
Lightweight Extraction of Syntactic Specifications

Mana Taghdiri Robert Seater Daniel Jackson
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

{taghdiri, rseater, dnj}@mit.edu

ABSTRACT
A method for extracting syntactic specifications from heap-
manipulating code is described. The state of the heap is rep-
resented as an environment mapping each variable or field
to a relational expression. A procedure is executed sym-
bolically, obtaining an environment for the post-state that
gives the value of each variable and field in terms of the val-
ues of variables and fields of the pre-state. Approximation
is introduced by forming relational unions at merge points
in the control flow graph, and by widening union-of-join ex-
pressions to transitive closures. The resulting analysis is lin-
ear in the length of the code and the number of fields, but
capable of producing non-trivial specifications of surprising
accuracy.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—formal methods; F.3.1 [Logics]: Reasoning about
Programs—pre- and post-conditions, specification techniques

General Terms
Verification

Keywords
Modular Abstraction, Symbolic Summary, Symbolic Execu-
tion, Syntactic Specification

1. INTRODUCTION
Analyzing a large program is not usually feasible unless

the program is decomposed into smaller parts that can be
analyzed separately, obtaining results that can be combined
to determine the behavior of the program as a whole. Such
results are called ‘summaries’ in the static analysis commu-
nity, and are usually associated with procedures; this makes
sense both because the procedure is a unit of reuse, and be-
cause its encapsulation properties allow for more succinct
summaries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’06/FSE-14,November 5–11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011 ...$5.00.

A procedure summary is typically a semantic object pro-
duced and consumed within the analysis tool, and never ex-
posed to the user. In contrast, a type signature – the form
of summary used by a type analysis (e.g. [4]) – is a syntactic
object that is readable by tool and user alike, and can play
exactly the same role as a specification, associated by the
programmer with a procedure to enable modular reasoning.

This paper describes a method for extracting such syntac-
tic summaries, or specifications, from code in languages such
as Java or C# whose state can be represented as a graph
of objects linked by fields. Our original motivation was to
support a code analysis tool based on constraint solving [15].
This tool infers specifications (of a less readable form) in-
crementally from code, refining them in response to spuri-
ous counterexamples. Although it can start from arbitrarily
weak specifications (including the empty specification), its
performance is dramatically improved if the initial specifi-
cation captures at least some basic frame conditions about
which objects and fields might be mutated. In devising a
method to obtain these simple specifications, we realized
that a very simple and scalable analysis can in fact produce
far more accurate specifications which could be used in a
variety of settings.

The key idea behind the method is very simple. The pro-
cedure is evaluated symbolically, with each field and vari-
able initially holding a value represented by a fresh constant.
Each statement updates an environment mapping fields and
variables to values represented as relational expressions. Af-
ter an if-statement, the branches are merged by forming a
union expression. A loop is handled by forming a transi-
tive closure. The analysis maintains both upper and lower
bounds on the values of variables and fields, so that in some
cases an exact result can be obtained.

This analysis can be viewed as a simple abstract interpre-
tation in which the abstract domain contains relational ex-
pressions. The union of two expressions approximates each
expression from above, justifying the merge. Two kinds of
widenings are performed – turning unions into closures, and
replacing an expression by the universal relation – to guar-
antee that the size of any expression (and the number of
loop iterations required to reach a fixpoint) is bounded by a
constant. Consequently, the cost of the analysis of a single
statement is proportional to the number of fields, and the
analysis time is linear in both the length of the code and the
number of fields. The analysis space is linear in the num-
ber of fields and the maximum number of local variables in
scope at any point, and is constant in the length of the code.

To evaluate the method, we performed two experiments

using a prototype tool implementation. In one, we applied
it to a small component for which complete specifications
were already available: Sun’s standard implementation of
linked lists in the Java Collection Framework. The proce-
dures of this component are small and mostly self-contained;
their complexity arises from the manipulations they perform
of the doubly-linked data structure. Despite this complex-
ity, the tool generated surprisingly accurate specifications.
In 8 of the 10 procedures, the generated specifications were
sufficient to check the known JML specifications; in the re-
maining 2 procedures, the generated specifications included
all frame conditions, and provided some parts of the JML
specifications.

In the second experiment, we applied the tool to an open-
source Java implementation of a graph API [9]. This compo-
nent was more typical of object-oriented code; its procedures
made more external calls – in one case, a top-level procedure
invoked 81 other procedures directly or indirectly – but it
used simpler data structures, primarily sets and hash tables
accessed as abstract data types. We wrote specifications for
these datatypes in the style of the specifications our tool
infers; this allowed the analysis to be performed over spec-
ification fields rather than the actual representation fields
of the implementation. Lacking a full specification of the
graph API, we used some partial invariants to evaluate the
accuracy of our generated specifications, and we found that
only in a few cases was there a significant loss of informa-
tion. These results suggest that this analysis represents a
useful balance between tractability and accuracy.

In summary, the contributions of this paper include:

• A new approach to extracting lightweight specifica-
tions from heap-manipulating code, consisting of a sim-
ple relational specification language and a cheap static
analysis;

• A justification of the soundness of the analysis formu-
lated as an abstract interpretation;

• A demonstration that the analysis is capable of ex-
tracting reasonable specifications from non-trivial pro-
cedures;

• A demonstration that the analysis can leverage user-
provided specifications of libraries, and generate spec-
ifications over abstract rather than concrete fields.

The remainder of the paper is organized as follows: Sec-
tion 2 gives an overview of the method, describes the un-
derlying logic, and provides some small examples. Section 3
gives the technical details of the analysis. Section 4 presents
our experimental results. Section 5 compares our method
with the related work, and Section 6 concludes.

2. OVERVIEW
Given a procedure in an object-oriented program, our

analysis summarizes the behavior of that procedure by com-
puting a symbolic relationship between the procedure’s pre-
states and post-states. Our summaries are declarative for-
mulas written in a relational logic with transitive closure. A
summary gives both an over- and an under-approximation
of the procedure’s behavior. It bounds the final values of ac-
cessed fields, the return value, and allocated objects of the
analyzed procedure by symbolic relational expressions.

Stmt ::= Var = PExpr

| PExpr.Field = PExpr

| Var = new Class(PExpr∗)

| Proc(PExpr∗)

| Var = Proc(PExpr∗)

| return PExpr

| if (Cond) Stmt [else Stmt]

| while (Cond) Stmt

| Stmt; Stmt

PExpr ::= Const | Var[.Field]∗

Const ::= null | true | false

Cond ::= Var[.Field]∗== PExpr

| Var[.Field]∗!= PExpr

| Cond && Cond | Cond || Cond

Figure 1: Program statements

We abstract the pre-state of a procedure by representing
each type, variable, and field as a relation with some sym-
bolic value. The effects of each program statement on the
abstract state are computed using a flow-sensitive, context-
sensitive analysis based on the abstract interpretation frame-
work [3]. For each relation, two expressions are computed:
a lower bound, representing the tuples that the relation con-
tains in all executions of the procedure (encoding the proce-
dure’s must side-effects), and an upper bound, representing
the tuples that the relation possibly contains in some execu-
tion (encoding the procedure’s may side-effects).

