Generating effective symmetry-breaking pred-
icates for search problems

Ilya Shlyakhter

1 Introduction

Consider a universe U of combinatorial objects representable by
m-bit binary numbers. We will speak interchangeably of an object
and its binary representation. Let U be divided into equivalence
classes of isomorphic objects. A permutation 6 of the m bits is
a symmetry of the universe iff applying 6 to any object X € U
yields an object isomorphic to X. The set of all symmetries is
the symmetry group of the universe U, denoted by Sym.

For example, n-node digraphs can be represented by n x n ad-
jacency matrices, and two matrices A, B are isomorphic iff there
exists a permutation 6 of the n nodes such that 6(A) = B, where
(0(A))i; = Apuya()- Note that 0 is a permutation of the n nodes
of the digraph, but it also acts on the n2-bit adjacency matrices,
because each permutation of the nodes induces a corresponding
permutation of the adjacency matrix bits. The symmetry group
Sym has order n! and is isomorphic to g, the symmetric group
of order n.

Suppose you need to find an object X from a universe U, satis-
fying a property P(X) (or determine that no such object exists).
Suppose also that P is preserved under isomorphism, i.e. is con-
stant on each isomorphism class. Enumerating all elements of U
and testing P on each is clearly wasteful: it’s enough to test P
on one object per isomorphism class. For some classes of objects,
procedures exist for isomorph-free exhaustive generation [2-4].

19



Faster generation procedures may be developed at the cost of
generating more than one labeled object per isomorphism class
and /or repeating objects.

If no object in U satisfies P, the generate-and-test approach must
explicitly generate a complete representation of at least one rep-
resentative per isomorphism class to verify unsatisfiability. On
the other hand, backtracking methods [5] can rule out entire sets
of objects without explicit generation, by determining that no
object extending a partial binary representation satisfies P. If
P can be encoded as a polynomial-size Boolean constraint on
the bits of the fixed-length binary representation (as opposed to
black-box computer code), backtracking methods for satisfiability
can be used. Such methods can significantly outperform explicit
generate-and-test approaches, as demonstrated by satisfiability
encoding of planning problems [6].

Crawford et al [1] have proposed an approach to taking advan-
tage of isomorphism structure in this framework. We define a
symmetry-breaking predicate on U, SB(X), which is true on at
least one representative object per isomorphism class. We then
test for satisfiability of P'(X) = P(X) A SB(X). Since P is con-
stant on each isomorphism class, P’ is satisfiable iff P satisfiable.
Moreover, P’ is solved much faster than P by backtracking, be-
cause it is more constrained: the algorithm will backtrack if none
of the extensions of its current partial instantiation are isomor-
phism class representatives selected by SB. Experiments show
that symmetry-breaking predicates can reduce search time by
orders of magnitude with no changes to the search algorithm

1,7].

The difficulty of this approach lies in generating the symmetry-
breaking predicate. In general, generating a complete symmetry-
breaking predicate (true of exactly one representative per isomor-
phism class) is NP-complete [1]; the practical choice is between
partial symmetry-breaking predicates, true of at least one (typi-
cally more than one) representative per isomorphism class. To be

20



effective, the predicate must rule out a large fraction of objects
from each isomorphism class. On the other hand, the predicate
must be compact; otherwise, checking the predicate’s constraints
at each search node will slow down the search, erasing the benefit
of expanding fewer search nodes. Balancing these contradictory
requirements is the subject of this paper.

The rest of the paper is organized as follows. Section 2 summa-
rizes prior approaches and points out their deficiencies. Section
3 describes the generation of symmetry-breaking predicates for
several classes of combinatorial objects. Section 4 gives a uniform
optimality measure for symmetry-breaking predicates, and eval-
uates the predicates from Section 3 according to this measure.
Section 5 describes directions for future work.

2 Prior work

In his original paper on symmetry-breaking predicates, Crawford
proposes the following general framework for predicate genera-
tion. Fix an ordering of the bits in the object’s binary represen-
tation. This induces a strict lexicographical ordering on all ob-
jects. Construct a symmetry-breaking predicate which is true on
the lexicographically smallest object in each isomorphism class,
as follows.

Let V' be a fixed ordering of the bits of the binary representation.
Then

AV <o(V)

OeSym

is a symmetry-breaking predicate, true of only the lexicographi-
cally smallest object in each symmetry class. This predicate ex-
plicitly requires that any symmetry map either fix the the rep-
resentative object, or map it to a lexicographically higher object
— i.e. that the representative object be lexicographically smaller

21



than any isomorphic object.

