correctness contracts.
The rationale for this is that in Java and .NET, exceptions are often indicative of a
problem with the state of the objects and indicate that incorrect inputs were given
to the method.

A method that appears not to terminate is also considered to have been an illegal
call. Randoop has a time threshold parameter; if a method’s execution lasts beyond
the threshold, the method execution is terminated and deemed illegal due to possible
non-termination. The parameter is user-settable, and defaults to 5 seconds.

Equivalence

Randoop determines two two sequences to be equivalent if they are identical, modulo
index names; if a sequence is generated that is equivalent to a previously-generated
sequence, Randoop discards it before executing it, and attempts to generate a new
sequence. To efficiently check if a sequence is identical to an already-created sequence,
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the tool defines a hash function over sequences, stores the sequences in a hashtable,
and checks a new sequence for membership in the hashtable.

7.4 Index Pruning in Randoop

Randoop uses three index pruning strategies.

Object equality

Randoop uses the equals method to determine if an object with the same abstract
state has been created by a previously-created sequence. The filter maintains a set
allObjs (distinct from the component set) of all equals-distinct objects that have
been created by the algorithm across all sequence executions (the set can include
primitive values, which are boxed). For each object o created by a new sequence, it
sets the sequence index corresponding to that object to reusable if there is an object
in allObjs that is equivalent, using equals methods in the software under test to
determine object equivalence. To make the comparison more efficient, Randoop
implements the allObjs set using a hash set.

This filter prunes any object with the same abstract value as a previously-created
value, even if their concrete representations differ. This might cause Randoop to
miss an error, if method calls on them might behave differently. The heuristic works
well in practice but can be disabled or refined by the user. For instance, Randoop has
an optional flag that, when set, instead of using equals uses reflection to determine
whether two objects have the same concrete representation (the same values for all
their fields, recursively). A user can also specify, via another command-line argument,
more sophisticated or ad hoc computations to determine value equivalence.

Randoop for .NET does not use the above object-equality technique. Instead,
it determines at runtime if a method call appears to have mutated the state of its
arguments (using the equals method), and makes the arguments reusable only if
their state is mutated by the call.

Null values

Null dereference exceptions caused by using null as an argument are often uninter-
esting, and usually point to the (possibly intentional) absence of a null check on the
arguments. However, when a null dereference exception occurs in the absence of any
null value in the input, it often indicates some internal problem with the method.

Note that null arguments at runtime are possible even if a sequence does not
explicitly use null as an input to a method. Null values are hard to detect statically
because the arguments to a method in a sequence themselves are outputs of other
sequences. The null filter sets a sequence element’s reusable flag to false iff the
corresponding runtime value is null, which can happen even if a sequence does not
use null explicitly.
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Large numbers

In our experience using Randoop, we noticed that using very large numbers as inputs
to methods rarely revealed errors, and often resulted in very long method executions
that slowed down the tool. Even though Randoop terminates a method if it takes
more than 5 seconds, if this behavior happens very frequently, it degrades the overall
input generation efficiency of the tool. This filter disables an index if it corresponds
to a numeric value that exceeds a value limit specified by the user.

7.5 Assembling a New Sequence

The directed random testing technique described in Chapter 5 “constructs” a new
sequence by selecting it at random from the image of the component set. An imple-
mentation that actually computed the image of the component set (only to select a
single element from it) would spend most its time computing image sets. Instead,
Randoop incrementally assembles a single new sequence from those in the compo-
nent set, by selecting a method at random and finding sequences in the component
set that create values of the input types required by the method.

To simplify the explanation of Randoop’s sequence assembly process, we define
an operator extend(m, seqs, names) that takes zero or more sequences and produces
a new sequence. The extension operation creates a new sequence by concatenating its
input sequences and appending a method call at the end. More formally, the operator
takes three inputs:

� m is a method with formal parameters (including the receiver, if any) of type
T1, . . . , Tk.

� seqs is a list of sequences.
� names is a list of names n1 : T1, . . . , nk : Tk. Each name corresponds to the

return value of a method call appearing in a sequence from seqs.

The result of extend(m, seqs, names) is a new sequence that is the concatenation of
the input sequences seqs in the order that they appear, followed by the method call
m(n1, . . . , nk). Figure 7-4 shows three examples of applying the operator. Both reuse
of a value (as illustrated in the first example) and use of distinct duplicate sequences
(as illustrated in the third example) are possible.

Sequence creation first selects a method m(T1 . . . Tk) at random among the meth-
ods under test. Next, it tries to apply the extension operator to m. Recall that the
operator also requires a list of sequences and a list of names. Randoop incrementally
builds a list of sequences seqs and a list of names names. At each step, it adds a name
to names, and potentially also a sequence to seqs. For each input argument of type
Ti, it adds a name to names, and potentially also a sequence to seqs, by selecting one
of the three possible actions at random:

� Use a name (with reusable index) from a sequence that is already in seqs.

� Select a new sequence from the component set that has a name (with reusable
index) of type Ti, add the sequence to seqs, and use a name from the sequence.
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public class A {

public A() {...}

public B m1(A a1) {...}

}

public class B {

public B(int i) {...}

public void m2(B b, A a) {...}

}

sequence s1 sequence s2 sequence s3

B b1 = new B(0); B b2 = new B(0);
A a1 = new A();

B b3 = a1.m1(a1);

seqs names extend( m2, seqs, names)

〈s1, s3〉 b1, b1, a1

B b1 = new B(0);

A a1 = new A();

B b3 = a1.m1(a1);

b1.m2(b1,a1);

〈s3, s1〉 b1, b1, a1

A a1 = new A();

B b3 = a1.m1(a1);

B b1 = new B(0);

b1.m2(b1,a1);

〈s1, s2〉 b1, b2, null

B b1 = new B(0);

B b2 = new B(0);

b1.m2(b2,null);

Figure 7-4: Three example applications of the extend operator.

� If null is allowed, use null.

The new sequence is the result of concatenating the sequences in seqs, and appending
a new call of method m(T1 . . . Tk), using as input the names in names. At this point,
Randoop has created a new sequence in the image of the component set. Randoop
checks that the same sequence has not been created before. If it has, it discards the
sequence and attempts to create a new sequence.

If the sequence has not been created before, Randoop executes each method
call in the sequence, checks the API contracts, and checks for illegal behavior, after
each call. If the sequence leads to a contract violation, it is output as a test case.
If the sequence leads illegal behavior, it is discarded. Otherwise, Randoop applies
the heuristic index pruning to the sequence. If one or more indices are still reusable
after index pruning, Randoop adds the sequence to the component set. (Note that
this process is slightly different from the procedure DrtS from Chapter 5, in that
the determination of an illegal or equivalent sequence happens after the sequence has
been generated.)

The latest version of Randoop continues appending random method calls to
a newly-created sequence. This makes more efficient use of the objects that have
already been created. If this flag is given, Randoop stops after the sequence reaches
the length limit (which can also be specified by the user), or the sequence results in
illegal or error-revealing behavior.
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Repeating an Operation

Sometimes, a good test case needs to call a given method multiple times. For example,
repeated calls to add may be necessary to reach code that increases the capacity of a
container object, or repeated calls may be required to create two equivalent objects
that can cause a method like equals to go down certain branches. To increase the
chances that such cases are reached, we build repetition directly into the generator, as
follows. When generating a new sequence, with probability N , instead of appending
a single call of a chosen method m to create a new sequence, the generator appends
M calls, where M is chosen uniformly at random between 0 and some upper limit
max. (max and N are user-settable; the default values are max = 100 and N = 0.1.)
There are other possible ways to encourage repetition in the generation process. For
example, it could occasionally repeat input parameters, or entire subsequences.

7.6 Efficiency

This section describes aspects of Randoop’s implementation that have a signifi-
cant impact on the efficiency of the tool. Discussing these details of Randoop’s
implementation highlights engineering decisions important to obtaining an efficient
implementation of directed random testing.

Reflection-based execution

Executing a new sequence consists in invoking the methods in the sequence with
the appropriate input arguments. We considered two ways of doing this. The first
was to output a sequence as source code, compile it, and execute it in a separate
process. The second was to execute the sequence using Java (or .NET’s) reflection
mechanism [40, 74], which allows programmatic access to the methods and classes
under test from within Randoop. The compile/run approach is safer, because it
separates the execution of Randoop code and arbitrary code under test. Using
reflection, on the other hand, means that both Randoop code and code under test
are executed in the same process, and any undesirable behavior (e.g. infinite loops or
stack overflows) resulting from executing calls of methods under test under random
scenarios can affect the behavior of Randoop.

However, compiling and executing every method sequences separately is at least
one order of magnitude slower than executing method sequences within the same
process as Randoop. For this reason, Randoop uses reflection to execute method
sequences. To have some degree of control over non-terminating executions in test
code, which can freeze Randoop, the user can give a command-line argument that
causes Randoop to execute every sequence in a different thread and kill threads
that take longer than a default time limit. The use of threads slow the execution
of Randoop, but not nearly as much as separate compilation and execution of test
inputs.
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Efficient sequence representation and concatenation

Method sequences are the basic data structure in Randoop, and sequence concate-
nation is a frequently-performed operation. If done inefficiently, it can significantly
slow down the performance of the tool. The initial implementation of Randoop rep-
resented a sequence directly as a list of operations, and performed concatenation by
creating a new list, copying the operations from the concatenated sequences. When
profiling Randoop, we observed that concatenation took up a large portion of the
tool’s running time, and the component set quickly exhausted the memory available
to the Java process.

To improve memory and time efficiency, we modified the internal representation
of sequences. Instead of a list of operations, we implemented a sequence as a list of
sub-sequences ; the sequence constructor now took as input the sub-sequences making
up the new sequence. To allow for safe sharing of sub-sequences, we made sequences
immutable [15], and had a sequence refer to its constituent sequences without copying
them. With these modifications, a new sequence uses space proportional to the num-
ber of constituent sub-sequences (instead of space proportional to the total number of
operations), and concatenation takes time proportional to the number of constituent
sub-sequences (instead of the total number of operations). The improvement reduced
the memory footprint and time spent creating and concatenating sequences by more
than an order of magnitude.

Efficient selection from the component set

When creating a new sequence for a method m(T1 . . . Tk), Randoop searches the
component set (up to k times) for sequences that create a values of type T1 through
Tk. The component set typically contains thousands of sequences; finding the subset
of sequences that yield values of a given type can be time-consuming. To make the
process faster, Randoop maintains the component set not as a single set of sequences,
but as a sequence map, each entry mapping a specific type to the sets of all sequences
that create one or more values of exactly the given type. The latter requirement is
to prevent the sequence map from containing sets of sequences with many common
sequences; for example, without the requirement, the entry for Object would contain
every sequence. The map is updated appropriately when a new sequence is added to
the component set.

A näıve way of collecting all sequences for a type T is to start with an empty set
of sequences, S, and traverse every key in the sequence map, adding all the sequences
at a given key to S whenever the key is type-compatible with T . However, repeated
traversals of the key set are a large source of inefficiency (as our performance profiling
showed).

To improve performance, Randoop maintains along with a sequence map a sub-
type map that represents the subtype relationship between all the types in the se-
quence map. More specifically, the subtype map gives, for every type T that is a key
in the sequence map, a set of types consisting of all the subtypes (transitively) of
T that are also keys in the sequence map. (Notice that the subtype map does not
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contract class for reflexivity of equality

// Checks reflexivity of equals: "o != null => o.equals(o)==true"
public final class EqualsReflexive implements UnaryObjectContract {

// Returns true if o is null or o.equals(o) returns true.
// Returns false if o.equals(o)==false or if it throws an exception.
public boolean check(Object o) {
if (o == null) return true;
try {

return o.equals(o);
} catch (Throwable e) {

return false;
}

}
}

Figure 7-5: Contract-checking class that checks reflexivity of equality for objects. The
crucial method in this interface is boolean check(Object), which must return true

if the given object satisfies the contract.

represent a type tree; rather, it maps a type to the set of all its transitive subtypes,
i.e. all the nodes reachable in its subtype tree.) Now, to find all the sequences that
create values of a given type, Randoop first uses the subtype map to find all the
relevant subtypes in the sequence map, and accesses those entries directly in the se-
quence map. The modification causes a substantial decrease in the time Randoop
spends selecting sequences from the component set.

For historical reasons, Randoop for .NET does not perform this optimization.

7.7 Extensibility

Randoop provides a mechanism for a user to extend the tool in various ways. The
most basic way of extending Randoop is by writing classes that implement Ran-
doop’s sequence visitor and sequence decoration interface, which are instances of the
visitor and decorator design patterns [36]. A sequence visitor is invoked before and
after every execution of a method in a new sequence that is being executed. The
visitor can inspect the evolving execution, including the state of the objects created
in the sequence. A sequence visitor can also record observations about a sequence
and add them as decorations on a specific index of the sequence.

Much of Randoop’s functionality is implemented using sequence visitors and
decorations, including its contract-checking functionality. Randoop implements a
contract-checking sequence visitor that checks the default object and method con-
tracts (Figure 7-3). The contracts themselves are classes that implement special
interfaces; for example, the interface randoop.UnaryObjectContract represents an
object contract that checks a property of a single object. Figure 7-5 shows the class
that implements the contract for reflexivity of equality. To add a new contract to
Randoop, the user creates a new class that implements a contract-checking interface
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(e.g. randoop.UnaryObjectContract), and calls Randoop passing the name of the
class in a command-line argument. On startup, Randoop creates a new contract-
checking visitor and adds the default, plus any user-specified contracts, to the list
of contracts to check. As a sequence executes, the contract-checking visitor checks
the contracts, and if a contract violation occurs, the visitor adds a decoration to the
sequence indicating the violation of the contract.

Two other features of Randoop that are implemented using sequence visitors are
regression oracle creation and the creation creation of compilable test cases. When
executing a sequence, Randoop uses a regression-creating visitor that records the
return values of methods and adds decorations recording the values. When outputting
a JUnit test case, Randoop uses a formatting visitor that outputs the sequence, along
with any decorations, as compilable code.

A user wishing to create a new visitor to implement a specific task can create new
classes implementing the sequence visitor (and sequence decorator) interfaces, and
specify them in command-line arguments to Randoop, which will install the visitors
and invoke them every time a new sequence executes. This allows a user to extend
the tool in ways that go beyond the default visitors implemented.
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Chapter 8

Experimental Evaluation

This chapter describes controlled experiments that compare the code coverage achieved
and errors revealed by directed random testing, and compares the technique with
other test generation techniques, including undirected random testing and exhaustive
testing approaches based on model checking and symbolic execution.

Our experimental results indicate that directed random testing can outperform
undirected random testing and exhaustive testing in terms of both coverage and error
detection ability. Below is a summary of the experimental results described in the
chapter.

� Section 8.1. On four container data structures used previously to evaluate
five different exhaustive input generation techniques [92], inputs created with
directed random testing achieves equal or higher block and predicate cover-
age [11] than all other techniques, including undirected random testing, model
checking (with and without abstraction), and symbolic execution.

� Section 8.2. In terms of error detection, directed random testing reveals many
errors across 14 widely-deployed, well-tested Java and .NET libraries totaling
780KLOC. Model checking using JPF [91] was not able to create any error-
revealing test inputs: the state space for these libraries is enormous, and the
model checker ran out of resources after exploring a tiny, localized portion of
the state space. Our results suggest that for large libraries, the sparse, global
sampling of the input space that directed random testing performs can reveal
errors more efficiently than the dense, local sampling that a model checking
approach performs.

� Section 8.3. To better understand the effectiveness of directed random testing
compared with undirected random testing, we performed an experiment that
compares the error-revealing effectiveness of directed random testing and two
other random testing techniques, across hundreds of runs for each technique.
Our results show that for some software artifacts, deep levels of the operation
tree representing all sequences of operations have a higher density of error-
revealing operations, making a technique that can generate longer sequences of
operations more effective. Undirected random testing is often unable to generate
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long sequences due to illegal behaviors arising from executing operations with
random inputs. Directed random testing’s pruning heuristics allow it to generate
sequences of operations that are both long and behaviorally diverse, resulting
in greater error-revealing effectiveness.

� Section 8.4. To evaluate the post-processing techniques from Chapter 6, we ap-
plied replacement-based simplification and branch-directed generation to some
of the subject programs from Section 8.2. Our results indicate that the sim-
plification technique can reduce the size of a failing test case by an order of
magnitude. The simple sequence-modification strategies that branch-directed
generation employs led to a 65% success rate in flipping a frontier branch con-
dition; however, the dynamic data flow analysis returned useful information for
only a fraction of the frontier conditions, resulting in many uncovered frontier
branches.