The constraints place no restrictions on aliasing between
symbolic names, and thus the results account for all possible
aliasing in the pre-state.

In order to generate more precise summaries, our analysis
exploits the condition of a loop in abstraction of the loop
body: upon entering a loop, a relational encoding of the
loop condition is intersected with the expressions computed
for the variables used in that condition. Thus, those tuples
that violate the loop condition will be removed. The loop is
then abstracted by computing a fixpoint. Then, a relational
encoding of the termination condition (negation of the loop
condition) is intersected with the final expressions of the
condition’s variables.

Our analysis is further optimized by applying a pattern
matching that recognizes the loops iterating over all the
elements of a linked data structure, a common pattern in
heap-manipulating programs. It generates a more accurate
specification for any loop that follows this pattern.

A collection of simplification rules and widenings reduces
the size and complexity of the generated expressions. For ex-
ample, transitive closure can often be used to concisely sum-
marize a relation updated in a loop without losing sound-
ness. We limit the size of relational expressions by placing
an upper bound on the number of operators it can contain.
Any overconstraint exceeding that bound is widened to the
universal relation of the appropriate type. Any undercon-
straint exceeding that bound is approximated by the empty
set.

2.1 Programs
The focus of our analysis is to summarize the effects of an

object-oriented program on the structure of the heap. We
currently support a subset of Java statements that does not
include exceptions, concurrency, and arithmetic expressions.
Figure 1 gives a grammar for supported program statements.

Summary ::= Constr | Summary ∧ Summary

Constr ::= PostType Op AllocExpr

| Return Op ValueExpr

| PostField Op FieldExpr

Op ::= ⊆ | ⊇ | =

AllocExpr ::= PreType | SymObj | SymObjSet

| AllocExpr + AllocExpr union

| AllocExpr & AllocExpr intersection

ValueExpr ::= {<Const>} | Param | SymObj

| SymObjSet | {} | PostType

| ValueExpr.FieldExpr composition

| FieldExpr.ValueExpr composition

| ValueExpr & ValueExpr intersection

| ValueExpr + ValueExpr union

| ValueExpr - ValueExpr difference

FieldExpr ::= PreField

| ValueExpr → ValueExpr product

| FieldExpr.FieldExpr composition

| FieldExpr & FieldExpr intersection

| FieldExpr + FieldExpr union

| FieldExpr - FieldExpr difference

| FieldExpr ++ FieldExpr override

| *FieldExpr closure

PreField ::= BinaryRelation

PostField ::= BinaryRelation

PreType ::= UnaryRelation

PostType ::= UnaryRelation

Return ::= UnaryRelation

Param ::= UnaryRelation

SymObj ::= UnaryRelation

SymObjSet ::= UnaryRelation

Figure 2: Relational logic for summaries

2.2 Summaries
Our analysis encodes a procedure’s behavior in a rela-

tional logic with transitive closure. Each class C declared
in the analyzed program is encoded by a unary relation (a
relation of arity 1) that represents the set of all allocated
objects of type C. A program variable is encoded by a sin-
gleton unary relation that represents the value of that vari-
able, and a field of type T declared in a class C is encoded
by a functional binary relation of type C → T that maps
each object of type C to an object of type T .

Figure 2 gives a grammar for the underlying relational
logic, a subset of the Alloy modeling language [6]. For an
analyzed procedure p, the summary is a conjunction of con-
straints for the final values of p’s accessed fields, return value
(if any), and allocated objects. PreField and PostField rep-
resent the relations encoding the value of a field before and
after the execution of p, respectively. Similarly, PreType and
PostType represent the relations encoding the initial and fi-
nal sets of allocated objects of a type. The relation Return

represents the return value of p.
A constraint can bound the final value of a relation from

either above or below. For a relation r and a relational
expression e, the subset constraint r ⊆ e expresses that each
tuple of r is contained in e. Similarly, the superset constraint
r ⊇ e expresses that r contains all the tuples in e. We use
the equality constraint r = e when both r ⊆ e and r ⊇ e
hold.

A summary bounds the set of the allocated objects of each

type by an allocation expression. An allocation expression
for a type is a unary relational expression that can contain
the initial objects of that type (PreType) and some newly
allocated symbolic objects (SymObj). A summary enumer-
ates the first m objects allocated by the analyzed procedure
or its callees. Any further allocations are approximated by
a symbolic set of objects (SymObjSet) whose cardinality is
unspecified.

The values of program variables and fields are bounded
by value expressions and field expressions, respectively. A
value expression gives a unary relation that can represent a
program constant, a formal parameter of the analyzed pro-
cedure, or an allocated object. It can also represent the
empty set, or the set of all objects of some type. Further-
more, a value expression can be the relational composition
(relational join) of a value expression and a field expression.
The composition of relations r (arity n) and s (arity m) is
defined as follows:

r.s = {〈r1, .., rn−1, s2, .., sm〉 |
〈r1, .., rn〉 ∈ r ∧ 〈s1, .., sm〉 ∈ s ∧ (rn = s1)}

If r is a value expression (n = 1) and s is a field expression
(m = 2), the expression r.s gives the standard relational
image of r under s. If r is a field expression (n = 2) and s
is a value expression (m = 1), the expression r.s gives those
elements of the domain of r whose mapping under r equals
some element in s.

A field expression gives a binary relation that can contain
the initial value of a field (PreField), a Cartesian product of
two value expressions, and the join, intersection, union, or
difference of two field expressions. Furthermore, it can be
the result of overriding a field expression with another field
expression using the ++ operator:

r ++ s = s + (r - {〈r1, .., rn〉 : r | r1 ∈ domain(s)})

That is, (r ++ s) contains all the elements of s and those
elements of r not mapped by s (The operators + and - give
the set union and difference, respectively).

Our logic also includes the reflexive transitive closure of a
binary relation, denoted by the * operator. For a homoge-
neous binary relation r : T → T , the relation * is defined
as follows:

* r = iden + r + r.r + r.r.r + ...

where iden is the identity relation. The expression x.*r

succinctly represents all the elements reachable from x via
the r relation.

2.3 Examples
Figure 3 gives an implementation of a doubly linked list

data structure. A list contains a head field that gives its first
entry. Each entry has an integer data field1 and links to its
next and previous entries in the list.

