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Abstract

Modular analyses of software systems rely on the specifications of the analyzed mod-
ules. In many analysis techniques (e.g. ESC/Java), the specifications have to be
provided by users. This puts a considerable burden on users and thus limits the
applicability of such techniques. To avoid this problem, some modular analysis tech-
niques automatically extract module summaries that capture specific aspects of the
modules’ behaviors. However, such summaries are only useful in checking a restricted
class of properties.

We describe a static modular analysis that automatically extracts procedure spec-
ifications in order to check heap-manipulating programs against rich data structure
properties. Extracted specifications are context-dependent; their precision depends
on both the property being checked, and the calling context in which they are used.
Starting from a rough over-approximation of the behavior of each call site, our anal-
ysis computes an abstraction of the procedure being analyzed and checks it against
the property. Specifications are further refined, as needed, in response to spurious
counterexamples. The analysis terminates when either the property has been vali-
dated (with respect to a finite domain), or a non-spurious counterexample has been
found.

Furthermore, we describe a lightweight static technique to extract specifications of
heap-manipulating procedures. These specifications neither are context-dependent,
nor require any domain finitizations. They summarize the general behavior of proce-
dures in terms of their effect on program state. They bound the values of all variables
and fields in the post-state of the procedure by relational expressions in terms of their
values in the pre-state. The analysis maintains both upper and lower bounds so that
in some cases an exact result can be obtained.

Thesis Supervisor: Daniel N. Jackson
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

As software systems grow in size and complexity, using conventional techniques such

as testing to validate their behavior becomes prohibitively expensive: a large number

of carefully designed test cases is required to uncover their errors. Thus develop-

ing easy-to-use automatic techniques to increase programmers’ confidence in their

developed software systems becomes a pressing issue.

Static program verification is one of the main approaches to reasoning about the

behavior of a program, in which a program is analyzed using only the information

available from the text of the program; no actual execution of the code is involved.

Therefore, the code can be analyzed conservatively so that the obtained results ac-

count for all executions of the program within the analyzed domain.

Static program verification techniques check if a given program conforms to an

intended property. Ideally, the property can be a specification describing the complete

functionality of the program: what exactly the code is supposed to do. However,

since checking an arbitrary piece of code with respect to an arbitrary specification

is an undecidable problem, each program verification technique makes a trade-off

between the expressiveness of the specification language it handles and its level of

automation. Type checkers, for example, are fully automatic but they only check a

very restricted class of properties, namely whether the use of variables and procedures

conform to their declarations. On the other hand, theorem provers can handle very

rich specification languages, but they require guidance from the users.
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This thesis introduces a novel program verification technique that automatically

checks programs against rich data structure properties. A data structure property

constrains the structure of the objects in the heap of a program. Checking such prop-

erties is particularly important because erroneous manipulations of data structures

may cause loss and/or unauthorized access of data, and may eventually cause a wrong

behavior in the program. Since data structures stored in the heap can get arbitrarily

complex, it can be very hard to check their validity by traditional testing techniques.

The analysis technique described in this thesis aims at minimizing the human cost:

it does not require users to provide any annotations beyond the property to check. A

procedure is checked against a property using the specifications of its called procedures

as surrogates for their code. The specifications, however, are inferred automatically

from the code rather than being provided by the user1. They are inferred iteratively as

needed to check the given property. Therefore, their precision is context-dependent:

they encode only as much information about their corresponding procedures as is

necessary to check the top-level procedure against the given property.

The thesis also introduces a lightweight static technique that automatically ex-

tracts specifications for the procedures of a program. These specifications are not

context-dependent: they summarize the general behavior of the procedures in terms

of their effect on program state. The technique can handle heap-manipulating code

accessing complex data structures. Although used as part of our program verifica-

tion technique in this thesis, this specification extraction technique is a stand-alone

analysis that can be used in a variety of settings.

1.1 Problem Description

1.1.1 Automating Modular Program Verification

Checking data structure properties is a challenging problem. It requires a reasoning

engine capable of handling aliasing (whether different pointers point to the same

1The specifications that we infer play the role of summaries in traditional analyses, but we prefer
to call them specifications to emphasize their partial nature.
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object in the heap), and reachability (whether an object is reachable from another

object by traversing the fields). It also requires handling different notions that may

arise in different kinds of data structures. For example, properties of a ‘set’ data

structure typically involve membership and the cardinality of the set, a ‘map’ data

structure requires the notion of a relationship between values and their keys, and a

‘list’ structure involves an ordering of elements.

Data structure properties arise in heap-manipulating programs: programs whose

state can be represented as a graph of objects linked by fields. These programs typi-

cally include dynamic features like dynamic object allocation and dynamic dispatch

which make them particularly hard to analyze statically.

Due to the complexity of heap-manipulating programs and their behavioral prop-

erties, monolithic approaches, where the code is treated as a whole regardless of

its modularization, are not practical: they cannot handle large enough programs.

Therefore, traditional program verification approaches made extensive use of program

structure in structuring the reasoning. Each procedure would be checked against its

specification, using the specifications of its called procedures as surrogates for their

code. This analysis, called modular program verification [28], is usually performed

bottom-up in the call tree using the assume-guarantee framework: assuming that the

called procedures satisfy their specifications, it is checked if the analyzed procedure

guarantees its specification. This approach is attractive because (1) the modular-

ization of the code provides natural abstraction boundaries that can be exploited

in reasoning about the behavior of a program, and (2) each procedure is analyzed

exactly once, thus providing better scalability.

Automating modular approaches involves solving two problems: (1) given the

specifications of all called procedures, how to check a top-level procedure automati-

cally, and (2) how to extract the specifications of the called procedures automatically

from the code. One of the main approaches to solving the first problem, i.e. to au-

tomating the checking, is to translate the code along with the analyzed property to a

set of logical constraints and present it for proof or refutation to a decision procedure.

This approach forms the basis of several tools that verify data structure properties
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of code (e.g. [5, 14, 21, 35, 37, 58]). None of them, however, automates the specifica-

tion extraction phase; they all assume that the specifications of called procedures

are provided by the user. Boogie [5], for example, extracts verification conditions

from a procedure, and presents them for proof to a theorem prover. The tool has

been incorporated into the Spec# programming system [6] and applied successfully to

substantial programs. However, Boogie expects the user to provide specifications for

all procedures that are called directly or indirectly by the analyzed procedure, which

can become a considerable burden on the user. This thesis is built on the ideas of

Jalloy [58], a counterexample detector for Java programs. Jalloy translates the code

and the analyzed property to a boolean formula and solves it using a SAT solver.

It inlines all procedure calls whose specifications are not provided by the user. The

experiments, however, showed that such inlining does not scale and it is the main

obstacle to using Jalloy for checking large systems.

This thesis introduces a strategy to overcome this obstacle. A modular analysis

(similar to Jalloy’s) is performed that is based on constraint solving and requires

specifications of called procedures, but the specifications are inferred from the code

rather than being provided by the user. Although in many cases, the inferred speci-

fications are not so compact as they could be if provided by the user, they are small

enough to be analyzed automatically.

Of course extracting a specification that summarizes the full observable behavior

of a procedure as a logical constraint is not feasible in general. However, in order to

check a procedure against a property, it is sufficient to capture only those aspects of

the behavior of its callees that are relevant in the context of the calling procedure.

Our inference scheme exploits this. In fact, the inferred specifications are sensitive not

only to the calling context, but also to the property being checked. As a result, a very

partial specification is sometimes sufficient, because even though it barely captures

the behavior of the called procedure, it nevertheless captures enough to verify the

caller with respect to the property of interest.

Since the specifications are extracted automatically from the code of the called

procedures, they are guaranteed to be satisfied by those procedures. Therefore, if a
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called procedure contains a bug that prevents the top-level procedure from satisfying

the analyzed property, that bug will be carried in the inferred specifications and thus,

will be uncovered by the analysis.

The analysis technique introduced in this thesis supports a rich specification lan-

guage – a relational first order logic with transitive closure – sufficient for expressing

rich data structure properties. The technique exploits partiality of properties. It pro-

vides an effective analysis for checking partial properties of code. That is, rather than

specifying the full functionality of a program, the analyzed property constrains only

a portion of the program’s behavior. This is motivated by the observation that the

full behavior of a large software system is generally very expensive to check in one

analysis. Instead, it can often be specified as several partial properties of the system

that can be checked individually, allowing a much more scalable analysis.

In summary, the introduced analysis aims at supporting all the following features.

• Full Automation. We provide a fully automatic technique that does not

require any user intervention to guide the analysis.

• No Annotations. In order to provide an easy-to-use technique, we do not rely

on any user-provided annotations, except the top-level property to check.

• Scalability. We provide an analysis that can potentially scale to large pieces

of code.

• Modularity. Although our goal is not to rely on user-provided annotations,

our technique can benefit from such annotations whenever available. That is,

a user can optimize the analysis of a program by providing specifications for

some procedures. This becomes handy in analyzing code with calls to some

procedures (e.g. from a library) whose source code is not available.

• Data Structure Properties. In spite of all the progress made in checking

control-intensive properties of programs, only a few techniques are available to

check rich data structure properties. We focus on analyzing properties that
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express (partial) pre- and post-conditions for some procedure by constraining

the configuration of the heap before and after the execution of that procedure.

1.1.2 Existing Approaches

Several static program verification techniques have been developed that support differ-

ent subsets of the above features. However, to our knowledge, none of them provides

a scalable analysis for checking the kind of rich data structure properties that we

consider, without requiring extensive user-provided annotations.

SLAM [4] and BLAST [26], for example, provide scalable static analysis for C pro-

grams without requiring user intervention or additional annotations. Their scalability

is a result of applying a counterexample-guided abstraction refinement framework [11]

that computes incremental abstractions of the program that are much simpler to check

than the original code. Because the abstractions are computed iteratively, only as

needed, the parts of the program that are irrelevant to the property being checked

remain abstract during the course of the analysis. Although both tools have been

successfully used to check the correctness of some substantial C programs, they fo-

cus on analyzing control state transitions of the code (for example, an acquired lock

should not be acquired again); they cannot handle the rich data structure properties

that we consider.

Saturn [62] also provides a scalable technique for checking temporal safety prop-

erties without requiring user-provided intermediate annotations. The scalability is

a result of summarizing the called procedures in advance. Given a temporal safety

property, Saturn efficiently computes summaries for all called procedures in the form

of finite state machines during a pre-process. These summaries are then used in

checking the selected procedure against the given property in a one-pass analysis.

Saturn has been successfully used to detect memory leaks and erroneous sequences of

locks and unlocks in the Linux kernel. However, again, it is highly-tuned for checking

finite state properties, and cannot be used for analyzing data structure properties.

On the other hand, other tools are available that focus on checking data structure

properties of programs. TVLA [51], for example, has been successfully used to verify
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insertion sort and bubble sort [40] as well as some properties of lists and binary search

trees [48]. It represents the heap as a graph in which the nodes represent objects and

edges represent field relations. Since the graph can be arbitrarily large, they abstract

it by merging all the nodes equivalent under a particular set of shape predicates into

a single abstract node. Although the resulting abstract domain is finite, it may still

become very large, and thus the approximating algorithms are too complex to scale

to large programs. Furthermore, the precision of the analysis depends on the set of

predicates of interest provided by the user.

Hob [37], and Jahob [35] also focus on checking data structure properties. Hob

provides a suite of theorem provers to check the verification conditions automatically

generated from the code. It has been successfully used to verify a number of ap-

plications (e.g. an HTTP server and an implementation of the minesweeper game).

Its analysis process, however, depends on user-provided procedure specifications and

loop invariants. Hob assumes a simplified object-oriented language with no inher-

itance and polymorphism, and only handles set-based data structure properties –

those that can be expressed by the boolean algebra of sets. Therefore, although it

can handle properties about the contents of data structures (e.g. exposed cells are

disjoint from mined cells in a minesweeper game), it does not handle, for example,

those involving relationships between objects (e.g. whether a key object is linked to a

value in a map data structure), or orderings of objects (e.g. in a list data structure).

Jahob is a successor of Hob that handles a richer programming language as well as

richer specifications. But it still requires user-provided procedure specifications and

loop invariants in order to generate verification conditions from programs.

Inferring the behavior of procedures automatically is not a new concept. Interpro-

cedural data flow analysis techniques, in particular, typically summarize the behavior

of the called procedures in order to extract different pieces of information about a

top level procedure. Points-to analysis [9, 50, 61], for example, computes the set of

objects that a pointer can possibly point to in different executions of the code. A

procedure summary in this case consists of the pointer information of a procedure.

Side-effect analysis [10, 43, 52] is another example of data flow analysis that detects
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what heap locations may be mutated by each procedure. This information can be

stored as a procedure’s summary and be reused at the call sites. While such sum-

marization improves the analysis by preventing it from computing the behavior of a

called procedure at every call site, it is applied to extract only certain information

from the code. That is, such procedure summaries are not sufficient for checking

arbitrary data structure properties of the procedures.

1.2 Proposed Solution

Modularization of a program into procedures provides natural abstraction boundaries

that make reasoning about the program’s behavior much easier. We introduce a fully

automatic technique that exploits the modularity of the code in order to provide

a modular analysis. That is, a procedure is checked against a given property by

substituting specifications for its called procedures.

However, rather than being provided by the user, the specifications are inferred

from the code automatically. These specifications are exploited in checking like the

specifications of Boogie, but are refined by a mechanism more similar to that of SLAM

and BLAST.

1.2.1 Specification Refinement

The fundamental idea underlying our technique is a familiar one: counterexample-

guided refinement of an abstraction [11]. The general scheme is as follows:

1. For a program P , generate an abstraction A(P ) that overapproximates P .

2. Check if the property holds in A(P ). If no counterexample is found, the analysis

terminates and has successfully verified the code (against the given property).

3. If a counterexample is found, it is checked for validity. If it is valid, a fault has

been discovered and the analysis terminates.
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4. Otherwise, the abstraction A(P ) is refined so that the invalid counterexample

is eliminated. The process then starts over at step 2.

This scheme provides a fully automatic analysis that holds promise for scalability.

It has been previously applied in a number of different contexts [4, 19, 20, 26]. Our

approach, however, differs from all the previous work in that the abstraction and its

subsequent refinements follow the abstraction boundaries of the code itself. To our

knowledge, all previous applications of this idea to software analysis involve refinement

of predicate abstractions [25]. Our approach, in contrast, refines the specifications

used to represent the behavior of called procedures.

We introduce a framework for counterexample-guided refinement of procedure

specifications. It starts with a rough initial specification for each called procedure

and refines it on demand in response to spurious counterexamples. The framework

assumes an underlying analysis in which counterexamples are found by solving a logi-

cal formula extracted from the code and the property. The property can be expressed

in any language that can be converted to logical constraints. The validity of the found

counterexamples are checked again using a constraint solver, and specifications are

refined based on the proof of unsatisfiability generated by the solver when the coun-

terexample is invalid. The framework requires the logic to be decidable. That is, the

validity of the logical formulas can be determined in finite time. Our implementation

uses the propositional logic underlying the Alloy modeling language [30] as the logic,

and a SAT solver as the constraint solver.

The analysis can start with arbitrarily weak initial specifications. Even empty

specifications that allow the procedures to arbitrarily mutate the state of the program

can be used in the initial abstraction. However, starting from richer specifications

usually reduces the number of refinements needed to check the property, and thus

improves the performance.

The main challenge in computing the initial abstraction is to extract specifications

that are safe – that is, accounting for all possible executions of the code – and compact

– that is, easy to analyze – and yet not too approximate – that is, giving useful

information about the underlying code.
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We introduce a lightweight technique for extracting an initial specification for

a procedure, that computes symbolic bounds on the final values of each field and

variable that may be mutated by that procedure. The specifications inferred by this

technique do not depend on the property being checked; they give general abstractions

of a procedure’s behavior that can be used in any context.

This initial specification extraction technique is an application of the abstract

interpretation framework [13] in which the abstract domain consists of relational ex-

pressions. A procedure is evaluated symbolically, with each field and variable initially

holding a value represented by a fresh constant. Each statement updates an envi-

ronment mapping fields and variables to values represented as relational expressions.

After an if-statement, the branches are merged by forming a union expression. A loop

is handled by computing a fixpoint which often results in an expression involving a

transitive closure. The analysis maintains both upper and lower bounds on the values

of variables and fields, so that in some cases an exact result can be obtained.

1.2.2 Instantiation: Karun

We have implemented our specification abstraction refinement technique in a tool

called Karun. It checks an object-oriented program written in a subset of Java against

a property expressed in Alloy [30].

Alloy is a first order relational logic with a transitive closure operator, making

it well-suited for expressing data structure properties succinctly. A constraint on

the heap of an object-oriented program can be expressed in Alloy by adopting a

relational view of the heap: a field f of type T declared in a class C is viewed as a

relation f: C -> T mapping objects of type C to objects of type T. Field dereferencing

becomes relational join, and reachability becomes a formula involving a transitive

closure.

The specifications inferred during the course of the analysis are also expressed

in Alloy. The initial abstraction computes symbolic bounds on the final values of

each relation (fields and variables) in the form of Alloy relational expressions. Karun

translates the given code, the extracted specifications, and the negation of the prop-
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erty being checked to a boolean formula in conjunctive normal form (CNF) using

Forge [14]. It then uses the ZChaff SAT Solver [45] to find a solution to the gener-

ated formula. The validity of the found solutions is checked using ZChaff again. If a

solution represents an invalid counterexample, ZChaff generates a proof of unsatisfia-

bility called an unsat core [63] which is an unsatisfiable subset of the solved formula,

given as a witness to the unsatisfiability of that formula. The unsat core is then

used to generate a refined Alloy specification for a procedure call so that the invalid

counterexample is eliminated. It should be noted that Karun is not restricted to use

ZChaff; any other SAT solver that provides a proof of unsatisfiability for unsatisfiable

formulas can be used as its solving engine.

In order to translate Java programs to finite boolean formulas, Forge finitizes the

length of the program executions. That is, it unrolls loops using some user-provided

bound. Furthermore, since Alloy is a first order logic, translation of an Alloy con-

straint to a boolean formula is based on bounding the size of the relations in that

Alloy constraint. Therefore, the analysis also requires a bound on the number of

objects of each datatype. Consequently, Karun analyzes programs with respect to a

bounded scope: the user has to provide a bound on the number of loop iterations, and

some bounds on the size of the heap. As a result, although the returned counterex-

amples are guaranteed not to be spurious, their absence does not constitute proof of

correctness.

1.2.3 Limitations

Our analysis framework is not designed for checking full specifications of programs.

Given a property, our context-dependent analysis extracts those parts of the called

procedures that are relevant to the property; all irrelevant parts remain abstract.

Therefore, this analysis is most beneficial when only a subset of the code has to

be analyzed. Although the technique can be used to check the full behavior of a

program, it may require several specification refinements to infer the full behavior of

all procedures, and thus the benefit of the approach may be lost. A simple analysis

that checks the whole code without iterations (e.g. by inlining all called procedures)
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may in fact perform better in such cases.

Although not inherent in the analysis framework, our instantiation of the frame-

work, Karun, has a few limitations. The most important one is that it does not per-

form a complete analysis. That is, it misses those bugs in the program that require

more loop iterations and/or objects than the bounds considered during the analysis.

However, the analysis is exhaustive with respect to those bounds. That is, any bugs

within the bounds are guaranteed to be found by Karun. Therefore, although Karun

does not perform a complete verification, its analysis can be categorized as bounded

verification.

Furthermore, Karun currently handles only a subset of the Java language, includ-

ing basic statements, inheritance, and dynamic dispatch; it does not support arrays,

exceptions, multithreading, and any numerical expressions other than integer addi-

tions and subtractions. One-dimensional arrays, exceptions, and full integer arith-

metic have been recently added to the Forge language and will be incorporated into

Karun in the future. However, multi-dimensional arrays, multithreading constructs,

and non-integer numerical expressions remain topics for future research.

Regarding properties, Karun handles the full Alloy language. Thus, any constraint

expressible in Alloy can be analyzed by Karun. However, there are certain properties

that cannot be expressed in Alloy, and thus checked by Karun. A functional correct-

ness property that requires higher-order quantification is an example. To illustrate

this, consider a method that takes a linked list and makes it “well-formed” (based

on some definition of well-formedness) by updating the next fields of its entries. We

can check that the method is correct by analyzing the property wellFormed(next’)

where next’ is the resulting next link in the post-state. However, if we would like to

check that the modified list is the closest well-formed list to the original one (based

on some definition of distance), we should analyze the following property:

wellFormed(next’) and

all next0: Entry -> Entry | wellFormed(next0) =>

(distance(next, next0) >= distance(next, next’))
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This property, however, requires support for higher-order quantification because of

the quantifier over the relation next0. Therefore, it cannot be analyzed by Karun.

There are also some categories of constraints, e.g. liveness, time-based, and perfor-

mance properties, that cannot be analyzed using Alloy; checking them would require

a different kind of logic.

1.3 Example

In this section, we illustrate our technique by first describing the user’s experience

checking the Java code given in Figure 1-1, and then describing the underlying analysis

briefly.

The code is an implementation of a topological sort algorithm on a directed graph.

The graph is represented by a list of nodes where each node contains two adjacency

lists corresponding to its incoming and outgoing edges (stored in the inNodesList

and outNodesList fields, respectively). The sizes of these lists are given by the inDeg

and outDeg fields.

The topologicalSort method permutes the nodes of a graph to form an order

in which any node n succeeds all the nodes that have an edge going to n. The

algorithm is a simple one: it iteratively chooses a source node, i.e. a node with no

incoming edges, and removes its outgoing edges from the list of the incoming edges of

the remaining nodes. However, to avoid mutating the adjacency lists in the original

graph, this example uses an auxiliary field, visitedInsNum, that keeps track of the

number of nodes from the inNodesList that have been already put in the topological

sort. A node is declared as a source node when all the nodes in its inNodesList are

already visited. That is, inDeg == visitedInsNum. The topologicalSort method

returns true if the graph is acyclic and the topological sort is computed successfully.

If the graph contains a cycle, at some point during the algorithm, no source nodes

can be found. The method returns false in this case.

We analyze the topologicalSort method against the properties given in Figure 1-

2. The first property, given in Figure 1-2(a), specifies that if the algorithm terminates

29



class List {
ListEntry head;

}

class ListEntry {
Node node;
ListEntry next;
ListEntry prev;

}

class Node {
List inNodesList;
List outNodesList;
int inDeg;
int outDeg;
int visitedInsNum;

}

class Graph {
List nodes;

boolean topologicalSort() {
boolean isAcyclic = true;
init();
ListEntry cur = nodes.head;
while (cur != null) {

ListEntry source = findSource(cur);
if (source == null) {

isAcyclic = false; break;
}
fixIns(source.node);
Node tmp = source.node;
source.node = cur.node;
cur.node = tmp;
cur = cur.next;

}
return isAcyclic;

}

void Graph.init() {
ListEntry c = this.nodes.head;
while (c != null) {

c.node.visitedInsNum = 0;
c = c.next;

}
}

ListEntry Graph.findSource(ListEntry entry) {
ListEntry e = entry;
while ((e != null) &&
(e.node.inDeg != e.node.visitedInsNum))
e = e.next;

return e;
}

void Graph.fixIns(Node n) {
ListEntry p = n.outNodesList.head;
while (p != null) {

p.node.visitedInsNum =
p.node.visitedInsNum + 1;

p = p.next;
}

}

Figure 1-1: Example.
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successfully (i.e. when the method returns true), the computed topological sort is

in fact a permutation of the nodes of the original graph. The second property, given

in Figure 1-2(b), states that if the algorithm terminates successfully, the in-degree

of each node is at most equal to the number of nodes preceding it in the computed

topological order. We use primed and unprimed field names to denote the values of

the fields after and before the execution of the method, respectively.

To ensure the consistency of the data stored in different data structures, the

properties enforce the representation invariants given in Figure 1-2(c). The invariants

specify that: (1) the graph does not contain any hyper-edges, i.e. none of the nodes

in the graph has more than one outgoing edge to any other node, (2) the inDeg field

of each node gives the number of nodes in its inNodesList, (3) the outDeg field

gives the number of nodes in the outNodesList of each node, (4) if a node n1 is

in the inNodesList of a node n2, then n2 should be in the outNodesList of n1,

and (5) the prev link must be the inverse of the next link. The auxiliary value

contents represents the set of the nodes stored in a list, obtained by the expression

head.*next.node which gives the node field of all the entries reachable from the head

of the list by following the next link. (The operator ‘*’ is a transitive closure operator

that represents reachability.) Constraints within a pair of curly braces are implicitly

conjoined.

In order to perform the analysis, the user has to provide two types of bounds:

a bound on the number of loop iterations, and a bound on the heap size. In this

example, we analyze the code with respect to 2 loop unrollings, 2 objects of each

type, and a maximum bitwidth of 3 for integers.

1.3.1 User Experience

Valid properties: Both the permutation and the in-degree properties hold in the

code given in Figure 1-1. Therefore, checking the topologicalSort method against

these properties does not generate any counterexamples, implying that the property

holds within the analyzed bounds.

Invalid properties: If the code were buggy, a counterexample would have been
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((repInv = true$rel) and (topologicalSort$return = true$rel)) =>

(this.nodes’.head’.*next’.node’ = this.nodes.head.*next.node)

permutation property

(a)

((repInv = true$rel) and (topologicalSort$return = true$rel)) =>

(all e: this.nodes’.head’.*next’ | int(e.node’.inDeg) < size(e.*prev’))

in degree property

(b)

repInv =

let contents = head.*next.node in {

(all n:this.nodes.contents | all e1, e2: n.outNodesList.head.*next |

(e1 != e2) => (e1.node != e2.node)) no hyper edge
(all n: Node |

n.inDeg = size(n.inNodesList.contents)) correct in degree
(all n: Node |

n.outDeg = size(n.outNodesList.contents)) correct out degree
(all n1, n2: Node |

(n1 in n2.inNodesList.contents) <=> (n2 in n1.outNodesList.contents))

consistent adjacency lists
(all e1, e2: ListEntry |

(e1.next = e2) <=> (e2.prev = e1)) consistent links
}

(c)

Figure 1-2: Properties: (a) the resulting order of nodes is a permutation of the original
nodes of the graph, (b) the in-degree of each node is smaller than the number of nodes
preceding it in the topological sort, (c) the representation invariants.
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generated. In order to illustrate that, we seed a bug in the code of Figure 1-1:

we assume that the first statement of the init method is mistakenly written as

c = nodes.head.next rather than c = nodes.head. The in-degree property does

not hold any more, and the counterexample given in Figure 1-3 is generated. It

should be noted that although the bug is in a called method, because it prevents the

top level method from satisfying the property, it can be caught by our technique. Our

tool currently outputs counterexamples in a textual format similar to the one shown

in Figure 1-3(a). It can be further improved to generate a graphical output as shown

in Figure 1-3(b) and highlight the program statements executed in the error trace as

shown in Figure 1-4.

Figure 1-3(a) shows the values of the program variables and fields in the pre- and

post-states. The value G0 is a symbolic graph object representing the receiver graph.

The values L0, E0, and N0 are symbolic objects of types List, ListEntry, and Node,

respectively. The pre-state encodes the heap given in Figure 1-3(b), and corresponds

to the graph of Figure 1-3(c).