Unfortunately, in many important cases Sym is very large. For
example, for n-node digraphs |Sym| = n!, because any permu-
tation of the graph’s nodes (and the corresponding permutation
of adjacency matrix entries) leads to an isomorphic graph. Craw-
ford suggests mitigating the problem by replacing Sym with a
polynomial-size subset Sym’ € Sym, thus requiring that the ob-
ject be lexicographically smallest with respect to only some of
the symmetries.

Crawford gives no formal guidance on choosing the subset of
symmetries to break or the fixed variable numbering to use.
This paper begins to fill the gap by describing polynomial-size
symmetry-breaking predicates for some common combinatorial
objects. For some objects, we refine Crawford’s algorithm by de-
termining Sym’ and V. For others, we present new predicate
constructions, giving the first concrete alternatives to Crawford’s
lexicographic approach.

Crawford uses empirical measurements to gauge the effectiveness
of his symmetry-breaking predicates. While such end-to-end tests
are certainly useful, they give no hint of optimality of a given
predicate, and reflect peculiarities of a particular backtracking
algorithm (such as the dynamic variable-ordering heuristic [5])
besides the inherent complexity reduction brought by the predi-
cate. We present an alternative approach which directly measures
predicate pruning power, and gives an optimality measure rela-
tive to a complete symmetry-breaking predicate.

3 Generating symmetry-breaking predicates

In this section, we present methods for generating symmetry-
breaking predicates on several classes of combinatorial objects:
acyclic digraphs, permutations, direct products, and functions.
These objects commonly occur in formal descriptions of system

22



designs [8], the analysis of which motivates this work. Each sub-
section deals with one class of combinatorial objects, describing
the binary representation, the isomorphism classes, and the con-
struction of the symmetry-breaking predicate in terms of the bi-
nary representation.

3.1 Acyclic digraphs

Let U be the set of n X n adjacency matrices representing acyclic
digraphs. Two matrices representing isomorphic digraphs are iso-
morphic. The symmetry group Sym has order n!.

Any acyclic digraph has an isomorphic counterpart that is topo-
logically sorted with respect to a given node ordering. In terms
of adjacency matrices, this means that every isomorphism class
of adjacency matrices representing acyclic digraphs includes an
upper-triangular matrix (since the lower triangle represents “back-
wards” edges from higher-numbered to lower-numbered nodes).
Our symmetry-breaking predicate simply requires all entries be-
low the diagonal to be false. This does not completely break
all symmetries, but as measurements in section 4.1 show, breaks
most.

Additionally, this symmetry-breaking predicate, together with
the requirement that diagonal entries be false (eliminating self-
loops), implies the acyclicity constraint, so no additional con-
straints on the matrix are needed. By contrast, expressing the
acyclicity constraint on general digraphs requires a constraint of
size Q(MatMult(n)logn), where MatMult(n) is the complexity
of matrix multiplication. Shorter constraints require less time to
check at every search node, leading to faster search. In general, in
cases where not all binary representations represent valid combi-
natorial objects from our universe U, constraints restricting the
object to valid values are separate from the symmetry-breaking
predicate. This example illustrates a new use of symmetry-breaking
predicates: to reduce the size of original problem constraints.

23



Note that this symmetry-breaking predicate does not use Craw-
ford’s methodology. It’s not even clear that a single fixed vari-
able ordering exists which corresponds to this predicate. The next
section on permutations gives another example of a symmetry-
breaking predicate not based on lexicographic comparison.

3.2  Permutations

Let U be the set of n X n binary matrices representing permuta-
tions of n items. Matrix A represents the permutation mapping ¢
to j iff A;; is true. A matrix A represents a valid permutation (is
a permutation matriz) iff every column and every row has exactly
one true bit.

Two permutations are isomorphic if they have the same cycle
structure, i.e. the same multiset of cycle lengths. Thus, an isomor-
phism class of permutation matrices corresponds to one permuta-
tion on a set of n indistinguishale objects. We define a canonical
representative of each isomorphism class, and give a polynomial-
size Boolean predicate on permutation matrices which is true only
of the canonical representatives. We thus achieve full symmetry-
breaking with a polynomial-size predicate.