Figures 4 - 7 show the summaries inferred by our tech-
nique for some small procedures manipulating linked lists.
The first two examples illustrate the approximations of basic
program statements, while the last two illustrate the accu-
racy of the summaries generated for some loops. In each
summary, the final (primed) values of fields, variables, and
types are given based on their initial (unprimed) values. The

1Our analysis does not currently support integer arithmetic,
but it does support the use of int as a datatype.

class Entry {
int data;
Entry next;
Entry prev;

Entry(int d) {
data = d;
next = null;
prev = null;

}
}
class List { Entry head; }

Figure 3: A linked list declaration

value returned by a procedure proc is denoted by proc return.
Local variables of procedures do not appear in the generated
summaries. Furthermore, we assume that all the constraints
in a summary are implicitly conjoined.

/*
aliasDemo_return = e2.(data ++ (e1 → 0))
data’ = data ++ (e1 → 0)
head’ = head
next’ = next
prev’ = prev
Entry’ = Entry
List’ = List

*/

int aliasDemo (Entry e1, Entry e2) {
e1.data = 0;
return e2.data;

}

Figure 4: Possible aliasing of list elements

The aliasDemo procedure shows the basics of our abstrac-
tion. An update to a field is encoded by a relational override
which permits a succinct description of exactly which parts
of a relation are changed and how. The constraint (data’ =

data ++ (e1 → 0)) encodes that the data field of e1 is set to
0 while the data field of other objects is unchanged. Navi-
gations are encoded by relational joins. It should be noted
that the generated summary specifies the behavior of the
procedure in the general case; it is correct whether or not
e1 and e2 are aliased.

In the next examples, we assume that any relation not
listed in a summary has the same value in the pre- and
post-states.

The insert procedure (Figure 5) allocates a new entry con-
taining the given data d, and inserts it at the beginning of
the receiver list, this. The summary uses New Entry as a sym-
bolic name for the allocated object. The constructor extends
the data relation by a mapping from New Entry to d, and ex-
tends next and prev relations by a mapping from New Entry

to null. The insert procedure also mutates the head field of
the receiver list. Furthermore, it updates the next relation to
include a mapping from New Entry to this.head. This update
overrides the update previously performed by the construc-
tor. Lastly, based on whether this.head is null or not, the
prev field of this.head may be changed to New Entry. Since
the mapping (this.head → New Entry) may or may not be in-
cluded in the final prev’ relation, it is added to the upper
bound of prev’. Because the final mapping of this.head un-

/*
Entry’ = Entry + New_Entry
data’ = data ++ (New_Entry → d)
head’ = head ++ (this → New_Entry)
next’ = next ++ (New_Entry → this.head)
prev’ ⊆ (prev ++ New_Entry → null)

+ (this.head → New_Entry)
prev’ ⊇ (prev ++ New_Entry → null)-(this.head → Entry’)
*/

void insert(int d) {
Entry e = new Entry(d);
Entry tmp = this.head;
this.head = e;
e.next = tmp;
if (tmp != null)

tmp.prev = e;
}

Figure 5: Inserting an element in a list

der prev’ is unknown, the lower bound contains no mapping
for this.head.

/*
data’ = data ++ ((this.head.*next & (Entry’-null)) → d)
*/

void init(int d) {
Entry curr = this.head;
while (curr != null) {

curr.data = d;
curr = curr.next;

}
}

Figure 6: Initializing a list

The init procedure (Figure 6) assigns a given value to the
data field of each entry of the receiver list. It involves a sim-
ple loop which matches the loop pattern optimized by our
analysis: a linked data structure is traversed to the end. For
such loops, the set of values that the loop variable takes in
different iterations can be precisely specified by an expres-
sion. In this example, the loop variable is curr and the values
it takes is specified by the expression (this.head.*next & (En-

try’ - null)), i.e. all non-null objects reachable from this.head

by following the next link. This expression gives the exact
set of objects whose data fields are mutated. In this exam-
ple, all those fields get the value d which is constant with
respect to the loop. Therefore, the summary generated in
this case is the full specification of the procedure’s behavior.

/*
search_return ⊆ ((this.head.*next) & (null + data.d))
search_return ⊇ ∅
*/

Entry search(int d) {
Entry curr = this.head;
while ((curr != null) && (curr.data != d))

curr = curr.next;
return curr;

}

Figure 7: Searching a list

The next example is the search procedure that returns the
first entry in the receiver list whose data matches the given
d, or null if no such entry exists. The procedure can be imple-
mented in different ways. We use the implementation given
in Figure 7 to illustrate how our analysis exploits loop con-
ditions to produce more precise results even when the loop
does not match the optimized pattern. The analysis infers
that in each iteration, the curr variable points to some object
reachable from this.head by following the next link, and thus
its final value (the return value of the procedure) must be in
this.head.*next. Since the final value is outside of the loop,
it must violate the loop condition. That is, it must either
be null or its data field must be equal to d. The set of all ob-
jects satisfying either of these conditions is encoded by the
relational expression (null + data.d). Therefore, the return
value belongs to the intersection of the above expressions,
i.e. search return ⊆ this.head.*next & (null + data.d)

3. ABSTRACTION

3.1 Definitions
Environments.

The set of concrete values of an object-oriented program
comprises the values of variables, fields, and types. The
concrete value of a variable is an object (which is denoted by
a singleton set to provide a uniform definition), the concrete
value of a field is a mapping from objects to objects, and the
concrete value of a type is the set of all objects of that type.
If Obj represents the set of all objects in a program, the set
of all possible concrete values CV al is defined as follows:

CV al = P(Obj) ∪ P(Obj × Obj)

where P(S) denotes the powerset of a set S.
The set of abstract values, AV al, comprises the three

kinds of relational expressions defined in the previous sec-
tion: value expressions, field expressions, and allocation ex-
pressions.

AV al = V alueExpr ∪ FieldExpr ∪ AllocExpr

A concrete state maps each variable, field, and type to a
concrete value. We use C to denote the set of all possible
well-typed concrete states of a program:

C = V ar ∪ Field ∪ Type → CV al

We abstract the set of all concrete states that may occur
at a program point with a pair of environments 〈Eu, Eo〉.
An environment is a mapping from each variable, field, and
type to an abstract value:

Env = V ar ∪ Field ∪ Type → AV al

The environments Eu and Eo represent the under- and the
over-approximation of the concrete states, respectively.

The set of concrete states at a program point is abstracted
using the independent attribute method: an abstract envi-
ronment maps each variable, field, and type to an abstrac-
tion of the set of its values in the given concrete states. We
therefore lose the correlation between the values of different
variables at a program point.