The values stored in the post-state are the same as those in the pre-state ex-

cept for N0.visitedInsNum. The post-state violates the in-degree property be-

cause E0.node.inDeg is the integer 1, but the size(E0.*prev) is 0. Therefore,

the constraint int(E0.node.inDeg) < size(E0.*prev) evaluates to false. In fact,

the topologicalSort method should not even return true in this case because the

input graph contains a cycle. However, because of the bug in the init method, it

returns true.

Figure 1-4 gives the program execution corresponding to this counterexample.

The statements given in bold represent the executed statements. They are annotated

by the values of the variables and fields before and after their execution. To simplify

the representation, instead of showing the values of all variables and fields at each

point, this figure only gives the updates after each statement. The executions of the

called methods are shown by expanding the body of each called method as a block

with a smaller font underneath its call site. Actual parameters are substituted for

formal parameters. In this example, local variables of called procedures have unique
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pre-state:

(this = G0) (G0.nodes = L0) (L0.head = E0) (E0.next = null) (E0.prev = null)

(E0.node = N0) (N0.inDeg = 1) (N0.outDeg = 1) (N0.inNodesList = L0)

(N0.outNodesList = L0) (N0.visitedInsNum = 1)

post-state:

(G0.nodes = L0) (L0.head = E0) (E0.next = null) (E0.prev = null)

(E0.node = N0) (N0.inDeg = 1) (N0.outDeg = 1) (N0.inNodesList = L0)

(N0.outNodesList = L0) (N0.visitedInsNum = 2)

(a)

(b)

(c)

Figure 1-3: Counterexample: (a) textual description, (b) pre-state heap, (c) corre-
sponding graph.
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boolean Graph.topologicalSort() {
[(this = G0), (G0.nodes = L0), (L0.head = E0), (E0.next = null), (E0.prev = null)
(E0.node = N0), (N0.inDeg = 1), (N0.outDeg = 1), (N0.inNodesList = L0),
(N0.outNodesList = L0), (N0.visitedInsNum = 1)]
boolean isAcyclic = true; [.., isAcyclic = true]
init();

ListEntry c = this.nodes.head.next; //bug seeded [.., c = null]
while (c != null) {

c.node.visitedInsNum = 0;

c = c.next;

}

ListEntry cur = nodes.head; [.., cur = E0]
while (cur != null) {

ListEntry source = findSource(cur);
ListEntry e = cur; [.., e = E0]
while ((e != null) && (e.node.inDeg != e.node.visitedInsNum))

e = e.next; [.., e = null]
return e; [.., source = E0]

if (source == null) {
isAcyclic = false;

} else {
fixIns(source.node);

ListEntry p = source.node.outNodesList.head; [.., p = E0]
while (p != null) {

p.node.visitedInsNum = p.node.visitedInsNum + 1; [.., N0.visitedInsNum = 2]
p = p.next; [.., p = null]

}

Node tmp = source.node; [.., tmp = N0]
source.node = cur.node; [.., E0.node = N0]
cur.node = tmp; [.., E0.node = N0]
cur = cur.next; [.., cur = null]

}
}
return isAcyclic; [.., return = true]

[(G0.nodes = L0), (L0.head = E0), (E0.next = null), (E0.prev = null),
(E0.node = N0), (N0.inDeg = 1), (N0.outDeg = 1), (N0.inNodesList = L0),
(N0.outNodesList = L0), (N0.visitedInsNum = 2)]
}

Figure 1-4: Program execution corresponding to the counterexample. Executed state-
ments are given in bold. Called methods are expanded below call sites. Program
states before and after the execution, and the state updates after each executed
statement are also given.
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names, thus used directly. In an actual implementations, however, the names are

preceded by unique scope identifiers to avoid name clashes. All loops are iterated at

most once.

In the rest of this section, we describe analyzing the code given in Figure 1-1

where both properties hold. Analyzing the buggy case follows the same general steps,

but infers different specifications.

1.3.2 Underlying Analysis

Our tool, Karun, analyzes the topologicalSort method against each property by

inferring specifications for its call sites. Although at the end of the analysis, the

inferred specifications are not necessarily complete, they encode sufficient information

about the called procedures to check the property. When the analyzed property is

partial, our approach, in general, performs substantially better than inlining the

method calls. Checking the topologicalSort method against the in-degree property

(with respect to 3 loop unrollings, 3 objects of each type, and a maximum bitwidth

of 4), for example, takes 47 seconds if the call sites are inlined. Karun, however,

performs this analysis in 21 seconds. Similarly, checking this method against the

permutation property (with respect to 4 loop unrollings, 4 objects of each type, and

a maximum bitwidth of 5) by inlining takes 51 seconds whereas Karun’s analysis

takes only 3 seconds. The rest of this section briefly describes how specifications are

inferred, and illustrates the analysis for 2 loop unrollings, 2 objects of each type, and

a bitwidth of 3 for integers.

The analysis starts by first computing initial specifications for the methods reach-

able from the topologicalSort method. Figure 1-5 gives the computed specifica-

tions. As mentioned before, these specifications do not depend on the property being

checked. Chapter 4 explains in detail how they are computed automatically from the

code, and what exactly they mean. Here we only give an informal description. The

specification computed for the init method is its full specification. It denotes that

the init method changes the visitedInsNum field of all the nodes of the graph to

zero. The initial specifications of fixIns and findSource, on the other hand, are
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void Graph.init():

visitedInsNum’ = visitedInsNum ++ (this.nodes.head.*next.node -> 0)

void Graph.fixIns(Node n):

visitedInsNum’ ⊆ visitedInsNum + (n.outNodesList.head.*next.node -> Int)

visitedInsNum’ ⊇ visitedInsNum - (n.outNodesList.head.*next.node -> Int)

ListEntry Graph.findSource(ListEntry entry):

findSource$return ⊆ (entry.*next &

(null + node.inDeg.(entry.*next.node.visitedInsNum)))

findSource$return ⊇ none

Figure 1-5: Initial specifications.

approximate. The specification for fixIns specifies that given an argument node n,

this method may change the visitedInsNum field of any node in the outNodesList

of n to an arbitrary integer, and the specification for findSource specifies that this

method can return any list entry reachable from the argument list entry entry, which

is either null or its node has an inDeg field equal to the visitedInsNum field of some

node in the entries reachable from entry.

Using these initial specifications, the analysis checks topologicalSort against the

permutation property using a constraint solver. In this case, the solver does not find

any counterexamples, meaning that the property holds in the abstract program, and

thus, in the original program. Therefore, the analysis terminates and the property has

been validated for this finite domain. The fact that analyzing this property does not

require any specification refinements implies that the specifications that are initially

extracted are accurate enough, i.e. they encode enough information about the called

procedures, to validate this property.

However, checking the second property requires some specification refinements.

Similar to checking the previous property, checking this property starts using the

initial specifications given in Figure 1-5 for the called methods. In this case, the

constraint solver finds a counterexample. But the counterexample is not valid in

the original program due to an invalid state transition assigned to the first call to

the fixIns method. Therefore, the specification for fixIns is refined. Chapter 6

describes in detail how a counterexample is checked for validity, and how the results
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Graph.fixIns(n):

visitedInsNum’ =

if (n.outNodesList.head != null$rel)

then if (n.outNodesList.head.next != null$rel)

then visitedInsNum’

else visitedInsNum ++ (n.outNodesList.head.node ->

(int(n.outNodesList.head.node.visitedInsNum) + 1))

else visitedInsNum’

Figure 1-6: Final specification for fixIns.

of that check are used to refine the specifications.

As a result of this refinements, the specification given in Figure 1-6 is inferred. It

specifies only a partial behavior of the fixIns method: if the outNodesList of the

argument node n contains only one node (that is, (n.outNodesList.head != null)

but (n.outNodesList.head.next = null)) then the visitedInsNum field of that

node is incremented by one. In all other cases, the value of the visitedInsNum field

is unconstrained.

Although the inferred specification is very partial, it is still sufficient to check the

given property. That is, after conjoining this inferred specification with the previ-

ous specification of the first call to fixIns, no further counterexamples are found.

Therefore, the analysis terminates without further specification refinements, and the

property has been validated in the analyzed domain.

As shown by this example, when checking partial properties of a program, we do

not necessarily need the full specifications of all methods. For example, although

the initial specifications of fixIns and findSource were very weak, they were still

sufficient for checking the permutation property. The number of iterations that the

analysis goes through totally depends on the property: the permutation property,

for example, was validated with only the initial iteration of the analysis whereas the

in-degree property required one more iteration to refine some specifications. Further-

more, as shown by this example, the inferred specifications not only depend on the

property being checked, but also on the call site: in checking the in-degree property,

the first call to fixIns required a specification refinement, but for the subsequent

calls to this method the weak initial specification sufficed.
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1.4 Evaluation

We have evaluated our technique on two case study applications, involving the veri-

fication of two open source APIs: a graph package, and a job scheduler.

The graph package, OpenJGraph [1], is a Java implementation of a graph API that

provides a number of algorithms (e.g. graph traversals, shortest paths, and minimum

spanning trees) for directed and undirected graphs. We have checked 20 methods in

two units of this package. Because the API implements well-known algorithms, we

were able to extract the specifications from a widely used algorithms textbook [12].

In addition to that, we have checked the code with respect to some representation

invariants extracted from the informal comments available in the code. All checks of

this package have successfully passed.

The second case study involves checking a job scheduling API called Quartz [2]

which is claimed to be used by thousands of people. We have checked 38 methods in

4 units of this package with respect to the correctness properties extracted from the

informal comments available in the code.

Our experiments have uncovered two previously unknown bugs in Quartz that are

actually observable by its users. Both bugs involve deeply structural properties of the

code, and are caused by the errors in some called methods rather than the analyzed

top-level method. In particular, one of the errors is in an overriding method which

may be called by dynamic dispatch of a call site.

This experiment shows that although the user does not provide any specifications

for the called procedures, our technique can still find those errors in the called proce-

dures that are relevant to the property being analyzed. This is because the inferred

specifications completely conform to the code of the called methods, and thus will

carry all the errors relevant to the analyzed property.

Furthermore, although more experiments are needed to evaluate the scalability

of this technique, our current experiments suggest that the technique can handle

procedures with a realistic number of calls. In fact, one of the methods checked in

the OpenJGraph package invoked 81 other methods directly or indirectly.

39



We also performed some experiments to evaluate the performance of our analysis

technique. We compared our technique with our implementation of another technique

that inlines all call sites, rather than abstracting them. Therefore, the results of this

comparison show how the on-demand specification inference affects the performance

of the analysis. Our experiments suggest that our technique substantially reduces

the analysis time when the analyzed property is partial. However, in checking full

properties of the code, a simple analysis that inlines all procedures performs better.

We performed other experiments to evaluate our abstract interpretation technique

that extracts initial procedure summaries. We evaluated the accuracy of the extracted

summaries by checking if the summaries generated for a number of procedures were

sufficient to prove their specifications. In 17 of the 30 procedures, the generated sum-

maries were sufficient to check the full specifications; in 16 procedures, the generated

summaries included all frame conditions, and provided some partial specifications.

Only in one case there was a significant loss of information.

We also evaluated the effectiveness of our abstract interpretation technique by

comparing the extracted summaries against frame conditions – specifications that only

constrain which variables and fields are not modified by a procedure. Our experiments

show that in almost all cases the summaries extracted by abstract interpretation result

in a substantially reduced analysis time. This implies that not only are they effective

in ruling out many invalid executions of the abstract code, but also the overhead of

extracting these summaries is negligible in the overall analysis time. These results

suggest that our abstract interpretation technique represents a useful balance between

tractability and accuracy.

1.5 Contributions

This thesis makes the following contributions:

• A Context-Sensitive Specification Inference Technique. This thesis in-

troduces a technique to analyze a procedure against a data structure property

by inferring property- and call site-dependent specifications for the called pro-
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cedures. All previous techniques for checking rich data structure properties of

code either require extensive user-provided call site specifications (sometimes

even loop invariants), or inline the code of all called procedures. Therefore,

their scalability to large pieces of code is limited.

Our technique provides potential scalability by applying the counterexample-

guided abstraction refinement framework. To our knowledge, this is the first

application of this framework to infer procedure specifications that are suit-

able for checking rich data structure properties. All previous applications of

this framework refine predicate abstractions of the code, which requires a user-

provided set of initial predicates.

• A Stand-Alone Specification Extraction Technique. This thesis also

introduces a technique to extract specifications statically from the text of a

program. These specifications are syntactic objects expressed in the Alloy lan-

guage, readable by both tools and users. Although designed to be used as the

initial abstraction of the code in our abstraction refinement framework, the

specifications neither are context-dependent, nor require any code finitizations.

They summarize the behavior of a procedure in general. Therefore, they can

be used as stand-alone approximations of the code in a variety of settings.

The algorithm to generate these specifications is scalable: it is linear in the

number of fields and the size of the code. The technique is an application of the

abstract interpretation framework where the abstract values are widened based

on some user-provided parameters. Therefore, the precision of the generated

specifications can be tuned by the users.

• An Analysis Framework. This thesis describes the specification inference

idea in the form of an abstract analysis framework. The framework assumes an

underlying analysis in which counterexamples are found by solving constraints

extracted from the code and the given property. The following features of the

framework makes it easier to exploit the idea in a wider range of settings:
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1. It assumes very little about the programming language except that it sup-

ports procedure declaration.

2. It does not assume any particular translation of code to constraints, ex-

cept that the generated constraints are finite and can be solved by some

constraint solver.

3. It provides rigorous conditions for termination, soundness, and complete-

ness.

Although Karun, our proposed instantiation of the framework, requires fini-

tization of the program executions and the size of the heap, the framework

itself does not depend on these compromises, and seems to hold promise for

application in other contexts, such as the method proposed by Flanagan [19].

• A Bug Finding Tool. This thesis introduces an instantiation of the frame-

work, Karun, as a SAT-based program analysis prototype tool that checks rich

data structure properties of Java programs with respect to a finite domain. The

tool substantially reduces the human cost involved in formal program analysis

by providing the following two features:

1. It does not require any user-provided annotations beyond the top-level

property being checked.

2. It never generates spurious counterexamples. That is, any counterexample

returned to the user is a real execution of the code that violates the prop-

erty being checked. Therefore, it relieves the user from going over a list of

warnings for possible bugs.

• Justification: Case Studies. We have evaluated our technique on two case

study applications: a graph package, OpenJGraph, and a job scheduler, Quartz.

We have checked the procedures of these packages against some data structure

properties that specify correctness conditions of the code. Our experiments have

uncovered two previously unknown bugs in Quartz that are actually observable
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by its users. Both bugs are caused by the errors in called methods rather than

the analyzed top-level method.

Our case studies illustrate that our technique can handle realistic Java code

that makes many calls and accesses several different data structures. Although

users are not required to provide specifications for the call sites, our analysis

is capable of finding errors not only in the top-level procedure being analyzed,

but also in the called procedures if the errors prevent the top-level procedure

from satisfying the analyzed property. Our experiments suggest that our speci-

fication refinement technique substantially reduces the analysis time (compared

to a technique that inlines call sites) when the analyzed property is partial.

However, in checking full properties of the code, a simple analysis that inlines

all procedures is more effective.

1.6 Thesis Organization

This thesis is organized as follows: Chapter 2 provides a formal description of our

specification inference technique and proves its main properties. This chapter de-

scribes the analysis as a general framework parameterized over different functions,

allowing it to be instantiated in a variety of settings.

Chapters 3 to 6 describe our instantiation of the framework as implemented in our

analysis tool, Karun. Chapter 3 gives the analysis context: the supported program-

ming language, the specification language, and the required analysis parameters.

Chapter 4 introduces our technique for summarizing the behavior of procedures.

This technique produces procedure specifications that will be used in the initial ab-

straction of the code.

Chapter 5 presents Forge, the engine used by Karun to analyze a given procedure

against a given property. It describes how Karun uses Forge to generate an abstract

program from the original code and the specifications extracted for its call sites, and

how the abstract program is checked for a counterexample.

Chapter 6 gives the details of checking the validity of a found counterexample,
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and using the results to refine the specification of some procedure in the abstract

program.

Chapter 7 gives the experimental results, including two case studies, and different

experiments performed to evaluate the technique.

Chapter 8 concludes the thesis by discussing different aspects of our technique,

comparing it with the related work, and highlighting some possible directions for

future research.
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Chapter 2

Method

This chapter explains the essence of our technique formally and discusses its termi-

nation, soundness, and completeness properties. The technique is described as an

abstract framework for checking a procedure against a user-provided property. The

property can be expressed in any language as long as it can be translated to a logical

formula. The framework is parameterized by basic functions, assumed to satisfy some

basic axioms, in order to make the main idea as general as possible. Chapters 3 to 6

will provide concrete examples for the basic functions introduced here.

2.1 Overview

Our framework provides a scalable modular analysis in which the behavior of the

called procedures are automatically inferred from the code as needed to check a given

property. The effects of each call site on the program state are initially abstracted by

some rough specification. This specification is later refined if shown to be so approx-

imate that the analysis finds invalid counterexamples due to the abstract behavior at

that call site. The analysis terminates when either a valid counterexample is found or

it is shown that no counterexamples exist. Figure 2-1 shows the analysis framework.

It consists of the following phases:

Abstraction: The body of the procedure selected for analysis is translated to a

logical formula. This formula captures the semantics of the procedure exactly except
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Figure 2-1: An overview of the framework.

at its call sites. All procedure calls are replaced with approximate specifications so

that the abstraction is an over-approximation of the original code.

Solving: The generated formula and the negation of the property being checked

are handed to a solver. If the formula has no solution, the property holds in the

abstract procedure, and since the abstraction is an over-approximation of the original

procedure, the property holds in the original procedure too. On the other hand, if

a solution is found, it indicates a potential violation of the property, and must be

checked for validity.

Validity check: The validity of a solution is determined by checking the con-

sistency of the found solution with each procedure call, again using a solver. If the

solution is consistent with all procedure calls, it represents a feasible counterexample,

and the analysis terminates. Otherwise, the specification of the inconsistent call must

be refined.

Specification refinement: A new partial specification is inferred for an in-

consistent procedure call from a proof of invalidity generated by the solver. This

specification rules out the given invalid solution. It is conjoined with the old specifi-

cation of the procedure to form a refined specification. The process then starts over

at the solving phase.

Termination, soundness (that is, found counterexamples are feasible), and com-

pleteness (that is, all counterexamples are found) of this analysis depend on the
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program ::=
−−−−−−−→
procedure

procedure ::= name(
−−−−−−−−−−−→
variable:type)[:type] {

−−−−−−−→
statement}

statement ::= compoundStmt | elemStmt

compoundStmt ::= if predicate(−−→expr)
−−−−−−−→
statement [else

−−−−−−−→
statement];

| while predicate(−−→expr)
−−−−−−−→
statement;

| name(
−−−−−−→
variable);

Figure 2-2: Abstract syntax for the analyzed language.

particular translation technique that encodes program statements as logical formu-

las, and the solver used in the instantiation of the framework. The framework, in

general, does not guarantee termination although our instantiation of the framework

described in Chapters 3 to 6 is guaranteed to terminate. As proved in Section 2.7, the

specification inference approach does not introduce additional unsoundness beyond

possible compromises made by the translation technique. Furthermore, if the instan-

tiation guarantees termination of the analysis, the specification inference approach

does not introduce additional incompleteness either.

2.2 Definitions

Program syntax. We target imperative programs supporting procedure declara-

tions. Figure 2-2 gives an abstract syntax for a fragment of a basic programming

language. A program is a sequence of procedure declarations. A procedure decla-

ration consists of a name, a list of formal parameters, the type of the return value,

and a body. The body of a procedure is a sequence of statements that can be either

compound or elementary statements. Compound statements can be conditionals,

loops, and procedure calls. Elementary statements are updates of variables (locals,

procedure arguments, array elements, and fields).

Example. We illustrate the concepts described in this chapter using

the xorAll procedure given in Figure 2-3. This procedure takes a

boolean variable b, an array of boolean values a, and an integer size

indicating the size of the array, and computes the exclusive or of every

element of a with b.
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void xorAll(boolean b, boolean[ ] a, int size) {
int i = 0;
while (i < size) {

a[i] = xor(b, a[i]);
i = i + 1;

}
}

boolean xor(boolean x, boolean y) {
if (x == y) return false;
else return true;

}

Figure 2-3: Example: an xor operation.

Program semantics. Let PVar be the set of all variables of a program, and PVal

be the set of all concrete values (e.g. booleans, integers, object addresses) that can

be assigned to those variables. A program state, s ∈ State, is a partial function from

variables to their values:

State = PVar → PVal

Each program statement stmt is viewed as a relation over State:

[[stmt]] ⊆ State × State

where (s, s′) ∈ [[stmt]] iff executing stmt in the state s can result in the state s′. This

definition can be lifted to a sequence of statements inductively as follows:

[[stmt0;
−−→
stmt]] = {(s, s′) | ∃s′′, (s, s′′) ∈ [[stmt0]] ∧ (s′′, s′) ∈ [[

−−→
stmt]]}

A program trace is an execution of a program, given as a sequence of pairs of

program states and elementary program statements. A special statement, exit, is

used to represent the of the execution.

Trace :
−−−−−−−−−−−−−−−−−−−−−→
State × (ElemStmt ∪ {exit})

A pair (s, stmt) in a trace t means that the statement stmt is executed, and the
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s = [b -> true, a[0] -> true, size -> 1]

(a)

pre-state of the statement: executed statement:

s = [b -> true, a[0] -> true, size -> 1] int i = 0;
s = [..., i -> 0] xor$return = false;
s = [..., xor$return -> false] a[i] = xor$return;
s = [..., a[0] -> false] i = i + 1;
s = [..., i -> 1] exit;

(b)

Figure 2-4: Example: (a) an initial program state, (b) the corresponding trace: each
line gives an executed statement and the state before the execution of that statement.

program state before the execution of stmt is s. Consecutive statements in the trace

are executed immediately after each other. It should be noted that the program state

of the first pair denotes the initial state of the program, and the program state of

the last pair represents the final state of the program. The program statement of the

last pair is always exit, a dummy statement indicating successful completion of the

program.

For a trace t and a program state s ∈ t, let succt(s) be the successor of s in t,

i.e. the program state immediately following s in t. (The final program state does

not have a successor.) A trace t is valid if and only if for any pair (s, stmt) included

in t, the state transition from s to succt(s) is consistent with the semantics of the

statement stmt. That is,

t is valid ⇐⇒ ∀(s, stmt) ∈ t, (s, succt(s)) ∈ [[stmt]]

Example. Figure 2-4(a) shows an initial program state for the xorAll

procedure. It maps the variables initially accessible by this procedure

to some concrete values. Figure 2-4(b) shows a valid trace of xorAll

starting from this state. It represents a program execution by enu-

merating the executed statements and providing their pre-states (the
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post-state of a statement is the pre-state of its subsequent statement).

Instead of giving the complete values stored in the program states, this

figure only shows the state updates. The executions of the loop and the

method call are represented by the elementary statements executed in

their bodies. In this example, the loop is executed only once and the

call to the xor method returns false. The return statement is treated

as an assignment to the variable xor$return.

Variable and value mappings. Our framework relies on translating programs to

logical formulas. Any such translation requires a mapping from program variables

and their concrete values to logical variables and logical values. We use varMap ∈

VariableMap and valMap ∈ ValueMap to represent a variable mapping1 and a value

mapping, respectively:

VariableMap = PVar → LVar

ValueMap = PVal → LVal

where LVar and LVal respectively represent the set of logical variables and their

possible values.

In order for the translation to be correct, the value and variable mappings must

be valid. A value mapping is valid iff it is an injective function. That is, it maps

each program value to at most one logical value, and maps different program values

of the same type to different logical values. A valid variable mapping, however, does

not have to be injective. A variable mapping is valid if it is a function (i.e. it maps

each program variable to at most one logical variable) that maps different program

variables to the same logical variable only if they are guaranteed to be equal in all

executions of the program.

Example. To illustrate variable and value mappings, we assume a

translation function that translates the xorAll code to a boolean for-

mula. That is, the logical domain consists of boolean variables and

1In general, a variable mapping may map program variables to expressions over logical variables.
However, for simplicity, we do not discuss that case.
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the binary truth values 0 and 1. The following gives as example of a

variable mapping and a value mapping:

varMap = [b -> v1, a[0] -> v2, a[1] -> v3, a[2] -> v4,

a[3] -> v5, size -> <v6, v7>, i -> <v8, v9>]

valMap = [true -> 1, false -> 0, 0 -> <0, 0>, 1 -> <0, 1>,

2 -> <1, 0>, 3 -> <1, 1>]

where v1 to v9 represent boolean variables in the logical domain. The

variable mapping varMap encodes each boolean variable in the pro-

gram domain by a boolean variable in the logical domain. The integer

variables size and i are encoded by pairs of boolean variables in the

logical domain, representing a bitwidth of two. Since the array size is

represented by two bits, the array can contain at most 4 elements. The

value mapping valMap maps the concrete values used in the program

to some boolean values in the logical domain. The boolean values true

and false in the program domain are encoded by 1 and 0 in the logical

domain, respectively. The integer values 0 to 3 are encoded by pairs of

boolean values in the binary format.

Logical instances. Our framework assumes that a solver is available to determine

the satisfiability of a logical formula and to generate a proof in case of unsatisfiability.

A logical instance, ins ∈ Instance, is a function from logical variables to values:

Instance = LVar → LVal

An instance can be partial. That is, it can assign values only to some logical variables.

The meaning of a formula f ∈ Formula is given by the set of logical instances that

satisfy f . That is,

[[f ]] ⊆ Instance

where ins ∈ [[f ]] if and only if ins is a solution to f , i.e. f evaluates to true under the
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Figure 2-5: Relationship between different domains.

mapping defined by ins. Figure 2-5 shows the relationship between different domains

defined in this section.

Example. Assume that v1 to v9 are boolean variables in a logical

domain where the logical values are denoted by 0 and 1. The following

gives a partial logical instance:

ins = [v5 -> 0, v6 -> 1, v7 -> 0, v8 -> 1, v9 -> 1]

It maps the boolean variables v5 to v9 to some logical values. This in-

stance is partial because it does not constrain the values of the variables

v1 to v4.

2.3 Input Functions

Translation. The translation of program statements to logical formulas is repre-

sented by the translate function. Our framework assumes the existence of such a

function and requires it to have the properties discussed below, but is independent of

its value.

Given a statement stmt, a variable mapping varMap, and a value mapping valMap,

the translate function returns a logical formula f that encodes the behavior of that

statement. Since the translation of a statement can introduce new logical variables for

some program variables, the translate function also returns a new variable mapping

varMap′. That is, varMap and varMap′ give the mappings of the variables before and

after translating stmt, respectively. However, the translation does not introduce new
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value mappings because a value mapping involves only constant values.

translate : Stmt × VariableMap × ValueMap → Formula × VariableMap

Our analysis framework is independent of how exactly the code is translated.

However, it requires the translate function to return a finite formula for any given

piece of code. Furthermore, we assume that translate is compositional. That is, it

can be lifted to a sequence of statements inductively as follows:

translate(stmt0;
−−→
stmt, varMap, valMap) =

let translate(stmt0, varMap, valMap) = (f1, varMap1),

translate(
−−→
stmt, varMap1, valMap) = (f2, varMap2)

in (f1 ∧ f2, varMap2)

That is, a sequence of statements is translated by first translating the first statement

of that sequence and then using the resulting variable mapping in the translation of

the rest of the statements.