The canonical form is most easily explained using cycle nota-
tion for permutations [9]. We require that each cycle consist of a
continuous segment of items, that each item map to the immedi-
ately succeeding one or (for highest-numbered item in a cycle) to
the smallest item in the cycle, and that longer cycles use higher-
numbered items than shorter ones. For example, the permutation
(12)(345) is in canonical form, but the isomorphic permutations
(123)(45), (12)(354) and (15)(234) are not. Formally, given an
n X n permutation matrix A, we have the following predicate in
terms of the Boolean entries A; ;:

(Vi, 4|7 > 1+ 1) = =4Ai) A
(Y4, 7]((7 > ) A Aji) = (Ap=in -1 Ak k1) A Ak=(j+1)..2j-1) " Ar,5))))

24



In this predicate, the condition (j > ¢ + 1) = —A; ; requires that
an item mapped to a higher-numbered item map to the immedi-
ately succeeding item: e.g. 3 must map either to 4 (in which case 3
is not the highest-numbered item in its cycle), or to an item num-
bered not higher than 3 (in which case 3 is the highest-numbered
item in its cycle). The condition Ag=; (j—1)Akk+1, implied by a
backward edge A;;(i < j), says that every backward edge im-
plies the corresponding forward cycle: e.g. if 5 maps to 3 then
5 must be the highest-numbered item in the cycle and the cycle
must be (345). The condition Ag—(j11).(2j—i)Ak,j, implied by the

presence of a cycle (ti+1...5—137), requires the immediately

succeeding cycle to be no shorter, in effect sorting cycles by in-
creasing length: e.g. the cycle (345) excludes the cycles (6) and
(67). Together with the original constraints restricting A to be a
permutation matrix, these constraints permit exactly one permu-
tation with a given multiset of cycle lengths, i.e. one permutation
from each isomorphism class.

The size of this predicate O(n3), which matches the order of
growth of the original constraints. It may be possible to reduce
this order of growth by introducing auxiliary Boolean variables,
but since n is typically small (under 15) in our analyses, cubic
growth has been acceptable.

3.8 Relations

Consider the direct product D = Dy X ... X Dy of k disjoint finite
nonempty sets (we call them domains). We define our universe U
to be P(D), the power set of D. Each element of U, called a re-
lation, can be represented by I1F_; | D;| bits. Each bit corresponds
to an ordered k-tuple (di,...,d;), di € D;, and is true in the
binary representation of a relation iff the relation contains the
corresponding ordered k-tuple. We will speak interchangeably of
the bits and corresponding ordered k-tuples.

25



Isomorphism classes are defined by treating elements within each
domain as indistinguishable. The symmetry group Sym of our
universe U is isomorphic to direct product of £ symmetric groups:
Sym = ojp,| X ... X o|p,|- An element © = (6y,...,0;) of Sym
maps a relation r to a relation 7', such that v’ contains an ordered
tuple (dy, .. .,dy) iff r contains the ordered tuple (87 (d1), .. ., 07 ' (dy)).

With |Sym| = [TF_ | D;|!, direct application of Crawford’s method
is impractical. Nevertheless, it is possible to break all symmetries
which permute a single domain with a linear-size predicate. Even
though such symmetries represent only a tiny fraction of all sym-
metries, experiments show that this predicate rules out most of
the isomorphic objects.

We start with an example for the case k = 2, then generalize to
arbitrary k.

Consider a binary relation r € A x B, A = {ag,a1,a2}, B =
{bg, b1, ba}. Let us use the following orderly numbering V' for bits
of the binary representation of r:

by b1 b
ap 1 2 3
ai 4 5 6
a, 7 8 9

Under this numbering, Crawford’s symmetry-breaking condition
for the symmetry exchanging ag with a; and fixing all other ele-
ments (denoted ay <> ay) is

123456789 < 456123789

which simplifies to 123 < 456. Together with the condition for

a1 <> as, we have

123 < 456 < 789

26



which breaks all symmetries permuting only A. Similarly, the
conditions for by <> b; and by <> by together simplify to

147 < 258 < 369

breaking all symmetries which permute only B. Together, these
conditions allow only those relations for which permuting either
the rows or the columns (but not both simultaneously) leads to a
lexicographically higher (or the same) relation, according to the
given bit ordering. These conditions still allow values of » mapped

to lexicographically lower values by symmetries which permute
both A and B.