The meaning of the abstraction is given by the concretiza-
tion function γ defined as follows:

γ : Env × Env → P(C)
γ(〈Eu, Eo〉) =

{c | ∃c0, δ,∀x, [[Eu(x)]]δc0 ⊆ c(x) ⊆ [[Eo(x)]]δc0}

where c0 is a well-typed initial state, δ is a binding of allo-
cated symbolic objects to concrete objects not used in c0,
and [[e]]δc0 denotes the meaning of a relational expression e
under the bindings defined by c0 and δ. The concretization
function γ gives the set of all concrete states in which the val-
ues of all variables, fields, and types are under-approximated
by Eu and over-approximated by Eo.
Lattice of Environments.

We define a partial order ⊑ over pairs of environments as
follows:

〈Eu
1 , Eo

1〉 ⊑ 〈Eu
2 , Eo

2〉 ⇐⇒
∀x, (Eu

1 (x) ⊇ Eu
2 (x)) ∧ (Eo

1(x) ⊆ Eo
2(x))

This partial order defines a pointed lattice over the set
of all pairs of environments, with a top ⊤ = 〈E∅, Euniv〉
and a bottom ⊥ = 〈Euniv, E∅〉 where E∅ represents the
environment in which everything is mapped to the empty
expression, and Euniv denotes the environment in which ev-
erything is mapped to the universe of all elements.

The lattice join ⊔ is defined as follows:

〈Eu
1 , Eo

1〉 ⊔ 〈Eu
2 , Eo

2〉 =
〈 λx.Eu

1 (x) & Eu
2 (x), λx. Eo

1(x) + Eo
2(x) 〉

It computes the least upper bound of two pairs of envi-
ronments by intersecting the lower bounds of all variables,
fields, and types in the two environments, and unioning their
upper bounds.

We also define the following widening operation to stabi-
lize infinitely ascending chains in the lattice.

〈Eu
1 , Eo

1〉 ▽ 〈Eu
2 , Eo

2〉 =
let 〈Eu

3 , Eo
3〉 = 〈Eu

1 , Eo
1〉 ⊔ 〈Eu

2 , Eo
2〉 in

〈 λv. if ∃x, r, (Eu
3 (v) = x & x.r & .. & x.r(k))

then ∅ elseif |Eu
3 (v)| ≥ n

then ∅ else Eu
3 (v)

∪ λf. if |Eu
3 (f)| ≥ n

then ∅ else Eu
3 (f)

∪ λt. Eu
3 (t),

λv. if ∃x, r, (Eo
3(v) = x + x.r + .. + x.r(k))

then x. ∗ r elseif |Eo
3(v)| ≥ n

then type(v) else Eo
3(v)

∪ λf. if |Eo
3(f)| ≥ n

then domainType(f) → rangeType(f)
else Eo

3(f)
∪ λt. if ∃l1, .., lm : SymObj, (Eo

3(t) = l1 + .. + lm)
then Eo

3(t) + symObjSet(t) 〉

It first computes the least upper bound of the given pairs
of environments, then approximates the result based on the
constant bounds k, m, and n with the following rules:

• A union of k joins x + x.r + .. + x.r(k) is overapprox-
imated by x. ∗ r, where ∗r is the reflexive transitive
closure of r. In order to apply this rule, r need not
be a single field name; it can be any arbitrary rela-
tional expression. Similarly, an intersection of k joins
is under-approximated by the empty set.

• If m objects are already allocated for a type, the widen-
ing operation generates a symbolic object set, of un-
specified cardinality, to be used in future allocations.

• Any expression whose number of operators is greater
than a limit n is over-approximated by a universal rela-
tion of the appropriate type, and under-approximated
by the empty set.

Initial Abstraction.

Summarizing a procedure p starts by generating a pair of
initial abstract environments 〈Eu

0 , Eo
0〉 in which Eu

0 = Eo
0

and each formal parameter, field, and type accessed in p is
mapped to a symbolic name. Our analysis makes no as-
sumptions about the possible aliasings between names, and
thus the result is valid for all possible aliasings.

3.2 Transfer Functions
The transfer function

F̄ : Stmt → (Env × Env) → (Env × Env)

models the effects of program statements on the abstract
environments. The expressions generated by this function
are syntactically simplified using the equivalence-preserving
transformations described in Section 3.3.

Evaluation in an environment: The auxiliary func-
tion eval evaluates a program expression in a given environ-
ment:

eval : PExpr → Env → V alueExpr
eval(c : Const, E) = {<c>}
eval(v : V ar,E) = E(v)
eval(e.f,E) = eval(e,E).E(f)

That is, the evaluation of a constant is always a unary re-
lation corresponding to that constant. The evaluation of a
program variable will be just a lookup in the environment,
and the evaluation of a navigation expression is defined re-
cursively.

Assignments to locals: Assigning an expression e to
a local variable v is abstracted by the following rule:

F̄(v := e, 〈Eu, Eo〉) =
〈Eu[v 7→ eval(e,Eu)], Eo[v 7→ eval(e,Eo)]〉

That is, the lower and upper bounds of e become the lower
and upper bounds of x.

Field updates: Assigning an expression e2 to a field f
of the object described by an expression e1 is abstracted by
the following rule:

F̄(e1.f := e2, 〈E
u, Eo〉) =

let xu
1 = eval(e1, E

u), xo
1 = eval(e1, E

o),
xu

2 = eval(e2, E
u), xo

2 = eval(e2, E
o) in

if (xu
1 = xo

1) ∧ (xu
2 = xo

2)
then 〈Eu[f 7→ Eu(f) ++ xu

1 → xu
2],

Eo[f 7→ Eo(f) ++ xo
1 → xo

2]〉
else 〈Eu[f 7→ Eu(f) - xo

1 → rangeType(f)],
Eo[f 7→ Eo(f) + xo

1 7→ xo
2]〉

Two cases are distinguished:

• Strong update: if the lower bounds of e1 and e2 are
syntactically the same as their upper bounds, then the
computed values for both expressions are exact. In
this case, the value of e2 overrides the previous value
of e1.f .

• Weak update: if the values computed for e1 and e2

are not necessarily exact, it is not clear for which ob-
ject the f field was mutated, or how it was mutated.
Therefore, the over-approximation allows the f field
of any of the objects represented by the upper bound
of e1 to be mapped to any of the objects represented
by the upper bound of e2. The lower bound leaves all
possible mutated objects unconstrained.

Allocations: We assume that an allocation statement
v = new t(e1, .., en) is broken into two consecutive state-
ments2: v = new t; v.init(e1, .., en);. The first statement does
the actual allocation, and the second one calls the proper
constructor on the allocated object. Here, we explain the
abstraction of the allocation statement. The call to the con-
structor will be abstracted similar to the other method calls
(explained later).