Example. Figure 2-6 gives an example of translating the xorAll

method to a boolean formula. The code is translated with respect

to the initial variable and value mappings shown in Figure 2-6(a). This

translation handles loops by unrolling them once and the method calls

by inlining. Figure 2-6(b) gives the xorAll method after the loop is

unrolled and the call to the xor method is inlined. Because the loop is

unrolled once, only arrays with at most one element are considered.

The translation of each statement generates a new variable mapping

and a boolean formula as shown in Figures 2-6(c) and 2-6(d), respec-

tively. To improve readability, instead of giving the complete variable

mappings, Figure 2-6(c) only shows how the post-state mapping of each

statement differs from the pre-state mapping of that statement. The

generated boolean formulas encode the effects of each statement. The

translation of the assignment in the first line (i = 0), for example,
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varMap = [b -> v1, a[0] -> v2, size -> <v3, v4>]

valMap = [false -> 0, true -> 1, 0 -> <0, 0>, 1 -> <0, 1>]

(a)

void xorAll(boolean b, mapping after translating a stmt:
boolean[] a, int size) {

int i = 0; varMap=[..., i -> <v5, v6>] (¬v5 ∧ ¬v6) ∧
if (i < size) { ((¬v5 ∧ v3) ∨ (v5 ∧ v3 ∧ ¬v6 ∧ v4) ∨ (¬v5 ∧ ¬v3 ∧ ¬v6 ∧ v4)) =⇒ (

if (b == a[i]) (((¬v1 ∧ ¬v2) ∨ (v1 ∧ v2)) =⇒
a[i] = false; varMap=[..., a[0] -> v7] (¬v7)) ∧

else (((¬v1 ∧ v2) ∨ (v1 ∧ ¬v2)) =⇒
a[i] = true; varMap=[..., a[0] -> v7] (v7)) ∧

i = i + 1; varMap=[..., i -> <v8, v9>] ((¬v8 ∧ v9 ∧ ¬v5 ∧ ¬ v6) ∨ (v8 ∧ ¬v9 ∧ ¬v5 ∧ v6) ∨ (v8 ∧ v9 ∧ v5 ∧ ¬v6)∨
(¬v8 ∧ ¬v9 ∧ v5 ∧ v6)) ∧

assume (i >= size); varMap=[...] ((v8 ∧ ¬v3) ∨ (v8 ∧ v3 ∧ v9) ∨ (v8 ∧ v3 ∧ ¬v9 ∧ ¬v4) ∨ (¬v8 ∧ ¬v3 ∧ v9)∨
(¬v8 ∧ ¬v3 ∧ ¬v9 ∧ ¬v4))

} )

}

(b) (c) (d)

Figure 2-6: Translation example: (a) initial variable and value mappings, (b) the transformed xorAll method, (c) Variable
mappings after translating each statement, and (d) the translation of statements to a boolean formula.
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allocates fresh boolean variables v5 and v6 for the variable i and con-

strains their values to be 0 (i.e. (¬v5 ∧ ¬v6)). The translation of the

branching condition in the second line (if (i < size)) constrains i,

encoded by <v5, v6>, to be smaller than size, encoded by <v3, v4>.

This constraint is then used as the antecedent of the formulas encoding

the body of the conditional. Other statements are translated similarly.

The formulas encoding individual statements are conjoined.

Solving. A solver is used to determine whether or not a logical formula has a

solution. The solutions generated by the solver are total functions, they assign some

logical value to every variable that appears in the analyzed formula.

We assume that if a partial logical instance already exists, a solver can determine

if that instance can be extended to a solution to a given formula. For a formula f

and a partial instance ins0, solve(f, ins0) represents the set of all solutions2 to f that

preserve the mapping already defined by ins0:

solve : Formula × Instance → 2Instance

solve(f, ins0) = {ins | ins0 ⊆ ins ∧ ins ∈ [[f ]]}

where 2Instance denotes the powerset of Instance. Thus, solve(f, ins0) = ∅ implies

that no such solution exists. We use solve(f) for solve(f, ∅).

Example. Consider the following boolean formula f that encodes the

inner conditional of the xorAll method as given in Figure 2-6.

(((¬v1∧¬v2)∨(v1∧v2)) =⇒ ¬v7) ∧ (((¬v1∧v2)∨(v1∧¬v2)) =⇒ v7)

Solving f with respect to a partial instance ins0 = [v1 -> 1, v2 -> 1]

(corresponding to the case where b and a[0] are both true), results in

2It is not necessary for the solver to return all solutions to a formula; one solution is sufficient
for the analysis. However, defining solve to return all solutions simplifies the formalization.
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only one solution:

solve(f, ins0) = {[v1 -> 1, v2 -> 1, v7 -> 0]}

This means that the only solution to f that preserves the given values

of v1 and v2 will map v7 to 0 (corresponding to updating a[0] to

false).

Proof generation. We assume that the solver used in our analysis can generate

a proof of unsatisfiability when the given formula has no solutions. An unsatisfia-

bility proof for an unsatisfiable formula f is a logical consequence of f that is also

unsatisfiable and thus is a witness that f does not have a solution. Although f is an

unsatisfiability proof of itself, a good proof consists of a weaker formula. We use the

function prove to represent the unsatisfiability proof returned by the solver3.

If a formula f is solved with respect to a partial instance ins and no solution is

found, the unsatisfiability proof, prove(f, ins), will denote a logical consequence of f

which is unsatisfiable with respect to ins. That is,

prove : Formula × Instance → Formula

(prove(f, ins) = f ′) ⇒ ((f ⇒ f ′) ∧ solve(f ′, ins) = ∅)

Example. Consider the formula f from previous example:

(((¬v1∧¬v2)∨(v1∧v2)) =⇒ ¬v7) ∧ (((¬v1∧v2)∨(v1∧¬v2)) =⇒ v7)

If f is solved with respect to the following instance

ins = [v1 -> 1, v2 -> 1, v7 -> 1]

no solution is found. That is, f is unsatisfiable with respect to ins. A

3The prove function can be non-deterministic. That is, different applications of this function to
the same arguments may generate different outputs.
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small unsatisfiability proof is

((v1 ∧ v2) =⇒ ¬v7)

which is a subset of f that cannot be satisfied by the given instance

ins. Therefore, f does not have a solution that preserves ins.

Initial call site specification. In order to compute the initial abstraction of a

procedure, our framework requires some initial specification for each call site reachable

by that procedure. We use computeSpec to represent the function that computes the

initial specification of a procedure call. Because computing an initial specification

might introduce a new mapping of program variables to logical variables, computeSpec

also returns the variable mapping of the post-state.

computeSpec : CallStmt × VariableMap × ValueMap → Formula × VariableMap

Our framework is independent of the exact value of the computeSpec function.

It only assumes that computeSpec always generates a finite logical formula, and the

generated formula over-approximates the effects of its corresponding call site. That

is, it accounts for all the executions of the called procedure. This property is specified

formally in Section 2.5. Any specification that satisfies these conditions can be used

as the initial specification in our framework. Therefore, even an empty specification

that allows arbitrary change in the state of the program can serve as the initial

specification. More precise specifications are inferred during the analysis if needed.

Example. Figure 2-7 gives two examples of initial specifications. Both

examples approximate the behavior of the xor method using the vari-

able and value mappings given in Figure 2-7(a). They both generate a

variable mapping in which the return value of the xor method is en-

coded by a fresh boolean variable, namely v3. The first specification

(Figure 2-7(b)) is a boolean formula that constrains the return value

of xor to be 0 if the two given arguments are equal. Otherwise, it is
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boolean xor(boolean x, boolean y) {
if (x == y) return false;
else return true;

}

varMap = [x -> v1, y -> v2]

valMap = [false -> 0, true -> 1]

(a)

first specification:
((¬v1 ∧ ¬v2) ∨ (v1 ∧ v2)) =⇒ ¬v3 varMap=[x-> v1, y -> v2, xor$return -> v3]

(b)

second specification:
true varMap=[x-> v1, y-> v2, xor$return -> v3]

(c)

Figure 2-7: Examples of initial specification: (a) the xor method and its pre-state
mappings, (b) first specification and the post-state variable mapping, (c) second spec-
ification and the post-state variable mapping.

unconstrained. The second specification (Figure 2-7(c)) does not con-

strain the return value of xor at all; it is just the boolean formula true,

allowing the method to return any arbitrary boolean value. Since both

of these specifications overapproximate the behavior of the xor method,

they can be used as its initial specification in our framework.

2.4 Computed Functions

Given the input functions translate, solve, prove, and computeSpec, we compute the

following auxiliary functions to use in our specification refinement algorithm.

Converting states to instances. A program state s can be encoded as a

logical instance using a variable mapping varMap and a value mapping valMap. We

use toInstance to represent this encoding.

toInstance : State × VariableMap × ValueMap → Instance

toInstance(s, varMap, valMap) = valMap ◦ s ◦ varMap−1
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varMap = [b -> v1, a[0] -> v2, size -> <v3, v4>]

valMap = [false -> 0, true -> 1, 0 -> <0, 0>, 1 -> <0, 1>]

s = [b -> true, a[0] -> true, size -> 1]

ins = [v1 -> 1, v2 -> 1, v3 -> 0, v4 -> 1]

toInstance(s, varMap, valMap) = ins
toState(ins, varMap, valMap) = s

Figure 2-8: An example of converting states to instances and vice versa.

That is, toInstance generates a logical instance that maps a logical variable v to a

logical value which is computed by first finding the program variable that is mapped

to v, then looking up the value of that program variable in the given state, and finally

converting the resulting value to a logical value using the value mapping.

It should be noted that if the given variable and value mappings are valid, the

toInstance operation is a function, i.e. it maps each logical variable to at most one

logical value. This is because the definition of validity for value and variable mappings

ensures that if the given valMap is valid, it is a function, and if the given varMap is

valid, s ◦ varMap−1 is a function.

Example. Figure 2-8 provides an example of converting states to

instances. The state shown in this figure defines a pre-state for the

xorAll method. Using the given value and variable mappings, this

program state is converted to the given instance which maps each logical

variable v to valMap(s(varMap−1(v))). The variable v1, for example,

is mapped to the value 1 because varMap−1(v1) = b, s(b) = true, and

valMap(true) = 1.

Converting instances to executions. If a formula f encodes the behavior of a

program, any solution to f can be interpreted as an execution of the encoded program.

Using a variable and a value mapping, the toState function extracts a program state

from a logical instance:

toState : Instance × VariableMap × ValueMap → State

toState(ins, varMap, valMap) = valMap−1 ◦ ins ◦ varMap
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That is, the generated program state maps each variable v to a value that is computed

by first finding the logical variable corresponding to v in varMap, then looking up the

logical value of that logical variable in the given instance ins, and finally mapping

that logical value back to a program value using valMap−1.

It should be noted that if the given variable and value mappings are valid, toState

will be a function.This is because by definition, any logical instance ins is a function,

and by definitions of validity for variable and value mappings, if varMap is valid, it

is a function, and if valMap is valid, it is injective and thus valMap−1 is a function.

Example. The example given in Figure 2-8 also illustrates converting

instances to states. It represents converting an arbitrary instance to a

pre-state of the xorAll method. The state maps each program vari-

able x to valMap−1(ins(varMap(x))). The variable b, for example, is

mapped to the value true because varMap(b) = v1, ins(v1) = 1, and

valMap−1(1) = true.

Using the toState function, we define toTrace to compute a trace of a given piece of

code using a given logical instance. Generating a trace involves finding the executed

statements by evaluating branch conditions, and computing the pre-states of the

executed statements (post-states are also computed in this process: the post-state of

a statement is the pre-state of the next statement). The definition of toTrace is given

below:
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toTrace : Instance × Stmt × VariableMap × ValueMap →
−−−−−−−−−−−−−−−−−−−−−→
State × (ElemStmt ∪ {exit})

toTrace(ins, stmt0 : ElemStmt, varMap, valMap) = (toState(ins, varMap, valMap), stmt0)

toTrace(ins, proc(a1, . . . , an), varMap, valMap) =

let varMap1 = varMap[formal1 7→ varMap(a1), . . . , formaln 7→ varMap(an)]

in toTrace(ins, proc body, varMap1, valMap)

toTrace(ins, if (cond) stmt1 else stmt2, varMap, valMap) =

let s = toState(ins, varMap, valMap) in

if evaluate(cond, s) = true then toTrace(ins, stmt1, varMap, valMap)

else toTrace(ins, stmt2, varMap, valMap)

toTrace(ins, stmt0 = while (cond) stmt, varMap, valMap) =

let s = toState(ins, varMap, valMap) in

if evaluate(cond, s) = true then toTrace(ins, stmt; stmt0, varMap, valMap)

else ()

That is, generating the trace for an elementary statement only involves computing

the program state before the execution of that statement. The trace of a procedure

call is computed by first producing a new variable mapping in which the formal

parameters of the called procedure are mapped to the same logical variables as the

actual arguments, and then generating a trace for the body of the called procedure.

The trace for conditionals is computed by first computing the program state before the

execution of the conditional, then evaluating the branching condition in that program

state, and finally generating the trace for the appropriate branch. Generating a trace

for a loop is similar except that the loop body is iterated until the loop condition

evaluates to false.

The trace of a sequence of statements is computed as follows:

toTrace(ins, stmt0;
−−→
stmt, varMap, valMap) =

let translate(stmt0, varMap, valMap) = (f, varMap′) in

toTrace(ins, stmt0, varMap, valMap); toTrace(ins,
−−→
stmt, varMap′, valMap)
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That is, the trace of the first statement is computed and then concatenated with the

trace of the rest of the statements. The variable mapping resulting from the transla-

tion of each statement is used to compute the trace of its subsequent statements. It

should be noted that if the given instance corresponds to an infinite execution of the

code, the toTrace function will not terminate. Furthermore, if the instance does not

correspond to a valid execution of the code, the trace generated by toTrace will not

be valid.

Example. Figure 2-9 shows an example of converting instances to pro-

gram traces. It gives a trace of the xorAll method using the translation

previously shown in Figure 2-6. Figure 2-9(a) gives the initial variable

and value mappings used in the translation and an instance satisfying

the formula generated by the translation. Figure 2-9(b) gives the code

of the xorAll method. The variable mappings used to translate each

statement of the code are given in Figure 2-9(c). Given these values,

the toTrace function generates the trace of Figure 2-9(d) as a sequence

of program statements along with their pre-states.

The toTrace operation produces the trace by converting each variable

mapping to a program state using the given instance. Since the first

statement of the code is an elementary statement, it is included in the

trace. Its pre-state is computed using the initial variable mapping.

The translation of this statement generates the next variable mapping,

[b -> v1, a[0] -> v2, size -> <v3, v4>, i -> <v5, v6>], which is

used to extract the trace of the loop: the mapping is converted to a

state in which the loop condition (i < size) is evaluated. Because

i = 0 and size = 1, the condition holds, and thus the trace of the

body of the loop is computed. The first statement of the loop is a call

to the xor method. As shown in the bottom part of Figure 2-9, the

trace of the body of this method is computed with respect to a variable

mapping that gives the actual mapping of the formal arguments. The

62



return value of the method (false) is substituted for a[0] and i is

incremented. The loop condition is evaluated again. Since it does not

hold any more, the execution of the loop terminates.

Abstraction. We compute an initial abstraction of a procedure in which the ef-

fects of the call sites are overapproximated using their initial specifications given by

the computeSpec function. We use the expression abstract(stmt, varMap, valMap) to

represent the initial abstraction of a program statement stmt based on a variable

mapping varMap and a value mapping valMap. The abstract function generates a

logical formula and a variable mapping:

abstract : Stmt × VariableMap × ValueMap → Formula × VariableMap

The abstraction of an elementary statement is equivalent to its translation. The

abstraction of a call site is its initial specification. That is,

abstract(stmt : ElemStmt, varMap, valMap) = translate(stmt, varMap, valMap)

abstract(stmt : CallStmt, varMap, valMap) = computeSpec(stmt, varMap, valMap)

Intuitively, loops and conditionals are abstracted by abstracting their bodies: if they

contain any call sites in their bodies, those sites are replaced by their initial specifi-

cations. Other statements of their bodies are translated using the translate function.

Since the specifications of the call sites overapproximate the called procedures,

the abstract function generates an over-approximation of a given piece of code. That

is, any execution allowed by the translate function must be allowed by the abstract

function too. This is formally defined as follows:

(translate(
−−→
stmt, varMap, valMap) = (ft, varMap′t) ∧

abstract(
−−→
stmt, varMap, valMap) = (fa, varMap′a)) =⇒

∀inst ∈ solve(ft),∃insa ∈ solve(fa) |

toState(inst, varMap, valMap) = toState(insa, varMap, valMap)∧

toState(inst, varMap′t, valMap) = toState(insa, varMap′a, valMap)
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varMap = [b -> v1, a[0] -> v2, size -> <v3, v4>]

valMap = [false -> 0, true -> 1, 0 -> <0, 0>, 1 -> <0, 1>]

instance = [v1 -> 1, v2 -> 1, v3 -> 0, v4 -> 1, v5 -> 0, v6 -> 0, v7 -> 0, v8 -> 0, v9 -> 1]

(a)

void xorAll(boolean b, mappings before translating stmts: pre-states of executed stmts: executed stmts:
boolean[] a, int size) {
int i = 0; varMap=[b->v1, a[0]->v2, size-><v3,v4>] s=[b-> true, a[0]-> true, size -> 1] int i = 0;
while (i < size) { varMap=[..., i -> <v5, v6>]

a[i] = xor(b, a[i]); varMap=[..., xor$return -> v7] s = [..., i-> 0, xor$return -> false] a[i] = xor$return;
i = i + 1; varMap=[..., , a[0] -> v7] s = [..., a[0] -> false] i = i + 1;

} varMap=[..., i -> <v8, v9>] s = [..., i -> 1] exit;
}

boolean xor(boolean x,
boolean y) {

if (x == y)
return false; varMap=[x -> v1, y -> v2] s = [x -> true, y -> true] xor$return = false;

else
return true;

} varMap=[..., xor$return -> v7]

(b) (c) (d)

Figure 2-9: An example of extracting traces from instances: (a) initial variable and value mappings and the instance, (b) the
xorAll method, (c) variable mappings used to compute the trace of each statement, and (d) the generated trace.
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varMap = [b -> v1, a[0] -> v2, size -> <v3, v4>]

valMap = [false -> 0, true -> 1, 0 -> <0, 0>, 1 -> <0, 1>]

(a)

void xorAll(boolean b, mapping after abstracting a stmt:
boolean[] a, int size) {
int i = 0; varMap=[..., i -> <v5, v6>] (¬v5 ∧ ¬v6) ∧
if (i < size) { ((¬v5 ∧ v3) ∨ (v5 ∧ v3 ∧ ¬v6 ∧ v4) ∨ (¬v5 ∧ ¬v3 ∧ ¬v6 ∧ v4)) =⇒ (

a[i] = xor(b, a[i]); varMap=[..., a[0] -> v7] (true) ∧
i = i + 1; varMap=[..., i -> <v8, v9>] ((¬v8 ∧ v9 ∧ ¬v5 ∧ ¬ v6) ∨ (v8 ∧ ¬v9 ∧ ¬v5 ∧ v6) ∨ (v8 ∧ v9 ∧ v5 ∧ ¬v6)∨

(¬v8 ∧ ¬v9 ∧ v5 ∧ v6)) ∧
assume (i >= size); varMap=[...] ((v8 ∧ ¬v3) ∨ (v8 ∧ v3 ∧ v9) ∨ (v8 ∧ v3 ∧ ¬v9 ∧ ¬v4) ∨ (¬v8 ∧ ¬v3 ∧ v9)∨

(¬v8 ∧ ¬v3 ∧ ¬v9 ∧ ¬v4))
} )

}

boolean xor(boolean x,
boolean y) {

if (x == y)
return false;

else
return true;

}
(b) (c) (d)

Figure 2-10: Abstraction example: (a) initial variable and value mappings, (b) the unrolled xorAll method, (c) variable
mappings after abstracting each statement, and (d) the abstraction of statements as a boolean formula.
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That is, any state transition allowed by the translate function must correspond to

some state transition allowed by the abstract function. Therefore, the abstraction of

a program contains all executions of the original program and possibly more.

Example. Figure 2-10 gives an abstraction of the xorAll method.

It uses the translation given in Figure 2-6 to translate all the state-

ments except the call to the xor method. Instead of inlining the call

site, the abstraction uses the initial specification shown previously in

Figure 2-7(d) to approximate the behavior of the xor method. The

specification generates a fresh boolean variable, namely v7, for the re-

turn value of this method, but leaves it unconstrained, allowing it to

take any arbitrary boolean value. Consequently, this abstraction is an

overapproximation of the original code.

Extracting call sites. A solution to a formula f that encodes the abstraction

of a program represents a valid execution of that program if it assigns valid state

transitions to the call sites. To check the validity of an instance ins, we define getCalls

to extract the call sites that are invoked in the program execution corresponding to

ins. More precisely, the getCalls function returns the set of all call statements executed

in the trace corresponding to ins along with the variable mappings of their pre-states.

The definition of getCalls is similar to that of toTrace except that it works with the

abstract function rather than translate, and only keeps track of the call sites. That is,
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getCalls : Instance × Stmt × VariableMap × ValueMap → 2(VariableMap×CallStmt)

getCalls(ins, stmt0 : ElemStmt, varMap, valMap) = ()

getCalls(ins, stmt0 : CallStmt, varMap, valMap) = (varMap, stmt0)

getCalls(ins, if (cond) stmt1 else stmt2, varMap, valMap) =

let toState(ins, varMap, valMap) = s in

if evaluate(cond, s) = true then getCalls(ins, stmt1, varMap, valMap)

else getCalls(ins, stmt2, varMap, valMap)

getCalls(ins, stmt0 = while (cond) stmt, varMap, valMap) =

let toState(ins, varMap, valMap) = s in

if evaluate(cond, s) = true then getCalls(ins, stmt; stmt0, varMap, valMap)

else ()

getCalls(ins, stmt0;
−−→
stmt, varMap, valMap) =

let abstract(stmt0, varMap, valMap) = (f, varMap′) in

getCalls(ins, stmt0, varMap, valMap) ∪ getCalls(ins,
−−→
stmt, varMap′, valMap)

As given by this definition, getCalls only returns the call statements that are directly

called by the given piece of code; it does not return the nested calls.

Example. Figure 2-11 shows an example of extracting calls from an

instance. It gives the call sites invoked in an execution of the abstract

xorAll method. The variable and value mappings of this figure are the

initial mappings used in Figure 2-10 to abstract xorAll. The instance

is a solution to the formula generated by the abstraction. Given these

values, the getCalls function generates the set given in Figure 2-11,

which contains only one pair of variable mapping and call statement.

This implies that the trace corresponding to this instance contains only

one call to the xor method, and the call site has been abstracted using

the extracted variable mapping.
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varMap = [b -> v1, a[0] -> v2, size -> <v3, v4>]

valMap = [false -> 0, true -> 1, 0 -> <0, 0>, 1 -> <0, 1>]

instance = [v1 -> 1, v2 -> 1, v3 -> 0, v4 -> 1, v5 -> 0,

v6 -> 0, v7 -> 0, v8 -> 0, v9 -> 1]

getCalls(instance, xorAll, varMap, valMap) =
{([b -> v1, a[0] -> v2, size -> <v3, v4>, i -> <v5, v6>], xor(b, a[i]))}

Figure 2-11: An example of extracting calls from an instance.

2.5 Input Functions Properties

Translation properties. A translate function is semantics-preserving if and only if

all the variable mappings it generates are valid, and it is both sound and complete.

That is, if translate(
−−→
stmt, varMap, valMap) = (f, varMap′), then the following two

rules hold:

completeness: ∀(s, s′) ∈ [[
−−→
stmt]] | solve(f, ins ∪ ins′) 6= ∅ where

ins = toInstance(s, varMap, valMap) and ins′ = toInstance(s′, varMap′, valMap)

soundness: ∀ins ∈ solve(f) | (s, s′) ∈ [[
−−→
stmt]] where

s = toState(ins, varMap, valMap) and s′ = toState(ins, varMap′, valMap)

That is, (1) any execution of
−−→
stmt corresponds to some solution to f (completeness),

and (2) any solution to f corresponds to some valid execution of
−−→
stmt (soundness).

We require the translate function to return a finite formula. Depending on the

translation method, this may require bounding variable domains, heap size, execution

length, and/or recursive calls. Therefore, the translation may not be semantics-

preserving. If the translation is not complete, i.e. some executions of the translated

program do not appear as solutions to the generated formula, the analysis might miss

some bugs. On the other hand, if the translation is not sound, i.e. some solutions

to the generated formula do not encode valid executions of the translated program,

the analysis might report false counterexamples. Thus, the choice of the translation

technique will affect the results of the analysis.

The translation example given in Figure 2-6 is sound but not complete. It is

not complete because the loop is unrolled once. Thus, no execution in which a
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loop is iterated more than once will satisfy the formulas generated by the translation.

However, it is sound because after unrolling the loop, the translation of all statements

preserve their semantics. Thus, any solution to the generated formulas is a valid

execution of the code.

Solver Properties. The choice of solver also affects the results of our analysis. We

require the solver to be sound, meaning that if it returns a solution to the formula,

the formula evaluates to true under the mapping defined by that solution. However,

the solver does not have to be complete. A solver is complete if it guarantees to find

a solution satisfying the given formula whenever one exists. If the solver used in our

analysis is not complete, meaning that it may miss some solutions, our analysis can

miss some bugs. Therefore, the analysis will not be complete. Furthermore, if the

solver is not guaranteed to terminate on all inputs, our analysis does not necessarily

terminate either.

Initial Specification Properties. We require the initial specifications of a proce-

dure call to under-specify the effects of that call site. This is formalized as follows:

(translate(
−−→
stmt, varMap, valMap) = (ft, varMap′t) ∧

computeSpec(
−−→
stmt, varMap, valMap) = (fs, varMap′s)) =⇒

∀inst ∈ solve(ft),∃inss ∈ solve(fs) |

toState(inst, varMap, valMap) = toState(inss, varMap, valMap)∧

toState(inst, varMap′t, valMap) = toState(inss, varMap′s, valMap)

That is, any state transition allowed by translate must be allowed by computeSpec too.

Therefore, the initial specification of a procedure call accounts for all of its possible

executions.

2.6 Algorithm

Our analysis method is formalized in the abstractAnalyze algorithm of Figure 2-12.

This algorithm describes the analysis in terms of the above functions. It takes a pro-

cedure proc selected by the user for checking, a logical formula property representing
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the property to check, a variable mapping varMap, and a value mapping valMap to

use in the abstraction. The result of the analysis is either NoCounterexample, in-

dicating that the property holds in the program, or Counterexample(t), indicating

that t is a counterexample: a trace in proc that violates property.

The analysis starts by abstracting all procedures called in the analyzed procedure

proc (Line 1). The resulting formula is then conjoined with the negation of property

(Line 2). Therefore, any solution to this formula will be a counterexample to the

property. The resulting formula is denoted by the variable f . Throughout the algo-

rithm, this variable represents an abstraction of the code that needs to be checked

for a counterexample.