In general, consider a relation r € Dy X Dy X ... X Dp. We use
Crawford’s lexicographic method with the following numbering.
Denoting the elements of D; as a;9,a;3,...,a;p,—1, we number
the bit corresponding to tuple (a1, ..., are,), 0 < e; < |D;l, as

k k

> (eix I [Djl])

i=1 j=i+1

Now consider a transposition 6 = a;, <> a;,+1. The effect of
this transposition on the binary representation of r is to fix all
k-tuples except those with p or p+1 as their 2’th coordinate, and
among the tuples with p or p+1 as their 2’th coordinate, to swap
k-tuples differing only in their i’th coordinate. Within each pair
of swapped tuples, the tuple with p+1 in ¢’th coordinate is num-
bered higher than the tuple with p in ¢’th coordinate. Therefore,
Crawford’s V' < §(V') condition reduces to P < P', where P lists
the bits corresponding to k-tuples with p in ¢’th coordinate, in
increasing order by number in our numbering, and P’ lists the
bits corresponding to k-tuples with p+1 in ¢’th coordinate, in in-
creasing order by number in the numbering. Then the right-hand
side of Crawford’s V' < §(V') condition for a; , <+ a;p+1 equals the
left-hand side of the condition for a; ;1 <+ a;p+2, so asserting the
condition for adjacent pairs of elements breaks all permutations
which permute only D;.

27



3.4  Functions

A function is a restricted kind of relation: a two-dimensional re-
lation r € A x B with each element of A (the domain) related to
ezactly one element of B (the range). Two functions are isomor-
phic iff they have the same multiset of preimage sizes. In analyses
of relational specifications [8], functions occur more frequently
than general relations. For functions, we give a polynomial-size
symmetry-breaking predicate which breaks all symmetries.

First, we break all symmetries permuting only A by sorting the
rows of r as binary numbers, as in the preceding section. For
notational convenience, here we make the leftmost column (the
bits corresponding to by) the least significant bit. Second, we sort
the columns by the count of true bits. Formally, the constraints
on r read

(Vi € {0,...,|A| — 2}
(Ti,|B|—17“i,|B|—2 Tl < T'i+1,B|-1Ti+1,|B|-2 - - -Ti+1,17“z'+1,0)) A\

(V5 €40, [B] = 2} (Hélri i} < Hilrija}])

We show that together, these constraints define a complete symmetry-
breaking predicate.

Since r represents a function, there are |B| possible values for a
row of r. Sorting the rows of r makes identical rows adjacent, so
that the preimage of each b; € B occupies a continous segment
of A. In addition, for 7 < 7, rows mapped to b; represent smaller
binary numbers than rows mapped to b;. Therefore, elements of
A mapped to b; € B have lower indices in A than elements of
A mapped to bj;;. Alternatively, listing the elements of A in
increasing order by index, we first list the elements that map to
by (if any), followed by the elements that map to b; (if any), and
so on, with the elements that map to bjp—; (if any) at the end of
the list.

We now show that adding the second requirement, that the columns

28



be sorted by cardinality (the count of ¢rue bits in the column),
forces a canonical form. Since all matrices in an isomorphism class
have the same multiset of preimage sizes (i.e. column cardinali-
ties), sorting the columns by cardinality uniquely determines the
cardinality of each column. In other words, all matrices in an iso-
morphism class satisfying the column-sorting condition have the
same cardinalities in the corresponding columns. But given the
constraints described in the preceding paragraph, this uniquely
determines the image in B of each a; € A. If ¢; = | {i|r;;}], i.e.
c; is the cardinality of th j’th column, then the first ¢y elements
of A must map to by € B, the next c¢; elements of A must map
to by € B, and so on.

For example, here are three isomorphic function matrices satis-
fying the row-sorting condition:

bop b1 b2 b3 by by by by b3 by by by ba b3 by
apl 0000 a0 1000 a001O00O0

a110000a01000a 00010
a2 1 0000 a200100a00010
a3 0 0100 a3z 00100 a3 00001
as 00001 ag 00100 asz 00001
as 0 0001 as 00010 as0000°1

Only the rightmost one also orders the column cardinalities, and
is the only matrix in the isomorphism class allowed by our symmetry-
breaking predicate.