F̄(v := new t, 〈Eu, Eo〉) =
let s = getSymObjSet(t) in

if s 6= ∅ then 〈Eu[v 7→ ∅], Eo[v 7→ s]〉
else let l = symObj(t) in

〈Eu[t 7→ Eu(t) + l, v 7→ l],
Eo[t 7→ Eo(t) + l, v 7→ l]〉

The getSymObjSet function returns the symbolic object set
generated for a type t, if it exists, and the symObj function
generates a fresh symbolic object of a type t.

Allocating an object of type t is abstracted by distinguish-
ing two cases:

• If as a result of a previous widening, a symbolic ob-
ject set is already generated for a type t, meaning
that we have already hit the limit for enumerating
new objects, the new object is over-approximated by
that same symbolic set and under-approximated by
the empty set. Since the cardinality of the symbolic
set is unconstrained, no other updates are necessary.

• If no symbolic set has been generated, we generate a
fresh symbol as the exact value of the new object. This
symbol will then be added to the allocation expression
of t.

Call sites: During the analysis, different calls to a pro-
cedure p may have different summaries. This is because the
abstractions of field updates and allocation statements are
based on whether the values computed for variables, fields,
and types are exact or not. However, it is often the case that
the summaries are structurally identical, and we can avoid
re-computing them from scratch at each call site. One can
predict whether or not two summaries will be structurally
identical by looking at their context, an abstraction that
records the parts of the environments with exact values:

context(〈Eu, Eo〉) =
{v : var | Eu(v) = Eo(v)} ∪
{f : field | Eu(f) = Eo(f)} ∪
{t : type | getSymObjSet(t) = ∅}

Given a context of p, our technique generates a summary

template which can then be instantiated to produce a sum-
mary for a call to p.

Consider a call to a procedure p in an environment pair
〈Eu, Eo〉 with context c. We compute a summary template
t from c by first generating a pair of environments whose
context is the same as c, but maps all variables, fields, and
types to fresh symbolic values, and then summarizing the

2This may be done using the Soot framework [17].

body of p on that generated pair of environments:

template(p, c) =
let Eu

1 = λv. sym(v) ∪ λf. sym(f) ∪ λt. sym(t),
Eo

1 = λv. if (v ∈ c) then Eu
1 (v) else sym(v)

∪ λf. if (f ∈ c) then Eu
1 (f) else sym(f)

∪ λt. if (t ∈ c) then Eu
1 (t)

else Eu
1 (t) + getSymObjSet(t)

in F̄(p body, 〈Eu
1 , Eo

1〉)

where sym(x) generates a fresh symbolic value for x.
The summary of the call site is then computed by in-

stantiating t with the values from 〈Eu, Eo〉. That is, by
substituting the values of actual parameters, and fields at
the call site for the symbols used in the summary template.

F̄(proc(e1, ..., en), 〈Eu, Eo〉) = instantiate(
template(proc, context(〈Eu, Eo〉)), 〈Eu, Eo〉)

The summary template t is saved and associated with the
context c. If another call to p is later encountered with
the same context c, then its summary can be computed by
instantiating t with the values from its environment, rather
than computing the summary directly from scratch.

If a procedure p has x formal parameters, accesses y differ-
ent fields, and allocates z different types, then it has 2x+y+z

possible contexts. It should be noted that the empty context
represents the case where none of the computed values are
exact. Therefore, the template summary generated for the
empty context only performs weak updates and although it
is not precise, it can be used in all other contexts too. To
balance between precision and performance, we summarize
each procedure on demand for its first l distinct contexts
where l is a constant. Any further calls whose correspond-
ing contexts are not visited before will be replaced by the
procedure’s template summary for the empty context.

Return statements: A procedure named proc is allo-
cated a special variable proc return to hold its return value.
A return statement is simply an assignment of a value to
that variable.

F̄(return e, 〈Eu, Eo〉) =
〈 Eu[proc return 7→ (Eu(proc return) & eval(e, Eu))],

Eo[proc return 7→ (Eo(proc return) + eval(e,Eo))] 〉

If the procedure has multiple return statements, the re-
turn values accumulate in Eu and Eo by intersecting the
lower bounds and unioning the upper bounds.

Branches: Conditional statements are abstracted by first
abstracting each branch independently, then combining the
results using the lattice least upper bound operator.

F̄(if (c) S1 else S2, 〈E
u, Eo〉) =

F̄(S1, 〈E
u, Eo〉) ⊔ F̄(S2, 〈E

u, Eo〉)

Loops: Loops are abstracted by successively abstracting
the body and joining each new abstraction with the abstrac-
tion of previous iterations. To produce more precise sum-
maries, we intersect the loop condition with the variables
used in it at the beginning of each iteration. Furthermore,
the termination condition (negation of loop condition) is
intersected with the final value of the variables in the con-
dition.

F̄(while(c) S, 〈Eu, Eo〉) =
let 〈Eu

1 , Eo
1〉 = Fix 〈Eu, Eo〉.

F̄(S, 〈addCond(c, Eu), addCond(c, Eo)〉) ▽ 〈Eu, Eo〉
in 〈addCond(¬c, Eu

1), addCond(¬c, Eo
1)〉

where ▽ is the lattice widening operator, and addCond(c, E)
is a function that intersects a relational encoding of a con-
dition c with the values of c’s variables in an environment
E:

addCond(v.f1.f2 . . . fn == e, E) =
let x = eval(v, E), y = eval(e,E)
in E[v 7→ x & E(f1).E(f2) . . . E(fn).y]

addCond(v.f1.f2 . . . fn != e, E) =
let x = eval(v, E), y = type(e) - eval(e,E)
in E[v 7→ x & E(f1).E(f2) . . . E(fn).y]

addCond(c1 && c2) = addCond(c1) ∩ addCond(c2)

addCond(c1 || c2) = addCond(c1) ∪ addCond(c2)

E1 ∪ E2 = λx. E1(x) + E2(x)
E1 ∩ E2 = λx. E1(x) & E2(x)

For example, consider a loop accessing variables c and d
whose values at the beginning of the loop are approximated
by expressions c0 and d0, respectively. If the loop condition
is (c.f==d), then the subset of c0 that passes the condition
belongs to f.d0, the set of elements whose mapping under f
is an element of d0. The set of values that pass the loop con-
dition is therefore (c0 & f.d0). The environment obtained
by applying the addCond function maps c to this more ac-
curate expression.

3.3 Simplifications
Expressions generated by the transfer function can often

be simplified using relational logic equivalence rules, which
reduce the size of an expression without changing its seman-
tics. A subset of those rules is given in Figure 8.

Figure 8(a) gives a set of equivalence rules in relational
logic that simplifies union, intersection, difference, Cartesian
product, and composition of relations.