In the solving phase (Line 4), a solver is used to find the instances satisfying f .

If no such instance exists (Lines 5 - 6), it means that the abstract program contains

no counterexamples. Since the abstraction is an over-approximation of the original

program, the original program contains no counterexamples either, and thus, the

analysis terminates (Line 6).

Otherwise, an instance ins is arbitrarily chosen from the set of solutions to f (Line

7). This instance represents a counterexample in the abstract program which is then

checked for validity with respect to the original program (Line 8). It should be noted

that the choice of the instance might affect the number of refinements that are needed

to check the property. However, it does not affect the analysis result, i.e. whether

the property is validated or not.

The validity check phase is performed by the checkValidity function (Lines 15 - 28).

It checks if an instance ins is a valid execution of a procedure proc using a variable

mapping varMap and a value mapping valMap. Since the only abstract statements

are procedure calls, the checkValidity function only needs to check if ins is consistent

with the call sites of proc. Variable calls (Line 15) denotes the set of all call sites

executed in the program trace corresponding to ins along with the variable mappings

of their pre-states. These call sites will be analyzed to check the validity of ins (Lines

16 - 28).

The checkValidity function checks the consistency of ins with each called procedure
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datatype AnalysisResult = NoCounterexample + Counterexample(Trace)

datatype ValidityResult = Valid(Instance) + Invalid(Formula)

function abstractAnalyze(Procedure proc, Formula property,
VariableMap varMap, ValueMap valMap): AnalysisResult {

1: (f, varMap′) = abstract(proc, varMap, valMap) (abstraction)
2: f = f ∧ ¬property
3: while true {
4: instances = solve(f) (solving)
5: if instances = ∅
6: return NoCounterexample

7: ins = choose(instances)
8: res = checkValidity(proc, ins, varMap, valMap) (validity check)
9: if res = Valid(ins′)
10: trace = toTrace(ins′, proc, varMap, valMap)
11: return Counterexample(trace)
12: if res = Invalid(spec) (refinement)
13: f = f ∧ spec
14: }
}

function checkValidity(Procedure proc, Instance ins,
VariableMap varMap, ValueMap valMap): ValidityResult {

15: calls = getCalls(ins, proc, varMap, valMap)
16: foreach (varMapi, stmti) ∈ calls
17: proci = callee(stmti)
18: (fi, varMap′i) = abstract(proci, varMapi, valMap)
19: instances′ = solve(fi, ins)
20: if instances′ = ∅
21: speci = prove(fi, ins)
22: return Invalid(speci)
23: else

24: ins′ = choose(instances′)
25: ins = ins ∪ ins′

26: calls = calls ∪ getCalls(ins′, proci, varMapi, valMap)
27: }
28: return Valid(ins)
}

Figure 2-12: Analysis by procedure abstraction.
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until either an inconsistent call is found or it is shown to be consistent with all of

them. As our abstraction is based on the procedure call hierarchy of the code, the

check for validity is done hierarchically. That is, when a call to a procedure proci is

checked, all of its callees are abstracted. This is why checkValidity uses the abstraction

of proci rather than its translation (Line 18). The abstraction of proci generates a

formula denoted by the variable fi (Line 18). If ins is not consistent with proci, that

is, if fi does not have a solution that preserves ins, the specification of proci should

be refined (Lines 20 - 22). In this case, the solver returns an unsatisfiability proof,

represented by speci, which is still unsatisfiable with respect to ins (Line 21). This

proof is a partial specification for proci that rules out the current counterexample ins,

and possibly more. Line 22 returns speci as an inferred specification.

On the other hand, if ins is consistent with the semantics of the procedure proci,

it means that some execution of proci conforms to the state transition that ins has

assigned to the call to proci. All such executions are included in instances′. One of

those instances, denoted by ins′, is chosen (Line 24) to augment the current coun-

terexample ins to include the execution within proci as well (Line 25). Furthermore,

since the call sites of proci were abstract when ins was checked for consistency with

proci, those call sites should be analyzed too. Therefore, the procedures called in ins′

are added to the set calls (Line 26) to be checked later. If the current counterexample

ins is consistent with all the call sites needed to be checked, this counterexample is

valid and is returned (Line 28).

If the result of the validity check is valid, the abstractAnalyze function uses toTrace

to map the augmented instance (ins′) back to an execution in the original program

(Line 10). The result is returned as a counterexample (Line 11).

Otherwise, Line 13 conjoins the specification spec returned by checkValidity with

the current formula f to guarantee that ins will never be found by the solver again.

After this refinement, the solving phase starts over.

It should be noted that abstractAnalyze is just an outline of the process. There

are several opportunities for optimization in an actual implementation. We explain

some of them in Chapters 3 to 6.
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Example. We illustrate this algorithm using the xorAll example given

in Figure 2-13(a). The given property specifies that if both b and a[0]

are true, the method modifies a[0] to be false (a’[0] denotes the

final value of a[0]). The initial abstraction of this method was pre-

viously given in Figure 2-10. Figure 2-13(b) gives the initial variable

and value mappings used in the abstraction along with the final vari-

able mapping that the abstraction generates. These values are used

to translate the given property to the boolean formula given in Fig-

ure 2-13(c). The property is negated and conjoined with the formulas

encoding the abstraction. Solving the resulting formula produces the

instance given in Figure 2-13(d). It represents a case where although

both b and a[0] are true, the final value of a[0] is not false, it is true

instead. Therefore, although it is a counterexample to the property, it

is not valid in the original code.

The validity of this instance is checked by checking the original code

of the call sites it invokes. The trace corresponding to this instance

invokes only one method call: the call to the xor method in the first

iteration of the loop. This call site and its pre-state variable map-

ping is extracted using the getCalls function as given in Figure 2-13(e).

To check the validity of this instance, the body of the xor method is

translated to a boolean formula with respect to the extracted pre-state

variable mapping. This translation is shown in Figure 2-13(f). Solving

the generated formula with respect to the found instance results in no

solutions, implying that the instance is invalid. The solver generates

the proof of unsatisfiability given in Figure 2-13(g), which specifies that

if the two arguments of the xor method are equal, the return value is

false. This formula is conjoined with the abstraction of xorAll and

solved again against the property. In this example, no more solutions

are found, and the property has been validated.
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// ((b = true) and (a[0] = true)) =>

// (a’[0] = false)
void xorAll(boolean b, boolean[ ] a, int size) {

int i = 0;
while (i < size) {

a[i] = xor(b, a[i]);
i = i + 1;

}
}

boolean xor(boolean x, boolean y) {
if (x == y) return false;
else return true;

}

varMap = [b -> v1, a[0] -> v2,

size -> <v3, v4>]

valMap = [false -> 0, true -> 1,

0 -> <0, 0>, 1 -> <0, 1>]

varMap’ = [b -> v1, a[0] -> v7,

size -> <v3, v4>, i -> <v8, v9>]

(a) (b)

v1 ∧ v2 =⇒ ¬v7

instance = [v1 -> 1, v2 -> 1,

v3-> 0, v4-> 1, v5 -> 0, v6 -> 0,

v7 -> 1, v8 -> 0, v9 -> 1]

(c) (d)

getCalls(instance, ..) = { ([b -> v1, a[0] -> v2, size -> <v3, v4>, i -> <v5, v6>],

xor(b, a[i])) }

(e)

varMap= [b -> v1, a[0] -> v2, size -> <v3, v4>, (((¬v1∧¬v2)∨(v1∧v2)) =⇒ ¬v7)

i -> <v5, v6>, xor$return -> v7] ∧(((¬v1∧v2)∨(v1∧¬v2)) =⇒ v7)

(f)

(v1 ∧ v2) =⇒ ¬v7

(g)

Figure 2-13: An illustration of the analysis: (a) the xorAll method and its property
of interest, (b) initial and final mappings involved in the abstraction, (c) the encoded
property, (d) the found instance, (e) the call site invoked by the instance, and its
pre-state variable mapping, (f) the translation of the call to the xor method, (g)
inferred specification.
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datatype AnalysisResult = NoCounterexample + Counterexample(Trace)

function inlinedAnalyze(Procedure proc, Formula property,
VariableMap varMap, ValueMap valMap): AnalysisResult {

(g, varMap′) = translate(proc, varMap, valMap)
g = g ∧ ¬property
instances = solve(g)
if instances = ∅

return NoCounterexample

ins = choose(instances)
trace = toTrace(ins, proc, varMap, valMap)
return Counterexample(trace)

}

Figure 2-14: Analysis without abstraction.

2.7 Properties

The termination, completeness, and soundness properties of the described framework

depends on the actual translation, solving, and proof generating techniques used to

instantiate it. Therefore, in this section, we analyze these properties by comparing

our framework (the abstractAnalyze algorithm) with a similar analysis technique that

does not abstract procedures, namely the inlinedAnalyze algorithm given in Figure

2-14.

2.7.1 Termination

The abstractAnalyze algorithm contains two iteration points: a refine-solve cycle

(Lines 3 - 14), and a validity check cycle (Lines 16 - 27). The syntax of Figure

2-2 allows analyzed programs to contain executions with infinite loops and recursive

procedure calls. The analysis of such programs can loop forever because the set of

call sites to check can grow without bound. If the program execution correspond-

ing to a found counterexample calls a procedure p infinitely (either in a loop or a

recursive chain of calls), all those call sites have to be checked for consistency with

the counterexample. Therefore, checking the validity of the counterexample will not

terminate.
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Furthermore, even if the analyzed program does not contain infinite executions,

the axioms defined in this chapter allow the prove function to rule out spurious coun-

terexamples one by one by returning the negation of a counterexample as the proof of

unsatisfiability in each iteration. Since the abstract program can have infinitely many

spurious executions that violate a property, the refine-solve cycle may not terminate

either. Thus, in general, the analysis is not guaranteed to terminate.

However, as explained in Chapters 3 to 6 our instantiation of this framework

translates the code by finitizing the loops and recursive calls and analyzes it with

respect to a finite heap. Therefore, it guarantees that a finite number of counterex-

amples exist, and each of them represents a finite execution of the code. That is, each

counterexample contains only a finite number of call sites to check. Therefore, our

instantiation of the framework is guaranteed to terminate.

2.7.2 Completeness

An error detecting analysis is complete if and only if whenever there exists a coun-

terexample to a given property, the analysis can find it. As discussed before, our

technique is not guaranteed to terminate. Therefore, in general, our analysis is not

complete.

However, if the basic operations and the analyzed program are chosen so that the

analysis is guaranteed to terminate, we argue that our abstractAnalyze algorithm is as

complete as the inlinedAnalyze algorithm. Therefore, the specification refinement idea

does not introduce incompleteness in terminating analyses. The proof is as follows.

Lemma 1. In each iteration of the abstractAnalyze algorithm, the solved formula f

is weaker than the formula g solved in inlinedAnalyze.

Proof. The proof is by induction. The formula f is initially equal to the formula gener-

ated by abstract(proc, varMap, valMap) which is weaker than the formula generated

by translate(proc, varMap, valMap) because of the over-approximation property of

abstract. Therefore, for a given property, the formula f solved in the first iteration
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of abstractAnalyze is weaker than the formula g solved in inlinedAnalyze. Thus, the

base of the induction is true.

Let f j denote the formula f solved in the jth iteration of abstractAnalyze. We

show that if f j is weaker than g, then f j+1 is also weaker than g. The proof is as

follows:

f j+1 = f j ∧ spec (Line 13)

spec = prov(fi, ins) (Line 21)

(fi, varMap′i) = abstract(callee(stmti), varMapi, valMap) (Line 18)

(varMapi, stmti) ∈ calls (Line 16)

calls = getCalls(ins, proc, varMap, valMap) (Line 15)

By the definition of prove, the formula spec is weaker than fi, which is weaker than the

formula generated by translate(callee(stmti), varMapi, valMap) because of the over-

approximation property of abstract. Since callee(stmti) is reachable from proc (by

Line 15), the formula generated by translate(callee(stmti), varMapi, valMap) is weaker

than the one generated by translate(proc, varMap, valMap). Therefore, spec is weaker

than g. Since both f j and spec are weaker than g, the formula f j+1 is weaker than g

too. Thus, the given invariant holds.

Theorem 1. If inlinedAnalyze finds a counterexample and abstractAnalyze does not

loop forever, it finds a counterexample too.

Proof. Assume to the contrary that inlinedAnalyze returns a counterexample, but

abstractAnalyze terminates with no counterexamples. That is, abstractAnalyze ter-

minates in Line 6 implying that solve(f) = ∅. However, by Lemma 1, the formula

f solved in each iteration of abstractAnalyze is weaker than the formula g solved in

inlinedAnalyze. Therefore, if solve(f) = ∅ then, solve(g) = ∅. That is, inlinedAnalyze

does not find any counterexamples either, contradicting the assumption.
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2.7.3 Soundness

An error detecting analysis is sound if and only if all the counterexamples it returns

are feasible executions of the analyzed code that violate the analyzed property. We

show that our specification refinement idea does not introduce unsoundness. That is,

the following theorem holds:

Theorem 2. If all counterexamples returned by inlinedAnalyze are feasible executions

of the analyzed code, all counterexamples returned by abstractAnalyze are also feasible.

Proof. Let abstractAnalyze(proc, property, varMap, valMap) generate a trace t corre-

sponding to an instance ins. According to the abstractAnalyze algorithm, all proce-

dures called in t have been checked for validity before t is returned. Thus, ins satisfies

all the formulas generated by translate(proc, property, varMap, valMap) that encode

those program statements that are executed in t. All other formulas generated by

translate(proc, property, varMap, valMap) encode program statements unreachable

by t and thus vacuously evaluate to true under the instance ins. Thus, ins satis-

fies all the formulas generated by translate(proc, property, varMap, valMap), and its

corresponding trace, t, can be returned by inlinedAnalyze, too. Since all counterexam-

ples returned by inlinedAnalyze are feasible executions, t is also feasible. Therefore,

all counterexamples returned by abstractAnalyze are feasible too.
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Chapter 3

Context

In this chapter, we describe the inputs that the user provides to our analysis technique.

Our technique checks a given program against a property, both provided by the user.

The program is assumed to be written in a subset of Java, and the property should be

expressed in the Alloy modeling language. The analysis is performed with respect to

a bounded domain where the bounds are parameters also provided by the user. The

output of the analysis is either a valid counterexample, indicating that the code does

not satisfy the property, or a guarantee that the property holds within the analyzed

bounds; though nothing is guaranteed beyond those bounds.

3.1 Programming Language: Java

We focus on checking object-oriented programs. Our tool, Karun, currently supports

a subset of Java that includes basic statements and inheritance. It does not include

arrays, reflection, exceptions, concurrency, or complex numerical expressions (only

integer comparisons, additions, and subtractions are supported). Figure 3-1 gives a

grammar for supported program statements.
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Stmt ::= Var = PExpr

| PExpr.Field = PExpr

| Var = new Class(PExpr∗)

| Proc(PExpr∗)

| Var = Proc(PExpr∗)

| return PExpr

| if (Cond) Stmt [else Stmt]

| while (Cond) Stmt

| Stmt; Stmt

PExpr ::= IntConst | PConst | Var[.Field]∗

| PExpr + PExpr | PExpr - PExpr

IntConst::= 0 | 1 | -1 | 2 | -2 | ...

PConst ::= null | true | false

Cond ::= Var[.Field]∗ == PExpr | Var[.Field]∗ != PExpr

| PExpr < PExpr | PExpr > PExpr | PExpr instanceof Class

| Cond && Cond | Cond || Cond

Figure 3-1: Program statements.

3.2 Specification Language: Alloy

In order to check a program, our technique requires the user to provide a property

which is a top-level specification that (partially) specifies the behavior of a procedure

in the given program. We particularly target data structure properties of the code,

i.e., properties that constrain configurations of the objects in the heap.

We assume that the given property is expressed in Alloy [30], a first order relational

logic that includes transitive closure, making it well suited for expressing complex data

structure properties succinctly. Our tool supports all of Alloy. Thus, any well-formed

Alloy formula is accepted as a property.

A property specifies the behavior of a procedure p as (partial) pre- and post-

conditions for p expressed in terms of the classes and fields declared in the program,

and formal parameters and the return value of p. We assume that the values in the

pre- and post-states are referenced by unprimed and primed identifiers respectively.

Figure 3-2 gives the syntax of the Alloy logic. Although user-provided properties

can be any Alloy formulas, the code abstractions automatically generated by our tool

use only a subset of the Alloy language. The details are explained in Chapters 4

through 6.
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AlloyModel::= TypeDecl∗ RelDecl∗ Formula

TypeDecl ::= sig TypeId | sig TypeId extends TypeId

RelDecl ::= RelId: Expr[ -> Expr]∗

Expr ::= TypeId | RelId

| Int | univ | iden | none
| Expr + Expr union
| Expr & Expr intersection
| Expr - Expr difference
| Expr.Expr composition
| Expr -> Expr product
| Expr ++ Expr override
| ~Expr transpose
| *Expr | ^Expr closure
| {var: Expr | Formula} set comprehension
| if Formula then Expr else Expr conditional
| Int(IntExpr) integer

IntExpr ::= intConst | int(Expr)
| size(Expr) set cardinality
| if Formula then IntExpr else IntExpr conditional
| intExpr + intExpr addition
| intExpr - intExpr subtraction

IntConst ::= 0 | 1 | -1 | 2 | -2 | ...

Formula ::= Expr in Expr subset
| Expr = Expr equality
| Formula and Formula conjunction
| Formula or Formula disjunction
| not Formula negation
| Formula => Formula implication
| Formula <=> Formula bi-implication
| all var:Expr | Formula universal
| some var: Expr | Formula existential
| one var: Expr | Formula singleton
| no Expr | some Expr | one Expr cardinality
| IntFormula integer

IntFormula::= IntExpr = IntExpr

| IntExpr < IntExpr

| IntExpr > IntExpr

TypeId ::= Identifier

RelId ::= Identifier

Figure 3-2: Syntax of the Alloy logic.
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3.2.1 Declarations

Alloy is a strongly typed language that assumes a universe of atoms partitioned into

disjoint sets, each of which is associated with a basic type. A basic type T is declared

as sig T denoting a set of atoms of type T .

Subtypes in Alloy are represented as subsets and are declared using the extends

keyword. The subtypes of a type T are mutually disjoint, i.e. they share no atoms.

The value of any expression in Alloy is always a relation – that is a set of tuples

of atoms. A relation declaration denotes the relation’s type and arity; any finite arity

is allowed. For example, if E1, E2 and E3 are three expressions, then a relation of

type E1 -> E2 -> E3 is a set of tuples whose first element is chosen from the set

representing E1, second one is chosen from the set representing E2 and third one is

chosen from the set representing E3. The arity of such relation is the sum of the

arities of E1, E2, and E3.

Sets of atoms are expressed as unary relations, i.e. relations whose tuples have

only one column. Scalars are expressed as singleton unary relations, i.e. relations

containing only one tuple with only one column.

3.2.2 Expressions

Alloy expressions may reference type identifiers and relation identifiers. In addition

to that, there are four constants in the Alloy language: Int is the only built-in type

which represents a set of atoms of type integer. The actual integer value of these

atoms will be determined during the analysis of the Alloy model. The univ relation

denotes a relation containing all the atoms in the universe (a union of all types). The

iden relation denotes an identity relation defined over univ, and the none relation

represents an empty relation.

Relations are combined with a variety of operators to form expressions. These

operators are either set operators or relational operators. The standard set operators,

+ for union, & for intersection, and - for difference, combine two relations of the

same type, viewed as sets of tuples, according to their standard definitions.
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The main relational operator is the dot operator for join (relational composition).

The composition of relations r (arity n) and s (arity m) is defined as follows:

r.s = {〈r1, .., rn−1, s2, .., sm〉 |

〈r1, .., rn〉 ∈ r ∧ 〈s1, .., sm〉 ∈ s ∧ (rn = s1)}

If r is a unary relation (n = 1) and s is a binary relation (m = 2), the expression r.s

gives the standard relational image of r under s. If r is a binary relation (n = 2) and

s is a unary relation (m = 1), the expression r.s gives the set of atoms of the domain

of r whose mapping under r equals some atom in s.

Other relational operators are product and override. The product operator r -> s

gives the cross product of the two relations r and s. The override operator is defined

as follows:

r ++ s = {〈a1, .., an〉 | 〈a1, .., an〉 ∈ s ∨

(〈a1, .., an〉 ∈ r ∧ (r1 /∈ domain(s)))}

That is, (r ++ s) contains all the tuples of s and those tuples of r whose first atom

is not mapped to anything by s.

There are also two unary operators: transpose and closure. The transpose of a

relation r, denoted by ~r, gives a new relation by reversing the order of atoms in each

tuple of r. The closure operator ^ takes a homogeneous binary relation r : T -> T

and gives the transitive closure of r defined as follows:

^r = r + r.r + r.r.r + ...

The operator * also computes a transitive closure, but its result is always reflexive.

That is,

* r = iden + r + r.r + r.r.r + ...

The expression x.*r succinctly represents all the elements reachable from x via the r

relation.
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In addition to the above operators, an expression may be formed based on the

evaluation of some formula. A set comprehension expression {v : e | f(v)} defines

a set of atoms that belong to the expression e and satisfy the formula f(v). A

conditional expression specifies a relation based on the truth value of the branching

formula. That is,

if f then e1 else e2 =







e1 in case f is true

e2 otherwise

For an integer expression i, the expression Int(i) denotes the integer atom cor-

responding to the integer value of i. An integer expression can be a constant, the

value of an integer atom, denoted by int(e), a set cardinality, an integer conditional

expression, or addition and subtraction expressions.

3.2.3 Formulas

Elementary formulas are formed from the subset operator in and the equivalence

operator =. For two expressions p and q, the formula p in q is true when every tuple

in p is also in q and the formula p = q is true when p in q and q in p are both true.

Larger formulas can be obtained using the standard logical connectives: conjunc-

tion, disjunction, negation, and implication. First order quantifiers are also allowed.

For example, one x : e| F is true if and only if the formula F holds under exactly

one binding of the variable x to a scalar from the set denoted by e.

For a quantifier Q and an expression e, the formula Q e constrains the cardinality

of the relation representing e. The formulas no e, some e, and one e respectively

denote that e is empty, non-empty, and a singleton relation.

Formulas may also be formed from integer expressions. Test for equality, less than,

and greater than are supported by the language.
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3.2.4 Auxiliary Constraints

The following two functions that are provided by the Alloy engine will be extensively

used in the translation of Java programs to Alloy.

• Functionals: A relation r : T1 -> T2 is functional if and only if r maps each

atom of T1 to at most one atom in T2. The functional constraint is defined as

follows:

functional(r : T1 -> T2) { all x : T1 | ((no x.r) or (one x.r)) }

• Total orders: A homogeneous relation r : T -> T is a total order if and only if

all atoms of T are reachable from some atom first by traversing r. Furthermore,

every atom in T , except some last atom, has exactly one mapping under r.

More precisely, the totalOrder constraint is defined as follows:

totalOrder(r : T -> T ) {

(one first : T | first. ∗ r = T ) and

(one last : T | ((all x : (T − last) | one x.r) and (no last.r))) }

3.2.5 Examples

The relational logic underlying Alloy and its built-in transitive closure operator make

it well suited for expressing data structure properties of heap-manipulating programs.

In this section, we provide sample properties of two kinds of data structures, namely

linked lists and binary trees, and illustrate how they can be expressed in Alloy.

Consider the implementation of a singly linked list given below:

class List {

Entry head;

}

class Entry {

Entry next;

Data data;
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}

class Data {}

Adopting a relational view of the heap, each datatype is represented as an Alloy

signature, and each field is encoded as a binary function. The head field, for example,

is represented by a relation head: List -> Entry that maps each atom of type List

to an atom of type Entry. Consequently, dereferencing the field head of a list object

l will be equivalent to the relational join l.head.

Using the Alloy transitive closure operator, the set of all entries of a list l can

be succinctly specified by the expression l.head.*next, and thus the contents of l

is expressed by l.head.*next.data. These expressions become handy in specifying

list operations. For example, to encode that a removeAll operation removes all

occurrences of a datum d from a list l, it is sufficient to say

l.head’.*next’.data’ = l.head.*next.data - d

That is, the final contents of l are the initial contents of l minus the removed datum

d. (We use primed names to denote the values of the relations after an operation.)

Another example is an implementation of a binary tree data structure given below:

class Tree {

Tree left;

Tree right;

Tree parent;

Data data;

}

We can constrain the parent field to be consistent with the left and right fields

using the following Alloy formula.

all x, y: Tree | (x.parent = y) <=> ((y.left = x) or (y.right = x))

That is, a tree node y is the parent of a tree x if and only if x is either the left or the

right child of y.
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Using the union of two relations, the set of all children of a tree t can be succinctly

encoded by the t.^(left + right) expression. Thus, we can specify that a tree t

is acyclic by the following formula:

all t: Tree | not (t in t.^(left + right))

That is, no tree node should be included in its set of children.

Furthermore, one can specify that a tree t is balanced using the cardinality oper-

ator of Alloy:

all n: t.*(left + right) |

size(n.left.*(left + right)) = size(n.right.*(left + right))

That is, for all nodes of the tree, the number of nodes in the left subtree should be

equal to the number of nodes in the right subtree.

Although Alloy is expressive enough to specify many complex data structure prop-

erties, there are certain properties that cannot be expressed in Alloy. As mentioned

in Chapter 1, a property that requires higher-order quantification is an example.

To illustrate this, consider a method that takes a linked list and makes it “well-

formed” (based on some definition of well-formedness) by updating the next fields

of its entries. We can check that the method is correct by analyzing the property

wellFormed(next’) where next’ is the resulting next link in the post-state. How-

ever, if we would like to check that the modified list is the closest well-formed list

to the original one (based on some definition of distance), we should analyze the

following property:

wellFormed(next’) and

all next0: Entry -> Entry | wellFormed(next0) =>

(distance(next, next0) >= distance(next, next’))

This property, however, requires support for higher-order quantification because of

the quantifier over the relation next0. Therefore, it cannot be expressed in Alloy.
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3.3 Bounds

An Alloy model can be automatically analyzed with respect to some finite scope. The

scope defines a bound on the number of atoms of each type. For the integer type,

however, the scope is denoted by a bitwidth for integer values rather than the number

of integer atoms. For a given bitwidth n, the analysis considers all the numbers from

−2n−1 to 2n−1 − 1 as possible values for integer expressions. Furthermore, the bound

on the number of atoms of type Int is automatically set to 2n.

Our program analysis technique generates Alloy models from Java code auto-

matically. As explained in Chapter 5, the types used in the generated Alloy model

correspond to the datatypes used in the analyzed program. Therefore, the bounds

needed to check the Alloy model represent the maximum number of objects that will

be considered for each datatype during the analysis. These bounds are provided by

the user and are fixed over the course of the analysis.

Furthermore, the translation technique that we use unrolls loops and recursions

before translating the code to Alloy. The maximum number of iterations of the loops

and recursive calls is also provided by the user.