8.1 Coverage for Container Data Structures

Container classes have been used to evaluate many input generation techniques [4,
97, 96, 93, 92]. In [92], Visser et al. compared basic block and a form of predicate
coverage [11] achieved by several input generation techniques on four container classes:
a binary tree (BinTree, 154 LOC), a binomial heap (BHeap, 355 LOC), a fibonacci
heap (FibHeap, 286 LOC), and a red-black tree (TreeMap, 580 LOC). They used a
form of predicate coverage that measures the coverage of all combinations of a set
of predicates manually derived from conditions in the source code. They compared
the coverage achieved by six techniques: (1) model checking, (2) model checking
with state matching, (3) model checking with abstract state matching, (4) symbolic
execution, (5) symbolic execution with abstract state matching, and (6) undirected
random generation. Coverage metrics, while not as compelling as error detection,
may shed insight into the differences between techniques. For example, in code where
no technique reveals an error, higher code coverage may nevertheless be an indication
of greater effectiveness.

Visser et al. report that the technique that achieved highest coverage was model
checking with abstract state matching, where the abstract state records the shape
of the container and discards the data stored in the container. For brevity, we’ll
refer to this technique as shape abstraction. Shape abstraction dominated all other
systematic techniques in the experiment: it achieved higher coverage, or achieved the
same coverage in lesser time, than every other technique. Random generation was
able to achieve the same predicate coverage as shape abstraction in less time, but this
happened only for 2 (out of 520) “lucky” runs.

We compared directed random generation with shape abstraction. For each data
structure, we performed the following steps.

1. We reproduced Visser et al.’s results for shape abstraction on our machine (Pen-
tium 4, 3.6GHz, 4G memory, running Debian Linux). We used the optimal param-
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coverage time (seconds)
JPF DRT JPFU RPU JPF DRT JPFU RPU

bl
oc

k

co
ve

ra
ge BinTree .78 .78 .78 .78 0.14 0.21 0.14 0.13

BHeap .95 .95 .95 .86 4.3 0.59 6.2 6.6
FibHeap 1 1 1 .98 23 0.63 1.1 27
TreeMap .72 .72 .72 .68 0.65 0.84 1.5 1.9

pr
ed

ic
at

e

co
ve

ra
ge BinTree 53.2 54 52.1 53.9 0.41 1.6 2.0 4.2

BHeap 101 101 88.3 58.5 9.8 4.2 12 15
FibHeap 93 96 86 90.3 95 6.0 16 67
TreeMap 106 106 104 55 47 10 10 1.9

JPF : Best-performing of 5 systematic techniques in JPF.
DRT : Randoop: Directed random testing.
JPFU : Undirected random testing implemented in JPF.
RPU : Undirected random testing implemented in Randoop.

Figure 8-1: Basic block coverage (ratio) and predicate coverage (absolute) achieved
by four input generation techniques.

eters reported in [92], i.e., the parameters for which the technique achieves highest
coverage.

2. We ran Randoop on the containers, specifying the same methods under test as
[92]. Random testing has no obvious stopping criterion; we ran Randoop for two
minutes (its default time limit).

3. To compare against unguided random generation, we also reproduced Visser et al.’s
results for random generation, using the same stopping criterion as [92]: generation
stops after 1000 inputs.

4. To obtain a second data point for unguided random generation, we ran Randoop
a second time, turning off all filters and heuristics.

As each tool ran, we tracked the coverage achieved by the test inputs generated
so far. Every time a new unit of coverage (basic block or predicate) was achieved, we
recorded the coverage and time. To record coverage, we reused Visser et al.’s exper-
imental infrastructure, with small modifications to track time for each new coverage
unit. For basic block coverage, we report the ratio of coverage achieved to maximum
coverage possible. For predicate coverage, we report (like Visser et al. [92]) only ab-
solute coverage, because the maximum predicate coverage is not known. We repeated
each run ten times with different seeds, and report averages.

Figure 8-1 shows the results. For each technique/container pair, we report the
maximum coverage achieved, and the time at which maximum coverage was reached,
as tracked by the experimental framework. In other words, the time shown in Figure 8-
1 represents the time that the technique required in order to achieve its maximum
coverage—after that time, no more coverage was achieved in the run of the tool. The
tool may have continued running until it reached its stopping criterion: on average,
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each run of JPF with shape abstraction took a total of 89 seconds; the longest run
was 220 seconds, for TreeMap. Every run of Randoop took 120 seconds, its default
time limit.

For BinTree, BHeap and TreeMap, directed random generation achieved the same
block and predicate coverage as shape abstraction. For FibHeap, directed random
generation achieved the same block coverage, but higher predicate coverage (96 pred-
icates) than shape abstraction (93 predicates). Undirected random testing was com-
petitive with the other techniques in achieving block coverage. For the more challeng-
ing predicate coverage, both implementations of undirected random testing always
achieved less predicate coverage than directed random generation.

We should note that the container data structures are nontrivial. For BHeap, to
achieve the highest observed block coverage, a sequence of length 14 is required [92].
This suggests that directed random generation is effective in generating complex test
inputs—on these data structures, it is competitive with systematic techniques.

FibHeap and BHeap have a larger input space than BinTree and TreeMap (they
declare more public methods). It is interesting that for FibHeap and BHeap, di-
rected random generation achieved equal or greater predicate coverage than shape
abstraction, and did so faster (2.3 times faster for BHeap and 15.8 times faster for
FibHeap), despite the higher complexity. This suggests that directed random gener-
ation is competitive with systematic generation even when the state space is larger.
(The observation holds for the much larger programs used in Section 8.2).

Interestingly, repetition of method calls (Section 7.5) was crucial. When we an-
alyzed the inputs created by directed random generation, we saw that for FibHeap

and TreeMap, sequences that consisted of several element additions in a row, fol-
lowed by several removals, reached predicates that were not reached by sequences
that purely randomly interleaved additions with removals. This is why undirected
random generation achieved less coverage.

Rostra and Symstra

Two other systematic techniques that generate method sequences for containers are
Rostra [96] and Symstra [97]. Rostra generates tests using bounded exhaustive gen-
eration with state matching. Symstra generates method sequences using symbolic ex-
ecution and prunes the state space based on symbolic state comparison. Comparing
Randoop with these tools would provide a further evaluation point. Unfortunately,
the tools were not available to us. However, the data structures used to evaluate
the tools were available. We report the results of running Randoop on these data
structures, and provide a qualitative comparison with the results published in the
Rostra and Symstra papers [96, 97].

Figure 8-2 shows the coverage achieved by the techniques, as reported in the
published Rostra and Symstra papers. The figure also shows the result of running
Randoop on the data structures. We arbitrarily chose 1 second (on a 3.2 GHz Pen-
tium 4 CPU with 1 GB of memory) as the generation limit for Randoop. Since the
experiments were performed at different times and different processors, we should not
draw any hard conclusions from the run times. However, to get a feel of the rela-
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Rostra Symstra Randoop

benchmark LOC branches cov time cov time cov time
IntStack 30 9 67% 689s 100% 0.6s 100% 1s
UBStack 59 13 100% 269s 100% 10s 100% 1s
BST 91 34 100% 23s 100% 317s 94% 1s
BinHeap 309 70 84.3% 51s 91.4% 8.9s 84% 1s
LinkedList 253 12 100% 412s 100% 0.95s 100% 1s
TreeMap 370 170 84.1% 42s 84.1% 63s 81% 1s
HeapArray 71 29 75.9% 3.7s 100% 11s 100% 1s

Figure 8-2: Coverage achieved by different test generation techniques. Rostra and
Symstra results are as reported in [96, 97].

tive performance, we can normalize the run times based on the performance numbers
of the different processors on the standard SPEC2000 integer benchmarks [51]. This
would mean multiplying the run times of Rostra and Symstra columns (both of which
were run on a 2.8 GHz Pentium 4 CPU with 512 MB of memory) by a factor of 0.8.

Based on Figure 8-2 and the approximate normalization above, we can claim that
directed random testing achieves high coverage in a short time, at least for these data
structures. It also appears to be quite competitive when compared to the Rostra and
the Symstra tools.

The best measure to evaluate input generation techniques is error detection, not
coverage. Our results suggest that further experimentation is required to better un-
derstand how systematic and random techniques compare in detecting errors in data
structures. The next section evaluates directed random testing’s error-detection abil-
ity on larger, widely-used component libraries, and compares it with exhaustive and
undirected random generation.

8.2 Error-Revealing Effectiveness

Measuring coverage on small container data structures does not yield much insight
into the relative strengths and weaknesses of different random and systematic tech-
niques. To gain a better understanding of these, we performed a second experiment.
The goal of the experiment was to determine the effectiveness of directed random
testing in revealing previously-unknown errors in realistic-size software libraries, as
well as compare its effectiveness with other techniques, including undirected random
testing and systematic testing. To this end, we applied Randoop, the JPF [91] model
checker, and JCrasher, an undirected random test generator, to 14 large, widely-used
libraries (Figure 8-3), which together comprise a total of 780KLOC. The goal was to
use these tools to reveal errors resulting from violations of basic object contracts, i.e.
reflexivity of equality.

This section discusses the application of the different tools to find errors in the
libraries, and reports the number and nature of the errors that each tool revealed.
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public public
Java libraries LOC classes methods description
Java JDK 1.5

java.util 39K 204 1019 Collections, text, formatting, etc.
javax.xml 14K 68 437 XML processing.

Jakarta Commons
chain 8K 59 226 API for process flows.
collections 61K 402 2412 Extensions to the JDK collections.
jelly 14K 99 724 XML scripting and processing.
logging 4K 9 140 Event-logging facility.
math 21K 111 910 Mathematics and statistics.
primitives 6K 294 1908 Type-safe collections of primitives.

public public
.NET libraries LOC classes methods
ZedGraph 33K 125 3096 Creates plots and charts.
.NET Framework

Mscorlib 185K 1439 17763 .NET Framework SDK class libraries.
System.Data 196K 648 11529 Provide access to system functionality
System.Security 9K 128 1175 and designed as foundation on which
System.Xml 150K 686 9914 .NET applications, components, and
Web.Services 42K 304 2527 controls are built.

Figure 8-3: Libraries used for evaluation.

Section 8.2.2 describes the application of Randoop, Section 8.2.4 describes the appli-
cation of JPF, and Section 8.2.5 describes JCrasher [22], as well as Randoop without
using pruning heuristics, as a second representative of random testing.

8.2.1 MinUnit

To reduce the amount of test cases we had to inspect, we implemented a test runner
called MinUnit, which can replace JUnit or NUnit. JUnit and NUnit show all failing
tests; MinUnit shows only a subset of all failing tests. MinUnit partitions the failing
tests into equivalence classes, where two tests fall into the same class if their execution
leads to a contract violation after the same method call. For example, two tests that
exhibit a contract failure after a call to the JDK method unmodifiableSet(Set)

belong to the same equivalence class. This step retains only one test per equivalence
class, chosen at random; the remaining tests are discarded.

8.2.2 Directed Random Testing

For each library, we performed the following steps:

1. We ran Randoop on a library, specifying all the public classes as targets for test-
ing. We used Randoop’s default parameters (default contracts, heuristic pruning
strategies, and 2 minute time limit). The output of this step was a test suite.
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2. We compiled the test suite and ran it with MinUnit.

3. We manually inspected the failing test cases reported by MinUnit.

For each library, we report the following statistics.

1. Test cases generated. The size of the test suite (number of unit tests) output
by Randoop.

2. Violation-inducing test cases. The number of violation-inducing test cases
output by Randoop.

3. MinUnit reported test cases. The number of violation-inducing test cases re-
ported by MinUnit (after reduction and minimization) when run on the Randoop-
generated test suite.

4. Error-revealing test cases. The number of test cases reported by MinUnit
that revealed an error in the library.

5. Errors. The number of distinct errors uncovered by the error-revealing test cases.
We count two errors as distinct if fixing them would involve modifying different
source code. The next section describes in greater detail the process we used to
determine if a failure revealed an error.

6. Errors per KLOC. The number of distinct errors divided by the KLOC count
for the library.

Determining Errors

Determining that a failure reveals an error can be difficult, due to the lack of complete
specifications. In counting errors, we followed a conservative approach, erring on
the side of not counting a failure as an error unless the failure explicitly violated
documented behavior. We determined that a failure revealed an error as follows.

� JDK libraries. We labeled a test case as error-revealing only if it violated
an explicitly stated property in the Javadoc documentation for the method in
question. If the failure appeared to reveal problematic behavior, but there was
no written documentation regarding the behavior in the Javadocs, we did not
count the failure as an error.

� Jakarta libraries. The Jakarta Commons libraries are not as extensively docu-
mented as the JDK and .NET framework. We did not count as error-revealing
test cases that appeared to us as indicative of problems in the library (or its
design) but where the code in question lacked documentation.
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violation- MinUnit error- errors
test cases inducing reported revealing per

library generated test cases test cases test cases errors KLOC
Java JDK

java.util 22,474 298 20 19 6 .15
javax.xml 15,311 315 12 10 2 .14

Jakarta Commons
chain 35,766 1226 20 0 0 0
collections 16,740 188 67 25 4 .07
jelly 18,846 1484 78 0 0 0
logging 764 0 0 0 0 0
math 3,049 27 9 4 2 .09
primitives 49,789 119 13 0 0 0

ZedGraph 8,175 15 13 4 4 .12
.NET Framework

Mscorlib 5,685 51 19 19 19 .10
System.Data 8,026 177 92 92 92 .47
System.Security 3,793 135 25 25 25 2.7
System.Xml 12,144 19 15 15 15 .10
Web.Services 7,941 146 41 41 41 .98

Total 208,503 4200 424 254 210

Figure 8-4: Statistics for test cases generated by Randoop. Section 8.2.2 explains
the metrics.

� .NET libraries. The .NET libraries we tested had in general stronger specifi-
cations than that Java libraries: the documentation for the libraries explicitly
specifies that every public methods should respect the contracts in Figure 7-3.
We labeled each distinct method that violated a contract as an error for the
.NET programs: a method that leads to the contract violation either contains
an error, fails to do proper argument checking, or fails to prevent internal er-
rors from escaping to the user of the library. Because MinUnit reports one
test case per such method, MinUnit-reported test cases coincide with error-
revealing test cases for .NET.

We confirmed with the engineers responsible for testing the .NET libraries that
any public method violating one of the contracts we checked would be considered
an error.

Errors Revealed

Figure 8-4 shows the results. Randoop created a total of 4200 distinct violation-
inducing test cases. Of those, MinUnit reported approximately 10% (and discarded
the rest as potentially redundant). Out of the 424 tests that MinUnit reported,
254 were error-revealing. (This number is according to our determination of errors
described above.) The other 170 were illegal uses of the libraries or cases where the
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contract violations were documented as normal operation. The 254 error-revealing
test cases pointed to 210 distinct errors. Below are examples of the errors that
Randoop revealed for different libraries.

� JDK libraries. Eight methods in the JDK create collections that return
false on s.equals(s). These eight methods shared some code, and together
they revealed four distinct errors. The methods XMLGregorianCalendar.to-

String() and XMLGregorianCalendar.hashCode() crash because they do not
handle cases where some fields hold legal corner-case values.

� Jakarta commons libraries. In math (2 errors), a matrix class has a field that
holds the matrix data. One of the constructors leaves the field null, which is a
legal, distinct state: a number of the methods implement special cases if the field
is null. The check is omitted from hashCode. The second error in math is similar.
In collections (1 error), an iterator initialized with zero elements (which is
legal, according to the documentation) throws a NullPointerException when
its next() method is invoked. The other 3 errors actually re-discover the errors
that Randoop revealed for java.util, which was tested indirectly because
the collections classes use functionality from that library.

Most of the test cases that Randoop generated for the Commons libraries were
not error-revealing. The main reason was that many classes in the libraries
require specific sequences of method calls to operate properly, and random
generation created many invalid sequences. For example, most of the itera-
tors implemented in collections declare a parameterless constructor, but an
iterator thus constructed must be followed by a call to setCollection(Col-

lection) that specifies the collection to iterate over. Until this call is made,
the iterator will not function, and it will throw an exception of type NullPoin-

terException if next() or hasNext() is invoked. Randoop reported many
contract violations due to incorrect use of these constructors.

� .NET libraries. In the .NET libraries, 155 errors are NullReferenceExceptions
in the absence of null inputs, 21 are IndexOutOfRangeExceptions, and 20 are
violations of equals, hashCode or toString contracts. For the .NET libraries,
we used the .NET design guidelines for class library developers, which state
that public library methods should never throw null reference or index-out-of-
range exceptions. For System.Xml, we confirmed with the test team that this
guideline is followed and that such exceptional behavior is tested, considered
erroneous operation, and corrected if found. Given that null was never passed
as an argument, such exceptions, if present, represent more serious errors.

