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Abstract. In this paper we study the problem of finding the shortest
path between two points lying on the surface of a (possibly nonconvex)
polyhedron which is constrained so that a given point on the surface of
the polyhedron must be seen from some point in the path. Our algorithm
runs in time O(n? logn) for the convex polyhedron and O(n®logn) for
nonconvex case. The method used is based on the subdivision of the
inward layout and intersecting it with the visibility map of the point to
be seen.

1 Introduction

The problem of finding the shortest path between two points lying on the surface
of a 3D polyhedron is a basic problem in computational geometry and has many
applications in different areas such as motion planning and navigation. Several
forms of the problem can be defined as we change the properties of the polyhe-
dron (e.g. considering faces to have weights, being nonconvex, etc.), or constrain
the path with different restrictions. An example of the constrained versions is the
problem of finding paths which does not go above some given height as studied
in [1].

The problem of finding the shortest path between two points on the surface
of a polyhedron is well studied in [7], [5], [2], [3]. Especially [2] presents a method
for building a subdivision of the surface which can be used for finding the shortest
paths from a fixed source to a given query point efficiently. The subdivision can
be built in O(n?) time and the shortest path can be determined in O(k) where
k 1s the complexity of the path itself. The best known algorithm for finding
shortest paths on polyhedral surfaces is [3] which finds the shortest path in
O(n log? n) using wavefront propagation method. However as it does not build
any subdivision of the surface, it cannot help us for the method used in this
paper.

In this paper we study a variation of the shortest path problem with visi-
bility constraints, which has interesting applications. The problem is to find the
shortest path from a source point to a target such that a given point on the
surface can be seen from at least one point of the path. The method used here
is to find a point on the boundary of the visible image of the point to be seen



which has minimum total distance from the source and the target. To the best
of our knowledge, this is the first result on this problem.

As the complexity of the visible image of a point on a (possibly nonconvex)
polyhedron is quadratic in size of the polyhedron and the algorithms for finding
the visibility map are superquadratic in general [6], we assume the visible image
of the point to be seen is determined through a preprocessing stage and focus on
the problem of finding the shortest path touching the visible image. The running
time of our algorithm is O(n?logn) for convex and O(n®logn) for nonconvex
polyhedra.

2 Preliminaries

Let P be a closed (possibly nonconvex) polyhedron in 3-space. We denote the
surface of P by P. By interior of P we mean the portion of the space enclosed
by OP not containing 0P itself. We consider P to be specified by a set of
faces, edges and vertices. Without loss of generality we assume that all faces are
triangles. We are given three special points on the surface, namely p, s, and ¢.
The problem is to find the shortest path = between s and t lying on 9P, from
which the point p is visible. The point p is visible from 7 if there is at least one
point ¢ on 7 through which p is visible, i.e. the straight line segment joining p
and ¢ does not intersect the interior of P.

2.1 Shortest Paths on a Polyhedron

We borrow the terminology from [5]. Two faces f and f’ are said to be edge-
adjacent if they share a common edge e. A sequence of edge-adjacent faces is a
list of one or more faces F = (f1, fa, ..., fr+1) such that face f; is edge-adjacent
to face fi41 (sharing common edge e;). We refer to the (possibly empty) list of
edges £ = (e1,€a,...,ex) as an edge sequence and to the vertex of face f; which
is opposite e; as the root of £.

Each face has a two dimensional coordinate system associated with it. If faces
f and f’ are edge-adjacent sharing edge e, we define the planar unfolding of face
f! onto face f as the image of points of f’ when rotated about the line through
e into the plane of f such that the points of f’ fall on the opposite side of ¢ to
points of f. Extending this notation, we say that we unfold an edge sequence
E = (e1,ea,...,¢ex) as follows: Rotate f; around ey until its plane coincides with
that of f5, rotate f; and f5 around eq until their plane coincides with that of
f3, continue in this way until all faces (f1, fa,..., fx) lie in the plane of fr41.

A path on 9P is called geodesic if it is locally optimal and cannot be short-
ened by small perturbations. We say a path @ connects edge sequence & =

(e1,€2,...,e) if m consists of segments which join interior points of e1, e, ..., e
(in that order). Figure 1 shows a shortest path m from s to ¢ unfolded along the
edge sequence connected by it (e1,eq,...,€x).