Although our analysis checks programs with respect to finitized domains, it con-

siders all possible initial configurations of the heap for initial states. Therefore, the

user does not need to provide initial configurations; they are all exhaustively checked

automatically. Consequently, if no counterexample is found, it is guaranteed that the

property holds within the analyzed domains. However, because of finitizations, it is

not a general proof of correctness – thus called bounded verification.
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Chapter 4

Extracting Initial Specifications

In order to analyze a procedure against a property, we compute an initial abstrac-

tion of the procedure in which all call sites are represented by some initial specifica-

tions. This chapter describes how the initial specifications of the called procedures

are extracted. The technique is static, fully automatic, and does not require any

user-provided guidance. It generates syntactic specifications of how a procedure ma-

nipulates the objects in the heap.

4.1 Overview

The initial specification of a procedure call need not be accurate; the only requirement

is to over-approximate the effects of the corresponding procedure. Therefore, even

an empty specification that allows the procedure to change the state of the program

arbitrarily is allowed. However, starting with more informative specifications can

reduce the number of refinements needed during the analysis. On the other hand,

since some procedures are irrelevant to the property being checked, it is not always

beneficial to spend considerable time to extract very rich initial specifications.

In this chapter, we describe a lightweight technique for extracting cost-effective

initial specifications. Given a procedure, the technique summarizes its behavior by

computing a symbolic relationship between the procedure’s pre-states and post-states.

A summary is a declarative formula expressed in a subset of the Alloy language that
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does not include quantifiers or set comprehensions. It gives an over-approximation of

the procedure’s behavior by bounding the final values of accessed fields, the return

value, and allocated objects from both above and below by relational expressions.

Upper and lower bounds on relations. Our abstraction technique is a flow-

sensitive, context-sensitive instantiation of the abstract interpretation framework [13]

in which the abstract domain consists of relational expressions. The pre-state of a

procedure is abstracted by representing each type, variable, and field as a relation

with some symbolic value. The code is executed symbolically to compute new rela-

tional expressions for the values updated by each statement. For each relation, two

expressions are computed simultaneously: a lower bound, representing the tuples that

occur in all executions of the procedure (encoding the procedure’s must side-effects),

and an upper bound, representing the tuples that possibly occur in some execution

(encoding the procedure’s may side-effects).

The constraints place no restrictions on aliasing between symbolic names, and

thus the results account for all possible aliasing in the pre-state.

Over-approximation of final states. Having computed a lower and an up-

per bound on the final value of each relation, we construct a summary that over-

approximates the set of all possible post-states of the procedure. The summary is

an Alloy formula that constrains the final values of all types, variables, and fields to

conform to their lower and upper bounds. That is, for each type, variable, or field x,

the summary contains a constraint of the form

(lb in x’) and (x’ in ub)

where x’ is the relation representing the final value of x, and lb and ub are its lower

and upper bounds respectively. This constraint specifies that all tuples of lb must

be included in x’ and all tuples of x’ must be chosen from ub.

Syntactic domain of abstract values. The bounds computed by our technique

are expressions over the relations that represent the pre-state of the procedure and

some fresh relations that represent its allocated objects. These expressions are built
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and stored syntactically. That is, they cannot be evaluated unless the pre-state and

allocation relations are bound to specific tuples. Therefore, in order to combine these

expressions, we use syntactic relational operators. That is, to combine two expressions

e1 and e2 with a relational operator ◦, we use the expression e1 ◦ e2 that gives a

syntactic concatenation of the operator ◦ with the operands e1 and e2.

Representation of allocated objects. The objects allocated by a procedure

(directly or indirectly) are represented by fresh unary relations. These relations are

not bound to any particular values; they are free variables in the resulting summary.

For each datatype, our abstraction technique enumerates the first m objects allocated

by the analyzed procedure or its callees, where m is a constant parameter of the

analysis. Any further allocations are approximated by a symbolic set of objects

whose cardinality is unspecified.

Abstraction of call sites. Call sites of a procedure are abstracted in a context-

sensitive way. The context of a call site denotes the variables, fields, and types whose

summaries are accurate. That is, their lower and upper bounds are the same. A

called procedure may have different summaries at different contexts. However, all

calls to a procedure that have the same context share the same summary structure.

Therefore, for each calling context of a procedure, we compute a template summary

that abstracts the behavior of that procedure at that context, using symbolic names

for its input arguments, fields, and types. The actual summary of a call site is then

computed by instantiating its template summary using actual values of the arguments,

fields, and types at the call site.

Abstraction of loops. In order to generate more precise summaries, our anal-

ysis exploits the condition of a loop in abstracting the loop body: upon entering a

loop, a relational encoding of the loop condition is intersected with the expressions

computed for the variables used in that condition. Thus, those tuples that violate

the loop condition will be removed. The loop is then abstracted by computing a

fixpoint. Then, a relational encoding of the termination condition (negation of the

loop condition) is intersected with the final expressions of the condition’s variables.

Our analysis is further optimized by applying a pattern-matching step that rec-
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ognizes the loops iterating over all the elements of a linked data structure, a common

pattern in heap-manipulating programs. It generates a more accurate specification

for any loop that follows this pattern.

Widening rules. A collection of simplification rules and widenings reduces the

size and complexity of the generated expressions, and guarantees that the technique

terminates. Two widening rules are designed to concisely summarize the behavior of

loops: (1) a union of k relational joins is widened to a transitive closure to soundly

approximate the set of objects that are visited during the execution of a loop, and

(2) an intersection with the loop condition is dropped from the expressions computed

for the variables used in a loop to make them amenable to the previous widening

rule. Furthermore, we limit the size of relational expressions by placing a bound n on

the number of operators they can contain. Any upper bound exceeding n is widened

to the universal relation of the appropriate type. Any lower bound exceeding n is

approximated by the empty set.

Applicability to other settings. It should be noted that the summaries that

are generated by this technique are valid consequences of the code; they do not depend

on finitizations of either heaps or loop executions. Thus, they can be used as general

specifications in a variety of settings beyond the context of our analysis framework.

Furthermore, although default values are provided for the widening parameters, they

can be overridden by user-provided values. This allows users to tune the precision of

the generated specifications according to their needs.

4.2 Logic

Our analysis summarizes a procedure’s behavior in a subset of the Alloy modeling

language. Each class C declared in the analyzed program is encoded by two sets

(unary relations): one representing all possible objects of type C, and the other

representing all objects of type C that are already allocated. (The latter set is a

subset of the former set.) A variable in the program is represented by a singleton set

that denotes the value of that variable, and a field of type T declared in a class C
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Summary ::= Constr*

Constr ::= Rel’ Op Expr

Rel ::= Field | Var | TypeId$alloc

Op ::= ⊆ | ⊇ | =

Expr ::= Const | none | Rel | TypeId | Int | Allocation

| Expr + Expr union
| Expr & Expr intersection
| Expr - Expr difference
| Expr.Expr composition
| Expr -> Expr product
| Expr ++ Expr override
| ^Expr transitive closure
| *Expr reflexive transitive closure

Allocation::= New$SymObj | NewSet$SymObj

Field ::= Identifier

Var ::= Identifier

Const ::= Identifier

SymObj ::= Identifier

TypeId ::= Identifier

Figure 4-1: Syntax of summaries.

is encoded as a functional binary relation of type C -> T that maps each object of

type C to at most one object of type T .

Figure 4-1 gives a grammar for the subset of Alloy used in the generated sum-

maries. A summary is a set of constraints, implicitly conjoined, on the post-state

relations that represent the final values of a procedure’s accessed fields, return value,

and allocated objects. The pre- and post-state relations are represented by unprimed

and primed names, respectively. For a type T, we use the relation T$alloc to repre-

sent the set of allocated objects of type T, and the relation T to represent the set of

all possible objects of type T.

A constraint can bound the final values from either above or below. For a relation

r and a relational expression e, the subset constraint r ⊆ e expresses that each tuple of

r is contained in e. Similarly, the superset constraint r ⊇ e expresses that r contains

all the tuples in e. Of course, these constraints are respectively written as (r in e)

and (e in r) in Alloy. However, we use the subset and superset mathematical symbols

to improve readability of the examples. We use the equality constraint r = e when

both r ⊆ e and r ⊇ e hold.
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class Graph {
List nodes;

}
class Node {

List inNodesList;
List outNodesList;
int inDeg;
int outDeg;
int visitedInsNum;

}
class List {

ListEntry head;
}
class ListEntry {

Node node;
ListEntry next;
ListEntry prev;

}

Figure 4-2: Declaration part of the example in Chapter 1.

A constraint bounds the final value of a relation by an expression. An expres-

sion can be a relation representing a program constant (Const), the empty relation

(none), a relation in the pre-state (representing a formal parameter, a field, or a type

allocation), the set of all possible objects of some type (TypeId) including the integer

type (Int), and a single object (New$SymObj) or a set of objects (NewSet$SymObj)

newly allocated by the procedure. All Alloy operators except quantifiers and set

comprehensions are also allowed.

4.3 Examples

In this section, we illustrate the summaries that our technique extracts for some

small procedures that manipulate the Graph data structure previously introduced in

the example of Chapter 1. A graph – declared again in Figure 4-2 – is represented by

its list of nodes where each node is represented by its adjacency lists of incoming and

outgoing edges, its in- and out-degrees, and an auxiliary field visitedInsNum. The

list of nodes is declared as a doubly linked list.

Figures 4-3 - 4-7 give the summaries for some small procedures. The first two
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/*
node’ = node ++ (e1 —> e2.node) ++ (e2 —> null)
nullifyMove$return = e1.(node ++ (e1 —> e2.node) ++ (e2 —> null))

*/
static Node List.nullifyMove(ListEntry e1, ListEntry e2) {

e1.node = e2.node;
e2.node = null;
return e1.node;

}

Figure 4-3: Simple update and read statements.

examples illustrate the abstractions of basic program statements, while the last three

illustrate the summaries generated for the loops involved in the topological sort ex-

ample of Chapter 1. We assume that any relation not listed in a summary is asserted

to have the same value in the pre- and post-state.

The nullifyMove method given in Figure 4-3 shows the abstraction of field up-

dates and navigations. An update to a field is encoded by a relational override

which permits a succinct description of exactly which parts of a relation are changed

and how. The constraint node’ = node ++ (e1 -> e2.node) ++ (e2 -> null)

encodes that the node field of e1 is set to the node field of e2 in the pre-state,

and then the node field of e2 is set to null (the override operator associates left to

right). The node fields of all other objects are unchanged. Navigations are encoded

by relational joins. For example, reading the field node of an object e1 is expressed as

a relational join of the expression corresponding to node and the one corresponding

to e1. It should be noted that the generated summary specifies the behavior of the

method in the general case; it is correct whether or not e1 and e2 are aliased: if they

are not aliased, the return expression simplifies to e2.node, and if they are aliased,

the return expression simplifies to null (which probably represents an error).

The insert method given in Figure 4-4 shows the abstraction of object allocation

and branch statements. It takes a node n, allocates a new list entry to store n, and

inserts it at the beginning of the receiver list, this. The allocated entry is represented

by the symbolic name New$ListEntry. The updates made to the node, head, and

next fields are straightforward, and their final summaries are accurate. The update
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/*
ListEntry$alloc’ = ListEntry$alloc + New$ListEntry
node’ = node ++ (New$ListEntry —> n)
head’ = head ++ (this —> New$ListEntry)
next’ = next ++ (New$ListEntry —> this.head)
prev’ ⊆ (prev ++ New$ListEntry —> null) + (this.head —> New$ListEntry)
prev’ ⊇ (prev ++ New$ListEntry —> null) - (this.head —> ListEntry)

*/
void List.insert(Node n) {

ListEntry e = new ListEntry(n);
ListEntry tmp = this.head;
this.head = e;
e.next = tmp;
if (tmp != null)

tmp.prev = e;
}

ListEntry.ListEntry(Node n) {
node = n;
next = null;
prev = null;

}

Figure 4-4: Inserting an element in a list.

made to the prev field, however, is conditional. Based on whether this.head is null

or not (that is, whether the list is empty or not), the prev field of this.head may

be changed to New$ListEntry. Since the mapping (this.head -> New$ListEntry)

may or may not be included in the final prev’ relation, it is added to the upper

bound of prev’. Because the final mapping of this.head under prev’ is unknown,

all possible mappings of this.head are removed from the lower bound of prev’.

Figures 4-5 to 4-7 revisit the methods called by the topological sort example of

Chapter 1. The init method (Figure 4-5) initializes the visitedInsNum field of all the

nodes of the receiver graph to the value zero. It involves a simple loop that matches

the loop pattern optimized by our analysis: a linked data structure is traversed to

the end to update some fields of its elements to a constant value. The pattern is

identified by the loop statement c = c.next that makes the loop variable c visit all

the elements of the list, and the loop condition (c != null) that checks whether the

loop variable has got to the end of the list. For loops matching the pattern, the set

of elements visited by the loop variable can be obtained precisely. In this example,
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/*
visitedInsNum’ = visitedInsNum ++ (this.nodes.head.*next.node —> 0)

*/
void Graph.init() {

ListEntry c = this.nodes.head;
while (c != null) {

c.node.visitedInsNum = 0;
c = c.next;

}
}

Figure 4-5: Initializing.

/*
visitedInsNum’ ⊆ visitedInsNum + (n.outNodesList.head.*next.node —> Int)
visitedInsNum’ ⊇ visitedInsNum - (n.outNodesList.head.*next.node —> Int)

*/
void Graph.fixIns(Node n) {

ListEntry p = n.outNodesList.head;
while (p != null) {

p.node.visitedInsNum = p.node.visitedInsNum + 1;
p = p.next;

}
}

Figure 4-6: Integer arithmetic.

the set of list entries visited by c is given by the expression

(this.nodes.head.*next & (ListEntry - null))

that is, all non-null entries reachable from the head of this.nodes. Thus, the ex-

pression

(this.nodes.head.*next & (ListEntry - null)).node

denotes the exact set of nodes whose visitedInsNum fields are updated. As ex-

plained in Section 4.4.3, this expression is further simplified to the equivalent expres-

sion this.nodes.head.*next.node. Since the updated field (visitedInsNum) gets a

constant value, namely zero, the expression generated for visitedInsNum’ is precise,

and thus the generated summary is a full specification of the method’s behavior.

The fixIns method, given in Figure 4-6, increments the visitedInsNum field

of all the nodes in the outNodesList of the node argument n by one. Similar to

the previous case, this loop traverses a linked data structure to the end. Thus, the
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/*
findSource$return ⊆ entry.*next & (null + node.inDeg.(entry.*next.node.visitedInsNum))
findSource$return ⊇ none

*/
ListEntry Graph.findSource(ListEntry entry) {

ListEntry e = entry;
while ((e != null) && (e.node.inDeg != e.node.visitedInsNum))

e = e.next;
return e;

}

Figure 4-7: Searching a list.

expression n.outNodesList.head.*next.node gives the exact set of nodes whose

visitedInsNum fields are updated. However, because the updating value is not con-

stant with respect to the loop, the specification inferred for visitedInsNum’ is not

precise. In fact, because the update involves integer arithmetic, our technique cannot

infer much about the final value. Thus, the inferred summary only specifies that

the visitedInsNum field of all nodes in the n.outNodesList.head.*next.node set

are updated to some unknown integer. Because the final values of these fields are

unknown, the lower bound does not contain any mappings for them.

The findSource method (Figure 4-7) illustrates how our analysis exploits loop

conditions to produce more precise summaries. It searches the entries reachable from

a given list entry (entry) to find a node whose inDeg and visitedInsNum fields

are equal, and returns the entry that stores that node, or null if no such node

exists. The analysis infers that, in each iteration, the variable e points to some object

reachable from entry by following the next link, and thus e’s final value (the return

value of the method) must be in entry.*next. Furthermore, e’s final value must

violate the loop condition. That is, it must either be null or its node’s inDeg and

visitedInsNum fields must be equal. The analysis is not precise enough to infer the

latter condition. However, it can infer that e’s final value has a node whose inDeg

field equals the visitedInsNum field of some node reachable from entry. The set of

all such list entries is given by node.inDeg.(entry.*next.node.visitedInsNum).

Thus, all objects violating the loop condition are included in the set encoded by

98



(null + node.inDeg.(entry.*next.node.visitedInsNum))

Therefore, the returned list entry belongs to the intersection of entry.*next and the

above set.

4.4 Abstraction Technique

We use the abstract interpretation framework [13] to generate procedure summaries.

In this section, we describe our abstraction technique by first defining the concrete

and abstract domains, and then giving the transfer function that abstracts different

program statements.

4.4.1 Definitions

Environments. The set of concrete values used in an object-oriented program com-

prises the values of variables, fields, and types. The concrete value of a variable is

an object (which is denoted by a singleton set to provide a uniform definition); the

concrete value of a field is a mapping from objects to objects; and the concrete value

of a type is the set of all objects of that type. If Obj represents the set of all objects

in a program, the set of all possible concrete values CVal is defined as follows1:

CVal = 2Obj ∪ 2(Obj×Obj)

where 2S denotes the powerset of a set S.

The set of abstract values, AVal, comprises the set of relational expressions defined

by the grammar of Figure 4-1:

AVal = Expr

A concrete state maps each variable, field, and type to a concrete value. We use

C to denote the set of all possible well-typed concrete states of a program:

C = Var ∪ Field ∪ Type → CVal

1Arrays and maps require ternary relations that are not discussed in this chapter.
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The abstract domain A consists of pairs of environments. That is, the set of all con-

crete states that may occur at a program point is abstracted with a pair of environ-

ments 〈El, Eu〉 where El and Eu represent the lower and upper bounds of relations,

respectively. An environment is a mapping from each variable, field, and type to an

abstract value:

A = Env × Env

Env = Var ∪ Field ∪ Type → AVal

The set of concrete states at a program point is abstracted using the independent

attribute method [32]: an abstract environment maps each variable, field, and type

to an abstraction of the set of its values in the given concrete states. We therefore

lose the correlation between the values of different variables at a program point.

The meaning of the abstraction is given by the concretization function γ defined

as follows:

γ : A → 2C

γ(〈El, Eu〉) = {c | ∃c0, δ | ∀x. [[El(x)]]δc0 ⊆ c(x) ⊆ [[Eu(x)]]δc0}

where c0 is a well-typed initial state, δ is a binding of allocated symbolic objects

to concrete objects not used in c0, and [[e]]δc0 denotes the meaning of a relational

expression e under the bindings defined by c0 and δ. The concretization function γ

gives the set of all concrete states in which the values of all variables, fields, and types

are bounded from below by El and from above by Eu.

Lattice of Environments. We define a partial order ⊑ over pairs of environments

as follows:

〈El
1, Eu

1 〉 ⊑ 〈El
2, Eu

2 〉 ⇐⇒ ∀x.[[El
1(x) ⊇ El

2(x)]] ∧ [[Eu
1 (x) ⊆ Eu

2 (x)]]

where the expression op1 ◦ op2 gives a syntactic concatenation of the operator ◦ with

the operands op1 and op2, and [[f ]] means that the relational formula f is a tautology

in the theory of relations.

This partial order defines a pointed lattice over the set of all pairs of environments,
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〈El
1, Eu

1 〉 ▽ 〈El
2, Eu

2 〉 = let 〈El
3, Eu

3 〉 = 〈El
1, Eu

1 〉 ⊔ 〈El
2, Eu

2 〉 in

〈 λv : Var. if ∃x, c, r | El
3(v) = x & (x & c).r then ∅ intersection

elseif ∃x, r | El
3(v) = x & x.r & .. & x.r(k) then ∅ multiple joins

elseif |El
3(v)| ≥ n then ∅ length

else El
3(v)

∪ λf : Field. if |El
3(f)| ≥ n then ∅ length

else El
3(f)

∪ λt : Type. El
3(t),

λv : Var. if ∃x, c, r | Eu
3 (v) = x + (x & c).r then x + x.r intersection

elseif ∃x, r | Eu
3 (v) = x + x.r + .. + x.r(k) then x. ∗ r multiple joins

elseif |Eu
3 (v)| ≥ n then type(v) length

else Eu
3 (v)

∪ λf : Field. if |Eu
3 (f)| ≥ n then domainType(f) -> rangeType(f) length

else Eu
3 (f)

∪ λt : Type. if ∃l1, .., lm : SymObj | (Eu
3 (t) = l1 + .. + lm)

then Eu
3 (t) + symObjSet(t) allocation

else Eu
3 (t) 〉

Figure 4-8: Widening rules.

with a top ⊤ = 〈E∅, Euniv〉 and a bottom ⊥ = 〈Euniv, E∅〉 where E∅ represents the

environment in which everything is mapped to the empty expression, and Euniv

denotes the environment in which everything is mapped to a relation that represents

the universe of all atoms.

The lattice join ⊔ is defined as follows:

〈El
1, Eu

1 〉 ⊔ 〈El
2, Eu

2 〉 = 〈 λx. El
1(x) & El

2(x), λx. Eu
1 (x) + Eu

2 (x) 〉

It computes the least upper bound of two pairs of environments by forming relational

expressions that intersect the lower bounds of all variables, fields, and types in the

two environments, and union their upper bounds.

We also define a widening operation – given in Figure 4-8 – to stabilize infinitely

ascending chains in the lattice. Two pairs of environments are widened by first

computing their least upper bound, and then approximating the result using the

following four rules:

• intersection. For a homogeneous binary relation r and two expressions x and

101



c, a lower bound expression x & (x & c).r is simplified to the empty set, and an

upper bound expression x + (x & c).r is widened to the expression x + x.r.

This widening becomes handy in summarizing loop bodies: let x denote the

expression corresponding to a loop variable v at the beginning of the loop. If

v is a pointer traversing a linked structure, its value after one iteration of the

loop will be (x & c).r where c represents the loop condition, and r represents

the link being traversed. Thus, the value of v after computing the least upper

bound will be given by the lower bound x & (x & c).r and the upper bound

x + (x & c).r. Dropping the intersecting condition c from the upper bound

makes the expression amenable to the widening rule explained below which

infers a transitive closure for v.

• multiple joins. An intersection of k joins x & x.r & .. & x.r(k) in the

lower bound environment is simplified to the empty set. A union of k joins

x + x.r + .. + x.r(k) in the upper bound environment is widened to x. ∗ r,

where ∗r is the reflexive transitive closure of r. In order to apply this rule, r

need not be a single field name; it can be any arbitrary relational expression.

• allocation. If m objects are already allocated for a type t, i.e. (Eu(t) =

l1 + .. + lm) for some symbolic objects l1, .., lm, the upper bound of t is widened

to include the symbolic object set of that type (denoted by symObjSet(t)) to be

used in future allocations.

• length. Any lower bound expression whose number of operators is greater

than a limit n is simplified to the empty set, and any such upper bound is

widened to a universal relation of the appropriate type. Figure 4-8 uses the

expression type(v) to denote the relation corresponding to the type of a variable

v. Similarly, for a field f , this figure uses the expressions domainType(f) and

rangeType(f) to denote the relations corresponding to the types of the declaring

class and the target class of f , respectively.

Initial Abstraction. Summarizing a procedure p starts by generating a pair of initial

abstract environments 〈El
0, Eu

0 〉 in which El
0 = Eu

0 and each formal parameter, field,
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and type accessed in p is mapped to a fresh relation represented by a symbolic name.

Our analysis makes no assumptions about the possible aliasings between names, and

thus the results are valid for all possible aliasings.

4.4.2 Transfer Function

The transfer function

F̄ : Stmt → (Env × Env) → (Env × Env)

models the effects of the program statements conforming to the grammar of Figure

3-1 on the abstract environments. The expressions generated by this function are

syntactically simplified using the equivalence-preserving transformations described in

the next section (4.4.3).

Evaluation of expressions: We use the auxiliary functions evall and evalu –

given in Figure 4-9(a) – to evaluate a program expression in a lower bound and an

upper bound environment respectively. These functions differ from each other only

in the way they treat integer arithmetic. This is because the programming language

that we analyze (see the grammar of Figure 3-1) allows only simple expressions, and

not compound ones such as conditional expressions. Therefore, the evaluation of

a non-arithmetic expression in an environment is always exact. The function evall

defines the lower bound of any integer arithmetic expression to be none, the empty

set, while the function evalu defines its upper bound to be Int, the set of all integer

numbers.

Non-arithmetic program expressions are evaluated using the auxiliary function

eval given in Figure 4-9(b). The evaluation of a constant is always a unary relation

corresponding to that constant. The evaluation of a program variable is just a lookup

in the environment, and the evaluation of a navigation expression is defined recursively

by looking up the fields in the environment.

Sequence of statements: Two consecutive statements are abstracted by first

abstracting the first statement, and then abstracting the second one using the result-
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evall : PExpr → Env → Expr

evall(e1 + e2, E) = none

evall(e1 − e2, E) = none

evall(e, E) = eval(e, E)

evalu : PExpr → Env → Expr
evalu(e1 + e2, E) = Int
evalu(e1 − e2, E) = Int
evalu(e, E) = eval(e, E)

eval : PExpr → Env → Expr
eval(c : PConst, E) = {<c>}
eval(i : IntConst, E) = Int(i)
eval(v : Var, E) = E(v)
eval(e.f, E) = eval(e, E).E(f)

(a) (b)

Figure 4-9: Auxiliary functions to evaluate program expressions in an environment.

ing environments. That is,

F̄(S1; S2, 〈E
l, Eu〉) = F̄(S2, F̄(S1, 〈E

l, Eu〉))

Assignments to locals: Assigning an expression e to a local variable v is

abstracted by the following rule:

F̄(v = e, 〈El, Eu〉) = 〈El[v 7→ evall(e, El)], Eu[v 7→ evalu(e, Eu)]〉

That is, the lower and upper bounds of e become the lower and upper bounds of v.

Field updates: Assigning an expression e2 to a field f of the object described

by an expression e1 is abstracted by the following rule:

F̄(e1.f = e2, 〈E
l, Eu〉) =

let xl
1 = evall(e1, E

l), xu
1 = evalu(e1, E

u), xl
2 = evall(e2, E

l), xu
2 = evalu(e2, E

u) in

if (xl
1 = xu

1) ∧ (xl
2 = xu

2)

then 〈El[f 7→ El(f) ++ (xl
1 -> xl

2)], Eu[f 7→ Eu(f) ++ (xu
1 -> xu

2)]〉

else 〈El[f 7→ El(f) - (xu
1 -> rangeType(f))], Eu[f 7→ Eu(f) + (xu

1 -> xu
2)]〉

Two cases are distinguished:

• Strong update: if the lower bounds of e1 and e2 are syntactically the same as

their upper bounds, then the computed values for both expressions are exact.
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In this case, the value of e2 overrides the previous value of e1.f .

• Weak update: if the values of e1 and e2 are not necessarily exact, it is not clear

for which object the f field was mutated, or how it was mutated. Thus, the

upper bound allows the f field of any of the objects represented by the upper

bound of e1 to be mapped to any of the objects represented by the upper bound

of e2. The lower bound leaves all possible mutated objects unconstrained.

Allocations: We assume that an allocation statement v = new T(e1, .., en)

is broken into two consecutive statements2: v = new T; v.init(e1, .., en) The

first statement does the actual allocation, and the second one calls the constructor

on the allocated object. Here, we explain the abstraction of the allocation state-

ment. The call to the constructor will be abstracted similarly to other procedure

calls (explained later).