Randoop also led us to discover nonterminating behavior in System.Xml: when
executing a sequence representing a legal use of the library, the last method call
went into an infinite loop. When we reported this error, it was assigned the
highest priority ranking (it can render unusable an application that uses the
library in a legal manner) and was fixed almost immediately.
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8.2.3 Executing Past Exceptions

As described in Chapter 7, Randoop does not generate method sequences that con-
tinue executing past (internally uncaught) exceptions. If it ever generates a sequence
that results in an exception, Randoop discards the sequence and never extends it.
The rationale for this decision is that exceptions typically indicate an abnormal condi-
tion occurring during execution, and executing past exceptions is less likely to reveal
errors and more likely to result in arbitrary but non-error-revealing behavior.

A reasonable question is whether exploring method sequences that throw excep-
tions in the middle may actually be beneficial: could executing methods after an
uncaught exception result in more errors, or different kinds of errors? One hypo-
thetical possibility is that the errors that Randoop reveals are revealed more easily
(i.e. faster) via “illegal” states that follow exceptional behavior, than via legal states.
Another possibility is that a tool that executes method calls after an exception occurs
reveals new kinds of errors: those resulting from objects being left in invalid states
after an exception.

To shed light on these questions, we modified Randoop so that it continues
extending inputs after an exception is thrown. Below, we call the modified version
Randex. When a newly-generated test input leads to an exception, Randex adds
it to the component set of inputs that can be extended to yield longer inputs. (The
original Randoop discards exception-throwing inputs and never extends them.) This
modification causes Randex to generate, execute, and output test cases that throw
exceptions in the middle but continue executing, exemplified by the error-revealing
test case shown below in Figure 8-5, output during a run of Randex on the Java
JDK.

We reproduced the experiment from Section 8.2.2, using Randoop’s default or-
acles and generation time limit (2 minutes), and comparing with running Randex
using the same parameters.1 The results of this experiment were as follows.

� Randex is effective in revealing errors. Randex is similar to Randoop
in its end-to-end behavior. Randex output 224 tests which revealed 20 distinct
errors, while Randoop output 233 tests which revealed 23 errors. Both tools
had similar “error yields,” or ratios of failing tests reported to distinct errors
revealed by those tests. For some programs, Randex had a higher number of
false positive tests, and redundant tests that revealed the same underlying error.
But this did not hold for all libraries: for other libraries, it was the opposite. In
summary, there was no discernible pattern in terms of the number of redundant
tests or false positives generated by Randoop vs. Randex.

This indicates that generating tests that execute methods after exceptions are
thrown does not result in a large decrease in error-revealing effectiveness, at
least when performing “short” runs of the tool. (Below we discuss potential

1This experiment was performed on a newer version of Randoop from that in Section 8.2.2, and
the number of errors revealed were slightly higher than those shown in Figure 8-4 due to efficiency
improvements in the new version. We also added two additional libraries from those in the original
experiment.
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public void Randex_test1() throws Throwable {

Vector var1 = new Vector(1);
IdentityHashMap var2 = new IdentityHashMap(10);
Collection var3 = var2.values();
var1.addElement(var3);
Collections.reverse(var1);
Vector var4 = new Vector(1);
IdentityHashMap var5 = new IdentityHashMap(10);
Collection var6 = var5.values();
var4.addElement(var6);
Iterator var7 = var4.iterator();
boolean var8 = var1.addAll(var4);
try {
// THROWS ArrayIndexOutOfBoundsException
Object var9 = var4.remove(-1);

} catch (Throwable t) {
// continue executing.

}
TreeSet var10 = new TreeSet(var4);
Comparator var11 = var10.comparator();
SortedSet var12 = Collections.unmodifiableSortedSet(var10);

// RETURNS FALSE reflexivity of equals (var12)
assertTrue(var12.equals(var12));

}

Figure 8-5: A test case generated by Randex. Unlike tests cases generated by
Randoop, test cases generated by Randex can throw an exception, catch it, and
continue execution after the exception.

decrease in effectiveness for longer runs.) This result is somewhat surprising:
before running the experiment, we expected Randex to output a lot more
failing tests cases that revealed no errors.

� Randex has longer time to failure. Randex does decrease the effectiveness
of the generation in one respect: it increases the time to failure for any given
error. The average time required by Randex to reveal a specific error is on
average 70% greater than using Randoop; for some errors, Randex takes up
to 10 times longer to reveal the same error as Randoop (the opposite is not
the case).

Why the longer time to failure? The increased time to failure is not due to
a slowdown caused by exception-throwing method calls: both Randoop and
Randex generate and execute roughly the same number of method calls and
tests per unit of time, with Randex being only 8% slower. Randex takes
longer to find errors because it generates more redundant operations that mod-
ify no object state, wasting generation time. We determined this by manually
inspecting the tests output by Randex. Our analysis revealed that (at least
for the 10 subject libraries) exception-throwing operations for the most part
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do not modify the state of their arguments. An example representative of the
general case is the test case from Figure 8-5, which throws an ArrayIndexOut-

OfBoundsException. The exception-throwing call does not mutate the state
of its receiver (var4). In other words, Randex spends more time performing
“no-op” operations that consume time but have no effect on the result, and thus
do not contribute to the testing effort.

� Randex does not reveal new or different kinds of errors. The errors
revealed when executing past exceptions were essentially a subset of the er-
rors revealed when not executing past exceptions. This result is also partially
explained by the fact that exception-throwing methods in these libraries most
often did not mutate any object state. Thus, Randex did not reveal new er-
rors resulting from an object being left in a modified and invalid state after
an exception occurs, which is one class of errors we thought an approach like
Randex might reveal and Randoop would not.

However, this result holds for the libraries we used in the experiment, and the
relatively small set of validity properties that Randoop checks (e.g. reflex-
ivity of equals). Randex could very well reveal bugs resulting from invalid
post-exception states, if we inspected the behavior of all tests that Randex
generated (many thousands of them), not only those resulting in a violation of
one of the small set of properties built into the tool. Or, for a different set of
libraries (for which exceptions are more likely to leave objects in invalid states),
Randex could be more effective in revealing these kinds of errors.

Execution Performance. During the experiment, we also collected other statistics
of Randoop and Randex. The first statistic was the total number of operations
performed (i.e. calls of public methods under test) during the run of each tool. In
Java (and .NET), a method invocation that results in an exception can be slower than
an invocation that completes normally, so we wanted to determine if generating test
inputs that threw exceptions in the middle slowed down the tool considerably. As it
turns out, it did not. Randex executed on average only 8% fewer operations than
Randoop in the same period of time; both tools were able to generate and execute
comparable number of test inputs.

Time to Failure. As we mentioned above, the main difference between Randoop
and Randex was in the average time to failure. The time to failure for a particular
error is the time it takes the tool to output a failing test case that reveals the error.
To obtain time to failure data, we recorded the time at which each test case was
output, and them computed the time to failure for different errors. On average, the
time to failure for a particular error was 70% higher (took longer time) for Randex,
compared with Randoop. The result appears to be independent of the random seed
used, based on repeating runs of Randoop and Randex using different seeds.

Executing past exceptions increases the time it takes the tool to reveal the error.
This is not necessarily a problem for errors that are revealed within minutes—the
user can just run the tool a few minutes longer. It may make the difference for very
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rare errors that require hours, or days, to be revealed; in that case, taking twice as
long may make the difference between discovering or missing the error.

8.2.4 Systematic Testing

To compare directed random testing with systematic testing, we used the Java Path-
Finder model checker [91] (JPF) to test the Java libraries. JPF is an explicit-state
software model checker for Java that executes code in a specialized virtual machine,
and systematically explores all potential execution paths of a Java program to find
violations of properties like deadlocks, unhandled exceptions, etc.

JPF does not actually create method sequences. To make it explore method se-
quences, the user has to manually write a “driver” program that nondeterministically
calls methods of the classes under test, and JPF explores method sequences by ex-
ploring the driver (for instance, Visser et al. wrote driver programs for the container
experiments [92]). We wrote a driver generator which, given a set of classes, creates
a driver that explores all possible method sequences up to some sequence length,
using only public methods. For this experiment, we augmented the drivers with the
code that checked the same contracts as Randoop (Figure 7-3). We performed the
experiments on a Pentium 4, 3.6GHz, 4G memory, running Debian Linux.

For each library, we generated a universal driver and had JPF explore the driver
until it ran out of memory. We specified sequence length 10 (this was greater than the
length required to find all the Java errors from Figure 8-4). We used JPF’s breadth-
first search strategy, as done for all systematic techniques in [92]. In that paper,
Visser et al. suggest that breadth-first search is preferable than depth-first search
for this kind of exploration scenario. We used JPF’s default state matching (shape
abstraction is not currently implemented in JPF, other than for the four containers
from Section 8.1).

Figure 8-6 shows the results. Using breadth-first search, JPF ran out of memory
on all libraries without reporting any errors. Considering the size of the libraries, this
is not surprising, as JPF was barely able to explore the libraries before state space
explosion became a problem.

jCUTE [86] performs concolic testing, a systematic technique that performs sym-
bolic execution but uses randomly-generated test inputs to initialize the search and
to allow the tool to make progress when symbolic execution fails due to limitations
of the symbolic approach (e.g. native calls). Comparing directed random generation
with concolic testing would be interesting. Unfortunately, jCUTE crashed when com-
piling the drivers generated for the classes because it could not handle drivers of the
size generated for our subject programs.

8.2.5 Undirected Random Testing

To measure the benefits of directed random testing versus undirected random testing,
we reran Randoop as described in Section 8.2.2 a second time, using the same
parameters, but disabling pruning. Across all libraries, unguided generation created
1,326 violation-inducing test cases. Out of these, MinUnit reported 60 test cases,
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heuristic breadth-first search depth-first search
time and violation time and violation

termination inducing distinct termination inducing distinct
library cause test cases errors cause test cases errors

java.util 33s (M) 0 0 12,000s (N) 0 0
javax.xml 22s (M) 0 0 1016s (E) 24 0

chain 29s (M) 0 0 72s (M) 0 0
collections 50s (M) 0 0 1165s (E) 78 0

jelly 28s (M) 0 0 4s (E) 1 1
logging 57s (M) 0 0 22s (E) 0 0

math 2s (E) 0 0 1s (E) 0 0
primitives 33s (M) 0 0 12,000s (N) 0 0

Termination causes
N: JPF stopped exploration after reaching the time limit (12,000 seconds) .
M: JPF ran out of memory before reaching the time limit.
E: JPF crashed before reaching the time limit.

Figure 8-6: Results of running JPF on the Java libraries, using two search configura-
tions.

all of which pointed to distinct errors (58 in the .NET libraries, and 2 in the Java
libraries). Below are examples of the errors that Randoop was able or unable to
reveal when running without pruning.

� Undirected generation did not find any errors in java.util or javax.xml: it
did not create an input complex enough to expose the violation of equals by
eight methods in Collections, and did not create a test input that caused
hashCode or toString to throw an exception for XMLGregorianCalendar.

� Unguided generation was able to generate the test cases that reveal two errors
in math. This is not surprising, because the errors manifest themselves imme-
diately after a call to a public builder. On the other hand, it was not able to
discover the java.util errors that directed generation discovered when testing
the math library.

� In the .NET Framework libraries, the number of methods that were shown
to throw forbidden exceptions went down from 192 (with directed generation)
to 58 with unguided generation, and Randoop and was unable to create the
sequence that uncovered the infinite loop in System.Xml (to confirm that this
was not due simply to an unlucky random seed, we ran Randoop multiple
times using different seeds; undirected generation never found the bug).

We also measured how many distinct objects Randoop created during its 2-
minute run, as measured by the equals method (i.e., objects for which equals returns
false). With directed generation, Randoop created an average of 1271 distinct ob-
jects per tested library. Without directed generation, Randoop created an average
of 268 distinct objects.
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IllegalArgumentException 332
NullPointerException 166
NumberFormatException 2

NegativeArraySizeException 3
ClassCastException 6

MissingResourceException 8
ArrayIndexOutOfBoundsException 77

RuntimeException 1
IllegalAccessError 1

IndexOutOfBoundsException 2

Figure 8-7: Exception types that JCrasher reported. The numbers reported is the
number of test cases that JCrasher reported as potentially error-revealing due to an
exception of the given type. All exceptions are from package java.lang except for
MissingResourceException, which is in java.util.

As a second, independent comparison with undirected random testing, we also
used JCrasher [22] to the libraries. JCrasher implements undirected random testing,
with the goal of revealing exceptional behavior that points to errors. JCrasher ran-
domly generates tests, then removes tests that throw exceptions not considered by
JCrasher to be potentially fault-revealing. We used JCrasher to generate test cases
for the Java libraries. JCrasher takes as input a list of classes to test and a “depth”
parameter that limits the number of method calls it chains together. We ran JCrasher
with maximum possible depth.

JCrasher ran for 639 seconds, created a total of 598 failing test cases. We used
the same methodology to label error-revealing JCrasher test cases as for our tools.
Out of the 598 failing test cases generated by JCrasher, 3 were error-revealing, and
they revealed one distinct error. The error is one that Randoop did not find, not
because of a limitation in its grammar of tests (the test case is easily expressible as
a sequence) but because the random generation process did not happen to construct
the specific input. JCrasher generated 595 non-error-revealing test cases. Figure 8
shows the types of exceptions that it reported. About half (332) were test cases that
threw an IllegalArgumentException when given an illegal argument. 166 test cases
threw a NullPointerException but the exception was caused because the value null
was explicitly given as an input to a method. Figure 8-7 lists the exception types
that JCrasher reported.

The rest of the test cases were illegal uses of the libraries. For example, 2 Number-

FormatExceptions were thrown because JCrasher attempted to parse a number from
a string that does not represent a number; 3 NegativeArraySizeExceptions were
thrown because JCrasher passed a negative argument that is used to set an array’s
size; 6 ClassCastExceptions were thrown because the wrong type of argument was
passed; 2 ArrayIndexOutOfBoundsExceptions were thrown because a negative index
was passed as a parameter that indexed into an array; etc. (Note that in the .NET
libraries, the specification says that a public method that throws an exception of type
IndexOutOfRangeException is erroneous operation. The .NET guidelines require
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IllegalArgumentException instead. This is not the case for the Java libraries,
and Randoop does not report out-of-bounds exceptions as violations.) The test
cases reported by JCrasher that threw out-of-bounds exceptions were cases of illegal
parameters being passed. Our results suggest that JCrasher is not very effective in
revealing contract violations like the ones that Randoop reveals.

8.3 Operation Depth and Effectiveness

The experimental results from the last two sections suggest that directed random
testing can be more effective than other test input generation techniques in reveal-
ing errors and achieving code coverage. This section describes an experiment that
explains a reason for the technique’s improved effectiveness over undirected random
testing.

When inspecting Randoop failures, we observed that many errors were revealed
by relatively long sequence of operations (i.e. dozens of method calls), even though
the errors, upon inspection, could be revealed by much smaller sequences (i.e. five or
less calls). Another way of describing this observation is by thinking of an “opera-
tion tree” representing the space of operation sequences for a given software artifact,
with the root of the tree representing the empty sequence, and each path of length
N through the tree representing a sequence of N operations. (All the techniques we
have discussed so far can be seen as exploring some portion of this tree.) A hypothesis
that would explain the “long failing test” observation is that for some software arti-
facts, deeper levels of the operation tree have a higher proportion of error-revealing
operations (nodes) than shallow levels. We are not the first to propose or evalu-
ate this hypothesis: in a recent empirical study, Andrews et al. observed a similar
phenomenon when applying random testing to flight software systems [7].

Figure 8-8 depicts the hypothesis graphically. It shows the first four levels of
an operation tree. The tree shows three kinds of nodes, corresponding to normal
operations, illegal operations, and error-revealing operations. We define the failure
rate at a given depth as the ratio of error-revealing to total operations for a given
depth. The example shows an example failure rate that increases for greater operation
depths.

To shed light on the relationship between operation depth, failure rate, and error-
revealing effectiveness of random testing techniques, and its implication for directed
random testing, we gathered and analyzed failure data for three different techniques:
undirected random testing, implemented as a random walk along the method sequence
tree; bottom-up random generation with pruning based only on illegal inputs (i.e.
procedure Bu/L from Chapter 4); and directed random testing. Because the results
of a random testing technique can vary depending on the choice of random seed, we
performed a large-scale experiment consisting of approximately 2,500 runs for each
technique (totaling more than 1,000 CPU hours), using different seeds and subject
programs.

In summary, the results of the experiment are as follows.
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Figure 8-8: A tree depicting the space of operation sequences, and a hypothetical
failure rate. The root of the tree represents the empty sequence; nodes at depth
1 represent sequences of length 1, etc. An “F” node indicates an error-revealing
operation, and an “I” node presents an illegal operation. The failure rate at a given
depth is the number of error-revealing operations divided by the total number of
operations.

� The results substantiate the hypothesis that for some software artifacts, deeper
levels of the operation tree have a higher failure rate than shallow levels.