The rules in Figure 8(b) simplify relational expressions
based on the semantics of reflexive transitive closure and
relational override. The expression ∗r contains all elements
reachable by traversing r any number of times, and that
r ++ (x → y) overrides any previous binding of x.r with y.

The rules in Figure 8(c) are based on the semantics of
types and allocations. Their validity is based on the fact
that newly allocated objects do not alias objects in the pre-
state. We write xnew and xpre to distinguish the case that
x is an allocated symbolic object from the case where it is a
relation in the pre-state. A name with no subscript may be
either.

3.4 Properties

3.4.1 Safety
The abstraction described above is safe, meaning that the

generated under- and over-approximations account for all
executions of the summarized procedure.

Figure 9 shows the relation between the concrete states ci

and abstract environments 〈Eu
i , Eo

i 〉 for a safe abstraction.
In this figure, γ is the concretization function, F is the con-
crete state transition function which can be defined by the
operational semantics of the program statements, and F̄ is
the abstract state transition function (the transfer function
defined in Section 3.2).

In the interest of space, we just give a sketch of the safety
proof. In order to prove safety, it is sufficient to show:

x + x = x
x - (x - y) = x & y
x.(x → y) = y
x.r + x.s = x.(r + s)
x.r + y.r = (x + y).r
(x & c) + (y & c) = (x + y) & c
(x → z) + (y → z) = (x + y) → z

(a)

x. ∗ r. ∗ r = x. ∗ r
x + (x. ∗ r) = x. ∗ r
(x + x.r). ∗ r = x. ∗ r
r ++ (x → y) ++ (x → z) = r ++ (x → z)
r + (r ++ (x → y)) = r + x → y

r & (r ++ (x → y)) = r - (x → rangeType(r))

(b)

type(x).(x → y) = y
x.(type(x) → y) = y

x & type(x) = x
rpre - (xnew → y) = rpre

xpre.(rpre ++ (ypre → z) ++ (tnew → w)) =
xpre.(rpre ++ (ypre → z))

tnew .(rpre ++ (ypre → z) ++ (tnew → w)) = w

(c)

Figure 8: A sampling of the simplification rules

used. The function type(e) denotes the set of all ob-

jects with the same type as an expression e.

1. The initial abstraction is safe. That is,
∀c : C | c ∈ γ(〈Eu

0 , Eo
0〉)

2. The composition property holds. That is,
F ◦ γ ⊆ γ ◦ F̄

The first property is valid because the symbolic names
used in the pre-state are uninterpreted, meaning that they
can be instantiated by any concrete values. The second
property can be proved by cases: it holds for each program
statement separately based on the definition of the corre-
sponding transfer function and the operational semantics of
that statement.

3.4.2 Termination
In order to prove that abstraction always terminates, it

is sufficient to show that the abstraction of all loops and
recursive procedures reaches a fixpoint after a finite number
of iterations.

Both least upper bound and widening operations result
in a lattice point which is either the same as one of their
arguments or one that is higher than both of them. During
the abstraction of a loop, if the join operation results in a
lattice point which is the same as one of its arguments, then
it has reached a fixpoint and the abstraction terminates.
If the join instead results in a node higher in the lattice,
the abstraction can make only a finite number of moves up
the lattice before the abstract environment is widened to ⊤.
This is because the length of all expressions is bounded by
a constant size, and thus the height of the lattice is finite.
Therefore, after a finite number of steps, the abstraction

Figure 9: Relation between concrete states and ab-

stract states

will either reach a fixpoint at ⊤ or a fixpoint at some lower
point.

3.5 Optimization
A common loop pattern in heap-manipulating programs is

iterating over a linked data structure: a loop traverses over
a data structure using a variable x that acts as a cursor. In
each iteration of the loop, the cursor variable is updated by
taking one step along a relation r; the termination condition
is that no further step along r can be taken. In a linked
list, for example, x is a reference to a list entry, r is the
next field from entry to entry, and the termination condition
is x.next!=null. In a traversal using an iterator, x is the
reference to the iterator, r is the specification field associated
with iteration, and the termination condition is hasNext(x).

The general form of the loop is:

while (cond(x, r)) {
S1; x=next(x); S2; }

which allows arbitrary statements before and after the up-
date of the cursor, so long as they do not mutate the relation
r or assign to the cursor x.

For any loop in this form, our analysis treats the approxi-
mation of x by x0. ∗ r (where x0 is the initial value of x and
∗r is the reflexive-transitive closure of r) as the exact set of
values taken by x during the execution of the loop.

Having inferred the exact value of the loop variable, the
analysis often generates more precise abstraction of the loop
body by performing an additional optimization pass over the
loop. This pass infers a more precise final value for any field
which is (1) updated exactly once in the loop body and (2)
the updating statement is of the form e1.f = e2 where e1

has an exact value and e2 is constant with respect to the
loop. This additional precision will often carry through the
abstraction rules. Recall the loop we saw in Figure 6:

void init(int d) {

Entry curr = this.head;

while (curr != null) {

curr.data = d;

curr = curr.next;

}

}

It matches the optimized pattern, so the exact value of
curr will be this.head.*next. After intersecting with loop
condition, it will be this.head.*next & (Entry’ - null). Since
the value of curr is exact, the abstraction of the statement
curr.data = d is also exact, giving us the following:

data’ = data ++

((this.head.*next & (Entry’ - null)) → d)

Without this optimization we would have generated the fol-
lowing:

data’ ⊇ data -

((this.head.*next & (Entry’ - null)) → int)

data’ ⊆ data +

((this.head.*next & (Entry’ - null)) → d)

which allows an arbitrary subset of this.head.*next.data be
overridden by d, and thus, is a much weaker specification.

4. EXPERIMENTS
We ran our technique to generate summaries for proce-

dures from two Java libraries: the standard Java linked list
implementation and the OpenJGraph package[9]. For each
library, we summarize all procedures written in our sup-
ported subset of Java. The accuracy of summaries varied,
but no summary took more than 3 seconds to generate even
though some had as many as 81 procedure calls.

To evaluate the accuracy of the generated summaries, we
used them to check properties of their corresponding pro-
cedures. We performed two experiments: (1) Summarize
small, structurally complex procedures and compare those
summaries to pre-existing full specifications. For this study,
we used the Java linked list library. (2) Summarize proce-
dures with more typical object-oriented code which uses sev-
eral different data structures and makes many external calls.
Since full specifications were not available, we assessed the
summaries against manually written partial specifications.
For this study, we used the OpenJGraph package.