F̄(v = new t, 〈El, Eu〉) =

if containsSymObjSet(t, Eu) then let s = symObjSet(t) in

〈El[v 7→ ∅], Eu[v 7→ s]〉

else let s = symObj(t, Eu) in

〈El[v 7→ s, t 7→ El(t) + s], Eu[v 7→ s, t 7→ Eu(t) + s]〉

The function symObjSet(t) represents the symbolic object set of type t, the function

containsSymObjSet(t, E) returns true if that symbolic set is already used in the en-

vironment E (and false otherwise), and the function symObj(t, E) generates a fresh

symbolic object of type t that is not already used in E.

Allocating an object of type t is abstracted by distinguishing two cases:

• If, as a result of a previous widening, a symbolic object set has already been

generated for a type t, meaning that we have already hit the limit for enumerat-

ing new objects, the upper bound of the new object will be that same symbolic

set and its lower bound will be the empty set. Since the cardinality of this

symbolic set is unconstrained, no other updates are necessary.

2As done anyway, e.g. in the Soot framework [57].
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• If no symbolic set has been generated, we generate a fresh symbol as the exact

value of the new object. This symbol will then be added to the allocation

expression of t.

Call sites: During the analysis, different calls to a procedure p may have

different summaries. This is because the abstractions of field updates and allocation

statements are based on whether the values computed for variables, fields, and types

are exact or not. However, it is often the case that the summaries are structurally

identical, and we can avoid re-computing them from scratch at each call site. One

can predict whether or not two summaries will be structurally identical by looking at

their context, an abstraction that records the parts of the environments with exact

values:

context(〈El, Eu〉) =

{v : Var | El(v) = Eu(v)} ∪

{f : Field | El(f) = Eu(f)} ∪

{t : Type | containsSymObjSet(t, Eu) = false}

Given a context of a call to p, our technique generates a summary template which

can then be instantiated to produce a summary for a call to p.

Consider a call to a procedure p in an environment pair 〈El, Eu〉 with a context c.

We compute a summary template t from c by first generating a pair of environments

whose context is the same as c, but maps all variables, fields, and types to fresh

symbolic values, and then summarizing the body of p on that generated pair of

environments:

template(p, c) =

let El
1 = λx. sym(x),

Eu
1 = λv. if (v ∈ c) then El

1(v) else sym(v)

∪ λf. if (f ∈ c) then El
1(f) else sym(f)

∪ λt. if (t ∈ c) then El
1(t) else El

1(t) + symObjSet(t)

in F̄(p body, 〈El
1, Eu

1 〉)

where sym(x) generates a fresh symbolic value for x.
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The summary of the call site is then computed by instantiating the summary

template t with the values from the environments 〈El, Eu〉 that represent the pre-

state of the site. That is, by substituting the values of actual parameters and fields

at the call site for the symbols used in the summary template.

F̄(p, 〈El, Eu〉) = instantiate(

template(p, context(〈El, Eu〉)), 〈El, Eu〉)

The summary template t is saved and associated with the context c. If another call

to p is later encountered with the same context c, then its summary can be computed

by instantiating t with the values from its environment, rather than computing the

summary directly from scratch.

If a procedure p has i formal parameters, accesses j different fields, and allocates k

different types, then it has 2i+j+k possible contexts. It should be noted that the empty

context represents the case where none of the computed values are exact. Therefore,

the template summary generated for the empty context only performs weak updates

and although it is not the best approximation, it can be used in all other contexts

too. To balance between precision and performance, we summarize each procedure on

demand for its first l distinct contexts where l is a constant parameter of the analysis.

Any further calls whose corresponding contexts are not visited before will be replaced

by the procedure’s template summary for the empty context.

Return statements: A procedure named proc is allocated a special variable

proc$return to hold its return value. A return statement is simply an assignment of

a value to that variable.

F̄(return e, 〈El, Eu〉) =

〈 El[proc$return 7→ (El(proc$return) & eval(e, El))],

Eu[proc$return 7→ (Eu(proc$return) + eval(e, Eu))] 〉

If the procedure has multiple return statements, the return values accumulate in

El and Eu by intersecting the lower bounds and unioning the upper bounds.
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Branches: Conditional statements are abstracted by first abstracting each branch

independently, then combining the results using the lattice least upper bound opera-

tor.

F̄(if (c) S1 else S2, 〈E
l, Eu〉) = F̄(S1, 〈E

l, Eu〉) ⊔ F̄(S2, 〈E
l, Eu〉)

Loops: Loops are abstracted by successively abstracting the body and joining

each new abstraction with the abstraction of previous iterations. To produce more

precise summaries, we intersect the loop condition with the variables used in it at the

beginning of each iteration. Furthermore, the termination condition (negation of loop

condition) is intersected with the final value of the variables in the loop condition.

F̄(while(c) S, 〈El, Eu〉) =

let 〈El
1, Eu

1 〉 = fix 〈El, Eu〉,

F̄(S, addCond(c, 〈El, Eu〉)) ▽ 〈El, Eu〉

in addCond(¬c, 〈El
1, Eu

1 〉)

where ▽ is the lattice widening operator, and addCond(c, 〈El, Eu〉) is a function

that intersects a relational encoding of a condition c with the values of c’s variables

in the environments El and Eu. The fixpoint operator iteratively abstracts the loop

body and joins the resulting pair of environments with the previous pairs until the

expressions stored in the environments are unchanged, i.e a fixpoint is reached.

Figure 4-10 gives the definition of the addCond function. Given a loop condi-

tion c and a pair of environments 〈El, Eu〉, whenever possible, it updates the rela-

tional expressions of c’s variables to the set of tuples for which c evaluates to true.

Since we always abstract arithmetic expressions by the set of all integers (Int), the

addCond function cannot exploit integer comparison tests (e1 < e2). All other loop

conditions, however, are exploited to make the environments more precise. A simple

non-arithmetic loop condition can be written as (v.f1..fn op e) where v is a variable,

f1 to fn are fields, e is a program expression, and op is either an equality test (==

and !=) or a test on the type of the object (instanceof). Based on the operator
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addCond(e1 < e2, 〈E
l, Eu〉) = 〈El, Eu〉

addCond(v.f1 . . . fn == e, 〈El, Eu〉) =

let x1 = El(v), y1 = evall(e, El), x2 = Eu(v), y2 = evalu(e, Eu)

in 〈El[v 7→ x1 & El(f1) . .. . El(fn) . y1], Eu[v 7→ x2 & Eu(f1) . .. . Eu(fn) . y2]〉

addCond(v.f1 . . . fn != e, 〈El, Eu〉) =

let x1 = El(v), y1 = evall(e, El), x2 = Eu(v), y2 = evalu(e, Eu)
in if y1 = y2

then 〈El[v 7→ x1 & El(f1) . .. . El(fn) . (type(e) - y1)],

Eu[v 7→ x2 & Eu(f1) . .. . Eu(fn) . (type(e) - y2)]〉
else 〈El, Eu〉

addCond(v.f1 . . . fn instanceof T,El) =
let x1 = El(v), y1 = El(T ), x2 = Eu(v), y2 = Eu(T )

in 〈El[v 7→ x1 & El(f1) . .. . El(fn) . y1], Eu[v 7→ x2 & Eu(f1) . .. . Eu(fn) . y2]〉

addCond(c1 && c2, 〈E
l, Eu〉) = addCond(c1, 〈E

l, Eu〉) & addCond(c2, 〈E
l, Eu〉)

addCond(c1 || c2, 〈E
l, Eu〉) = addCond(c1, 〈E

l, Eu〉) + addCond(c2, 〈E
l, Eu〉)

〈El
1, Eu

1 〉 + 〈El
2, Eu

2 〉 = 〈λx. El
1(x) + El

2(x), λx. Eu
1 (x) + Eu

2 (x)〉
〈El

1, Eu
1 〉 & 〈El

2, Eu
2 〉 = 〈λx. El

1(x) & El
2(x), λx. Eu

1 (x) & Eu
2 (x)〉

Figure 4-10: The auxiliary function to add loop conditions to loop variables.
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op, the addCond function computes a relational expression that represents the set of

tuples that pass the given condition. This set is then intersected with the relational

expressions of v in the given environments to represent only those values of v for

which the loop condition evaluates to true.

We provide an example to clarify how addCond filters the values of loop variables

using the loop condition. Consider a loop accessing variables c and d, and a field f

whose values at the beginning of the loop are approximated by expressions c0, d0, and

f0 respectively. If the loop condition is (c.f==d), then the subset of c0 that passes the

condition in the first iteration of the loop belongs to f0.d0, the set of atoms whose

mapping under f0 is an atom in d0. The set of values that pass the loop condition is

therefore (c0 & f0.d0). The pair of environments obtained by applying the addCond

function maps c to this more accurate expression computed with respect to both El

and Eu.

Now suppose that the loop condition is (c.f!=d). The subset of c0 that passes this

condition is the set of atoms whose mapping under f0 is not equal to d0. If d0 is the

exact value of d (that is, El(d) = Eu(d) = d0), all values not equal to d0 are given

by type(d) - d0. Therefore, the set of values that passes the loop condition can be

encoded as (c0 & f0.(type(d) - d0)). However, if d0 is not exact, that is, it encodes

a set containing more than one value for d, then we cannot specify which values are

not equal to d. Therefore, we do not filter the environment any further in this case.

4.4.3 Simplifications

Expressions generated by the transfer function can often be simplified using relational

logic equivalence rules, which reduce the size of an expression without changing its

semantics. Those rules are given in Figure 4-11.

Figure 4-11(a) gives a set of equivalence rules in relational logic that simplifies

union, intersection, difference, Cartesian product, and composition of relations. The

rules in Figure 4-11(b) simplify relational expressions based on the semantics of re-

flexive transitive closure and relational override.

Simplification rules of Figure 4-11(c) are based on the semantics of types and
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x + x −→ x
x - (x - y) −→ x & y
x.(x -> y) −→ y
x.r + x.s −→ x.(r + s)
x.r + y.r −→ (x + y).r
(x & c) + (y & c) −→ (x + y) & c
(x -> z) + (y -> z) −→ (x + y) -> z

(a)

x. ∗ r. ∗ r −→ x. ∗ r
x + (x. ∗ r) −→ x. ∗ r
(x + x.r). ∗ r −→ x. ∗ r
r ++ (x -> y) ++ (x -> z) −→ r ++ (x -> z)
r + (r ++ (x -> y)) −→ r + (x -> y)
r & (r ++ (x -> y)) −→ r - (x -> rangeType(r))

(b)

(x & (type(x) - null)).r −→ x.r
type(x).(x -> y) −→ y
x.(type(x) -> y) −→ y
x & type(x) −→ x
rpre - (xnew -> y) −→ rpre
xpre.(rpre ++ (ypre -> z) ++ (tnew -> w)) −→ xpre.(rpre ++ (ypre -> z))
xnew.(rpre ++ (ypre -> z) ++ (xnew -> w)) −→ w

(c)

Figure 4-11: The simplification rules used. The function type(e) denotes the relation
corresponding to the type of an expression e. The expressions xnew and xpre represent
the cases where x is a newly allocated symbolic object and where it belongs to the
pre-state, respectively. A name with no subscript may be either.
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Figure 4-12: Relation between concrete states and abstract states

allocations. Their validity is based on the following facts: (1) a null object cannot be

dereferenced, that is, null.r = ∅ for every relation r, and (2) newly allocated objects

do not alias objects in the pre-state. Figure 4-11(c) uses xnew and xpre to distinguish

the case that x is an allocated symbolic object from the case where it is a relation in

the pre-state. A name with no subscript may be either.

4.5 Properties

4.5.1 Safety

The abstraction described above is safe, meaning that the generated lower and upper

bounds account for all executions of the summarized procedure.

Figure 4-12 shows the relation between the concrete states ci and abstract environ-

ments 〈El
i, Eu

i 〉 for a safe abstraction. In this figure, γ is the concretization function

defined in Section 4.4.1 as:

γ : A → 2C

γ(〈El, Eu〉) = {c | ∃c0, δ | ∀x. [[El(x)]]δc0 ⊆ c(x) ⊆ [[Eu(x)]]δc0}

F is the concrete state transition function which can be defined by the operational

semantics of the program statements as given in Figure 4-13, and F̄ is the abstract

state transition function (the transfer function defined in Section 4.4.2).

In order to prove the safety property, it is sufficient to show that:

1. The initial abstraction is safe. That is,

∀c : C | c ∈ γ(〈El
0, Eu

0 〉)
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2. The composition property holds. That is,

F ◦ γ ⊆ γ ◦ F̄

The initial abstraction is safe. This property is valid because the relations

used to encode the pre-state are typed, and the symbolic names used for their values

are uninterpreted. That is, they can be instantiated by any well-typed concrete values.

More specifically, because both El
0 and Eu

0 map each variable, field, and type to a

fresh relation constant, and because they contain no symbolically allocated objects,

we have: [[El
0(x)]]δc = c(x) and [[Eu

0 (x)]]δc = c(x) for any well-typed concrete state c and

any arbitrary binding of symbolic objects to concrete objects δ. Therefore,

∀c : C, δ | ∀x. [[El
0(x)]]δc ⊆ c(x) ⊆ [[Eu

0 (x)]]δc

That is, ∀c : C | c ∈ γ(〈El
0, Eu

0 〉).

The composition property holds. This property can be proved by structural

induction over statements: we first prove that it holds for simple statements, and

then use the results to prove that it holds for compound statements too. The proofs

require the following lemmas:

Lemma 2. The evall and evalu functions are safe. That is, the expressions evall(e, El)

and evalu(e, Eu) correctly bound all values of an expression e that may occur in the

concretization of 〈El, Eu〉.

∀c ∈ γ(〈El, Eu〉).∃c0, δ |

∀e : ProgExpr.[[evall(e, El)]]δc0 ⊆ evalc(e, c) ⊆ [[evalu(e, Eu)]]δc0

Proof. Consider a concrete state c ∈ γ(〈El, Eu〉). By the definition of γ, we have

∀x. [[El(x)]]δ
∗

i ⊆ c(x) ⊆ [[Eu(x)]]δ
∗

i for some initial state i and some allocation binding

δ∗. Using the definitions of evall, evalu, and evalc, it is easy to see that i and δ∗ satisfy

the lemma for all program expressions. That is,

∀e : ProgExpr.[[evall(e, El)]]δ
∗

i ⊆ evalc(e, c) ⊆ [[evalu(e, Eu)]]δ
∗

i
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F(S,C∗) =
⋃

c∈C∗{F(S, c)}

evalc(e, c) = e∗

F(v = e, c) = c[v 7→ e∗]

evalc(e1, c) = e∗1, evalc(e2, c) = e∗2, c(f) = f ∗

F(e1.f = e2, c) = c[f 7→ f ∗ ++ (e∗1 -> e∗2)]

c(t) = t∗, obj /∈ c(t)

F(v = new t, c) = c[v 7→ {obj}, t 7→ (t∗ ∪ {obj})]

c[forml1 7→ evalc(e1, c), . . . , formln 7→ evalc(en, c)] = ī, F(proc body, ī) = c∗2
F(proc(e1, . . . , en), c) = c∗2

c[forml1 7→ evalc(e1, c), . . . , formln 7→ evalc(en, c)] = ī, F(proc body, ī) = c∗2
F(v = proc(e1, . . . , en), c) = c∗2[v 7→ evalc(proc$return, c∗2)]

evalc(e, c) = e∗

F(return e, c) = c[proc$return 7→ e∗]

evalc(cond, c) = {true}, F(S1, c) = c∗

F(if (cond) S1 else S2, c) = c∗

evalc(cond, c) = {false}, F(S2, c) = c∗

F(if (cond) S1 else S2, c) = c∗

evalc(cond, c) = {false}

F(while (cond) S, c) = c

evalc(cond, c) = {true}, F(S, c) = ī, F(while (cond) S, ī) = c∗2
F(while (cond) S, c) = c∗2

F(S1, c) = ī, F(S2, ī) = c∗2
F(S1; S2, c) = c∗2

(a)
evalc : PExpr → C → CVal
evalc(const : PConst, c) = {const}
evalc(i : IntConst, c) = {i}
evalc(v : Var, c) = c(v)
evalc(e.f, c) = evalc(e, c).c(f)
evalc(e1 + e2, c) = evalc(e1, c) + evalc(e2, c)
evalc(e1 − e2, c) = evalc(e1, c) − evalc(e2, c)

(b)

Figure 4-13: (a) The definition of F : an operational semantics on a concrete state
c ∈ C. The first rule lifts the semantics to a set of concrete states C∗ ⊆ C. (b) The
auxiliary function evalc(e, c) evaluates an expression e on a concrete state c.

114



Therefore, the lemma holds.

Lemma 3. The operator ⊔ is safe. That is, the result of ⊔ is weaker than either of

its arguments:

γ(〈El
1, Eu

1 〉) ∪ γ(〈El
2, Eu

2 〉) ⊆ γ(〈El
1, Eu

1 〉 ⊔ 〈El
2, Eu

2 〉)

Proof. Consider an arbitrary concrete state c ∈ γ(〈El
1, Eu

1 〉). By the definition of γ,

for some initial state i and some allocation binding δ∗, we have

∀x. [[El
1(x)]]δ

∗

i ⊆ c(x) ⊆ [[Eu
1 (x)]]δ

∗

i

Let ī be an extension of i that includes some arbitrary initial values for any relation

in El
2 or Eu

2 that does not appear in El
1 or Eu

1 . Similarly, let δ̄∗ be an extension of

δ∗ that includes an arbitrary fresh binding for any symbolically allocated object that

appears in El
2 or Eu

2 but not in El
1 or Eu

1 . Since the mappings previously defined by

i and δ∗ are still the same under ī and δ̄∗, we have ∀x. [[El
1(x)]]δ̄

∗

ī
⊆ c(x) ⊆ [[Eu

1 (x)]]δ̄
∗

ī
.

By the properties of union and intersection in set theory, we have

∀x. [[El
1(x)]]δ̄

∗

ī ∩ [[El
2(x)]]δ̄

∗

ī ⊆ c(x) ⊆ [[Eu
1 (x)]]δ̄

∗

ī ∪ [[Eu
2 (x)]]δ̄

∗

ī

By the semantics of the relational intersection and union, we have

∀x. [[El
1(x) & El

2(x)]]δ̄
∗

ī ⊆ c(x) ⊆ [[Eu
1 (x) + Eu

2 (x)]]δ̄
∗

ī

Therefore, c ∈ γ(〈El
1, Eu

1 〉 ⊔ 〈El
2, Eu

2 〉), which implies that

γ(〈El
1, Eu

1 〉) ⊆ γ(〈El
1, Eu

1 〉 ⊔ 〈El
2, Eu

2 〉)

Similarly, one can show that

γ(〈El
2, Eu

2 〉) ⊆ γ(〈El
1, Eu

1 〉 ⊔ 〈El
2, Eu

2 〉)
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Therefore, the lemma holds.

Lemma 4. The operator ▽ is safe. That is, it produces a result weaker than either

of its arguments:

γ(〈El
1, Eu

1 〉) ∪ γ(〈El
2, Eu

2 〉) ⊆ γ(〈El
1, Eu

1 〉 ▽ 〈El
2, Eu

2 〉)

Proof. The widening operator first computes the least upper bound of its two argu-

ments, and then applies a set of widening rules. Lemma 3 proves that after applying

the least upper bound operator, the result is weaker than either of the arguments.

Furthermore, by the semantics of the relational operators, it is easy to see that the

result of each widening rule is weaker than either of its arguments. Therefore, the ▽

operator is safe.

Lemma 5. The addCond function is safe. That is, addCond accounts for all concrete

states in which a condition evaluates to true:

∀c ∈ γ(〈El, Eu〉).∀cond.

evalc(cond, c) = {true} =⇒ c ∈ γ(addCond(cond, 〈El, Eu〉))

Proof. We prove the lemma for the case where the condition cond is of the form

v.f1 . . . fn == e. Other cases can be proved similarly. Consider a concrete state

c ∈ γ(〈El, Eu〉) in which the condition holds. By the definition of γ, for some initial

state i and some allocation binding δ∗, we have:

∀x. [[El(x)]]δ
∗

i ⊆ c(x) ⊆ [[Eu(x)]]δ
∗

i

Let addCond(cond, 〈El, Eu〉) = 〈El
post, Eu

post〉. Since cond is (v.f1 . . . fn == e), the

addCond function only modifies the mapping of the variable v; other mappings are

unchanged. Therefore, in order to prove the lemma, it is sufficient to show that

[[El
post(v)]]δ

∗

i ⊆ c(v) ⊆ [[Eu
post(v)]]δ

∗

i
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Since cond holds in the state c, we have c(v).c(f1) . . . c(fn) == evalc(e, c) which is

equivalent to c(v) ⊆ c(f1) . . . c(fn).evalc(e, c) following a relational view of the heap.

Therefore, we have

c(v) = c(v) ∩ c(f1) . . . c(fn).evalc(e, c)

Since c ∈ γ(〈El, Eu〉) and by Lemma 2, we have

[[El(v) & El(f1) . . . El(fn).evall(e, El)]]δ
∗

i ⊆ c(v) ∩ c(f1) . . . c(fn).evalc(e, c)

⊆ [[Eu(v) & Eu(f1) . . . Eu(fn).evalu(e, Eu)]]δ
∗

i

and therefore, [[El
post(v)]]δ

∗

i ⊆ c(v) ⊆ [[Eu
post(v)]]δ

∗

i .

Given the above lemmas, we can prove that for any statement, the composition

property holds. That is, for each statement S, the following property is valid:

∀c.〈El, Eu〉 | c ∈ F(S, γ(〈El, Eu〉)) =⇒ c ∈ γ(F̄(S, 〈El, Eu〉))

The proof for each kind of statement is as follows:

Assignments to locals. Let the statement S be v = e. Consider a concrete

state c ∈ F(S, γ(〈El, Eu〉)). By the definition of F (Figure 4-13), there exists

some concrete state c∗ ∈ γ(〈El, Eu〉) where c = c∗[v 7→ evalc(e, c∗)]. Because

c∗ ∈ γ(〈El, Eu〉), for some initial state i and some allocation binding δ∗, we have

∀x. [[El(x)]]δ
∗

i ⊆ c∗(x) ⊆ [[Eu(x)]]δ
∗

i .

Let F̄(v = e, 〈El, Eu〉) = 〈El
post, Eu

post〉. Since the assignment statement only

modifies the mapping of v, we have

∀x 6= v | (c(x) = c∗(x)) ∧ (El
post(x) = El(x)) ∧ (Eu

post(x) = Eu(x))

and for x = v, we have (c(v) = evalc(e, c∗)), (El
post(v) = evall(e, El)), and (Eu

post(v) =

evalu(e, Eu)). By Lemma 2, we have

[[evall(e, El)]]δ
∗

i ⊆ evalc(e, c∗) ⊆ [[evalu(e, Eu)]]δ
∗

i
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Therefore

∀x. [[El
post(x)]]δ

∗

i ⊆ c(x) ⊆ [[Eu
post(x)]]δ

∗

i

That is c ∈ γ(〈El
post, Eu

post〉), and the composition property holds.

Field updates. Let the statement S be e1.f = e2. Consider a concrete state c ∈

F(S, γ(〈El, Eu〉)). By the definition of F (Figure 4-13), there exists some concrete

state c∗ ∈ γ(〈El, Eu〉) where c = c∗[f 7→ c∗(f) ++ (evalc(e1, c
∗) -> evalc(e2, c

∗))].

Because c∗ ∈ γ(〈El, Eu〉), for some initial state i and some allocation binding δ∗, we

have: ∀x. [[El(x)]]δ
∗

i ⊆ c∗(x) ⊆ [[Eu(x)]]δ
∗

i .

Let F̄(e1.f = e2, 〈E
l, Eu〉) = 〈El

post, Eu
post〉, xl

1 = evall(e1, E
l), xu

1 = evalu(e1, E
u),

xl
2 = evall(e2, E

l), and xu
2 = evalu(e2, E

u). We distinguish the following two cases:

1. Strong update. In this case (xl
1 = xu

1) and (xl
2 = xu

2). That is, xl
1 (and thus xu

1)

and xl
2 (and thus xu

2) give the exact values of e1 and e2 and thus are singleton

sets. By the definition of F̄ , we have

El
1(f) = El(f) ++ (xl

1 -> xl
2), and Eu

1 (f) = Eu(f) ++ (xu
1 -> xu

2)

By Lemma 2, we have

[[xl
1]]

δ∗

i ⊆ evalc(e1, c
∗) ⊆ [[xu

1 ]]
δ∗

i , and [[xl
2]]

δ∗

i ⊆ evalc(e2, c
∗) ⊆ [[xu

2 ]]
δ∗

i

and because xl
1, xu

1 , xl
2, and xu

2 are singletons, we have

[[El
post(f)]]δ

∗

i ⊆ c∗(f) ++ (evalc(e1, c
∗) -> evalc(e2, c

∗)) ⊆ [[Eu
post(f)]]δ

∗

i

Therefore,

[[El
post(f)]]δ

∗

i ⊆ c(f) ⊆ [[Eu
post(f)]]δ

∗

i

2. Weak update. In this case, xl
1, xu

1 , xl
2, and xu

2 are not necessarily singletons. By

the definition of F̄ , we have El
post(f) = El(f) - (xu

1 -> rangeType(f)),

and Eu
post(f) = Eu(f) + (xu

1 -> xu
2)

Again, by Lemma 2 and by the semantics of the relational operators, we have

[[El
post(f)]]δ

∗

i ⊆ c(f) ⊆ [[Eu
post(f)]]δ

∗

i

Using the above results, and because

∀x 6= f | (c(x) = c∗(x)) ∧ (El
post(x) = El(x)) ∧ (Eu

post(x) = Eu(x))
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it is true that

∀x. [[El
post(x)]]δ

∗

i ⊆ c(x) ⊆ [[Eu
post(x)]]δ

∗

i

That is, c ∈ γ(〈El
post, Eu

post〉), and the composition property holds.

Allocations. Let the statement S be v = new t. Consider a concrete state c ∈

F(S, γ(〈El, Eu〉)). By the definition of F (Figure 4-13), there exists some concrete

state c∗ ∈ γ(〈El, Eu〉) where c = c∗[v 7→ {obj}, t 7→ (c∗(t) ∪ {obj})] for some fresh

object obj. Because c∗ ∈ γ(〈El, Eu〉), for some initial state i and some allocation

binding δ∗, we have ∀x. [[El(x)]]δ
∗

i ⊆ c∗(x) ⊆ [[Eu(x)]]δ
∗

i

Let F̄(v = new t, 〈El, Eu〉) = 〈El
post, Ev

post〉. If a symbolic object set is already

used in the abstraction of t, i.e. containsSymObjSet(t, Eu) = true, we define s to be

that symbolic set (given by symObjSet(t)), and δ̄∗ = δ∗[s 7→ (δ∗(s) ∪ {obj})].

By the definition of F̄ , in this case, we have (El
post(v) = ∅) and (Eu

post(v) = s).