� Undirected random testing techniques execute fewer operations in deeper areas
of the tree (where the failure rate is higher). This is due to the decreased
probability of executing a long series of legal continuous operations when using
random inputs.

� Directed random testing is better able to execute operations in deeper portions
of the tree because it concatenates legal sequences of operations, and achieves
a higher failure rate due to equivalence pruning. This enables the technique to
reveal more errors.

The rest of the section describes the experiment and results in greater detail.

8.3.1 Experimental Setup

To better understand the relationship between operation depth and effectiveness, as
well as the effectiveness of directed random testing’s different pruning strategies, we
evaluated three techniques.

1. Rw (Random Walk). The random walk-based sequence generator (we will
call the technique Rw from here on) works as follows. The technique starts
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with an empty sequence s. It repeatedly extends the sequence with a new
operation (chosen at random from all possible operations at that point), and
executes the operation. If the sequence results in an error-revealing state, Rw
outputs the sequence as a test case. If the sequences results in a (heuristically-
determined, as in Randoop) illegal state, Rw discards the sequence. In both
cases, Rw resets the sequence to the empty sequence, and begins a new series of
random extensions. If an operation results in normal behavior, a new extension
is performed.

An attractive property of Rw is that it has no tunable parameters, decreasing
the risk that any results are due to specific parameter settings.

2. Bu/L. Bottom-up generation with illegal-input pruning (Section 4.1) is based
on bottom-up generation but discards only illegal sequences; in particular, it
does no pruning based on equivalent values. Comparing the results obtained by
Bu/L and Drt allowed us to understand the contribution of pruning based on
input legality.

3. Drt. The final technique we considered was the full version of Drt (Chapter 5),
which uses a component set, discards illegal sequences, and uses index pruning
heuristics based on value equality.

A difficulty in performing a large-scale experiment is the potential amount of
human time require to inspect the resulting data. Inspecting a failing test case to
determine if an error (and which error) is revealed can be a very time-consuming
process; it can be even more difficult for mechanically-generated test cases. The
thousands of runs of the techniques generated thousands of failing test cases, making
manual inspection infeasible. Thus, we designed the experiment in a way that would
allow for an automated, yet reasonably precise way of classifying failing test cases.
The following sub-sections give details on how we did this.

Test Oracles

We limited the oracles to those that check for universal object properties that every
object should respect, e.g. reflexivity and symmetry of equals, equals returning
false on null, and equals/hashCode consistency, but excluded properties related
to exceptional behavior, which leads to non-error-revealing failures more often than
the above properties. Furthermore, we further strengthened the properties to fail only
if incorrect but non-exceptional behavior was exhibited. For example, we counted a
call of o.equals(o) returning false as a failure, but not if the call resulted in an
exception. Based on our experience inspecting failing test cases in previous experi-
ments, a violation of one of the above properties not involving an exception but rather
returning the incorrect value almost always points to an actual error. Restricting the
oracles in this way gave us greater confidence that reported failures were likely due
to errors.
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Subject Programs

As subject programs, we used five Java libraries. Three of them were java.util,
collections and primitives, i.e. the libraries from Section 8.2’s benchmark (Fig-
ure 8-3) that we knew contained at least one error fitting the description of our
strengthened oracle. (We discarded the other libraries from the experiment after
multiple runs of all three techniques revealed no errors.) The other two libraries
were trove (278 classes, 75KLOC) and jace (164 classes, 51KLOC). These libraries
declare many classes with equals and hashCode methods.

Stopping Criterion

We used each technique to generate test inputs for each of the five libraries. We
gave each technique a limit of 100 million operations (distributed across multiple
runs) for each library. We used operations instead of time to remove any unfairness
due to implementation details of each technique; this was mostly to be fair to Rw
(the random walk-based technique), which we spent longer time per operation, in
small part due to implementation details, but mainly due to the fact that it led to
more exceptional behavior than the other techniques, which resulted in a 1-3 order
of magnitude slowdown, depending on the subject library. While this points out an
efficiency advantage of directed random testing in the context of Java, we did not
deem it to be the fundamental reason for directed random testing’s effectiveness; so
we normalized all techniques using operation counts to limit generation.

Parallel Runs

To collect the failure data, we wrote a script that for each technique/library pair,
invoked multiple processes across 10 machines, each consisting of a run of Randoop
specifying (1) the given technique, (2) the subject program, (3) a unique random
seed, and (4) a stopping criterion for the individual run of Randoop. While in
principle, Randoop could generate tests spanning 100 million operations in a single
run, in practice, all three techniques tended to slow down after a while, as the garbage
collector workload increased due to a large number of randomly-generated objects;
recall that Randoop generates and executes test inputs in the same process. In the
case of Bu/L and Drt the growing size of the component set also slowed down the
tool after several minutes of generation. Thus, the script used a simple coverage-based
stopping criterion that killed a given run after 100 seconds of no new code coverage.
All three techniques typically reached the stopping point after a 10- to 30-minute run.
Upon reaching stopping point, Randoop output all failing tests and other generation
statistics. The script stopped launching new processes for a given technique when the
100 million operation limit was reached, which spanned 300-500 total runs for each
technique/library pair.
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failing test cases errors revealed
library Rw Bu/L Drt Rw Bu/L Drt

java.util 2,700 4,400 19,000 20 21 27
collections 11,000 8,300 13,000 28 37 48
primitives 2,300 860 1,900 16 13 19

trove 110,000 140,000 330,000 20 27 27
jace 6,400 6,400 7,500 15 15 26

TOTAL 140,000 160,000 380,000 99 113 147

Figure 8-9: Failing test cases generated and errors revealed over all runs of the tech-
niques. Due to the amount of test cases produced, we did not inspect them manually;
we counted all failures resulting from the failure of a given method as revealing a
single error (an inexact approximation to actual errors, but one we applied uniformly
across all techniques) .

8.3.2 Results

Figure 8-9 shows the overall results of the experiment, including the total number
of failing test cases and errors found by each technique. To count errors, we me-
chanically determined the equals method involved in every failure (i.e. the method
that violates a correctness property), and counted all failures for a given method as
revealing a single error. This is only an approximation to real errors; for example,
a single method may contain many errors, and a method invocation may result in
a failure due to an error in a previous invocation that corrupted an object’s state.
An informal inspection of a few dozen randomly-selected test cases suggests that this
approximation is reasonable: in the test cases we have inspected, most of the time the
error is located in the method that led to the violation. We used the same criterion
across all techniques.

As the results show, Drt revealed the most errors, followed by Bu/L; Rw revealed
the fewest errors; nevertheless, Rw revealed several errors.

Operation Distribution

To understand the relationship between operation depth and failures for the three
techniques, we start by considering the total number of operations each technique
performed at a given depth. The top three plots in Figure 8-10 show this information
for each technique. As the figure shows, the number of operations Rw executes at
a given depth decreases dramatically for higher depths. Calling an operation with
random inputs arguments (at least for most object-oriented libraries) has a relatively
high probability of resulting in an exception, and this makes the chances of Rw
generating a long sequence of normally-executing operations decrease as sequence
length increases. To see why this happens, imagine a simple model in which executing
an operation with random inputs results in illegal behavior with probability p. Then,
the probability of generating a legal sequence of n operations is (1 − p)n. Even
if the probability of illegal behavior is small, the probability of generating a long
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Figure 8-10: Top: distribution of operations performed at different depths for each
technique. Bottom: average failure rate (averaged over all failures) for each technique.

sequence quickly decreases; e.g. for p = 0.1 and n = 10 the probably of generating
an illegal sequence is 35%. For most libraries we have encountered, the probability
of an exception given random input is much larger than 0.1. Thus, Rw performs a
large number of short random walks, and very few long ones.

Bu/L and Drt also show a decrease in number of operations at higher depths, but
the effect is less pronounced than for Rw. This makes sense, since these techniques
use a component set of legal sequence to build longer sequences, and by this process
are able to generate longer sequences of legal operations.

These results by themselves do not explain the increased effectiveness of Bu/L
and Drt over Rw. However, when combined with the failure data, it becomes clear
why a random walk is less effective. Next, we discuss the failure rate data for each
technique.

Failure Rate

We compute each technique’s failure rate as an average of failure ratios for each
individual error. Given a particular error, we computed the failure rate by dividing the
number of operations that led to the error at the given depth by the total operations
that the technique executed at that depth. The bottom plots in Figure 8-10 shows
the average failure rates for all techniques.

For all techniques, the failure rate increases as operation depth increases, support-
ing the original hypothesis that deeper levels of the operation tree have a higher error
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ratio. While it supports the hypothesis, the data does not explain it. A complete
explanation of this hypothesis is beyond the scope of the thesis; however, our manual
inspection of many failing test cases suggests that many errors are triggered by a spe-
cific series of events, e.g. calling a specific operation with a given argument, and later
on calling another specific method with the result of the previous operation; more
sporadic errors require a longer (or more specific) series of events. Longer sequences
of operations may increase the chances that the specific series of events triggering an
error will happen, even if the series of events is itself short. A simple analogy is to
think of a sequence as a sequence of dice rolls, and an error is triggered when rolling
a series of two specific numbers, say a 6 followed by a 3, with other numbers allowed
in between. In this scenario, rolling one long sequence of 100 rolls can be shown to
have higher probability in revealing the error than rolling many short sequences.

Operation Distribution, Failure Rate, and Effectiveness

The increased error-revealing effectiveness of the replacement-based techniques over a
random walk can be explained by considering the combined effects of each technique’s
operation distribution and failure rate. Rw executes more than half of its operations
at depth less than 10, where its failure rate is smallest, while it executes very few
sequences at depths in the 40-50 range, which is where its failure rate is highest. Rw
generates mostly short sequences which have a smaller chance of revealing an error,
and is rarely able to generate longer sequences that more likely to reveal errors.

Bu/L performs better than Rw, which is surprising if we only look at the tech-
nique’s failure rate: Bu/L’s average failure rate is lower at all depths than Rw’s
average failure rate. It is not surprising that Bu/L’s failure rate is lower than that
of Rw. Bu/L performs many repeated non-error-revealing operations when concate-
nating component sequences to yield a new sequence, while every operation that Rw
performs is always chosen at random However, Bu/L is able to execute operations
at deeper levels, where the chances of revealing an error are increased. Taken in
combination, these factors give a small edge to Bu/L over Rw in error-revealing
effectiveness.

Drt differs form Bu/L in that it performs heuristic pruning based on equivalent
values. As the results show, this type of pruning increases the effectiveness of the
technique, allowing it to overcome the decrease in effectiveness resulting from con-
catenating sequences with repetitive operations. At the same time, the technique is
able to execute more operations at deeper levels, where the error ratio is higher. In
other words, Drt combines the two other technique’s advantages: a higher failure
rate, and ability to execute deep operations.

Easy vs. Hard Errors

The errors revealed by each technique in the course of the experiment exhibited
different numbers of revealing test cases generated, ranging from errors revealed by a
single failing test case to errors revealed by more than 20,000 test cases. Informally,
call an error hard for a particular random testing technique if it was revealed by a
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Figure 8-11: Number of DRT and random walk failures for each distinct error.

small number of test cases during the experiment. For example, an error revealed
only once in 500 runs is hard for a technique, and unlikely to be revealed by in a
single run.

Figure 8-11 shows a plot that compares the number of failures per error for Rw
and Drt. Each dot in the plot represents an error, the dot’s x-coordinate gives the
number of error-revealing test cases generated by Rw, and the y-coordinate gives the
number of error-revealing test cases generated by Drt. A dot along the diagonal is
an error that is equally hard for both techniques. A dot above the diagonal is an
error that is harder for Rw than for Drt. Finally, a dot below the diagonal is an
error that is harder for Drt than Rw. Note that both coordinates are log-based.

As the plot shows, Drt dominates Rw, in the sense that most errors were equally
hard, or harder, for Rw than for Drt. The effect is more pronounced for harder
errors: the dots closer to the origin show a higher vertical spread than those farther
from the origin. For example, dots along the y axis represent errors for with Rw was
only able to generate one error-revealing test case; for these errors, Drt generated
from 1 to 300 test cases. In summary, the data indicates that, in general, errors that
are hard for Rw to reveal are easier for Drt to reveal, but not vice-versa.

8.4 Evaluation of Post-Processing Techniques

Replacement-Based Simplification

To evaluate replacement-based simplification, we applied the simplifier to all of the
failing test cases from Section 8.2. The average size of a non-minimized test case was
42 method calls, and the average size of a minimized test case was 5 method calls.
(These results are for the Java libraries; the minimization step is not implemented
for .NET.) For example, the original length of the contract-violating test case in
Figure 7-2 was 25 method calls, and its final length after simplification was 5 calls.

A more thorough evaluation of the technique is part of future work. In partic-
ular, it would be interesting to compare the results achieved by replacement-based
simplification and those achieved by delta debugging or dynamic slicing, in terms of
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the time required by each technique to simplify a test case, and the resulting size
of the test case. In our experience, removal-based simplification goes a long way to-
wards minimizing the size of a test case, but replacement based simplification (and
in particular, replacing values of complex types with simpler types, as the Java im-
plementation aims to do) leads to test cases that make the cause of a failure more
directly apparent.

Branch-Directed Generation

To evaluate branch-directed generation, we performed a case study in which we ap-
plied the technique to the output of Randoop on the Java collections, a subset of
the Java JDK comprising 25 classes that includes collections classes including linked
lists, stacks, hash tables, etc. as well as utility methods to sort or shuffle a collection,
convert an array to a collection, etc. We implemented a coverage instrumentation tool
that modifies source code to track branch coverage information. The tool reported a
total of 1032 branch conditions across the 25 classes.

We ran Randoop on the coverage-instrumented versions of the classes, and
stopped generation after 100 seconds passed with no new branches covered. At the
end of the generation process, Randoop output all the sequences it generated, which
we used as input to the branch-directed generator. The Randoop-generated input
set led to 467 fully-covered branch conditions, 163 frontier conditions, and 402 fully-
uncovered conditions. Randoop generated several thousand witness sequences for
each frontier condition. Our current implementation of the data flow analysis is
slow: it takes on the order of several seconds to minutes to instrument and analyze
each sequence. To speed the process, we limited the analysis to only the 10 smallest
sequences of each frontier condition.

Of the 163 frontier conditions, the data flow analysis returned non-empty influ-
encing variable sets (for one or more sequences) for only 29 frontier branches. The
analysis can fail to report influencing variables of an input for several reasons. The
first reason is if there are no external variable in the sequence that can affect the result
of the frontier branch condition. For example, consider the HashMap() constructor. It
internally calls another constructor, HashMap(int,float), that takes initial capacity
and load factor parameters. HashMap() passes default values for these parameters.
The boxed condition below in constructor HashMap(int,float) was a frontier branch
condition (with the false branch covered):

public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal capacity: + initialCapacity);

if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;

...
}

The sequence m=new HashMap() reaches the condition, but because it uses the
0-ary constructor, there is no possible modification strategy in the generator that
can flip the result of the condition. On the other hand, the sequence i=1; j=1;
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m=new HashMap(i,j) declares variables that can be successfully modified to flip the
condition. A few of the instances in which the analysis returned no influencing vari-
able information was because none of the 10 sequences used in the analysis declared
relevant variables that influenced the result of the condition, like sequence m=new

HashMap() in the example above.
Many other cases of missing information were due to the fact that the analysis

only computes data flow information, not control-flow information, and some frontier
conditions depended on the latter, not the former. This is not a fundamental limita-
tion of branch-directed generation, but a limitation of our current dynamic analysis
that could be addressed by tracking control flow as well as data flow information.

Of the 29 frontier conditions for which the analysis reported influencing variable
information, the modification strategies resulted in a successful modification (i.e. a
modification that resulted in the uncovered branch being followed) for 19 of the cases,
i.e. 65% of the time. This result provides some preliminary support to our hypothesis
that simple modification strategies can successfully flip a branch condition. Figure 8-
12 shows two representative examples of successful modifications. The first row shows
a frontier condition in method Stack.peek(). In the Randoop-generated inputs,
the method is never called on a 0-sized stack, leaving the false branch of the condition
uncovered. The witness sequence creates a new stack, sets its size to 1, and calls peek.
The data flow analysis returns the variable in the statement v1=1, used as argument
to setSize(int), as an influencing variable, and returns the set {0} as the compared-
value set for the variable. The generator sets v1 to 0, which drives execution through
the true branch.