The summaries were analyzed using the Alloy Analyzer [6]:
for a procedure p and a specification S we checked if the for-
mula (summary(p) =⇒ S) holds, where summary(p) is
the summary generated by our technique. Since the Alloy
Analyzer analyzes formulae in finite scopes, we first checked
the summaries in a high scope and then inspected them
manually. Our technique generated full specifications for 13
of the 30 procedures. In the remaining 17 procedures, our
technique generated all frame conditions, and in 16 of them
it inferred some major properties. In one of the procedures
the generated summary was too rough to be useful for more
than its frame conditions.

The experiments were done using the following constants:
Maximum number of operators allowed in an expression be-
fore it is widened to the universal relation (n) = 1300. Max-
imum number of allocations enumerated before a set of ob-
jects is allocated (m) = 5. Maximum number of unions
before widening to closure (k) = 3. Maximum number of
contexts for which a procedure is summarized (l) = 5.

4.1 Java Linked List Implementation
We generated summaries for 10 procedures in Sun’s stan-

dard implementation of linked list in the Java Collections
Framework. The implementation represents a list as a cir-
cular doubly linked list with a dummy header entry. An
integer field size keeps track of the size of the list. Since our
current technique does not handle arithmetic expressions,
we ignored all accesses to size, and only analyzed procedures
that do not depend on integer arithmetic.

We generated summaries for 10 procedures: add, addFirst,
addLast, remove, removeFirst, removeLast, getFirst, getLast,
clear, and clone. These procedures are small and mostly self-
contained, but their correctness depends on their complex
mutations of the underlying doubly linked data structure.

/*
clone_return = New_LinkedList
element’ ⊇ element
element’ ⊆ element + (set_New_Entry →
(this.header.next.*next & (Entry’- this.header)).element)

next’ ⊇ next
next’ ⊆ next + (set_New_Entry → set_New_Entry)
previous’ ⊇ previous
previous’ ⊆ previous + (set_New_Entry → set_New_Entry)
header’ = header ++ (New_LinkedList → set_New_Entry)
Entry’ ⊇ Entry
Entry’ ⊆ Entry + set_New_Entry
LinkedList’ = LinkedList + New_LinkedList
*/

public Object clone() {
LinkedList clone = new LinkedList();
for (Entry e = header.next; e != header; e = e.next) {
Entry newEntry = new Entry(e.element,

clone.header, clone.header.previous);
newEntry.previous.next = newEntry;
newEntry.next.previous = newEntry;

}
return clone;

}

Figure 10: Clone

For each procedure, we checked if the generated summary
is accurate enough to show that the procedure’s JML spec-
ification holds. In 8 of the 10 analyzed procedures, we were
able to check the complete specifications. The summaries
generated for clone and remove were not accurate enough
to prove the full specifications, although they still provided
limited descriptions. These methods cause our technique
difficulty because they mutate the same relation that is be-
ing traversed in a loop.

The summary generated for the clone method, shown in
Figure 10, specifies that a fresh list is constructed and re-
turned, and that it contains some freshly allocated entries
whose elements are chosen from the set of the elements of the
receiver list. Although the summary does not specify that
the size of the constructed list is the same as the receiver
list nor that the copy preserves order, it still specifies useful
information about the procedure – for example, that the el-
ements of the returned list are all chosen from the receiver
list, and that the receiver list is not changed at all.

The remove method removes the first occurrence of a given
element from the list. Although the list is updated at most
once (for the first occurrence), the update is done as part
of the loop. This prevents the analysis of the loop from
stabilizing by inferring the closure, and the loop analysis
instead terminates by widening to the universal relation.
That is, the generated summary allows the values of the next

and previous fields of any Entry object to change, meaning
that any number of entries may be removed from the list.
The summary therefore only provides the frame conditions.

4.2 OpenJGraph API
We used our tool to generate summaries for 20 procedures

of the OpenJGraph package, an open source Java implemen-
tation of a graph package [9]. It represents a graph as a map
from each vertex to a list of adjacent edges. A separate set
records all the edges in the graph.

Instead of generating summaries for Java map and set
using their implementations, we provided their specifications

Table 1: Partial specifications checked in graph procedures

Procedure #Calls Time (Sec) Property
containsVertex(v) 1 0.1 no object fields are mutated
containsEdge(e) 1 0.1 no object fields are mutated

add(v) 11 0.1 v’s final edge list is either empty or unchanged
the edge lists of non-v vertices are unchanged

addEdge(e) 24 0.7 no new edges are added apart from e
the vertex adjacency list is unchanged apart from the ends of e

addEdge(v1, v2) 29 0.8 the adjacency list of vertices is unchanged apart from v1 and v2
no edge is added except possible one connecting v1 to v2
the final graph has an edge connecting v1 to v2

removeEdge(e) 13 0.5 the vertex adjacency list is unchanged apart from the ends of e
the final graph contains all edges of the original graph except e

remove(v) 27 0.9 the final graph does not contain v
minimumSpanningTree() 81 2.7 all edges of MST belong to the original graph

nodes with no adjacent edges are not added to MST
the set of edges of the original graph is unchanged

in the style of the summaries that our technique generates.
Doing so demonstrates how our technique is compositional
and can exploit off-the-shelf specifications when available.

Most methods in this package make a considerable number
of external calls, either directly or indirectly. Our technique
generates full specifications for 5 of the 20 procedures. In
order to evaluate the quality of the summaries generated for
the other 15 procedures, we checked them against two sets
of properties:

• Representation Invariants. The graph package assumes
some invariants about the shape of the data structures
used and the consistency of the data stored in them.
The invariants are given as informal comments in En-
glish. We encoded them as relational invariants in Al-
loy and checked whether or not our generated sum-
maries are sufficient to show the preservation of these
invariants. 6 invariants were checked in 15 procedures.
Out of those 90 checks, 67 of them passed and the
other 23 failed. The invariant with the highest failure
rate is the one stating that the edge-set data structure
contains all edges in the adjacency lists of the vertices.
In most of the procedures, the adjacency lists and edge
set are modified within branches. Since the effects of
different branches are unioned to form the final sum-
maries, the summaries for such procedures allow any
combination of modifications, and thus they are too
weak to show the edge-set consistency invariant.

• Post Conditions. Lacking formal specifications of the
procedures, we checked the generated summaries for
the 15 procedures against some partial post condi-
tions. Table 1 shows a subset of the properties that the
summaries were sufficient to check. The #Calls col-
umn gives the number of procedure calls made by the
analyzed procedure and its callees. We only counted
the number of distinct method calls; calls made to the
same procedure in a loop are counted only once. The
Time column gives the time to generate a summary
using a Pentium 4, 1.8GHz with 512 MB of RAM.
The time is given in seconds. The Property column
is an English description of the checked partial post-
condition.