29



3.4.1 Size of the constraint

4 Measuring effectiveness of symmetry-breaking predicates

Symmetry-breaking predicates are designed to speed up search,
so it would seem natural to judge their effectiveness by measuring
the reduction in search time. This approach has several problems,
however. Search times can be highly dependent on the particular
backtracking algorithm, and on parameter settings such as the
splitting heuristic [5]. The addition of the symmetry-breaking
predicate changes the whole search tree (since splitting choices
are determined by the entire constraint set), so the comparison to
the original constraint problem is not completely clean. Machine-
dependent effects such as cache locality can also bias the mea-
surements. Most importantly, end-to-end measurements provide
no clue to optimality: how much of the reduction afforded by
symmetry are we actually utilizing?

As an alternative measure of efficiency, we can directly measure
the pruning power of a symmetry-breaking predicate by count-
ing the number of objects satisfying the predicate. For a com-
plete symmetry-breaking predicate, this number is the number of
isomorphism classes. For a partial symmetry-breaking predicate,
this number will be higher; the question is, how much higher?
Where the number of isomorphism classes is known, we can ob-
tain a precise measure of optimality of our partial symmetry-
breaking predicate by comparing its pruning effect with the max-
imum possible pruning effect.

Table 1 describes the numbers computed to measure efficiency of
partial symmetry-breaking predicates.

The numbers of isomorphism classes are taken from [10], [11]
and [12]. The number of objects allowed by the predicate is com-
puted by generating the corresponding satisfiability instance, and
counting its solutions with the RELSAT solution counter [13].
Correctness of the implementation was verified by doing com-

30



Table 1
Values used to measure efficiency of partial symmetry-breaking predicates.

value formula meaning
labeled |U| the number of distinct binary representations
unlabeled from [10,11] the number of isomorphism classes

allowed | {X € U|SB(X)}| | # of objects allowed by symmetry-breaking predicate

ef fic % percentage of excludable objects actually excluded
slack u‘;ffggjgd maximum possible improvement factor
Table 2

Acyclic digraphs: symmetry-breaking efficiency.
n labeled unlabeled | allowed ef fic | slack

3 25 6 8 89.47% | 1.3
4 043 31 64 93.55% | 2.1
5 29,281 302 1024 97.51% | 34
6 3,781,50 5,984 32,768 | 99.29% | 5.5
7| 1,138,779,265 | 243,668 | 2,097,152 | 99.84% | 8.6

plete symmetry-breaking for several classes of objects by Craw-
ford’s explicit lexicographical method method, and checking that
the number of allowed instances matches the number of isomor-
phism classes.

4.1 Acyclic digraphs
Table 2 gives efficiency for DAGs.

4.2 Relations

We compute the results for binary relations. The number of iso-
morphism classes of non-homogeneous binary relations is not
published, but we can use the number of bipartite graphs, which
are closely related to non-homogeneous binary relations. Every
non-homogeneous binary relation r : A — B is a bipartite graph
on |A|+|B| nodes, with every edge connecting a node in A with a

31



Table 3

Relations: symmtry-breaking efficiency.

n labeled unlabeled | allowed ef fic slack
8 102,528 303 1,057 99.26% 3.5
9 1,327,360 1,119 3,828 99.80% 3.4
10 52,494,848 5,479 38,160 99.94% 7.0
11 | 1,359,217,664 32,303 228,852 | 99.99986% | 7.0
12 | 107,509,450,752 | 251,135 | 3,970,438 | 99.99997% 16

node in B. All isomorphic relations correspond to the same graph.
On the other hand, every bipartite graph of n nodes corresponds
to at least one non-homogeneous binary relation r : A — B, with
|A|+|B| = n. Isomorphic bipartite graphs may correspond to dif-
ferent relations. This means that the number of non-isomorphic
bipartite graphs of n nodes lower-bounds the number of non-
isomorphic binary relations r : A — B with |A|+|B| = n. There-
fore we can lower-bound the efficiency of our symmetry-breaking
predicate by aggregating over relations whose dimensions sum to
n.

4.8 Permutations and Functions

In these cases, symmetry-breaking is complete. The only possi-
ble improvement would be in reducing the size of the predicate.
However, this improvement would only matter in cases where the
original problem constraints have a smaller order of growth than
the predicate.

5 Conclusion and future work

We have presented a uniform method to gauge the effectiveness
and optimality of symmetry-breaking predicates. The method
measures the inherent simplification of the constraint problem,
which, unlike running-time measurements, does not depend on

32



the details of a particular backtracking algorithm. The method
hinges on our ability to lower-bound the number of isomorphism
classes in the universe; these numbers are available for a wide
variety of combinatorial objects.