The following lemmas express some facts about geodesic paths:



Fig. 1. Shortest path from s to ¢ unfolded along its edge sequence

Lemma 1 (Mitchell, Mount and Papadimitriou [5]). If © is a geodesic path
which connects the edge sequence &, then the planar unfolding of m along € 1s a
straight line segment.

Lemma 2 (Sharir and Schorr [7]). If P is a convez polyhedron then the shortest
path between any two points on OP cannot pass through a vertex of P except at
its end-points.

Lemma 3 (Mitchell, Mount and Papadimitriou [5]). The general form of a
geodesic path is a path which goes through an alternating sequence of vertices
and (possibly empty) edge sequences such that the unfolded image of the path
along any edge sequence is a straight line segment and the angle of the path
passing through a vertex is greater than or equal to w. The general form of an
optimal path is the same as that of a geodesic path, except that no edge can
appear in more than one edge sequence and each edge sequence must be simple

Lemma 4 (Mitchell, Mount and Papadimitriou [5]). If m(z) and w(y) are opti-
mal paths from s to points x and y, then they can intersect only at vertices of
P, and if they do at v, then the subpath of w(z) from s to v has the same length
as that subpath of n(y) from s to v.

2.2 Point-visible Paths

The visibility map of a point p, denoted by R, is the subset of 8P from which
p is visible. In the case of convex polyhedra, R, is a connected region whose
boundary consists of O(n) edges of P. In nonconvex case, R, is a set of O(n)
connected regions. The boundary of each region consists of O(n) line segments
(not necessarily edges of P). Thus the total complexity of R, is O(n?) in this
case. We define B, to be the boundary of R,,.

With the definitions above we can say a point p is visible from a path 7 if the
intersection of 7 and R, is non-empty. This intersection may be at one point or
one or more line segments. We say 7 is p-wvisible if p is visible from it.

Let 7 be the shortest p-visible path between s and ¢. The intersection of = and
B, is a non-empty set of points such as (). At least one point in @ such as ¢ has
the property that the two subpaths of = from s to ¢ and from ¢ to ¢ are optimal.
For if not, we can replace the two subpaths with the optimal ones, resulting a
shorter p-visible path from s to ¢ (Fig. 2). From the property stated above, we



conclude that the image of each subpath after unfolding the corresponding edge
sequence is a straight line segment.
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Fig. 2. Shortest p-visible path between s and ¢t. The shaded area is Ry.

3 Computing Shortest p-Visible paths

Consider a maximal set of points on BB, whose shortest paths to a point 2 connect
the same edge sequence. As the following lemma states, such a set forms a
connected interval on B,, which we call it a linearity interval with respect to x or
simply an L-interval with respect to z (Fig. 3). Clearly the set of all L-intervals
with respect to a point z is a partition of B,,.

Fig. 3. The segment ab is an L-interval with respect to z. The shaded area is part of
Rp.

Lemma 1. A mazimal set of points on one edge of B, whose shortest paths to
a point x connect the same edge sequence is a connected interval.

Proof. Suppose I be such a set with the edge sequence £ = (e1,€9,...,¢ex) and
I; and Iy be two disjoint connected subsets of I (Fig. 4). Consider a point g
between points of /7 and 5. Since [ is maximal, ¢ has a different shortest edge
sequence than that of Iy and Iy, say £ = (e}, €5, ..., ¢,). Consider the longest



common subsequences of £ and &£’ from the end of the sequences. As I; and I
lie on the same edge of B, so does ¢, thus the common subsequence mentioned
above is non-empty. Let e be the first edge in this subsequence and f be the face
containing e which is visited first in the face sequence from source to points of
I and q. Let e; and ey be the edges of f other than e. Since £ and &’ differ in
edges prior to e, either e; € £ and e; € £ or converse, i.e. shortest paths to T
cross one of the two edges and the shortest path to ¢ crosses the other. Since Iy
and /5 are on both sides of ¢, and the unfolded image of shortest paths is a line
segment, the shortest path to ¢ must intersect the shortest paths to either 7; or
I5 and this contradicts lemma 4. O

Fig. 4. Proof of the lemma 1.