The most important cases of information loss are from the
following two cases:

(1) A procedure which returns a boolean value, as hap-
pens in containsEdge and containsVertex. Our technique
unions the possible return values and reports that the
return value is either true or false. The summary still
provides a frame condition indicating which variables
and fields are unchanged by the procedure, but the
information about the return value is not useful. The
two such cases in this study have no side effects, so the
summaries are the full frame conditions.

(2) A procedure with a loop that mutates the same link
it is traversing, as in remove. Our technique is able to
determine whether or not the resulting elements are
a subset of the prior elements, but it typically cannot
tell which will be removed or if the order will remain
the same.

5. RELATED WORK
The problem of detecting side effects of a heap manipulat-

ing procedure has been widely studied. Side effect analyses
[2, 5, 8, 11, 14] compute the set of heap locations that may be
mutated by a procedure, typically by using a pointer anal-
ysis to approximate the set of objects to which a reference
variable could point.

Our method seeks the same end by different means: it
uses relational expressions to approximate the set of objects
pointed to by a variable, and then uses them to safely iden-
tify the set of locations that may be mutated by a procedure.
Our method differs from side-effect analyses in that it com-
putes both may and must side-effects to generate more pre-
cise summaries. Furthermore, our summaries specify con-
straints not only on what locations can be mutated by a
method but also on how those locations are mutated.

Tkachuk and Dwyer use side effect analysis to generate
summaries [16]. To check a property of a program unit
more efficiently, they approximate the behavior of the rest of
the program with summaries. Similar to our approach, they
generate both may and must side effects and specify the mu-
tations that can be performed by a procedure. However, our
analysis is capable of generating more precise summaries (1)

by recording the history of field updates by symbolic over-
ride expressions, rather than conservatively updating the
field in all objects that may be aliased, and (2) by exploit-
ing loop conditions in abstracting loop bodies.

Shape analysis techniques [1, 7, 10, 12, 13, 18] also com-
pute an abstraction of code and use it to verify some prop-
erties of linked data structures. They encode the heap as a
graph in which the nodes represent objects and edges repre-
sent field relations. Since the graph can be arbitrarily large,
they abstract it by merging all nodes equivalent under a par-
ticular set of shape properties into a single abstract node.
Although the resulting abstract domain is finite, it is still
very large, and thus the approximating algorithms have high
complexity. Furthermore, the precision of their abstraction
depends on the set of predicates of interest provided by the
user. In contrast, our technique requires no user-provided
annotations and provides a very lightweight, fast approxi-
mation that can later be refined on demand using a fully
automatic framework similar to [15].

6. CONCLUSIONS
We have described a lightweight, flow-sensitive, context-

sensitive technique for automatically generating symbolic
summaries of object-oriented procedures. These summaries,
expressed in a relational logic with transitive closure, can be
thought of as detailed frame conditions; they describe which
memory locations might be changed and in what ways.

This technique was originally conceived as a means of gen-
erating first approximations of procedure specifications, to
be later refined if needed. To that end, it is focused on gen-
erating summaries that are safe (they describe a superset of
possible program behaviors), fast to generate (the time to
extract a summary is linear in the size of the procedure), and
small (we are often able to concisely summarize the effect of
a loop by using transitive closure).

We evaluated our technique using 30 heap-manipulating
procedures from two Java libraries. Our current experiments
suggest that this analysis represents a useful balance be-
tween tractability and accuracy. More experiments have yet
to be done to evaluate the accuracy of the generated sum-
maries for larger programs.

We have found that matching a common loop pattern
(simple linked-data traversal) generates considerably more
precise summaries at a very low cost. We expect that several
more common but simple patterns could be similarly ben-
eficial. One such pattern we are considering is for remove
operations; their summaries are currently not very accurate,
but they often have short, precise, relational specifications.

Currently, branch points always introduce imprecision into
our summaries since we need to account for arbitrarily com-
plex conditions. However, many conditionals have simple
conditions and can be precisely summarized with a rela-
tional expression, and there is no fundamental reason why
our technique cannot do so. Such an extension might per-
mit us to produce precise summaries for simple conditional
procedures such as isEmpty methods.

While we produce correct summaries in the presence of
aliasing, the addition of some lightweight alias analysis should
enable us to produce more concise summaries in several com-
mon cases. Our technique might also benefit from an escape
analysis, to help establish which mutations are actually vis-
ible to the caller.

Acknowledgments
We are grateful to Alexandru Salcianu, Viktor Kuncak, and
Derek Rayside for their advice and useful discussions.

7. REFERENCES
[1] I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by

predicate abstraction. In Proc. of VMCAI, 2005.

[2] J. Choi, M. Burke, and P. Carini. Efficient
flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In Proc. of

POPL, 1993.

[3] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proc. of

POPL, pages 238–252, Jan 1977.

[4] T. Freeman and F. Pfenning. Refinement types for
ML. In Proc. of Programming Languages Design and

Implementation, 1991.

[5] M. Hind and A. Pioli. Which pointer analysis should I
use? In Proc. of International Symposium on Software

Testing and Analysis, 2000.

[6] D. Jackson, I. Shlyakhter, and M. Sridharan. A
micromodularity mechanism. In Proc. of Foundations

of Software Engineering, pages 62–73, Sep 2001.

[7] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A
relational approach to interprocedural shape analysis.
In Proc. of SAS, pages 246–264, 2004.

[8] A. Milanova, A. Rountev, and B. G. Ryder.
Parameterized object sensitivity for points-to and
side-effect analyses for Java. In Proc. of International

Symposium on Software Testing and Analysis, 2002.

[9] OpenJGraph. http://openjgraph.sourceforge.net/.

[10] A. Podelski and T. Wies. Boolean heaps. In Proc. of

Static Analysis Symposium, 2005.

[11] A. Rountev. Precise identification of side-effect-free
methods in java. IEEE International Conference on

Software Maintenance, 2004.

[12] M. Sagiv, T. Reps, and R. Wilhelm. Solving
shape-analysis problems in languages with destructive
updating. ACM Transactions on Programming

Languages and Systems, 20(1):1–50, 1998.

[13] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Transactions on

Programming Languages and Systems, 24(3):217–298,
2002.

[14] A. D. Salcianu and M. Rinard. Purity and side effect
analysis for Java programs. In Proc. of VMCAI, 2005.

[15] M. Taghdiri. Inferring specifications to detect errors in
code. In Proc. of Automated Software Engineering,
pages 144–153, Sep 2004.

[16] O. Tkachuk and M. Dwyer. Adapting side effects
analysis for modular program model checking. In

Proc. of Foundations of Software Engineering, 2003.

[17] R. Valle-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot - a Java optimization
framework. In Proc. of CASCON, 1999.

[18] T. Wies, V. Kuncak, P. Lam, A. Podelski, and
M. Rinard. On field constraint analysis. In Proc. of

VMCAI, 2006.