The second row in the figure is an example of how a relatively complex frontier
condition can be flipped using a simple modification strategy. The frontier condition
is in method Random.nextInt, which is called from method Collections.shuffle.
For the condition to evaluate to true, the input argument to nextInt must be
a power of 2. The witness sequence creates a 100-element collection by calling
Collections.nCopies(int n,Object o), which returns a list consisting of n copies
of o. It then calls shuffle on the list, which internally calls nextInt(int) with the
size of the list (100) as argument. The dynamic analysis correctly identifies v0, the
variable designating the size of the list, to be an influencing variable. Moreover, the
analysis returns {100, 4} as the compared-value set for v0: the value 4 is the result of
the operation n & -n in the frontier condition, and is always a power of two. When
the generator uses 4 as the value of v1, the uncovered branch in the frontier condition
is covered.
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frontier conditions witness sequences modified sequences
(false branch covered) (follow false branch) (follow true branch)

public synchronized
Object peek() {

len = size();
if (len == 0)
throw new
EmptyStackException();

return elementAt(len - 1);
}

Stack v0 = new Stack();
int v1 = 1;
v0.setSize(v1);
v0.peek();

Stack v0 = new Stack();
int v1 = 0 ;
v0.setSize(v1);
v0.peek();

public int nextInt(int n) {
if (n<=0)
throw new
IllegalArgumentException
("n must be positive");

// if n is a power of 2

if ((n & -n) == n)
return (int)((n
* (long)next(31)) >> 31);

int bits, val;
do {
bits = next(31);
val = bits % n;

} while(bits - val
+ (n-1) < 0);

return val;
}

int v0 = 100;
int v1 = -1;
List v2 = Collections
.nCopies(v0, v1);

Collections.shuffle(v2);

int v0 = 4 ;
int v1 = -1;
List v2 = Collections
.nCopies(v0, v1);

Collections.shuffle(v2);

Figure 8-12: Two representative modifications performed by a branch-directed gen-
erator that led to coverage of a branch not covered by Randoop. (For more details
see Section 8.4.)
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Chapter 9

Case Studies

This chapter describes two case studies that complement the experimental evaluation
described in Chapter 8. The case studies explore different uses of Randoop: the
first study explores the effectiveness of passing test cases generated by the tool when
used for regression testing, and the second study explores the effectiveness of failing
test cases, in the context of an industrial use of the tool. The regression case study
describes our use of Randoop to perform regression testing on the Java Develop-
ment Kit [40] (JDK), a widely-used Java component library. We used Randoop
to generate tests for Sun’s 1.5 version of the JDK, and we ran the generated tests
against other versions of the JDK, including a newer 1.6 beta version, and a separate
implementation of the 1.5 JDK by IBM. By this process, we found many regression
failures that revealed errors in all three libraries.

The second case study is an industrial case study in which a team of test engineers
at Microsoft applied directed random testing to a critical component of the .NET ar-
chitecture. Due to its complexity and high reliability requirements, the component
had already been tested by 40 test engineers over five years, using manual testing and
many automated testing techniques. Nevertheless, directed random testing revealed
errors in the component that eluded previous testing, and did so two orders of mag-
nitude faster than a typical test engineer (including time spent inspecting the results
of the tool). The tool also led the test team to discover errors in other testing and
analysis tools, and deficiencies in previous best-practice guidelines for manual testing.

9.1 Finding Regression Errors in the Java JDK

Our first case study involved using directed random testing to find inconsistencies
between different implementations of the same API. As our subject program, we used
the Java JDK. We tested three commercial implementations: Sun 1.5 1, Sun 1.6 beta
2 2, and IBM 1.5 3 The goal was to discover inconsistencies between the libraries
which could point to regression errors in Sun 1.6 beta 2 or compliance errors in either

1J2SE build 1.5.0-b64.
2J2SE build 1.6.0-beta2-b74.
3J2SE build pxi32devifx-20060124, JCL 20060120a.

125



public static void test1() {
BigDecimal negOne = new BigDecimal(-1.0);
BigDecimal one = negOne.divideToIntegralValue(negOne);
BigInteger unscaled = one.unscaledValue();
// Fails on IBM 1.5, which returns 1000000 instead of 1
// Reveals error in IBM 1.5: it should return 1.
assertEquals("1", unscaled.toString());

}

public static void test1() throws Exception {
GregorianCalendar c1
= new GregorianCalendar(1000, 1, 1);

Date d1 = c1.getTime();
d1.setSeconds(1);
// Sun JDK 1.6 throws a ClassCastException;
// this is a regression from Sun JDK 1.5.
d1.after(d1);

}

public static void test2() {
TreeSet ts = new TreeSet();
ParsePosition pos = new ParsePosition(100);
// Sun 1.6 throws ClassCastException when executing next method.
// Reveals error in Sun 1.5 and IBM 1.5: they should also throw
// an exception, but do not.
ts.contains(pos);

}

Figure 9-1: Three inconsistencies revealed by Randoop. The first reveals an error
in IBM’s JDK 1.5. The second reveals a regression error in Sun’s JDK 1.6. The
third reveals an error in Sun’s JDK 1.5 and IBM’s JDK 1.5, which fail to throw an
exception documents in the API documentation.

of the libraries. Recall that Randoop can optionally create a regression oracle for
each input, which records the runtime behavior of the program under test on the
input by invoking observer methods on the objects created by the input. Randoop
guesses observer methods using a simple strategy: a method is an observer if all
of the following hold: (i) it has no parameters, (ii) it is public and non-static, (iii)
it returns values of primitive type (or String), and (iv) its name is size, count,
length, toString, or begins with get or is.

For the experiment, we generated tests for 309 classes in the java.sql, java.util,
java.text, java.beans, java.math, java.security, java.lang, and javax.xml

packages. We selected these packages because execution of large amounts of randomly
generated code works best for classes which do not perform many GUI and I/O
operations.

We ran Randoop on Sun 1.5, using the option that creates regression oracles
and the default time limit. The outcome of this was a test suite containing 41,046 re-
gression test cases. To factor out test cases that captured non-deterministic behavior
of the library, we ran the test resulting suite ten times, and used a script to remove
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test cases that did not consistently fail or pass—these test inputs typically included
nondeterministic method calls, e.g. calls whose result depended on the current time
(re-running to remove nondeterministic behavior could be easily automated). After
running the test suite ten times, a total of 7098 test cases were discarded due to
nondeterministic behavior.

We ran the resulting test suite using Sun 1.6 beta and a second time using IBM
1.5. A total of 25 test cases failed on Sun 1.6, and 73 test cases failed on IBM
1.5. The test suite took approximately two minutes to execute on both Sun 1.6 and
IBM 1.5. On inspection, 44 out of the 98 test cases revealed inconsistencies that
uncovered 12 distinct errors in the implementations (other inconsistencies reflected
different implementations of a permissive specification). Interestingly, we found errors
not only in Sun 1.6 (2 errors) and IBM 1.5 (8 errors), but also in Sun 1.5 (5 errors).
For example, one inconsistency between IBM 1.5 and Sun 1.5 revealed an error in
Sun 1.5, despite the fact that the test case failed on IBM 1.5. Figure 9-1 shows three
inconsistencies revealed by the test suite. For more specific inconsistencies, see [80].

All distributed JDKs must pass an extensive compliance test suite [56], regrettably
not available to the public nor to us. Nevertheless, Randoop was able to find errors
undiscovered by that suite. Internally, IBM extensively uses comparisons against the
Sun JDK during testing, but they estimate that it will take 100 person-years to com-
plete that comparative testing [49]. A tool like Randoop could provide automated
support in such a process.

9.2 Industrial Case Study: Finding Errors in .NET

The real assessment of a test generation technique’s effectiveness is its performance
in the real world. In an industrial setting, testing techniques are used under a very
different set of constraints from a research setting. Practicing test engineers have
tight deadlines and large amounts of code to test. For an automated test generation
tool to succeed in this environment, it must reveal errors important enough to be
fixed and it must reveal these errors in a cost-effective way, taking up less human
time than manual testing or existing automated techniques. These qualities can be
particularly difficult to measure in a research setting.

This section describes an industrial case study for directed random testing that
sheds light on its effectiveness when used by test engineers in an industrial testing en-
vironment, and in comparison with the application of other test generation techniques
already in use by the engineers. A test team at Microsoft applied directed random test
generation to a large component of the .NET Framework [74] used by thousands of
developers and millions of end users. The component sits low in the .NET framework
stack, and many .NET applications depend on it for their execution. For this reason,
the component has had approximately 40 testers devoted to testing it over a period
of five years. It has undergone manual unit, system, and partition testing, as well as
automated testing including fuzz, robustness, stress, and symbolic execution-based
testing. Because of proprietary concerns, we cannot identify the .NET component
analyzed. We will refer to it as “the component” from here on.
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The test team’s knowledge of the average human effort required to manually find
an error in the component under test allowed us to quantify the benefit of directed
random testing compared to manual testing. Since the team has applied many testing
techniques to the component, we were also able to learn about the effectiveness of
directed random testing compared with these techniques.

A summary of the study’s results:

� Directed random test generation found more errors in 15 hours of human effort
and 150 hours of CPU time than a test engineer typically finds in one year on
code of the quality of the component under test. The technique found non-trivial
errors, including errors that arise from highly specific sequences of operations.
Moreover, these errors were missed by manual testing and by all previously-
applied automated test generation techniques. Based on these results, the tool
implementing directed random testing was added to a list of tools that other
test teams at Microsoft are encouraged to use to improve the quality of their
testing efforts.

� As a result of applying directed random testing to the component, the test team
found and fixed errors in other automated testing tools, performed further man-
ual testing on areas of the code that the technique showed to be insufficiently
tested, and implemented new best practices for future manual testing efforts.
In other words, the technique was used beyond bug finding, as an assessment
tool for the test team’s existing testing methodologies, and spurred more testing
activities.

� After a highly productive error detection period, directed random testing plateau-
ed and eventually stopped finding new errors, despite using different random
seeds. This observation mirrors the results of a recent, unrelated study of ran-
dom testing [44]. We provide a tentative explanation of the plateau effect for the
case of directed random testing applied to the .NET component, and propose
research directions to address the effect.

The rest of the section is organized as follows. Section 9.2.1 gives an overview of
the .NET component under test. Section 9.2.2 describes the process that the test team
used in applying directed random test generation to the component. Section 9.2.3
discusses the results, including the number and type of errors revealed, the reason
why other techniques missed these errors, and challenges that directed random testing
faces in finding more errors over time.

9.2.1 Overview of .NET Component

The software used in this study is a core component of the .NET Framework [74].
It implements part of the functionality that allows managed code (code written in a
high-level programming language like C#) to execute under a virtual machine envi-
ronment. The component is required for any .NET application to execute. It is more
than 100KLOC in size, written in C# and C++, and it exports its functionality in an
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Figure 9-2: RandoopWrapper is a wrapper process around Randoop that makes it
more robust to crashes caused by arbitrary code execution. First, RandoopSpawner
spawns a Randoop process. If Randoop crashes, RandoopSpawner spawns a new
Randoop process with a new random seed. This continues until the user-specified
time limit expires.

API available to programmers both inside and outside Microsoft. Many applications
written at Microsoft use the component, including the BCL (a library for I/O, graph-
ics, database operations, XML manipulation, etc.), ASP.NET (web services and web
forms), Windows Forms, SQL, and Exchange.

The software component has undergone approximately 200 man years of testing,
not counting developer testing (most developers write unit tests). The test team
has large computational resources for testing, including a cluster of several hundred
machines. The test team has tested the component using many techniques and tools.
In addition to manual (unit and system) testing, the team has developed tools for
performance, robustness, stress, and fuzz [34] testing. They have created tools that
automatically test code for typical corner cases and values, such as uses of null, empty
containers or arrays, etc. Additionally, thousands of developers and testers inside
Microsoft have used pre-release versions of the component in their own projects and
reported errors. To facilitate testing, the developers of the component make heavy
use of assertions.

At this point, the component is mature and highly reliable. A dedicated test
engineer working with existing methodologies and tools finds on average about 20
new errors per year. During the earlier years of its development cycle, this figure was
much higher. One of the goals of this study was to determine if directed random
testing could find errors not found by previous testing techniques, on software of the
maturity level of the component.

9.2.2 Process

To aid the case study, and based on discussions with the test team, we made two
modifications to Randoop.

� Robustness. Recall that to improve efficiency, the tool executes method se-
quences in the same process where it executes its own code, using .NET’s re-
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flection infrastructure. In early runs of Randoop on the component under
study, some method sequences caused the tool to be forcefully terminated by
the operating system, due to execution of sequences containing methods that
attempted to perform a low-level OS operation for which Randoop had no
privileges. Thus, Randoop sometimes terminated before the user-specified
time limit. The test team wanted to be able to run the tool for long periods of
time. To improve Randoop’s robustness, we wrapped Randoop in another
program, RandoopWrapper (Figure 9-2). RandoopWrapper takes the user’s
input, spawns a Randoop process on the given input, and monitors the execu-
tion of the Randoop process. If Randoop terminates before the user-specified
time limit is reached, RandoopWrapper spawns a new Randoop process, using
a new random seed. Method sequences that lead to Randoop crashes are also
output as potentially error-revealing test cases.

� Oracle. The test team was interested in using Randoop to check for three
kinds of behavior: assertion violations, access violations, and unexpected pro-
gram termination. The reason is that these three kinds of behaviors in the
component under test are nearly always errors. To check for unexpected pro-
gram termination, we modified Randoop to always output a test input as
source code to a file before executing it. Unexpected termination was detected
by RandoopWrapper, which could report the name of the file containing the
responsible test input. To check for assertion and access violation, we modified
Randoop directly. (Randoop for .NET does not implement contracts via in-
terfaces; if it did, we could have created contracts that check for these behaviors
without modifying the tool.)

To conduct the study, we gave a copy of Randoop to the test team, along with
instructions on how to run the tool. Since the tool is fully automatic, works directly
on assemblies, and outputs compilable, error-revealing test cases, the test team had
no trouble understanding its purpose. They started using Randoop with its default
settings: one minute generation time limit and no configuration files. Object-equality
pruning (Section 7.4) did not improve performance for the component under test, and
was not used in the case study.

As they discovered errors, the test team created error reports and assigned en-
gineers to fix them. It was not always possible to fix the code immediately, so the
test team altered Randoop’s configuration files to instruct it not to explore methods
that led to error-revealing behavior. This prevented Randoop from rediscovering
the same error in subsequent runs. As they became more familiar with the tool, they
used the tool in more sophisticated ways, creating different configuration files to focus
on different parts of the component.

We met with the test team on a regular basis to discuss their experience with the
tool, including the time they had spent using it and inspecting its results, as well
as its effectiveness compared with their existing manual test suites and testing tools.
Based on requests by the test team, we also implemented a number of new config-
urable options, such as the ability to output all sequences that Randoop generated,
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total number of tests
generated 4,000,000
distinct errors revealed
by Randoop 30
total CPU time required to
reveal the errors 150 hours
total human time spent
interacting with Randoop 15 hours
average errors revealed by a
tester in 1 year of testing 20

Figure 9-3: Case study statistics.

regardless of their classification (Section 9.2.4 discusses the way that the test team
used this option).

9.2.3 Cost Effectiveness

Figure 9-3 summarizes the results of the test team’s effort. Randoop revealed 30
serious, previously unknown errors in 15 hours of human effort (spread among several
days) and 150 hours of CPU time. Each error was entered as a bug report (many
have since been fixed). The 15 hours of human effort included inspecting the error-
revealing tests output by Randoop. To place the results numbers in context, recall
that for a code base of the component’s level of maturity, a test engineer will find
approximately 20 errors per year.

The kinds of behaviors that the tool currently checks for (assertion violations,
access violations, and unexpected termination) are almost always indicative of errors
in the code, so false positives were not as much a problem as redundant tests: test
that were syntactically distinct but revealed the same error in the implementation.
The hours reported include time spent inspecting and discarding redundant tests.

In terms of human effort, a test engineer using Randoop revealed more
errors in 15 hours than he would be expected to find in a year using
previous testing methodologies and tools.

9.2.4 Error Characteristics

This section present the observed characteristics of the errors that Randoop found,
and representatives examples. Each section presents an observation followed by ex-
amples.

Errors in well-tested code

Randoop revealed errors in code on which previous tests had achieved full block and
arc coverage. An example is an error dealing with memory management and native
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code. The component code base is a combination of memory-managed (garbage col-
lected) code as well as native code with explicit memory allocation. When native code
manipulates references from managed objects, it must inform the garbage collector
of any changes (new references, references that can be garbage-collected, etc.).

Randoop created a test input that caused an internal portion of the component to
follow a previously untested path through a method. This path caused the native code
to erroneously report a previously used local variable as containing a new reference
to a managed object. In this specific path, the address of the reference was an illegal
address for a managed object (less than 32k but greater than 0). In a checked build
(the version of the component used during testing, which includes assertion-checking
code), the component checks for the legality of the addresses, and threw an assertion
violation stating that a bad value was given as a reference into the garbage-collected
heap.