Therefore,

[[El
post(v)]]δ̄

∗

i ⊆ c(v) ⊆ [[Eu
post(v)]]δ̄

∗

i

If the symbolic set is not used already, i.e. containsSymObjSet(t, Eu) = false,

by the definition of F̄ , (El
post(v) = s), (Eu

post(v) = s), (El
post(t) = El(t) + s), and

(Eu
post(t) = Eu(t) + s) where s = symObj(t, Eu), a fresh constant relation represent-

ing a fresh object. In this case, we define

δ̄∗ = δ∗ ∪ {s 7→ {obj}}

Therefore, we have

[[El
post(v)]]δ̄

∗

i ⊆ c(v) ⊆ [[Eu
post(v)]]δ̄

∗

i

[[El
post(t)]]

δ̄∗

i ⊆ c(t) ⊆ [[Eu
post(t)]]

δ̄∗

i

Furthermore, since

∀x 6= v, x 6= t | (c(x) = c∗(x)) ∧ (El
post(x) = El(x)) ∧ (Eu

post(x) = Eu(x))

we have

∀x. [[El
post(x)]]δ̄

∗

i ⊆ c(x) ⊆ [[Eu
post(x)]]δ̄

∗

i
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That is, c ∈ γ(〈El
post, Eu

post〉), and the composition property holds.

Return statements. These statements are treated as assignments to special

variables that store the return values of functions. Since the composition property

holds for assignments, it holds for return statements too.

Branches. Let the statement S be if (cond) S1 else S2. We show that if the

composition property holds for S1 and S2, it holds for S too. By the definition of F

(Figure 4-13), we have

F(if(cond)S1elseS2, γ(〈El, Eu〉)) ⊆ F(S1, γ(〈El, Eu〉)) ∪ F(S2, γ(〈El, Eu〉))

Let F̄(S1, 〈E
l, Eu〉) = 〈El

1, Eu
1 〉 and F̄(S2, 〈E

l, Eu〉) = 〈El
2, Eu

2 〉. Since the compo-

sition property holds for S1 and S2, we have

F(S1, γ(〈El, Eu〉)) ⊆ γ(〈El
1, Eu

1 〉) and F(S2, γ(〈El, Eu〉)) ⊆ γ(〈El
2, Eu

2 〉)

and by Lemma 3, we have

γ(〈El
1, Eu

1 〉) ∪ γ(〈El
2, Eu

2 〉) ⊆ γ(〈El
1, Eu

1 〉 ⊔ 〈El
2, Eu

2 〉)

Therefore, the composition property holds:

F(if(cond)S1elseS2, γ(〈El, Eu〉)) ⊆ γ(F̄(if (cond)S1else S2, 〈E
l, Eu〉))

Loops. Let the statement S be while (cond) S1. We show that if the composition

property holds for S1, it holds for S too. Since the widening operator is safe (Lemma

4), fixpoint computation is safe. Therefore, in order to prove the composition property

of the loop abstraction, it is sufficient to show that the composition property holds

after abstracting each loop iteration. That is,

F(S1, γ(〈El, Eu〉)) ⊆ γ(F̄(S1, addCond(cond, 〈El, Eu〉)))

Since the addCond function is safe (Lemma 5), all concrete states in which the condi-
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tion cond evaluates to true belong to γ(addCond(cond, 〈El, Eu〉)). At each iteration,

the loop statement S1 is executed iff the loop condition is true. Therefore,

F(S1, γ(〈El, Eu〉)) = F(S1, γ(addCond(cond, 〈El, Eu〉)))

Since the composition property holds for S1, we have

F(S1, γ(addCond(cond, 〈El, Eu〉))) ⊆ γ(F̄(S1, addCond(cond, 〈El, Eu〉)))

Therefore, the composition property holds for each loop iteration:

F(S1, γ(〈El, Eu〉)) ⊆ γ(F̄(S1, addCond(cond, 〈El, Eu〉)))

Call sites. We define a new transfer function F̄inline that summarizes the body

of a procedure from scratch every time it is called.






























F̄inline(S, 〈El, Eu〉) = F̄(S, 〈El, Eu〉) if S /∈ CallStmt

F̄inline(proc(e1, . . . , en), 〈El, Eu〉) =

F̄inline(proc body, 〈El[forml1 7→ evall(e1), . . . , formln 7→ evall(en)],

Eu[forml1 7→ evalu(e1), . . . , formln 7→ evalu(en)]〉)

That is, F̄inline summarizes procedure calls by inlining them. Therefore, it is

easy to see that the composition property holds for F̄inline.

The transfer function F̄ , however, does not inline procedure calls. Instead, it

summarizes a call by computing its calling context, extracting a template summary for

that context (if it is not already available), and instantiating the template summary

using the actual environment values.

In order to show that the composition property holds for F̄ , we argue that F̄ gen-

erates the same results as F̄inline. According to the definition of F̄ , the abstraction

of a statement with respect to a pair of environments does not depend on the actual

values of the environments; it only depends on whether the values of the accessed

fields, variables, or allocated objects are exact or not. This information is stored in

the calling context. Thus, abstracting a procedure call with respect to its calling con-
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text will invoke the same abstraction rules as abstracting it with respect to the actual

pair of environments at the call site. Therefore, the template summary generated by

F̄ is the same as the summary generated by F̄inline except for relation names: the

actual values of relations at the call site are replaced by fresh symbolic constants.

The instantiation phase replaces these constants with their actual values. Therefore,

the final summary returned by F̄ is exactly the same as the one returned by F̄inline.

To avoid abstracting a procedure an exponential number of times, we may use the

template summary of the empty context in other contexts. Because the empty context

represents the case where none of the values are exact, it only invokes abstraction

rules corresponding to weak updates. Therefore, although in this case the summary

generated by F̄ is not the same as the one generated by F̄inline, it is weaker. That

is, γ(F̄inline(proc, 〈E
l, Eu〉)) ⊆ γ(F̄(proc, 〈El, Eu〉)). Therefore, the composition

property still holds for F̄ .

Sequence of statements. Let the statement S be S1; S2. We show that if the

composition property holds for S1 and S2, it holds for S too. By the composition

property of S1, we have

F(S1, γ(〈El, Eu〉)) ⊆ γ(F̄(S1, 〈E
l, Eu〉))

which implies that

F(S2,F(S1, γ(〈El, Eu〉))) ⊆ F(S2, γ(F̄(S1, 〈E
l, Eu〉)))

By the composition property of S2, we have F(S2, γ(〈El, Eu〉)) ⊆ γ(F̄(S2, 〈E
l, Eu〉))

in which the arbitrary pair of 〈El, Eu〉 can be replaced by F̄(S1, 〈E
l, Eu〉):

F(S2, γ(F̄(S1, 〈E
l, Eu〉))) ⊆ γ(F̄(S2, F̄(S1, 〈E

l, Eu〉)))

Therefore,

F(S2,F(S1, γ(〈El, Eu〉))) ⊆ γ(F̄(S2, F̄(S1, 〈E
l, Eu〉)))
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By the definitions of F and F̄ , we have

F(S1; S2, γ(〈El, Eu〉)) ⊆ γ(F̄(S1; S2, 〈E
l, Eu〉))

That is, the composition property holds.

4.5.2 Termination

In order to prove that the abstraction algorithm always terminates, it is sufficient

to show that the abstraction of all loops and recursive procedures reaches a fixpoint

after a finite number of iterations.

Both least upper bound and widening operations result in a lattice point which

is either the same as one of their arguments or one that is higher than both of them.

During the abstraction of a loop, if the join operation results in a lattice point which

is the same as one of its arguments, then it has reached a fixpoint and the abstraction

terminates. If the join instead results in a node higher in the lattice, the abstraction

can make only a finite number of moves up the lattice before the abstract environment

is widened to ⊤. This is because the length of all expressions is bounded by a constant

size, and thus the height of the lattice is finite. Therefore, after a finite number of

steps, the abstraction will either reach a fixpoint at ⊤ or a fixpoint at some lower

point. Thus, it always terminates.

4.5.3 Complexity

We prove that the complexity of our abstraction algorithm is bounded by O(nm)

where n denotes the size of the procedure being abstracted (including all of its reach-

able procedures) in a 3-address instruction format3, and m denotes the total number

of fields, types, global variables, and the maximum number of formal parameters of

all reachable procedures.

We assume that looking up and updating a value in an environment has a constant

cost. Since the length of any program expression in a 3-address instruction format

3Java programs can be converted to this format using the soot optimization package [57].
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is at most 2, the cost of evaluating an expression using evall or evalu is constant.

Furthermore, simplifying the relational expressions using the simplification rules of

Figure 4-11 has also a constant cost. This is because the length of a relational

expression is bounded by a constant, and all simplification rules strictly reduce the

length of the expression being simplified.

Since applying evaluation functions and simplification rules has a constant cost,

abstracting simple statements (i.e. assignments, field updates, allocations, and return

statements) has a constant cost. Abstracting a conditional involves abstracting its

branches and merging the results by computing their least upper bound. The merge

operation updates the values of all fields, variables, and types accessed by each branch.

Therefore, its computation time is O(m).

Abstracting a loop involves computing a fixpoint. Because the length of the

generated relational expressions is bounded by a constant, computing a fixpoint needs

at most a constant number of iterations. After each iteration, however, we have to

compute the least upper bound of the current abstraction with the previous one and

check whether a fixpoint is reached or not. This computation takes O(m) time.

Abstracting a call site involves computing a template pair of environments based

on the calling context, abstracting the body of the callee, and instantiating the tem-

plate summary. This computation also takes O(m) time because the values of all

fields, types, and variables have to be updated. Since the total number of times

that a specific procedure may be summarized is bounded by a constant, the cost of

abstracting a procedure is at most O(m).

During the abstraction, each statement is visited a constant number of times:

simple statements and the statements that belong to conditional branches are visited

once, and the statements that form the bodies of loops and called procedures are

visited at most a pre-defined constant number of times. Since the cost of abstracting

each statement is at most O(m), the total abstraction cost is at most O(mn).
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4.6 Optimization

A common loop pattern in heap-manipulating programs is iterating over a linked

data structure: a loop traverses over a data structure using a variable x that acts

as a cursor. In each iteration of the loop, the cursor variable is updated by taking

one step along a relation r; the termination condition is that no further step along

r can be taken. In a linked list, for example, x is a reference to a list entry, r is the

next field from entry to entry, and the termination condition is x.next!=null. In a

traversal using an iterator, x is the reference to the iterator, r is the specification field

associated with iteration, and the termination condition is hasNext(x).

The general form of the loop is:

while (cond(x, r)) {

S1; x=next(x); S2; }

which allows arbitrary statements before and after the update of the cursor, so long

as they do not mutate the relation r or assign to the cursor x.

For any loop in this form, our analysis treats the approximation of x by x0. ∗ r

(where x0 is the initial value of x and ∗r is the reflexive-transitive closure of r) as the

exact set of values taken by x during the execution of the loop.

Having inferred the exact value of the loop variable, the analysis often generates

more precise abstraction of the loop body by performing an additional optimization

pass over the loop. This pass infers a more precise final value for any field which is

(1) updated exactly once in the loop body and (2) the updating statement is of the

form e1.f = e2 where e1 has an exact value and e2 is constant with respect to the

loop. This additional precision will often carry through the abstraction rules.

Recall the example we saw in Figure 4-5:

void Graph.init() {

ListEntry c = this.nodes.head;

while (c != null) {

c.node.visitedInsNum = 0;
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c = c.next;

}

}

This loop matches the optimized pattern, so the exact value of c will be

this.nodes.head.*next. After intersecting with loop condition, the exact value will

be this.nodes.head.*next & (ListEntry’ - null). Since the value of c is exact,

and the right-hand side of the update statement is a constant, the abstraction of the

statement c.node.visitedInsNum = 0 is also exact, giving us the following (after

simplifications):

visitedInsNum’ = visitedInsNum ++ (this.nodes.head.*next.node -> 0)

Without this optimization we would have generated the following:

visitedInsNum’ ⊇ visitedInsNum - (this.nodes.head.*next.node -> Int)

visitedInsNum’ ⊆ visitedInsNum + (this.nodes.head.*next.node -> 0)

which allows an arbitrary subset of this.nodes.head.*next.node.visitedInsNum

to be overridden by 0, and thus, is a much weaker specification.
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Chapter 5

Checking Abstract Programs:

Forge

This chapter describes how a Java program is abstracted and checked against a given

property. The abstraction involves translating the program’s statements to an Alloy

formula, using the initial specifications of its called procedures to encode the call

sites. The resulting Alloy formula is then checked against the given property using an

Alloy model finder. We use Forge [14], a bounded verification tool for Java programs,

to translate Java programs to Alloy formulas and perform the analysis. In order to

translate the code, Forge computes a symbolic state in which the values of variables

and fields are encoded as relational expressions. While this approach produces a

compact Alloy formula by avoiding intermediate relations, it cannot readily encode

the kind of call site specifications that the technique of Chapter 4 extracts. Therefore,

a special encoding is necessary to incorporate those specifications into the Forge

translation. This chapter briefly describes the ideas underlying Forge, and explains

how call site specifications are encoded.

5.1 Overview

At each iteration of our specification refinement technique, described in Chapter 2,

the top-level procedure is checked against the given property, using the specifications
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Figure 5-1: Forge architecture: the gray box shows Forge internal processes.

inferred for the call sites as surrogates for their code. We use Forge to perform this

checking.

Figure 5-1 shows the architecture of Forge. It takes a Java program in which a

procedure is selected for analysis, a property expressed in the Alloy language, and

some bounds on the number of loop iterations and the size of the heap. Forge checks

whether the selected procedure satisfies the given property or not. If so, it terminates

with no counterexamples, meaning that the property holds within the checked bounds.

Otherwise, it outputs a sound counterexample. Therefore, its analysis is categorized

as bounded verification.

Forge analyzes programs in a modular way. If the user chooses to provide a

specification for a procedure, that specification will replace the body of that procedure

anywhere it is called. Otherwise, the calls to that procedure will be inlined. Since our

specification refinement technique infers the specifications of the call sites, we always

use Forge in the former mode, that is by providing the specifications of the call sites.

Forge analyzes a procedure by generating an Alloy formula that encodes both the

procedure and the negation of the given property, and solving it using Kodkod [56],

a model finder for Alloy formulas. Kodkod requires finite lower and upper bounds on

the values of the relations used in the analyzed Alloy formula. Thus, Forge includes

a separate phase that produces such bounds based on the user-provided bounds on

the size of the heap.

Kodkod translates the given Alloy formula to a boolean satisfiability formula in

conjunctive normal form (CNF), and solves it using an off-the-shelf SAT solver. If a
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solution is found, Kodkod translates it back to some valid values for the relations in

the Alloy formula and returns it to the user. Using Kodkod as an intermediate engine

for translating Java programs to boolean formulas enables us to take advantage of the

optimizations such as sharing detection and symmetry breaking offered by Kodkod.

The rest of this chapter briefly describes how Forge and Kodkod perform different

phases of the analysis. More details can be found elsewhere [14,56].

5.2 Translating Java to Alloy

A Java procedure can be encoded as a conjunction of Alloy formulas whose satisfying

solutions denote executions of the procedure. This encoding is based on a relational

view of the heap, previously described in Chapter 4: a field f of type T defined in a

class C is viewed as a binary functional relation f : C -> T that maps each object

of type C to at most one object of type T . Local variables and arguments are viewed

as singleton sets, i.e. sets containing only one element.

Prior to translating the body of a procedure to Alloy, Forge uses the Soot frame-

work [57] to transform the code to a 3-address instruction format in which all expres-

sions are side-effect free. Furthermore, it performs the following transformations in a

pre-process phase:

• All loops reachable from the analyzed procedure are unrolled based on some

user-provided bound. Unrolling a loop produces a nested if statement which

ends with an assume statement that forces the loop condition to be false. For

example, unrolling a loop while (cond) S; twice results in

if (cond) then {S; if (cond) then {S; assume (not cond);}}

Recursive procedure calls are unrolled similarly.

• All call sites that can be dynamically dispatched are expanded to statically

invoke all procedures that may be called at that site. The expansion produces

a nested if statement that tests the type of the receiver object and calls the

appropriate procedure accordingly.
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• All call sites whose specifications are not available are inlined.

5.2.1 Encoding Basic Statements

In order to translate the body of a procedure to an Alloy formula, Forge computes

a symbolic state and a constraint at each control point of the procedure. The state

maps each variable and field to a relational expression that encodes its value, and the

constraint accumulates all constraints on those expressions, generated by translating

branches, allocations, and assume statements.

Given a pre-state, each statement is executed symbolically to produce a post-

state and a constraint that encode the effects of that statement. When the symbolic

execution of a procedure terminates, the post-state gives the final values of all fields

and variables as expressions over their initial values. Forge then substitutes these

expressions for the fields and variables that are mentioned in the property of interest,

negates the resulting formula, conjoins it with the constraint produced during the

symbolic execution, and hands it to Kodkod for a solution. A solution therefore gives

a valid execution of the code that violates the property.

The translation starts with declaring a unary relation (corresponding to an Alloy

type) for each class declared in the analyzed program. The value of this relation

represents the set of all objects of that class that can exist during the lifetime of the

program. Furthermore, an initial state is constructed in which an Alloy relation is

declared for each field and formal parameter accessible by the analyzed procedure.

The values of these relations represent the values of the fields and formal parameters

in the pre-state of the procedure.

Given a pre-state s, each statement stmt produces a post-state post(stmt, s) and

a constraint constr(stmt, s) according to the following rules:

Sequence of statements. A sequence of two statements stmt1; stmt2 is encoded

by first encoding the first statement stmt1 on the pre-state, and then encoding the

second statement stmt2 on the resulting state. The constraints generated by these
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encodings will be conjoined. That is,

post(stmt1; stmt2, s) = post(stmt2, post(stmt1, s))

constr(stmt1; stmt2, s) = constr(stmt1, s) and constr(stmt2, post(stmt1, s))

Assignments to locals. An assignment statement v = e is encoded by first

evaluating the expression e in the pre-state s, and then storing it as the value of the

variable v in the post-state. That is,

post(v = e, s) = s[v 7→ eval(e, s)]

constr(v = e, s) = true

where eval(e, s) evaluates a program expression e in a state s.

Field updates. A field update statement e1.f = e2 is concisely encoded using a

relational override:

post(e1.f = e2, s) = s[f 7→ eval(f, s) ++ (eval(e1, s) -> eval(e2, s))]

constr(e1.f = e2, s) = true

That is, the value of f in the post-state is the same as its value in the pre-state except

that it maps the value of e1 to the value of e2.

Conditionals. A conditional is encoded by first encoding its branches separately,

and then merging the results by forming an Alloy if expression for every variable

and field mutated by either branch. A conditional statement

if (cond) stmt1; else stmt2;

is encoded as follows:

post(if (cond) stmt1; else stmt2, s) =

let s′1 = post(stmt1, s), s
′
2 = post(stmt2, s) in

λx.(if eval(cond, s) then eval(x, s′1) else eval(x, s′2))

constr(if (cond) stmt1; else stmt2, s) =

let c′1 = constr(stmt1, s), c
′
2 = constr(stmt2, s) in

(eval(cond, s) => c′1) and ((not eval(cond, s)) => c′2)
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This encoding ensures that the final value of each variable and field in the post-state

is its value in the then branch if the branch condition evaluates to true, and the

one in the else branch otherwise. Furthermore, if the branch condition evaluates to

true, the constraints produced by the then branch will be in effect. Otherwise, those

produced by the else branch are effective.

Allocations. In order to encode allocation statements, we need a notion of fresh

objects that can be allocated at each control point of the code. For each datatype

in the program, we can introduce a set (unary relation) to represent fresh objects of

that type. Allocating an object will then be encoded by choosing an element of this

set non-deterministically and updating the set to exclude the chosen element.

This non-deterministic approach, however, results in an Alloy formula with many

symmetric solutions, and thus is not efficient in practice. Therefore, in order to

exploit the symmetry breaking feature of Kodkod, Forge determinizes the order in

which fresh objects are allocated. That is, for each datatype t, Forge introduces a

new relation t ord that totally orders all the elements of type t. This ordering denotes

the order in which new objects of type t are allocated during the execution of the

analyzed procedure. The expression first(t ord) denotes the first element of the t ord

ordering. Furthermore, Forge augments the symbolic state to include a mapping from

each class to an expression that represents its last instantiated object.

Allocation statements are encoded by constructing an expression for the next

allocated object and storing it in the post-state. An allocation statement v = new t

is therefore encoded as

let lastObj = eval(t, s),

newObj = if (no lastObj) then first(t ord) else lastObj.t ord in

post(v = new t, s) = s[v 7→ newObj, t 7→ newObj]

constr(v = new t, s) = (some newObj)

That is, if no objects of type t are previously allocated, the object instantiated by

this statement will be the first object in the total ordering. Otherwise, it will be the

object immediately following the last allocated object. This expression will be stored
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in the post-state both as the value of the variable v, and as the last allocated object

of type t. Furthermore, we have to ensure that this new object exists. Therefore, the

constraint forces the new object to have some value.

Assume statements. These statements are generated by the loop unrolling

phase. A statement assume (cond) is encoded as follows:

post(assume (cond), s) = s

contr(assume (cond), s) = eval(cond, s)

That is, the constraint ensures that the assume condition holds.

Return statements. The return statement return e in a procedure proc is

treated as an assignment to a special variable proc$return that stores the return value

of proc. That is,

post(return e, s) = s[proc$return 7→ eval(e, s)]

constr(return e, s) = true

5.2.2 Encoding Call Site Specifications

Although Forge does not require users to provide specifications for called procedures,

its modular analysis enables it to exploit such specifications whenever available. As

mentioned before, we always provide Forge with the call site specifications that are

inferred by our specification refinement technique. In this section, we describe how

initial specifications are incorporated into the Forge framework.

As described in Chapter 4, the initial specification of a procedure is a formula that

provides lower and upper bounds for the procedure’s variables, fields, and types. The

first step in using the specification of a called procedure is to substitute the actual

values used at the call site (represented by Alloy expressions) for the symbolic names

that are used in the specification. The second step is to generate a post-state and a

constraint that encode the specification. These steps are described below.

Replacing symbolic names. A specification extracted by the technique of

Chapter 4 contains two kinds of symbolic names that must be substituted: (1) pre-
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state names that represent the values of relations (formal parameters and fields) in

the pre-state, and (2) object names that represent allocated objects. Therefore, in

order to replace symbolic names, two mappings are required:

prestateMap : Names → RelationalExprs

that maps the pre-state names used in the specification to the Alloy expressions that

represent the actual values of relations in the pre-state of the call site, and

objectsMap : Names → RelationalExprs

that maps the object names used in the specification to some Alloy expressions that

represent fresh objects. Given these two mappings, the substitute function substitutes

the given Alloy expressions for their corresponding symbolic names:

Mapping = Names → RelationalExprs

substitute : (Formula × Mapping × Mapping) → Formula

substitute(spec, prestateMap, objectsMap) =

spec[pi → prestateMap(pi)][oj → objectsMap(oj)]

∀pi ∈ PrestateNames, oj ∈ ObjectNames

where f [n → e] substitutes an expression e for all occurrences of a name n in a

formula f . Computing prestateMap is simple: given the call site’s pre-state s, the

mapping prestateMap maps each field and formal parameter of the called procedure

to its actual value in s.

Computing objectsMap involves producing Alloy expressions that represent objects

that are not already allocated. To produce such expressions, we follow the Forge

framework: for each datatype t, we keep track of the last object allocated of type

t – denoted by an auxiliary variable lastObjt – and the constraints necessary for

allocating objects of type t – denoted by an auxiliary variable constrt. Given the

call site’s pre-state s, the variable lastObjt is initialized to the value eval(t, s) and

constrt is initialized to the formula true. The mapping objectsMap is then computed

as follows:

• Lower bound. As explained in Chapter 4, for each datatype t, the initial specifi-
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cation of a procedure provides a lower bound that represents the objects of type

t that are allocated in every execution of the procedure. For a symbolic object

symObj in the lower bound of t, we compute objectsMap(symObj) as follows:

let newObj = if (no lastObjt) then first(t ord) else lastObjt.t ord in

objectsMap(symObj) = newObj

constrt = constrt and (some newObj)

lastObjt = newObj

That is, symObj is mapped to newObj which is an Alloy expression representing

the next available object to allocate. The formula constrt is updated to ensure

that this object exists, and lastObjt is updated to represent that this expression

is the last allocated object of type t. These updated values of constrt and

lastObjt are then used to compute the Alloy expressions of the next symbolic

object in the lower bound of t. This process continues until all symbolic objects

in the lower bound of t are mapped to Alloy expressions.

• Upper bound (individual objects). As explained in Chapter 4, for each datatype

t, the initial specification of a procedure provides an upper bound that repre-

sents the objects that may be allocated in some execution of the procedure. For

a symbolic object symObj in the upper bound of t that is not already mapped

to any Alloy expression (that is, it does not appear in the lower bound of t),

we introduce a fresh unary relation r whose value represents the fresh object

corresponding to symObj:

let newObj = if (no lastObjt) then first(t ord) else lastObjt.t ord in

objectsMap(symObj) = r

constrt = constrt and ((no r) or (r = newObj))

lastObjt = if (no r) then lastObjt else r

The constraint specifies that r can be either empty (representing the case that

this object is not allocated), or newObj (the next object that can be instanti-
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ated). The variable lastObjt is updated to correctly represent the last allocated

object in either case. The updated constrt and lastObjt are used to compute

the mapping of the next symbolic object in the upper bound of t. This process

continues until all symbolic objects in the upper bound of t are mapped to Alloy

expressions.

• Upper bound (set of objects). If the upper bound of t contains a symbolic set of

allocated objects, a fresh unary relation r is introduced to represent the set of

objects abstracted by this symbolic set:

let newObj = if (no lastObjt) then first(t ord) else lastObjt.t ord in

objectsMap(symObjSet) = r

constrt = constrt and (r in newObj. ∗ t ord)

lastObjt = if (no r) then lastObjt

else (r - r.^~t ord)

That is, r can contain any number of objects that are not instantiated yet (i.e.

they belong to newObj. ∗ t ord). The lastObjt variable is then updated to store

the last object contained in r.

Having computed objectsMap and prestateMap, we use the substitute function to

substitute the computed Alloy expression for every symbolic name that is used in

the specification of the called procedure. The resulting specification is then used to

compute the post-state and the necessary constraints of the call site.

Computing post-state. Given a call site p(e1, .., en) and a pre-state s, let spec′

denote the specification of p after the substitution of symbolic names. This specifi-

cation provides upper and lower bounds for p’s accessed types, fields, and the return

value. In this section, we describe how these bounds are used to compute the post-

state of the call site.

• Types. The post-state of the call site maps each datatype t to an Alloy ex-

pression that represents the last allocated object of type t. This expression
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is computed while the mapping objectsMap is computed, and is stored in the

auxiliary variable lastObjt. Therefore, lastObjt gives the post-state of a type t.

post(p(e1, .., en), s)(t) = lastObjt ∀t ∈ Type

• Fields. The specification constrains the final value of each field f by the two

constraints (f ⊆ ub) and (f ⊇ lb) where ub and lb are Alloy expressions rep-

resenting the upper and lower bounds of the relation corresponding to f . Let

constrf denote the constraint generated to encode the post-state of f . The

following two cases are distinguished:

(1) If (ub = lb), meaning that the expression extracted for f is exact, then this

expression is stored in the post-state. That is,

post(p(e1, .., en), s)(f) = ub

constrf = true

(2) Otherwise, the exact final value of f is unknown. Therefore, a fresh unary

relation r is allocated to represent this value. It is stored in the post-state, and

constrained as follows:

post(p(e1, .., en), s)(f) = r

constrf = (r in ub) and (lb in r)

That is, f can take any arbitrary value in the post-state as long as it conforms

to the lower and upper bounds.