Suppose L, and L, be the set of L-intervals with respect to points z and
y. The intervals obtained from overlapping intervals of L, and L, are called
L-intervals with respect to the pair x and y. We name the set of such intervals
L., (Fig. 5). Clearly L, , partitions Bp.

Lemma 2. Let I be an L-interval with respect to the pair x and y. One can find
the point q(I) on I with minimum total distance to x and y in constant time.

Proof. I has the property that the two edge sequences connected by the shortest
paths from a point on I to x and y are the same for all points of /. From this
property we can find the point ¢(7) on I whose total distance to z and y is
minimum in constant time using elementary techniques of analytical geometry.
We omit the details of the computation here. a

Based on the preceding lemma, the shortest p-visible path between s and ¢
can be found by performing the following steps:

1. Compute the set of intervals L, ; on B,
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Fig. 5. ¢b is an L-interval with respect to the pair z and y.

2. For each interval I € L, ; find the point ¢(7) which has the minimum total
distance from s and .

3. Let ¢ be the point with the minimum total distance from s and ¢ among
{g(I) : T € Ly}

4. The shortest p-visible path between s and ¢ is the shortest path between s
and q followed by the shortest path between ¢ and .

In order to compute the set of intervals L, ; in step 1 above, we compute L, and
L; separately, then overlapping the intervals to obtain L, ; is straightforward.

3.1 Computing L-intervals

For computing the set of L-intervals with respect to a point z on the surface we
use a subdivision presented in [2]. Below we review the method for building the
subdivision.

Given a source point & on JP, one can construct a shortest path tree for a
given polyhedron in O(n?) time and O(n) space using Chen and Han’s algorithm
[2]. This structure holds the information about the shortest paths from z to ver-
tices of P in such a way that for any vertex v of P, the edge sequence connected
by the shortest path from s to v can be determined in time proportional to the
size of the edge sequence.

One can cut the surface of P along the shortest paths from z to all of the
vertices of P. The resulting surface can be laid out on a common plane. The
layout obtained in this manner is called the inward layout of P and is a star-
shaped polygon. The vertices of this polygon are the vertices of P and images
of the source point x under different unfoldings and the edges are shortest paths
from the source to the vertices of P.

A subdivision of the inward layout can be obtained by constructing the
Voronoi diagram on the layout with respect to the images of the source point
(Fig. 6). This subdivision has the property that The points in the same region
are closer to the corresponding image of the source than to other images, and
their shortest paths from the source pass the same edge sequence. As the num-
ber of images are O(n), the subdivision can be built in O(nlogn) using known



algorithms for computing Voronoi diagrams. For the nonconvex case, the inward
layout may overlap itself. The algorithm for computing Voronoi diagram in this
case is slightly different and is given in [2].
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Fig. 6. The inward layout of a box. The edges of the subdivision are dashed lines.

It is clear that the L-intervals on B, with respect to point x are the intervals
formed by intersection of B, and the subdivision mentioned above considering x
as the source point.

3.2 The Nonconvex Case

In the nonconvex case, the shortest path between two points may pass through
vertices of the polyhedron. Suppose v be the last vertex on the shortest path =
from x to y. 7 consists of two optimal subpaths: one from x to v and one from v
to y, while the latter can be characterized by the edge sequence connected with
it. We may view each vertex v as a pseudo-source with an initial distance equal
to the length of the shortest path from the source to it. This causes the shortest
path tree to differ slightly from the convex case by introducing some vertex nodes
in it which correspond to pseudo-sources. However the time and space needed to
construct the tree remains the same. In this case the subdivision of the surface
is obtained by constructing the Voronoi diagram on the inward layout of the
polyhedron with respect to the images of the source and pseudo-sources. For
a point in the region corresponding to one pseudo-source, the shortest path is
obtained by first finding the shortest path from source to the vertex associated by
the pseudo-source, then following the edge sequence specified by the subdivision
region.