The erroneous code was in a method for which existing tests achieved 100% block
coverage and 100% arc coverage. After fixing the error, the test team added a new
regression test and also reviewed (and added test cases) for similar methods. This is
an example of an error discovered by Randoop that led to testing for more errors of
the same kind, reviewing existing code, and adding new tests.

Directed test generation revealed errors in code in which existing tests
achieved 100% code coverage.

Using Randoop’s output as input to other tools

At the beginning of the study, we expected Randoop to be used as an end-to-end
tool. However, the test team started using Randoop’s test inputs (which are stand-
alone executable files) as input to other tools, getting more functionality from each
generated test. The test team requested that we add an execution to Randoop in
which it outputs all the test inputs it creates, even if they were not error-revealing.
Their goal was to use other tools to execute the inputs under different environments
in order to discover new errors.

Among the tools that they used were stress and concurrency testers. An example
is a tool that invokes the component’s garbage collector after every few instructions, or
a tool that runs several Randoop-generated test inputs in a stress tool that executes
a single tests input multiple times in parallel (with a separate thread executing the
same input). This process led the test team to discover more errors. Using the latter
tool, the test team discovered a race condition that was due to incorrect locking of a
shared resource. The error was revealed only after a specific sequence of actions by
a method, involving locking an object, performing an operation, and finally calling
another method that reset the state of the thread. The team fixed the error in the
method that reset the thread state, implemented a tighter protocol around the specific
behavior, and did a review of similar constructs (the review found no other issues).

The test team used Randoop’s generated tests as input to other testing
tools, increasing the scope of the exploration and the types of errors
revealed beyond those that Randoop could find.
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Testing the test tools

In addition to finding errors directly in the component, Randoop led the test team
to discover errors in their existing testing and program analysis tools. An example of
this is an error in a static analysis tool that involved a missing string resource. In the
component, most user-visible strings (for example, exception messages) are stored
in a text file called a resource file. The resource file is included with the product
binary at build time, and is accessed when a string is needed during execution. This
approach simplifies language localization.

The test team had previously built a simple analysis tool to detect unused or
missing resource strings. The tool inspects the component source code and checks
that each resource is referenced at least once in the code, and that the resource exists.
However, the tool had a bug and it failed to detect some missing strings. Randoop
generated a test input that caused an infrequently-used exception type to be raised.
When the virtual machine looked up the exception message string, it did not find the
string and, in the checked build, led to a fatal assertion violation. On a retail build
(the version of the component shipped to customers), the missing string produced a
meaningless exception message.

After adding back the missing resource, the test team fixed the error in their
resource checking tool and did further manual testing on the tool to verify that it
worked properly.

In addition to revealing errors in the .NET component, Randoop re-
vealed errors in the test team’s testing and program analysis tools.

Corner cases and further testing

For software of high complexity, it is difficult for a team of testers to partition the input
space in a way that ensures that all important cases will be covered. While Randoop
makes no guarantees about covering all relevant partitions, its randomization strategy
led it to create test cases for which no manual tests were written. As a result, directed
random testing discovered many missed corner cases.

The knowledge gained from the discovery of the corner cases led the test team to
consider new corner cases, write new tests, and find more errors. In some cases, the
discovery of a new error led the test team to augment an exiting testing tool with
new checks for similar corner cases, and in other cases the discovery of an error led
the test team to adopt new practices for manual testing.

The first example is an error that uncovered a lack of testing for empty arrays.
The component has a container class that accepts an array as input to initialize the
contents of the container. The initialization code checks the legality of the input data
by iterating over the array and checking that each element is a legal element for the
container. An empty array is legal. One of access methods expected did not handle
the case in which the input array is empty. In this case, the method incorrectly
assumed that it was an array of bytes and started reading bytes starting from the
base address of the array. In most cases, this would quickly lead to a failure due to
malformed data, and in other cases (one created by Randoop), the method would
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fail with an access violation. The test team fixed the error, reviewed other access
methods, and as a result fixed other similar issues. As a result of this error, the team
updated their “best practices” to include empty arrays as an important input to test.

This area of the component contained a large number of tests for different kinds
of initialization arrays. However, the sheer size of the state space made it impossible
to test all possible combinations of inputs, and the manual tests were incomplete.

The second example is an error that uncovered a lack of testing for I/O streams
that have been closed. When an I/O stream is closed, subsequent operations on the
stream should fail. A Randoop-generated test showed that calling a successive set of
state-manipulating methods on a closed stream would lead to one of the operations
succeeding. In the specific case, Randoop generated a call sequence that would
create a specific stream, do some operations and then close the underlying stream.
The component has many test cases that test for similar behaviors, i.e. testing that
operations on closed streams fail in specific ways. Again, due to the size of the
component, some important cases were missing. In a checked build the test case
caused an assertion violation, and on a retail build it led to being able to access
certain parts of the stream after it is closed. The error has been fixed, test cases have
been added, and reviews of similar code have been completed.

The errors that Randoop revealed led to further testing activities unre-
lated to the initial random testing effort, including writing new manual
tests and adopting new practices for manual testing.

9.2.5 Comparison with Other Test Generation Techniques

The errors that Randoop revealed were not revealed using the team’s existing
methodologies and tools, including a very large collection of manually-written unit
and system tests, partition testing, fuzz testing, and program analysis tools like the
one described in Section 9.2.4. Conversely, there were many errors revealed by previ-
ous efforts not revealed by Randoop. In other words, Randoop was not subsumed
by, and did not subsume, other techniques.

Randoop vs. Non-Random Test Generation

According to the test team, a major disadvantage of Randoop in comparison with
manual and non-random automated techniques is Randoop’s lack of a meaningful
stopping criterion. After several hours of running Randoop without the tool pro-
ducing a new error-revealing test case, they did not know whether Randoop had
essentially exhausted its power and was “done” finding all the errors that it would
find, or whether more computer resources would lead to new errors. For example,
towards the end of the study, the test team ran Randoop for many hours on several
dedicated machines but the tool did not reveal any new errors. Other techniques have
more clear-cut stopping criteria. A static analysis tool terminates when the analysis is
complete; symbolic execution based techniques terminate when they have attempted
to cover all feasible paths, etc.
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The experiences of the test team suggests that Randoop enjoys two main benefits
compared with non-random automated test generation approaches. One is its scala-
bility. For example, concurrently with using Randoop, the test team used a new test
generator that outputs tests similar to Randoop, but uses symbolic execution [62],
a technique that instruments the code under test to collect path constraints, and
attempts to solve the constraints in order to yield test inputs that exercise specific
branches. The symbolic execution tool was not able to find errors in the component
during the case study. One of the reasons is that the tool depends on a constraint
solver to generate tests that cover specific code paths, and the solver slowed down
the tool and was not always powerful enough to generate test cases. In the amount
of time it took the symbolic execution tool to generate a single test, Randoop was
able to generate many test cases.

The second main benefit is that Randoop’s (and more generally, random test-
ing’s) randomized search strategy protects test engineers against human bias. For
example, in Section 9.2.4 we discuss that the test team had not previously considered
testing a set of methods using empty arrays, and Randoop revealed an error elicited
via an empty array. The test team had previously omitted empty arrays from testing
because the engineer that crafted the test cases for the method in question did not
consider empty arrays an interesting test case at the time.

Human bias is not limited to manual testing; automated tools can suffer from the
biases of their creators. For example, the test team has created automated testing
tools that test methods that take multiple input parameters, using all possible com-
binations of a small set of inputs for each parameter slot. Randoop revealed errors
that were not revealed using the inputs programmed into the tool.

Randoop’s randomized search revealed errors that manual and non-
random automated techniques missed because of human bias or lack of
scalability. However, Randoop has no clear stopping criterion, which
makes it difficult to gauge when the tool has exhausted its effectiveness.

Randoop vs. Fuzz Testing

Previous to Randoop, the component had undergone extensive fuzz testing [34] (a
random testing technique that generates data streams or files containing random bits
or characters) on nearly every format and protocol of the component. Like directed
random testing, fuzz testing is also unbiased, but previous fuzzing efforts did not
reveal the errors that Randoop revealed.

A reason for this is that fuzz testing has been traditionally done on data-intensive
software that take as inputs files, network packets, etc. Fuzzing is less frequently
applied to domains that deal with both data and control, such as method sequences
in object-oriented libraries. The errors that Randoop found turned out to be about
both data (the input to methods) and about control (the specific sequence of meth-
ods). In order to discover data errors, some amount of control structure was necessary
(a sequence of method calls), and in order to discover control errors, some data was
necessary (inputs to methods). Randoop helped bridge the divide between data and
control.
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Fuzzing is effective in generating test inputs that explore either data or
control. When the structure of inputs includes both data and control,
directed method sequence generation can be more effective.

9.2.6 The Plateau Effect

The errors revealed by Randoop did not emerge at a uniform rate during the testing
process. Instead, the rate of error discovery was quick at first and then decreased.
During the first two hours of use, Randoop revealed 10 distinct errors (5 errors per
hour). Then the error-finding rate fell to 2 errors per hour for approximately 10 hours.
After that, Randoop ceased to output error-revealing test cases.

To make Randoop more effective, the test team tried different strategies, such as
creating different configuration files that targeted specific portions of the component.
These efforts revealed more errors, but did not alter the trend towards diminishing
returns for the effort expended. Towards the end of the case study, the test team
switched from running Randoop on a desktop to running it on parallel in a clus-
ter of several hundred machines, using different combinations of random seeds and
configurations. These runs revealed fewer errors than the initial runs on a single
desktop.

Groce et al. [44] also observed this effect using a technique similar to Randoop’s
to generate tests consisting of sequences of file system operations for flight software.

After an initial period of effectiveness, directed random test generation
yielded diminishing results.
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Chapter 10

Discussion

This chapter discusses the strengths, limitations, and future research directions for
directed random testing, drawing from the experimental results and case studies we
performed to assess its effectiveness, as well as from our and other users’ experience
using Randoop. The greatest strengths of the directed random testing approach
are its error-revealing effectiveness (as evidenced by the many errors revealed by
Randoop in our experiments and case studies) and its cost effectiveness, as evidenced
by the hundred-fold productivity gains by Microsoft engineers using the tool over 15
hours of human effort. Combined, these strengths make the technique an attractive
point in the space of test generation techniques, yielding useful test cases in a short
period of time.

The limitations of the technique mainly stem from the fact that directed ran-
dom testing is primarily a random test generation technique. As such, it does not
guarantee code or input space coverage and has no clear stopping criterion, which
can make it difficult to determine how many resources (human or computational) to
devote to the technique. A second deficiency of the technique is that it is not well-
suited to unit testing internal programs units (e.g. private methods), because such
units often require complex setup steps (e.g. reading a file) unlikely to be achieved
using randomly-generated sequences of operations. The technique is better-suited to
testing reusable component libraries that require less specific setup to use. Finally,
directed random testing can fail to cover some code that requires highly-specific in-
puts (for instance, specific combinations of numeric inputs) to be exercised. We also
propose potential research directions to overcome, or at least mitigate, some of these
deficiencies.

10.1 Strengths of Directed Random Testing

We can categorize the strengths of directed random testing in terms of two aspects:
error-revealing effectiveness and cost-effectiveness.
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10.1.1 Error-Revealing Effectiveness

Our experimental results and case studies demonstrate that directed random testing
is effective in revealing critical errors in large, widely-deployed, and heavily-tested
applications. On a collection of 14 widely-used software libraries, directed random
testing revealed many previously unknown errors (Section 8.2). After we discovered
the JDK errors, we submitted some of the errors to the Sun bug database, but did not
receive any notice about the status of our bug reports. An indication that many of
these errors are real is the fact that the errors for which we published failing test cases
in [82] were fixed in the 1.6 version of the JDK. Directed random testing also revealed
problematic regression differences between different versions of the JDK (Section 9),
which could cause an application that depends on the old behavior of the libraries
to malfunction. The above results were achieved by our own use of the technique,
raising a valid question: would the technique be as effective when used by someone
other than the technique’s creators? Our industrial case study (Section 9.2) answers
this question in the affirmative, and shows that the technique revealed critical errors
in a mature component when used by a team of test engineers.

Compared with other other automated test generation techniques applied to the
same software artifacts under test, our results indicate that directed random testing
can be more effective in revealing errors and achieving code coverage than other
systematic and random approaches. In our experiments, Randoop typically revealed
more errors than undirected random testing, model checking, and symbolic execution,
and in the Microsoft case study, Randoop revealed more errors during the same
period of time as a technique based on symbolic execution that, in principle, can
yield greater coverage.

While the results are exciting and are strong indicators of the technique’s promise,
it would be incorrect to conclude that directed random testing subsumes other tech-
niques; this is simply not the case. A more objective statement is that directed
random testing appears to outperform other automated test generation techniques
on software artifacts that declare a large number of operations, and characterized
by operation trees with very large branching factor. This characteristic is shared by
all the subject libraries we used to evaluate the technique. For example, Figure 10-1
shows the size of the input space for the libraries from Section 8.2, all of which declare
hundreds of operations (from 140 to 2412) and have large branching factors (from 80
to 25,000). Gray cells in the table represent sequence lengths for which generating all
sequences at the given length would take more than one month of generation time,
assuming a generator that creates and executes 1,000 operation sequences per second
(a reasonable number based on our experiments). For all the libraries, generating
all sequences of length 5 would take several months of effort; for some it would take
much longer than that to generate all sequences of even length 3 or 4. In other
words, software artifacts of this size are challenging for exhaustive techniques, which
spend the vast majority of their time exhaustively sampling a dense, but tiny and
localized, portion of the input space. Directed random testing explores the space
more effectively not because it explores a larger portion of the input space—it only
explores a tiny fraction of the space as well—but rather because instead of a dense,
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sequence length 1 2 3 4 5
java.util 1.6 E3 2.7 E6 4.6 E9 7.8 E12 1.3 E16
javax.xml 3.8 E1 2.2 E3 1.7 E5 1.5 E7 1.3 E9
chain 2.8 E1 1.3 E3 9.7 E4 1.0 E7 1.0 E9
collections 6.9 E3 4.9 E7 3.4 E8 2.4 E15 1.7 E19
jelly 9.1 E2 1.5 E6 3.5 E9 8.1 E12 1.8 E16
logging 3.5 E1 1.6 E3 1.1 E5 1.1 E7 1.0 E9
math 2.4 E4 6.2 E8 1.5 E13 3.8 E17 9.6 E21
primitives 3.7 E2 1.5 E5 6.3 E7 2.6 E10 1.0 E12

Figure 10-1: Size of the input space for Java libraries. Shaded cells represent in-
put depths that would require more than one month of computer time to explore
exhaustively, assuming 1,000 inputs generated per second.

exhaustive DFS exhaustive BFS random directed random

Figure 10-2: Graphical depiction of the nature of the portions of the input space
explored by four different input generation approaches.

local sampling, the technique performs a sparse, but more diverse sampling of the
space. Our results suggest that for large libraries, sparse, global sampling can reveal
errors more efficiently than dense, local sampling. Figure 10-2 shows an informal
graphical depiction of the exploration strategy of different techniques. Undirected
random generation is less effective because it is unable to reach very deep into the
operation tree (where the density of errors is higher when doing random generation),
due to software malfunctions from illegal inputs.

The test engineers at Microsoft that participated in the case study from Sec-
tion 9.2 reached the same conclusion after using Randoop and comparing it with
other approaches. As an engineer put it, Randoop was effective revealing errors in
the .NET component, which has with a “large surface area” (i.e. a large number of
methods) because it did not get stuck on a small portion of the input space, and was
also superior than undirected random testing tools because it performed a “smart”
version of API fuzzing.

Our results (Section 8.1) also suggest that directed random testing achieves cover-
age comparable with systematic testing techniques when applied to single classes, e.g.
integer container data structures like binary trees, red-black trees, etc. However, it is
not clear that when testing a single class, or a small set of classes, directed random
testing is preferable than systematic techniques. While our experiments show that
directed random testing achieves code coverage on par with systematic techniques,
it has an important disadvantage: it cannot guarantee that all inputs have been ex-
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plored, a guarantee that can be achieved in practice with systematic techniques, when
applied to a small and focused portion of code. This guarantee becomes important if
the code under test is a crucial portion of a larger software system. For example, the
same Microsoft engineers that found Randoop to be effective in generating tests for
large component libraries also mentioned that they would be willing to devote a sig-
nificant amount of time and resources using an exhaustive approach that guaranteed
full input coverage (within some bound) when the target was a small class or a set of
classes that required very high reliability.