We have also presented specific polynomial-size symmetry-breaking
predicates for the types of states commonly occurring in anal-
ysis of relational specifications. Measurements show that these
predicate exclude over 99% of excludable assignments, and come
within an order of magnitude of the optimum. These are the first
formalized examples of predicates not derived from Crawford’s
conditions.

Experiments show that predicate efficiency, defined as the frac-
tion of excludable objects actually excluded, grows monotonically
with the scope of the objects. In other words, as the search space
grows, our use of the available symmetry becomes more com-
plete. On the other hand, the slack factor representing the possi-
ble improvement also increases. With search space sizes growing
exponentially, improving relative efficiency by even a fraction of a
percent can lead to significant reduction in absolute search time.

Most interestingly, breaking a random set of symmetries to small
depth often leads to surprisingly effective predicates. Formaliz-
ing this observation into a formal randomized symmetry-breaking
scheme will be a major goal of future work. Various ways to bias
the random selection of symmetries will be investigated. For in-
stance, Crawford’s condition for a single symmetry © excludes
2"~191 assignments, where |©| is the number of cycles in ©. This
suggests biasing selection towards symmetries with fewer cycles.
On the other hand, overlap between sets of states excluded by
the selected symmetries should be minimized. This work could
relate to work on probabilistic isomorphism testing.

In this paper, we only cover objects consisting of a single DAG,
relation, function or permutation. In practice, the universe of ob-
jects may be the set of abstract states of a system, with each

33



state described by a collection of combinatorial object compo-
nents. For example, in a lock-based multitasking environment,
the state can be represented by a pair of relations: which process
waits on each mutex, and which process holds which mutex. Ap-
plying a symmetry-breaking predicate to one component destroys
the symmetry of the domains related by that component: the el-
ements of these domains stop being interchangeable. This raises
the question: to which of the state components should we ap-
ply our symmetry-breaking predicates? A lookup table of known
predicate efficiencies for the common component types, computed
as described in this paper, could be used to make the decision
that optimizes the pruning effect.

Finally, it is necessary to quantify the correlation between prun-
ing power of the predicate and the search time under various
backtracking algorithms. Since search time is directly affected by
the size of the predicate, as well as by its pruning power, such
measurements are necessary to determine the proper tradeoff val-
ues between predicate size and strength.

References

[1] J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates
for search problems. 1In Fifth International Conference on Principles of
Knowledge Representation and Reasoning, 1996.

[2] B. D. McKay. Isomorph-free exhaustive generation. Journal of Algorithms,
26:306 — 324, 1998.

[3] Daniel Jackson, Somesh Jha, and Craig A. Damon. Isomorph-free model
enumeration: A new method for checking relational specifications. ACM
Transactions on Programming Languages and Systems, 20(2):302-343, March
1998.

[4] C. Norris Ip and David L. Dill. Better verification through symmetry. Formal
Methods in System Design, 9(1):41-75, August 1996.

[5] Rina Dechter and Daniel Frost. Backtracking algorithms for constraint
satisfaction problems. Technical Report 56, UC-Irvine, 1999.

[6] Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of
the 10th FEuropean

34



Conference on Artificial Intelligence, 1992. http://portal.research.bell-
labs.com/orgs/ssr/people/kautz/papers-ftp/satplan.ps.

[7] David Joslin and Amitabha Roy. Exploiting symmetry in lifted csps. In
AAAI97, 1997

[8] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. Alcoa: the alloy constraint

analyzer. In Proceedings of International Conference on Software Engineering,
Limerick, Ireland, 2000.

[9] Herbert Wilf. East side, west side: an introduction to combinatorial families
with maple programming. http://www.cis.upenn.edu/ wilf/eastwest.pdf, 1999.

[10] R.C.Read. An Atlas of Graphs. Oxford University Press, 1998.

[11] Neil J. A. Sloane. Sloane’s on-line encyclopedia of integer sequences.
http://www.research.att.com/ njas/sequences/.

[12] F. Harary and E.M.Palmer. Graphical Enumeration. Academic Press, 1973.

[13] R. Bayardo and J. Pehoushek. Counting models using connected components.
In AAAT Proceedings, 2000.

[14] Daniel Jackson. An intermediate design language and its analysis.
In Proceedings of International Conference on Foundations of Software
Engineering, Orlando, FL, 1998.

35