In this case an L-interval on B, with respect to z has the property that there
is a vertex v of the polyhedron which every shortest path from z to a point on



the interval passes through v as the last vertex, and the edge sequence from v to
points on the interval is the same. As the first part of the path is fixed among the
points on interval, given an L-interval I with respect to s and ¢ we can still find
the point ¢(7) whose total distance from s and ¢ is minimum in constant time
provided that during computing intervals we store the distance to pseudo-source
associated with the interval.

3.3 Analysis of the Algorithm

We consider two stages for the algorithm: computing L-intervals with respect
to the pair s and ¢, and finding the shortest p-visible path. The first stage is
analyzed by the following two lemmas.

Lemma 3. The number of L-intervals on B, with respect to a point is O(n?C(B,))
where C(Bp) is the number of connected components of B,.

Proof. From lemma 1 we know the intersection of any edge sequence correspond-
ing to a shortest path with each edge of B, is at most one L-interval. From this,
we can conclude that the total number of intervals on each edge of B, is O(n).
As in general, each connected component of B, has O(n) edges, the total number

of L-intervals on B, is O(nzC(Bp)). a

Thus in worst case, there are O(n?) and O(n?®) L-intervals on B, for convex
and nonconvex polyhedra respectively. It can be shown that the bound in lemma
3 is tight. As an example, in Fig. 7(b), R, consists of all faces adjacent to the
top vertex p, and the subdivision with respect to z intersects B, in O(n?) edges

if the number of faces added to the diamond polyhedron (Fig. 7(a)) be O(n).
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Fig.7. (a) A diamond polyhedron which have O(n) sides
(b) Diamond polyhedron with a number of faces added to it.



Lemma 4. Computing L-intervals on B, with respect to the pair s and t can be
done in O(n?logn) for convex and O(nlogn) for nonconver polyhedra.

Proof. Computing the set of L-intervals with respect to a point z requires two
steps:

1. Computing the inward layout and building the subdivision
2. Computing the intervals formed by intersecting B, with the subdivision.

The first step can be done in O(n?) time in both convex and nonconvex cases
while the resulting subdivision has O(n) regions [2]. For computing the intervals
we consider the two cases separately:

Conver case. In this case B, consists of O(n) segments so O(n?logn) time is
sufficient for the computation of L intervals with respect to z using known map
overlay algorithms. It can be shown that there are polyhedra for which this time
bound is necessary.

Nonconver case. In this case B, consists of O(n?) segments so O(n?logn) time
is needed for computing intervals. Thus the total time required for computing
the set of L-intervals with respect to a point z is In O(n?logn) in convex case
and O(n®logn) in nonconvex case.

After computing L-intervals with respect to s and ¢, we can find the overlap-
ping intervals proportional to the number of intervals with respect to s and with
respect to ¢. From the lemma 3, overlapping can be done in O(n?) for convex
case and in O(n?) for nonconvex case. O

Theorem 1. The time required for computing shortest p-uvisible path between
two points s and t is O(n?logn) for convez and O(n3logn) for nonconver poly-

hedra.

Proof. From the lemma 4, one can find the L-intervals on B, in O(n?logn) for
convex and O(n®logn) for nonconvex polyhedra. From lemma 2 we can find in
constant time, the point ¢(I) on each L-interval I whose total distance from s
and ¢ is minimum. As the number of intervals is O(nC(8;)), finding the point ¢
with minimum total distance from s and ¢ is possible in O(n*C(B,)). which is
asymptotically less than the time required for finding the intervals in both cases.
After finding point ¢, one can easily construct the shortest p-visible path between
sand ¢ in time O(k) where k is the number of edges connected by the path (which
is O(n)). Thus the total time required by the algorithm is O(n?logn) for convex
and O(n®logn) for nonconvex cases. O

4 Conclusions

We proposed an algorithm for finding the shortest path between two points on
general polyhedra from which a given point is visible. The running time of our
algorithmis O(n?log n) for convex and O(n?3logn) for nonconvex polyhedra. The
algorithm uses the inward layout and the subdivision based on it. Extending the
algorithm to the case in which we want to see multiple points from the path



is not easy since it introduces multiple regions (neighborhoods) which must be
touched by the shortest path. The problem is similar to TSP with neighborhoods
which is studied in [4]. Since the problem is NP-hard, finding an approximation
algorithm seems to be the most feasible approach for solving it.
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