10.1.2 Cost Effectiveness

The second principal strength of directed random testing is its cost effectiveness, as
evidenced by the experience of the Microsoft test team, which was able to do one man-
year’s worth of error discovery in 15 hours of effort (Section 9.2). The technique’s cost
effectiveness was no accident: one of the principal goals in developing the techniques
encompassing directed random testing was to produce a tool that would give useful
results with minimal user effort. This goal is reflected in most aspects of the technique:

� At the input level, we wanted to preserve the lack of user requirements that
makes random testing cost effective in terms of the time required creating in-
put artifacts. For this reason, we developed heuristic pruning, a technique that
automates the determination of illegal and redundant inputs. Our experimen-
tal results show that the heuristics are able to guide the search away from
such inputs. The results also show that the heuristics are far from perfect in
discarding redundancy: in our application of Randoop to Java and .NET li-
braries (Section 8.2), almost every error that Randoop revealed was revealed
by several (redundant) inputs. However, the heuristics contributed to Ran-
doop revealing more errors than several other forms of random testing that do
not use heuristics, including Randoop without pruning heuristics, a random
walk, and JCrasher.

� The largely-random nature of directed random testing, and the heuristics it em-
ploys based on runtime behavior of the software, yield a technique that can be
implemented without requiring code instrumentation, constraint solvers, or a
specialized virtual machine, which systematic techniques based on model check-
ing or symbolic execution often require. This makes the technique immediately
applicable to most code artifacts; for example, we were able to immediately run
Randoop on the .NET Framework libraries and three industrial implementa-
tions of the JDK, and found previously-unknown errors. The lack of complex
machinery makes the technique cost effective because it does not require the
engineer to work around deficiencies, errors, or heavy-weight technology in the
testing tool itself. For example, one of the reasons the Microsoft test team
(Section 9.2) was less successful in finding errors with the symbolic-execution-
based test generation tool that they were using concurrently with Randoop
was because it used a specialized virtual machine to execute .NET code, and the

140



virtual machine at the time did not handle aspects of the language, e.g. some
native calls. On the other hand, because Randoop executes code directly, it
never had any trouble making native calls, and was immediately applicable to
the entire component under test.

� At the output level, we wanted a technique that would output test cases that
could immediately be used by a test engineer. This is one of the primary reasons
why the technique maintains a component set of sequences, as opposed to a
component set of values: a sequence can be output as a sequence of operation
calls, and is trivial to convert to a compilable unit test. Programmers using
Randoop immediately understood the output of the tool and its purpose, and
were able to add the generated test cases to their test suite with little or no
modification.

10.2 Limitations of Directed Random Testing

Our experiences and those of other users of directed random testing point out a
number of limitations of the technique. Most of these limitation are common to any
approach based on random testing.

10.2.1 Lack of Stopping Criterion

A fundamental limitation of directed random testing is its lack of a clear stopping
criterion. This limitation can be particularly important in an industrial setting where
a test team must plan how many resources to devote to a technique. (Not surprisingly,
the lack of stopping criterion was one of the main criticisms the Microsoft engineers
had about Randoop in the industrial case study.) A partial solution is to stop when
the tool reaches a coverage plateau: the tool can track coverage during the generation,
and stop generating inputs when coverage stops increasing for a long period of time.
The stopping criterion seems reasonable, but it fails to guarantee that running the
tool for a longer period will not reveal a new, potentially-critical error.

10.2.2 Internal Components

A technique that generates arbitrary sequences of operations is well-suited for testing
libraries of reusable components with clear, modular interfaces and little or no internal
global state. On the other hand, it is ill-suited for testing internal components of
programs that are intended for use in highly specific situations, or that require specific
steps to be performed before the components can be used. To assess the effectiveness
of the technique when applied to the internal components of an end-to-end program,
we asked a developer of Daikon [31] (a dynamic analysis tool) to use Randoop to
generate test cases for some internal classes in the program. Randoop was unable
to generate useful test cases for the classes, because the classes (1) were intended to
be used at very specific points during the execution of Daikon, (2) referred to static
state in other Daikon classes that required reading an input file to be properly set up,
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and (3) were not implemented as reusable components. The deficiency is not unique
to random testing; using a model checker like JPF [91] or a concolic testing tool like
jCUTE [86] to generate arbitrary method sequences for internal Daikon classes would
also lead to largely useless test inputs.

A way to partially overcome this deficiency is for the test engineer to create
“helper” classes. The helper classes can declare methods that perform any required
setup before the classes can be used, or methods that construct and return well-
formed objects. The helper classes can be given as input to the generation tool, along
with the classes under test. Another potential new approach, which we have begun
exploring [8], is to use an example execution of the program to infer a model of legal
uses of the internal classes, e.g. a model that includes sequences of operation that
are required to put objects of the classes under test in legal states.

10.2.3 Unreachable Code

On realistic-sized libraries, Randoop rarely achieves 100% code coverage. For ex-
ample, in the large-scale experiment detailed in Section 8.3, the branch code coverage
achieved by the technique, computed across hundreds of runs of the technique, did
not go beyond 80% for some of the subject libraries, and was closer to 50% for most.
Regardless of how long the technique runs, some branches appear out of reach of the
technique. Based on an analyzing the coverage achieved by Randoop on the arti-
facts we used for evaluation, and talking to the Microsoft engineers that inspected
Randoop’s output, we discovered two primary reasons for the technique’s inability
to reach some code.

Challenging Constraints

Some branch conditions express constraints that are challenging for a random-based
technique to satisfy. Section 6.2 describes branch-directed generation, a technique
that aims to cover branches left uncovered by random test generation. Our prelimi-
nary evaluation of the technique suggests that it is promising, especially for covering
branches containing numerical or pointer comparisons. However, our manual inspec-
tion of uncovered branches indicate that many constraints are of a more complex
structural nature, e.g. a branch that is followed if a list contains an element that
is structurally equivalent to an element already in the list. To cover such branches,
it may not be sufficient to modify the primitive inputs appearing in an operation
sequence, or replace uses of a variable by another variable, but rather to determine a
sequence of operations that create the appropriate structure that causes the branch
to be followed.

A potential new approach to this problem is to combine representation-based
generation techniques (like TestEra [61] and Korat [16]) that create values directly,
without using a set of operations, with operation-level techniques like directed random
testing. For example, Korat [16] generates data structures that satisfy a condition
(typically a representation invariant) specified by the user, using the invariant to guide
the generation. Using an approach like Korat, specifying conditions required to cover
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a specific branch, could result in a more direct way to obtain inputs than trying to
assemble a sequence of operations. A hybrid approach that combines operation-level
and representation-level generation could yield most of the automation benefit of the
former and the ability to generate structurally-complex inputs of the latter.

Distribution Unfairness

Given a software artifact composed of multiple components, a reasonable requirement
for a test generation tool is that it be fair, meaning that it distribute its computa-
tional resources fairly among the different components. When analyzing Randoop’s
output, we discovered that Randoop is not fair. Randoop selects which method
to test next uniformly at random from among the set of all public methods in the
assembly under test (the same applies to constructors). This strategy can lead to
some classes being explored (and covered) more than others. A class that defines five
constructors will be explored more heavily than a class that defines one constructor.
A class that defines a nullary constructor (a constructor that requires no arguments)
will be explored more heavily than a class whose constructor requires an object of a
type that is difficult to create.

Randoop tends to focus the generation effort on classes that declare nullary
constructors or that define several constructors, at the expense of classes that re-
quire fewer constructors or constructors that require more complex setup. Because
Randoop is incremental and creates new method sequences from previously-created
sequences, the initial favoring of a few classes can lead to a feedback loop in which
classes that were initially easier to create are tested more heavily in later stages of
generation.

A way to mitigate distribution unfairness may be to use a distribution other than
Randoop’s uniform random distribution. In fact, it may be desirable to use an
adaptive distribution. At the start of generation, Randoop could maintain a map-
ping from each constructor and method to a “weight” number indicating the relative
probability that the given method or constructor will be selected when creating a
new sequence (members with higher weight have a higher change of being selected).
At the beginning, all methods and constructors would have equal weight. At regular
intervals, Randoop would update the weights: members for which more sequences
have been created would be given lower weight, and members for which fewer se-
quences have been created would be given higher weight. Thus for example, a class
with several constructors or with a unary constructor, for which Randoop quickly
generates many inputs, would eventually receive a lower weight, which would increase
the chances that the tool explores other, less well-explored classes.
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Chapter 11

Related Work

This chapter surveys previous work related to directed random testing. After briefly
surveying elements of software testing related to our work, we discuss the history
of random testing, from work dating back to the seventies on random testing of
compilers to Miller’s seminal work on fuzz testing and recent work on testing object-
oriented programs. We also survey the techniques in the exhaustive testing domain
closest to our own work, including techniques that exhaustively generate operation
sequences and techniques that exhaustively generate all (non-equivalent) structured
inputs such as objects. There have been a number of published comparisons of random
and systematic techniques; we discuss the results. Finally, we discuss recent hybrid
techniques that combine elements of systematic and random test generation.

11.1 Software Testing

A good modern introduction to software testing is the recent book by Amman and
Offutt [3]. Their book focuses largely on the different coverage criteria that a test
engineer can use as a guide to the manual creation of test cases. Older books in the
field also devote most of their content to coverage criteria and manual test generation,
including Bezier’s [12] and Myers [73].

Recently, the automated test generation field has experienced a resurgence, and
most relevant to this thesis, many research techniques have been proposed that com-
bined the random test generation with non-random techniques based on symbolic
execution. Section 11.3 gives an overview of the techniques most related to directed
random testing.

Kaner’s 2003 paper “What Is a Good Test Case?” [59] proposes a list of possible
objectives for writing and running tests. The objectives of running test cases are not
always technical: in addition to finding defects, blocking premature product releases,
and assessing conformance to specifications, a software development organization may
run test cases to minimize technical support costs, avoid safety-related lawsuits, or
to adhere to government regulations. Kaner also proposes a list of objectives that
“good” test cases must have, which we used as a starting point for our discussion of
qualities of a good test case. Our list of qualities touches essentially all the objectives
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proposed by Kaner except helping the test engineer develop insight into the product,
which we consider helpful but outside the scope of the thesis.

Jackson et al. argue in a recent National Academies report that software testing
alone is rarely sufficient for showing that a system is dependable, and should be
augmented by other kinds of analysis when making a case for a software artifact’s
dependability to a certifier or regulator [55].

11.2 Random Testing

Work on random test generation dates back to a 1970 paper by Hanford. In it he
reports on the “syntax machine,” a program that generated random but syntactically-
correct programs for testing PL/I compilers [48]. The next published work on random
testing was a 1983 paper by Bird and Muñoz [14]. They describe a technique to
generate randomly-generated “self-checking” test cases: test cases that in addition
to generating test inputs generated checks for expected outputs using knowledge of
the semantics of the software under test. For example, when generating random
programs for testing a compiler, the generator kept track of the expected values of
arithmetic computations and inserted the appropriate checks into the test case. They
also applied their technique to checking sorting and merging procedures and graphic
display software.

Since Bird and Muñoz’s work, many random test generation techniques have been
developed to test a wide range of software systems; a partial list includes parsers,
compilers, stream utilities common in Unix-like operating systems, file system and
other operating system components, graphical user interfaces, functional programs,
and object-oriented programs. The detailed of the techniques developed are as diverse
as the systems they have been applied to, but all essentially generate inputs randomly
from a predefined input grammar, without analyzing the underlying implementation
of the software under test or a formal specification.

One of the best-known works in the field is Miller et al.’s “fuzz testing” paper,
where they generate random ASCII character streams and use them as input to test
Unix utilities for abnormal termination or non-terminating behavior [72]. In subse-
quent work, they extended fuzz testing to generate sequences of keyboard and mouse
events, and found errors in applications running in X Windows, Windows NT and
Mac OS X [34, 71]. Today, fuzz testing is used routinely in industry. It is frequently
used as a tool for finding security vulnerabilities and is applied to test formats and
protocols that attackers might use to gain unauthorized access to computers over a
network. Other work that applies random test generation to operating systems code
includes Kropp’s use of random test generation to test low-level system calls [63],
and Groce et al.’s use of random test generation at NASA to test a file system used
in space missions [44]. In all these studies, a random test generator invariable found
many errors in the software under test, and many errors were critical in nature. For
example, Groce et al. found dozens of errors in the file system under test, many of
which could have jeopardized the success of a mission.

Claessen and Hughes developed QuickCheck, a tool that generates random test
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inputs to check user-defined correctness properties of programs written in Haskell [20].
The tool also lets the use define custom test data generators for specific types. They
report on their experience using the tool, and conclude that random input generation
is effective in testing functional code.

JCrasher, Rostra, Symstra and Eclat use Henkel and Diwan’s term-based repre-
sentation [50]. As we demonstrate in Chapter 5, a term-based representation has
several deficiencies due to the fact that operations (e.g. methods in Java, procedures
or functions in C, etc.) are typically not functions. Our techniques work over the
space of operation sequences, a more expressive space than the space of terms.

One of the first papers to publish results on random testing for object-oriented
programs was Doong and Frankl’s ASTOOT [28]. ASTOOT is not a random testing
tool, but a set of tools that generate test oracles for object-oriented methods based on
user-provided algebraic specifications, execute tests, and report test execution results.
In their experimental evaluation of the tools, Doong and Frankl used a random test
input generator to create test inputs, and algebraic specifications to create oracles.
They observed that longer tests were more effective than shorter tests in creating
error-revealing tests inputs.

Recently, a number of techniques and tools have been developed for random testing
object-oriented code. Csallner and Smaragdakis describe JCrasher, a tool that creates
sequences of method calls for Java programs that the user can execute to discover
exceptional behavior that can reveal errors [22]. JCrasher generates test inputs by
building a “parameter graph” whose nodes are method signatures and edge between
two nodes m1 and m2 mean that m1 returns a value that can be used as input
parameter to m2. To create a test input, JCrasher selects a method to test, and uses
the graph to find method calls whose return values can serve as input parameters to
the method under test (test inputs that throw specific exceptions are labeled error-
revealing). Reporting exceptions results in many false positives (in a run of JCrasher
on a subset of the JDK, the vast majority of inputs tagged as error-revealing were
false positives because they were illegal.)

We can view JCrasher as an instance of a top-down random test generator (Section
3.1), where the tool uses the parameter graph to find a path to the root of the method
tree. To our knowledge, the distinction between top-down and bottom-up random
test generation has not been drawn before, and an interesting open question is what
are the merits of each approach. Bottom-up generation can be beneficial because it
amenable to pruning techniques (like the ones presented in the thesis) that extend an
existing sequence of operations based on the execution results of the sequence. The
top-down approach is less amenable to this approach; on the other hand, top-down
generation approach can be more focused when the goal is to create test inputs for a
specific method under test.

JCrasher focus is on creating test inputs that throw exceptions and can report
many false positives resulting from exceptions that do not constitute erroneous be-
havior. Randoop’s approach is the opposite of JCrasher’s in this respect: it never
reports test inputs that throw exceptions, uses an extensible set of default contracts,
and reports exceptions only if the user explicitly specifies the exception type as being
error-revealing (the default set is very small compared to JCrasher). In our experience
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the vast majority of exception-throwing test inputs are illegal uses of the interface,
not errors, and inspecting a voluminous number of test inputs by hand is infeasible
(indeed, the authors of CnC did not inspect all the error-revealing inputs reported by
their tool on the benchmarks used to the evaluate it, because of the large number).

In previous work, we implemented Eclat [79], a tool that generates test cases likely
to expose errors by performing random generation augmented by automated pruning
based on execution results. Eclat’s pruning discards sequences that appear to be
illegal, because they make the program behave differently than a set of correct training
runs did. The previous work focused on automated classification of tests with an
oracle created automatically using dynamic invariant detection [31]. Randoop [82]
focuses on generating a set of behaviorally-diverse test inputs, including avoiding
redundant objects, repetition to generate low-likelihood sequences, oracles based on
API contracts that can be extended by the user, and regression oracles that capture
the behavior of a program when run on the generated input. Eclat’s performance is
sensitive to the quality of the sample execution given as an input to the tool. Since
Randoop does not require a sample execution, it is not sensitive to this parameter.

Jartege [77] and AutoTest [65] generate random method calls but require a user-
provided formal specification (in JML or Eiffel) to determine if an input is error-
revealing; the tools do not use the specification to guide generation; the search is
undirected. To our knowledge, these tools have only been applied to small examples.
Parasoft’s Jtest [83] is a commercial tool that also uses specifications to determine if
an input is error-revealing; its input generation algorithm is not published.

Another line of research uses evolutionary algorithms [90, 94, 38] that assign a
fitness function to method sequences based on coverage collected during execution.
The execution can be driven by randomly-generated inputs.

Adaptive random testing [18] (ART) is a random selection technique. Given a set
of test inputs, the first input is selected at random (and removed from) the candidate.
Each subsequent step selects the candidate input whose distance is greatest from the
last-chosen input. When evaluated on a small set of subjects, it was found to lead
more quickly to revealing the first error. More recently, Ciupa et al. defined a
similarity metric for objects based on their representation, which enables adaptive
random testing to be applied to object-oriented software, and created the ARTOO
tool that uses their metric to select a subset of randomly-generate test inputs [19].
They found that ART sometimes led the tool to reveal an error faster than random
testing alone, but sometimes caused the tool to miss creating an error-revealing test
that would be revealed via random generation alone.

Up to now we have focused on random testing for finding errors. Another ques-
tion is whether random testing actually improves “reliability” or “confidence.” in
the tested software. Frankl et al. provide a theoretical treatment of the subject in
which they introduce the concept of “delivered reliability.” [35], i.e. the likelihood
of a program failing during actual use, and theoretically compare the delivered re-
liability of two approaches to testing: debug testing, which focuses on generating
error-revealing test cases, and operational testing, which exercises the software using
inputs randomly selected from an operation profile of expected use. Their theoretical
results do not suggest one approach to be superior to the other.
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11.3 Systematic Testing

This section surveys automated test generation techniques that do not use random-
ness as part of their generation strategy. We limit our discussion to techniques that
generate test inputs for object-oriented units. We divide deterministic techniques into
two broad categories. Techniques based on exhaustive exploration exhaustively ex-
plore the input space of the software under test, up to some bound. Techniques based
on symbolic execution simulate the software’s execution through a specific program
path using symbolic values instead of concrete values, collect constraints over the
symbolic values during the simulated execution, and attempt to solve the constraints
to yield concrete inputs that follow the path.

11.3.1 Techniques Based on Exhaustive Exploration

Techniques based on exhaustive exploration consider all possible inputs up to a given
size. For example, in the context of method sequence generation, an exhaustive
exploration technique might execute all method sequences up to some given length,
and execute them to determine if they violate the test oracle.

Visser et al. [92] use the Java PathFinder model checker (JPF [93]) to exhaustively
explore method sequences. They consider sequences containing a single container
object for integers, e.g. a list or a set. JPF takes as input a Java program and
explores all possible executions of the program; a program may have more than one
possible execution because of nondeterminism involving thread scheduling or random
choices. To explore method sequences, they write a “driver program” for each class
that (1) initializes the container, and (2) enters a loop that repeatedly and randomly
selects a method to call, and an integer argument.

In their evaluation Visser et al. compare a number of state matching techniques
that aim to avoid generating redundant inputs. Their results suggest that unsound
state matching heuristics (heuristics that may cause the analysis to fail to explore
distinct program behaviors) are effective in reducing the time required by the exhaus-
tive exploration without affecting the code coverage achieved. These observations
are similar to Xie et al.’s evaluation of several techniques that discard potentially
redundant method sequences [96].

A different approach to test input generation for methods is to create input objects
by directly setting their fields to specific values. The TestEra [61] and Korat [16]
tools perform exhaustive exploration of Java data structures. TestEra [61] generates
all non-isomorphic test inputs of a given size (e.g. all binary trees with 3 nodes), and
checks a user-specified correctness property (e.g. that an representation invariant is
preserved by the binary tree methods). The user of TestEra expresses the correctness
criteria to check and a translation (an abstraction function) between the Java data
structure and a model of the structure in Alloy, a first-order relational language [54].
An analyzer procedure for Alloy checks the model and reports any counterexamples
to the correctness property. If no counterexamples are found, the analysis guarantees
that the property is preserved (subject to the correctness of the translation).

Korat [16] is a successor to TestEra that generates all data structures up to some
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given size, without using a model finder like the Alloy analyzer. The user or Korat
writes a “repOk” method for the data structure. The repOk method returns a boolean
value, and represents a predicate that specifies the representation invariant of the
data structure. Korat exhaustively generates all non-isomorphic data structures that
satisfy the invariant. The technique uses the implementation of the repOk method to
guide the generation, and avoids exploring structures that do not satisfy the invariant.

The two approaches discussed above—generating inputs by creating method se-
quences versus setting object fields—have advantages and disadvantages relative to
each other. The former requires little or no manual work on the part of the user,
while the latter may require the user to specify a translation function or a detailed
representation invariant. However, putting an object in a particular state may require
a long sequence of calls but a small number of explicit field assignments. We know of
no published experimental comparisons of the two approaches.

Exhaustive test input exploration based on model checking is an active research
field. Many of the techniques explored in context outside object-oriented software
testing have not yet been translated to the object-oriented domain, including addi-
tional heuristics to avoid redundant inputs [13] or to guide the search in order to
achieve greater coverage [43, 37].

11.3.2 Techniques Based on Symbolic Execution

Symbolic execution, first proposed by King [62], consists in executing the software
under test using symbolic values instead of concrete values, for example s.add(x)

instead of s.add(3). Doing this requires a special symbolic execution engine that
can execute using symbolic values. When the execution encounters a branch that
depends on a symbolic value, the engine selects a branch direction and adds the
corresponding constraint in terms of the symbolic value (e..g. “x < 0”) to a set of
path constraints. Solving the set of constraints resulting from the symbolic execution
of a given program path results in concrete values that drive execution through the
path.

A test generation technique based on symbolic-execution typically has a coverage
goal in mind, such as branch or path coverage. It executes the program on symbolic
input values, exploring program paths that satisfy the coverage goal (e.g. paths that
covers all the branches). Finally, it uses a constraint solver to generate concrete inputs
that drive execution through the paths explored by the symbolic execution engine.
Symstra [97] uses symbolic execution to generate test inputs for Java container data
structures (similar to those studied by Visser [92]). XRT [42] performs symbolic ex-
ecution for .NET programs; Tillman et al. use XRT to generate tests using a user-
provided unit test “template” called a parameterized unit test, which can contain
concrete and symbolic values [89]. The tool attempts to generate fully concrete ver-
sions of the tests that achieve high code coverage. Check-n-Crash [23] uses ESC/Java
to create abstract constraints over inputs that would lead to exceptional behavior,
and uses a constraint solver to derive concrete test inputs that exhibit the behavior.
DSD [24] augments Check-n-Crash with a dynamic analysis that it uses to filter out
illegal input parameters, in a way similar to Eclat [79].
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11.4 Comparisons of Random and Systematic Test-

ing

There is a long-standing controversy in the testing research community regarding the
relative merits of random testing and systematic testing, with both theoretical and
empirical studies reaching conflicting conclusions. Some empirical studies [32, 4, 92,
17] suggest that random testing is not as effective (in terms of achieved coverage) as
other test generation techniques, including chaining [32], exhaustive generation [4],
model checking [92], and symbolic execution [92]. Ferguson and Korel compared the
coverage achieved by inputs generated using their chaining technique versus randomly
generated inputs [32]. Marinov et al. [4] compared the rate of mutants killed by a
set of exhaustively generated test inputs with a random subset of the inputs. Visser
et al. [92] compared the block and a form of predicate coverage [11] achieved by
model checking, symbolic execution, and random test generation. In all three studies,
random testing achieved less coverage than the systematic techniques.

It is difficult to generalize the results of these studies with regard to the relative
advantages of random and systematic testing. The evaluations were performed on
very small programs. Because the small programs apparently contained no errors,
the comparison was in terms of coverage or rate of mutant killing [76], not in terms
of true error detection, which is the best measure to evaluate test input generation
techniques. While the systematic techniques used sophisticated heuristics to make
them more effective, the random testing used for comparison is unguided random
testing, with no heuristics to guide its search, or where random inputs are selected
from among those generated by the systematic technique.

Theoretical studies suggest that random test generation is as effective as more
systematic techniques such as partition testing [29, 30, 47, 75], and a growing number
of empirical studies [47, 75, 44, 82] suggest that random testing’s speed, scalability,
and unbiased search make it an effective error-detection technique able to outperform
systematic techniques. For example, in previous work we compared random and sym-
bolic input generation and classification techniques on a set of programs. We found
that random and systematic techniques are complementary: random test generation
finds errors that symbolic execution cannot find because of limitations in symbolic ex-
ecution engines or constraint solvers, and symbolic execution finds errors that random
test generation cannot find because of highly specific constraints on the inputs [26].
We conjectured that random generation may benefit from using repetition; this was
the motivation for implementing repetition in Randoop.

There are few case studies of random test generation’s use in industry. Recent
work by Groce et al. [44] describes a realistic application of random testing to a file
system used in flight software. Their experience was similar to ours: random test
generation found a large number of errors in a relatively short amount of time. Like
Randoop, their tool eventually reached a plateau. To find more errors, Groce et
al. suggest moving towards formal verification of the software; this is a different,
and complementary approach to our attack on the plateau via techniques to increase
fairness. They say that model checking would not scale to testing code for complex
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flight systems, while random testing scales and finds many errors in the code.

11.5 Hybrid Techniques

Dynamic test generation techniques combine concrete and symbolic input generation.
Ferguson and Korel [32] describe “chaining,” a technique that executes the software
on a concrete input and records the concrete program path that the execution follows.
The technique then attempts to modify the input to cause the execution to follow
a different branch for one of the conditions in the concrete path. To achieve this,
the technique solves the symbolic constraints corresponding to the concrete path, but
with one of the constraints negated (the one corresponding to the desired branch).

Godefroid et al.’s DART [39] and and Sen et al.’s concolic testing [86] are similar
to chaining, but use a randomly-generated input as the initial concrete input used to
initialize the search, and revert to concrete execution when the constraint solver fails
or when the code cannot be handled by the symbolic execution engine (e.g. during
native operating system calls). Majumdar et al. [69] describe hybrid concolic testing,
which starts by performing undirected random test generation, and transitions to
concolic testing only when random test generation fails to achieve new coverage.
This approach is similar to our proposed branch-directed generation technique, but
we propose to modify inputs via random educated guesses based on data flow analysis,
not via symbolic execution.

Like directed random testing, our branch-directed generation technique (Chap-
ter 6) is a dynamic generation technique, meaning that it uses runtime information
about the software under test to guide the generation of new inputs. It is more closely
related to techniques like DART [39] and concolic testing [86], which execute the soft-
ware on random inputs, collect symbolic constraints at conditional statements, and
use a constraint solver to modify the inputs in order to drive execution through un-
covered branches. Instead of using a constraint solver to modify a test input so that
it follows a desired branch, our technique tracks the flow and interactions of values
during the execution of the sequence, and uses this information to determine influ-
encing variables in the sequence, and to compute a set of values to set the influencing
variables to.

Commercial tools like Jtest and Agitar’s Agitator [1] also perform combinations
of concrete and symbolic execution; the details of their implementation are unpub-
lished. Agitator creates test inputs using a variety of techniques, including random
generation and data flow analysis, and proposes to the user program invariants based
on execution of the test inputs.
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Chapter 12

Conclusion

Directed random testing is automated, scalable, and it outputs compilable test cases
that reveal errors in large, well-tested and widely-deployed applications. In an indus-
trial environment, the technique led to a highly productive period of error discovery
when used by a team of engineers testing a component that had already undergone
200 man years of testing; in addition, the technique revealed errors in the test team’s
existing testing and analysis tools, inadequacies in their manual testing, and even
led them to improve their best practices. Since the study was conducted, Randoop
has been added to an internal list recommended testing tools at Microsoft, and other
test teams at the company have used Randoop to discover errors in software com-
ponents and improve the effectiveness of their testing efforts. These results provide
evidence of the promise of directed random testing in improving the productivity of
test engineers and the quality of the software under test.

In the introduction, we described directed random testing as a technique that com-
bines ideas from two approaches, random testing and systematic testing. Directed
random testing adopts random testing’s idea of randomly assembling inputs, and
augments it with systematic testing’s idea of pruning the input space to avoid gener-
ating useless inputs. Ours is not the only technique to combine elements of random
and systematic testing; for example, recently-developed techniques like DART [39]
and concolic testing [86] initialize a systematic generation technique with randomly-
generated seed inputs. The key difference, and innovation, in directed random testing,
is the point it occupies in the random-systematic spectrum of techniques. Other hy-
brid techniques are primarily systematic in their generation, and use randomness
only to initialize the search. In contrast, our approach is primarily random in its
generation, and incorporates systematicity only to guide the generation process. In
exploring the “random end” of the random-systematic spectrum, we wanted to start
with a simple and effective approach, random testing, and scaling it up to mitigate
its deficiencies.

The exchange of ideas between the random and systematic approaches can benefit
both communities, and there are many exciting research projects based on exploring
different points in the spectrum. Groce et al. propose structural heuristics [43] to
guide a model checker; the heuristics might also help a random test generator. Going
the other way, our ideas about generation using a component set, or heuristic equiv-

153



alence, could be translated into the exhaustive testing domain. Combining random
and systematic approaches can result in techniques that retain the best of each ap-
proach. The exhaustive testing community can also benefit from research in random
testing by learning when non-exhaustive techniques can yield comparable (or even
better) results, as appears to be the case when the goal is achieving code coverage
for some container data structures. This might point the way to the need for better
benchmarks that differentiate the relative strengths of exhaustive and random testing.

Our vision for the future of software testing is one in which the generation of
test inputs is largely automated by techniques that combine random, systematic,
and other approaches to provide input sets of equal or better quality than those an
engineer could produce by hand. Such a future would let test engineers focus effort
on thinking about the properties that a software artifact should satisfy, providing
powerful mechanized assistants that help them gain confidence that the properties
are indeed satisfied by the software artifact under test. The work we have presented
is a step toward this goal.
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Appendix A

Code Listing for Polynomial Classes

public class Rat {

public int num;

public int den;

public double approx;

// Creates a Rat representing n/d. Requires: d is not 0.

public Rat(int n, int d) {

if (d == 0) {

num = 0; den = 1;

approx = this.approx();

return;

}

// reduce ratio to lowest terms

int a = n, b = d;

while (b != 0) {

int t = b; b = a % b; a = t;

}

num = n / a; den = d / a;

if (den < 0) {

num = -num; den = -den;

}

approx = this.approx();

}

// Approximates the value of this rational.

public double approx() {

return ((double)num) / ((double)den);

}

// Returns the addition of this and arg.

public Rat add(Rat arg) {

// a/b + x/y = (ay + bx)/by

return new Rat(this.num*arg.den + arg.num*this.den, this.den*arg.den);

}

// Return a new rational equal to "this-arg".

public Rat sub(Rat arg) {

return add(new Rat(-arg.num, arg.den));

}

// Returns true if this represents the rational "0".

public boolean isZero() {

return num == 0;

}

public boolean equals(Object o) {

if (o == null) return false;

if (o == this) return true;
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Rat r = (Rat)o;

return r.num == this.num && r.den == this.den;

}

public int hashCode() {

int hash = 7;

hash = hash * 31 + num;

hash = hash * 31 + den;

return hash;

}

}

public class Mono {

// coefficient

public final Rat coeff;

// exponent

public final int exp;

// Creates a monomial with the specified coefficient

// and exponent. Requires: c is not null, e is not negative.

public Mono(Rat coeff, int exp) {

if (coeff == null || exp < 0)

throw new IllegalArgumentException("Invalid arguments.");

this.coeff = coeff;

this.exp = exp;

}

public boolean equals(Object o) {

if (this == o) return true;

if (o == null || !(o instanceof Mono)) return false;

Mono m = (Mono)o;

return this.coeff.equals(m.coeff) && this.exp == m.exp;

}

public int hashCode() {

int hash = 7;

hash = hash * 31 + coeff.hashCode();

hash = hash * 31 + exp;

return hash;

}

}

public class Poly {

public Mono[] ms;

// Creates a new polynomial with the specified elements.

// Requires: elements array is not null, elements are sorted

// in order of decreasing exponent, and have non-zero coefficient.

public Poly(Mono... monos) {

ms = new Mono[monos.length];

for (int i=0;i<ms.length;i++)

ms[i] = monos[i];

assert this.repOk();

}

// Adds m to this polynomial, and

// returns the result. Requires:

// m is not null.

public Poly add(Mono m) {

// Will contain new monomial elements.

List<Mono> mList=new ArrayList<Mono>();

// Go through the elements of this

// polynomial, inserting the monomial m

// in the appropriate place in mList.

for (int i=0;i<ms.length;i++) {
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if (ms[i].exp == m.exp) {

Rat sum = ms[i].coeff.add(m.coeff);

Mono msum = new Mono(sum, m.exp);

mList.add(msum); // ERROR

continue;

}

if (ms[i].exp < m.exp) {

mList.add(m);

}

mList.add(ms[i]);

}

Poly addition = new Poly(mList.toArray(new Mono[0]));

assert addition.repOk();

return addition;

}

// Checks representation invariant:

// 1. Elements sorted in order of decreasing exponent.

// 2. No two monomials have the same exponent.

// 3. No monomial has zero coefficient.

boolean repOk() {

for (int i=0 ; i<ms.length ; i++) {

if (i > 0 && ms[i-1].exp <= ms[i].exp)

return false;

if (ms[i].coeff.num == 0)

return false;

}

return true;

}

}

165