• Return value. The specification constrains the return value of p by the two

constraints (p$return ⊆ ub) and (p$return ⊇ lb). These constraints are encoded

similarly to the above case. That is, if the lower and upper bounds are the

same, they are used as the value of p$return in the post-state. Otherwise,

an unconstrained fresh binary relation r is allocated to represent the value of

p$return in the post-state. A constraint constrret bounds the value of this
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void Graph.init():

visitedInsNum’ = visitedInsNum ++ (this.nodes.head.*next.node -> 0)

void Graph.fixIns(Node n):

visitedInsNum’ ⊆ visitedInsNum + (n.outNodesList.head.*next.node -> Int)

visitedInsNum’ ⊇ visitedInsNum - (n.outNodesList.head.*next.node -> Int)

ListEntry Graph.findSource(ListEntry entry):

findSource$return ⊆ (entry.*next &

(null + node.inDeg.(entry.*next.node.visitedInsNum)))

findSource$return ⊇ none

Figure 5-2: Initial specifications of the called procedures.

relation by lb and ub.

The constraint encoding this call site accumulates all constraints generated for

type allocations, fields, and the return value. That is,

constr(p(e1, .., en), s) = constrt and constrf and constrret ∀t ∈ Type, f ∈ Field

5.2.3 Example

We illustrate the translation of Java procedures to Alloy formulas using the topo-

logical sort example of Chapter 1 (given again in Figure 5-3(a)). We use the ini-

tial specifications previously described in Chapter 4 to translate the call sites of the

topologicalSort method. Those specifications are given again in Figure 5-2.

We assume that the loop in the topologicalSort method is unrolled once. The

resulting code is given in Figure 5-3(a). It resolves the break statement in the loop

body by adding an else branch to the inner if statement.

Figure 5-3(b) gives the Alloy encoding of this method as generated by Forge.

It gives the symbolic state generated after translating each statement. However, to

simplify the representation, instead of giving the complete state, this figure only shows

the updated fields and local variables using some intermediate names with numerical

subscripts. The values of the accessed fields and formal parameters in the pre- and

post-state are denoted by unprimed and primed names, respectively. The fields not
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specified in the post-state are not modified by the method. The line numbers used in

the encoding of Figure 5-3(b) correspond to the line numbers of the topologicalSort

code of Figure 5-3(a).

Figure 5-3(c) gives the definition of constr, the conjunction of the constraints

generated during the translation. We assume that the constraints of this figure are

implicitly conjoined. In this figure, the line numbers preceding each constraint shows

the line of the code that is responsible for generating that constraint.

The encoding of Figure 5-3(b) shows how each statement is translated. An as-

signment statement updates the value of the left-hand-side variable in the symbolic

state to be equal to the right-hand-side value. An if statement is translated by first

translating each branch, and then forming an Alloy if expression on the results at

the merging point of the branches (Lines 15 and 16). An assume statement does

not update the symbolic state; it augments the constraint to ensure that the assume

condition holds (Line 14).

Call sites of the topologicalSort method are encoded initially using the speci-

fications of Figure 5-2. The specification of the init method is accurate. Therefore,

the call to this method is encoded by simply updating the value of the modified field

visitedInsNum in the symbolic state (Line 2). The specifications of findSource and

fixIns, however, are approximate. Therefore, the translations of the calls to these

methods allocate fresh relations source$1 and visitedInsNum$1, and augment the

constraint to ensure that the values of these relations are bounded by the upper and

lower bounds of the specification (Lines 5 and 9).

The encoding of Figure 5-3(b) is represented as a let statement. It substitutes the

post-state expressions computed for the variables and fields in the formulas constr and

(not property), where constr denotes the constraints generated during the translation

(given in Figure 5-3(c)) and property denotes the property being analyzed. Therefore,

any solution to this final formula represents an execution of the abstract code that

violates the property.
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boolean Graph.topologicalSort() {
1: boolean isAcyclic = true;
2: init();
3: ListEntry cur = nodes.head;
4: if (cur != null) {
5: ListEntry source =

findSource(cur);
6: if (source == null) {
7: isAcyclic = false;
8: } else {
9: fixIns(source.node);
10: Node tmp = source.node;
11: source.node = cur.node;
12: cur.node = tmp;
13: cur = cur.next;
14: assume (cur == null)
15: }
16: }
17: return isAcyclic;
}

1: let isAcyclic1 = true rel,

2: visitedInsNum1 = visitedInsNum ++

(this.nodes.head.*next.node -> 0),

3: cur1 = this.nodes.head,

5: source1 = source$1,

7: isAcyclic2 = false rel,

9: visitedInsNum2 = visitedInsNum$1,

10: tmp1 = source1.node,

11: node1 = node ++ (source1 -> cur1.node),

12: node2 = node1 ++ (cur1 -> tmp1),

13: cur2 = cur1.next,

15: isAcyclic3 = if (source1 = null rel)

then isAcyclic2 else isAcyclic1,

visitedInsNum3 = if (source1 = null rel)

then visitedInsNum1 else visitedInsNum2,

node3 = if (source1 = null rel)

then node else node2,

cur3 = if (source1 = null rel)

then cur1 else cur2,

isAcyclic’ = if (cur1 != null rel)

then isAcyclic3 else isAcyclic1,

16: visitedInsNum’ = if (cur1 != null rel)

then visitedInsNum3 else visitedInsNum1,

node’ = if (cur1 != null rel)

then node3 else node,

cur’ = if (cur1 != null rel)

then cur3 else cur1,

17: topologicalSort$return’ = isAcyclic’ in

constr and (not property)

constr =

5: (cur1 != null rel) =>

source$1 in (cur1.*next & (null rel +

node.inDeg.(cur1.*next.node.visitedInsNum1)))

9: (cur1 != null rel) => (source1 != null rel) =>

{(visitedInsNum$1 in visitedInsNum1 +

source1.node.outNodesList.head.*next.node -> Int)

(visitedInsNum1 -

source1.node.outNodesList.head.*next.node->Int

in visitedInsNum$1)}

14: (cur1 != null rel) => (source1 != null rel) =>

(cur2 = null rel)

Figure 5-3: Translation example: (a) code with loop unrolled once, (b) Alloy encoding (c) generated constraints.
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5.3 Generating Relation Bounds

In order to solve an Alloy formula, Kodkod, the Alloy model finder underlying Forge,

requires a universe of atoms, a lower bound for each relation representing the tuples

that must be included in that relation, and an upper bound for each relation repre-

senting the tuples that may be included in that relation. That is, in every solution

found by Kodkod, the tuples of a relation must include all tuples in its lower bound,

and must be chosen from the tuples in its upper bound. These bounds not only

specify the scope of the space being analyzed, but also facilitate defining a partial

solution. That is, if the exact tuples of some relation are known in advance, they can

be provided to Kodkod as both the lower and the upper bound of that relation, thus

ensuring that the value of that relation in all found solutions will be the set of those

tuples.

Forge constructs relation bounds based on the user-provided bounds on the size

of the heap: for each class C declared in the analyzed program, Forge requires the

users to provide a number nc denoting the maximum number of objects of type C

that can exist in the analyzed heap. It uses a set of nc fresh atoms as both the upper

and the lower bound of the relation corresponding to C. Therefore, it ensures that

Kodkod considers nc objects of type C in the analysis.

The Int type is bounded by the user-provided number for the bitwidth of the

integers. Given a bitwidth i, Forge constructs an atom for each number in the range

of −2i−1 to 2i−1 − 1. A set containing all those atoms is used as both the upper and

the lower bound of the Int type.

The lower bound of each relation corresponding to a variable v of type C is an

empty set. Its upper bound is the union of the set representing the upper bound of

type C and the one representing the null relation.

Similarly, the lower bound of a binary relation r : C -> T is an empty set, and

its upper bound is the Cartesian product of the upper bound of C with the union of

the upper bound of T and the null relation.

The universe of atoms is the union of sets of atoms that are constructed for each
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type.

5.4 Solving Alloy Formulas: Kodkod

Given an Alloy formula, a universe of atoms, and the bounds on the values of the

relations used in that formula, Kodkod analyzes the formula for a solution within the

given bounds. This analysis is performed by first converting the Alloy formula to a

boolean formula, and then solving it using a SAT solver.

Alloy formulas are converted to boolean using the following basic idea [29]: Each

n-ary relation r with a lower bound of bL and an upper bound of bU over a universe

U = {a0, . . . , ak} is encoded as an n-dimensional boolean matrix m defined as follows:

m[i1, . . . , in] =



















true 〈ai1 , . . . , ain〉 ∈ bL

false 〈ai1 , . . . , ain〉 /∈ bU

fresh() 〈ai1 , . . . , ain〉 ∈ bU − bL

That is, any tuple in the lower bound of r must be included in m, any tuple not in

the upper bound of r should not be included in m, and any tuple in the upper bound

that is not in the lower bound of r is allocated a fresh boolean variable whose truth

value will indicate whether that tuple is included in m or not.

These boolean matrices are then combined using matrix operations to represent

different Alloy expressions. Alloy formulas are encoded by combining these matrices

into propositional formulas. Kodkod then converts the propositional formulas to CNF

using the standard translation from boolean logic to conjunctive normal form (see,

for example, [17]).

In order to generate smaller boolean formulas, Kodkod exploits some optimiza-

tion techniques such as symmetry breaking and sharing detection whenever possible.

Details of the Kodkod translation can be found elsewhere [56].

The generated CNF formula is delegated to a SAT solver for a solution. A solution

returned by the SAT solver assigns truth values to all boolean variables. Kodkod

translates these values back to some symbolic values for the relations in the solved
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Alloy formula. This is done using the mapping of the Alloy relations to boolean

variables that was constructed by Kodkod during the translation phase. Kodkod

then returns the Alloy solution as its output.

Because the formula generated by Forge encodes call sites using their initial over-

approximating specifications, any solution found by Kodkod at this stage is a coun-

terexample that conforms to the initial specifications of the call sites, rather than their

actual code. Therefore, the validity of any found counterexample must be checked

against the original code before returning to the user. The details of this process are

explained in the next chapter.
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Chapter 6

Refining Specifications

In each iteration of our specification refinement technique, an abstraction of a given

procedure is checked against a given property. If a counterexample is found, it is

checked for validity in the original procedure. If valid, the counterexample will be

returned to the user. Otherwise, it will be used to refine the specification of some

called procedure so that this invalid counterexample is eliminated. This chapter

describes how a counterexample is checked for validity and how it is used to refine

a specification. Validity checking involves checking the original code of all call sites

against the counterexample in a hierarchical way. Refining a specification involves

converting a proof of unsatisfiability generated by the underlying solver to a small

well-formed Alloy formula that eliminates the invalid counterexample. The details of

these phases are described in this chapter.

6.1 Validity Checking of Counterexamples

A counterexample is an execution of the analyzed program that violates the analyzed

property. The only statements that may be abstract in an analyzed program are its

procedure calls. Therefore, in order to check the validity of a counterexample, it is

sufficient to only check the validity of the state transitions that the counterexample

assigns to the call sites. This process is described in this section and illustrated by

the topological sort example of Chapter 1.
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void Graph.init():

visitedInsNum’ = visitedInsNum ++ (this.nodes.head.*next.node -> 0)

void Graph.fixIns(Node n):

visitedInsNum’ ⊆ visitedInsNum + (n.outNodesList.head.*next.node -> Int)

visitedInsNum’ ⊇ visitedInsNum - (n.outNodesList.head.*next.node -> Int)

ListEntry Graph.findSource(ListEntry entry):

findSource$return ⊆ (entry.*next &

(null + node.inDeg.(entry.*next.node.visitedInsNum)))

findSource$return ⊇ none

Figure 6-1: Initial specifications.

6.1.1 Interpretation of a Counterexample

As explained in Chapter 5, we use Forge to check an abstract procedure against a given

property. Forge performs this checking by translating the procedure to a relational

formula in Alloy, and solving it using Kodkod. Any counterexample returned by Forge

will be an assignment of tuples to the relations that are mentioned in the solved Alloy

formula, representing atoms by symbolic names. We use the values of relations to

compute a state transition for every statement of the analyzed procedure, and thus

construct a symbolic execution.

The relations in an Alloy formula produced by Forge are introduced at either of

the following places: (1) at the beginning of the procedure to encode the values of

the fields and formal parameters in the pre-state, and (2) at an approximate call site

to encode the values of the fields and variables that are not precisely given by the

call site specification. All other values are expressed by Alloy expressions over these

relations. Therefore, a counterexample defines a pre-state for the analyzed procedure

and post-states for its approximate call sites, and is sufficient to compute a symbolic

execution of the procedure: starting from the pre-state, each statement of the code

can be executed symbolically to produce the next program state. Approximate pro-

cedure calls, however, cannot be executed symbolically because their specifications

are only approximations of their actual behaviors. The post-states of such call sites

are therefore extracted from the counterexample.
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/*
((repInv = true$rel) and
(topologicalSort$return = true$rel)) =>

(all e: this.nodes’.head’.*next’ |
int(e.node’.inDeg) < size(e.*prev’)))

*/
boolean Graph.topologicalSort() {
1: boolean isAcyclic = true;
2: init();
3: ListEntry cur = nodes.head;
4: if (cur != null) {
5: ListEntry source = findSource(cur);
6: if (source == null) {
7: isAcyclic = false;
8: } else {
9: fixIns(source.node);
10: Node tmp = source.node;
11: source.node = cur.node;
12: cur.node = tmp;
13: cur = cur.next;
14: if (cur != null) {
15: source = findSource(cur);
16: if (source == null) {
17: isAcyclic = false;
18: } else {
19: fixIns(source.node);
20: tmp = source.node;
21: source.node = cur.node;
22: cur.node = tmp;
23: cur = cur.next;
24: assume (cur == null)
25: }
26: }
27: }
28: }
29: return isAcyclic;
}

0: this, nodes, head, next, prev, node,

inDeg, outDeg, inNodesList,

outNodesList, visitedInsNum

5: source$1

9: visitedInsNum$1

15: source$2

19: visitedInsNum$2

(a) (b)

Figure 6-2: Topological sort example: (a) Java code with 2 loop unrollings, (b)
allocated Alloy relations.
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Example. To illustrate how a counterexample gives an execution of a program,

we use the topological sort example of Chapter 1. We check the topologicalSort

method against the in-degree property discussed in that chapter. The property says

that if the algorithm terminates successfully, the in-degree of each node is at most

equal to the number of nodes preceding it in the final topological order. We analyze

the code with respect to a heap containing 2 objects of each type, integers within a

bitwidth of 3, and 2 unrollings of each loop. The initial specifications used to abstract

the called procedures are given again in Figure 6-1.

Figure 6-2(a) gives the topologicalSort method after the loop unrollings, along

with the property of interest. Translating this method to Alloy generates the relations

shown in Figure 6-2(b). The line numbers in this figure show the lines of the code

whose translations have generated the relations. Line 0 is the pre-state and other

lines are the approximate call sites (calls to findSource and fixIns). Since the

specification of the init method is accurate, the call to this method does not produce

any new relations. The actual translation of the topologicalSort method to Alloy

is similar to the one previously described in Section 5.2.3 except that it unrolls the

loop twice rather than once. Hence, it is not shown here again.

Analyzing the topologicalSort method against the in-degree property results in

the counterexample of Figure 6-3. Although this counterexample satisfies the initial

specifications of the call sites, it is not valid with respect to their original code. Thus,

it will be eliminated by the specification refinement phase as discussed in the next

section.

As shown in Figure 6-3(a), the counterexample uses symbolic atom names to

represent tuples of the Alloy relations that were produced during the translation.

The value G0 is an atom of type graph that denotes the receiver graph. The values

L0 and L1 are list atoms. The values E0 and E1 are ListEntry atoms, and the values

N0 and N1 are node atoms. The pre-state represents the heap given in Figure 6-3(b),

and corresponds to the directed graph of Figure 6-3(c).

Figure 6-4 gives the symbolic program execution corresponding to this counterex-

ample. It highlights the executed statements and annotates them by the values of
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pre-state relations:

(this = G0) (G0.nodes = L0) (L0.head = E0) (L1.head = E1)

(E0.next = E1) (E0.prev = null) (E0.node = N0)

(E1.next = null) (E1.prev = E0) (E1.node = N1)

(N0.inDeg = 0) (N0.outDeg = 1) (N0.inNodesList = null) (N0.outNodesList = L1)

(N0.visitedInsNum = 2)

(N1.inDeg = 2) (N1.outDeg = 1) (N1.inNodesList = L0) (N1.outNodesList = L1)

(N1.visitedInsNum = 1)

intermediate relations:

(source$1 = E0) (N0.visitedInsNum$1 = 0) (N1.visitedInsNum$1 = 2)

(source$2 = E1) (N0.visitedInsNum$2 = 0) (N1.visitedInsNum$2 = 1)

(a)

(b)

(c)

Figure 6-3: Counterexample: (a) textual description, (b) pre-state heap, (c) corre-
sponding graph.
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boolean Graph.topologicalSort() {
[(this = G0), (G0.nodes = L0), (L0.head = E0), (L1.head = E1), (E0.next = E1),
(E1.next = null), (E1.prev = E0), (E0.prev = null), (E0.node = N0), (E1.node = N1),
(N0.inDeg = 0), (N1.inDeg = 2), (N0.outDeg = 1), (N1.outDeg = 1), (N0.inNodesList = null),
(N1.inNodesList = L0), (N0.outNodesList = L1), (N1.outNodesList = L1),
(N0.visitedInsNum = 2), (N1.visitedInsNum = 1)]
1: boolean isAcyclic = true; [.., isAcyclic = true]
2: init(); [.., N0.visitedInsNum=0, N1.visitedInsNum= 0]
3: ListEntry cur = nodes.head; [.., cur = E0]
4: if (cur != null) {
5: ListEntry source=findSource(cur); [.., source = E0]
6: if (source == null) {
7: isAcyclic = false;
8: } else {
9: fixIns(source.node); [.., N0.visitedInsNum=0, N1.visitedInsNum= 2]
10: Node tmp = source.node; [.., tmp = N0]
11: source.node = cur.node; [.., E0.node = N0]
12: cur.node = tmp; [.., E0.node = N0]
13: cur = cur.next; [.., cur = E1]
14: if (cur != null) {
15: source = findSource(cur); [.., source = E1]
16: if (source == null) {
17: isAcyclic = false;
18: } else {
19: fixIns(source.node); [.., N0.visitedInsNum=0, N1.visitedInsNum= 1]
20: tmp = source.node; [.., tmp = N1]
21: source.node = cur.node; [.., E1.node = N1]
22: cur.node = tmp; [.., E1.node = N1]
23: cur = cur.next; [.., cur = null]
24: assume (cur == null)
25: }
26: }
27: }
28: }
29: return isAcyclic; [.., topologicalSort$return = true]

[(G0.nodes = L0), (L0.head = E0), (L1.head = E1), (E0.next = E1), (E1.next = null)
(E1.prev = E0), (E0.prev = null), (E0.node = N0), (E1.node = N1), (N0.inDeg = 0)
(N1.inDeg = 2), (N0.outDeg = 1), (N1.outDeg = 1), (N0.inNodesList = null),
(N1.inNodesList = L0), (N0.outNodesList = L1), (N1.outNodesList = L1),
(N0.visitedInsNum = 0), (N1.visitedInsNum = 1)]
}

Figure 6-4: Program execution corresponding to the counterexample.
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the program states. To simplify the representation, instead of giving the complete

program states, Figure 6-4 only gives the state updates after each statement. The

initial state and the post-states of the approximate call sites are the values given by

the counterexample. Other program states are computed by symbolically executing

each statement on its pre-state.

As shown at the end of the execution of Figure 6-4, the final state of the execution

is the same as its initial state except for the values of the visitedInsNum fields of N0

and N1. The final state violates the property because int(E1.node’.inDeg) equals 2

while size(E1.*prev’) equals 1, and thus int(E1.node’.inDeg)<size(E1.*prev’)

does not hold. This execution, however, is valid only in the abstraction of the

topologicalSort method; it is not valid in its original code because of the invalid

call to the fixIns method in Line 9. The following section describes how the behavior

of a call site is checked for validity.

6.1.2 Checking Call Sites

In order to check the validity of a counterexample, the original code of each procedure

called in the program execution corresponding to that counterexample has to be

checked against the state transition that the counterexample assigns to that call.

Since the abstraction phase is based on the procedure call hierarchy of the code, the

check for validity is performed hierarchically. That is, when a call to a procedure p is

checked, all the procedures called by p are abstracted. They are checked for validity

only after checking the call to p passes. We check the call sites of a counterexample

in the depth first order (pre-order), i.e. the order in which they are actually called in

the corresponding program execution.

A call to a procedure p is checked against a state transition (S, S ′) using Forge

and Kodkod. The body of p is translated by Forge, encoding its call sites by their

initial specifications, using the technique of Chapter 5. The generated formula is

conjoined with an additional constraint that constrains the formal parameters of p

to be equal to its actual arguments at the call site. The resulting formula is then

checked for correctness by Kodkod. The values stored in the pre-state S and the
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post-state S ′ are encoded as a partial solution in Kodkod. Therefore, any solution

found by Kodkod represents an execution of p that satisfies this state transition.

If Kodkod finds a solution, the validity of that solution has to be checked with

respect to the internal call sites of p. If all internal call sites of p pass the check,

the call to p has been validated. That is, (S, S ′) is a valid state transition for p.

However, if checking any of the internal calls fails, that call will be marked as invalid

and its specification will be refined (by the technique described in the next section).

The procedure p will then be checked again against the state transition (S, S ′). This

process continues until either the call to p is validated, or it is shown to be incon-

sistent with (S, S ′). In the latter case, the specification of p will be refined and the

counterexample will be eliminated.

Example. We illustrate the above process by checking the validity of the coun-

terexample of Figure 6-4. As mentioned before, that counterexample is invalid because

of its invalid call to the fixIns method in Line 9. Here, we show how the invalidity

of that call site is established1.

We use Forge to translate the original code of the fixIns method (after two loop

unrollings) to an Alloy formula. The code and its translation are given in Figures

6-5(a) and Figure 6-5(b). The last two lines of the formula of Figure 6-5(b) specify

the actual arguments used at the call site being checked. Figure 6-5(c) gives the

pre-state and the post-state that the counterexample assigns to that call site. These

values are encoded as a partial solution in Kodkod.

We use Kodkod to solve the formula of Figure 6-5(b) with respect to the values of

Figure 6-5(c). Kodkod cannot find any satisfying solution, implying that the pre and

post states assigned to the call site are not consistent with the code of the fixIns

method. Thus, this call site is marked as invalid; and its specification will be refined

as explained in the next section.

1The call sites are checked in the order in which they are called. In this counterexample, the first
call site (the call to init) does not need to be checked because its specification is accurate. The
second call site (the call to findSource) has to be checked, but because it turns out to be valid, we
illustrate checking the call to fixIns which is invalid.

152



void Graph.fixIns(Node n) {
1: ListEntry p = n.outNodesList.head;
2: if (p != null) {
3: p.node.visitedInsNum = p.node.visitedInsNum + 1;
4: p = p.next;
5: if (p != null) {
6: p.node.visitedInsNum = p.node.visitedInsNum + 1;
7: p = p.next;
8: assume (p == null);
9: }
10: }
}

(a)

1: let p1 = n.outNodesList.head,

3: visitedInsNum1 = visitedInsNum ++ p1.node -> (int(p1.node.visitedInsNum) + 1),

4: p2 = p1.next,

6: visitedInsNum2 = visitedInsNum1 ++ p2.node -> (int(p2.node.visitedInsNum1) + 1),

7: p3 = p2.next,

9: visitedInsNum3 = if (p2 != null rel) then visitedInsNum2 else visitedInsNum1,

p4 = if (p2 != null rel) then p3 else p2,

10: visitedInsNum’ = if (p1 != null rel) then visitedInsNum3 else visitedInsNum,

p’ = if (p1 != null rel) then p4 else p1 in {

8: (p1 != null rel) => (p2 != null rel) => (p3 = null rel)

binding actual values:

n = source$1.node

visitedInsNum’ = visitedInsNum$1 }

(b)

pre-state:

[(L0.head = E0) (L1.head = E1) (E0.next = E1) (E1.next = null)

(E0.node = N0) (E1.node = N1) (N0.outNodesList = L1) (N1.outNodesList = L1)

(N0.visitedInsNum = 0) (N1.visitedInsNum = 0) (source$1 = E0)]

post-state:

[(L0.head = E0) (L1.head = E1) (E0.next = E1) (E1.next = null)

(E0.node = N0) (E1.node = N1) (N0.outNodesList = L1) (N1.outNodesList = L1)

(N0.visitedInsNum$1 = 0) (N1.visitedInsNum$1 = 2)]

(c)

Figure 6-5: The fixIns method: (a) code after two loop unrollings, (b) Alloy encoding
and call site constraints, (c) pre- and post-state values
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6.2 Specification Refinement

If the state transition that a counterexample assigns to a call to a procedure p is

invalid, the specification of that call will be refined. The refined specification is a

conjunction of p’s old specification and a new specification that encodes the final

values of some variables (or fields) in some execution paths of p, using relational

expressions. That is, the new specification of p specifies the effects of some execution

paths of p that were over-approximated by its old specification. As a result, the

refined specification eliminates any counterexample that invokes any of those paths

and assigns an invalid post-state to it.

The refinement technique that we introduce in this section guarantees that our

instantiation of the specification refinement framework always terminates. This is be-

cause the refinement phase monotonically extends the specification of some procedure.

The specification is an abstraction of the code, so in the limit, it will be equivalent

to the code. Because the code and its heap are finitized, the limit will be reached in

a finite number of steps. Since it might be the case that every refinement infers the

value of only one variable (or field) in only one execution of the analyzed procedure,

the number of refinements needed for the analysis can be exponential in the size of

the code. Our experiments (discussed in the next chapter), however, suggest that the

cost of analysis is small in practice.

Let a counterexample assign a state transition (S, S ′) to a call to a procedure

p. If the translation of the body of p, represented by a formula f , does not have a

solution satisfying (S, S ′), f can be used as the specification of p to eliminate this

state transition, and thus this counterexample. Using f as the specification of p,

however, is in general equivalent to inlining the procedure p at the call site, and is

not practical. Therefore, instead of using f , we use a formula weaker than f , namely

an unsatisfiability proof of f (with respect to (S, S ′)), as the specification of p.

If an Alloy formula f is unsatisfiable with respect to a partial solution, Kodkod can

generate a proof of unsatisfiability which is an Alloy formula weaker than f but still

unsatisfiable with respect to the partial solution. Although the proof generated by
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Kodkod is usually smaller than the original solved formula, it is still too conservative

to use: it encodes the effects of several execution paths of the analyzed procedure

that are not relevant to the state transition that is being eliminated.

Using the technique described below, we reduce the proof of unsatisfiability gen-

erated by Kodkod to a smaller Alloy formula whenever possible, and use this smaller

formula as the new specification of the analyzed call site. This specification rules out

the invalid state transition (S, S ′) by specifying how the procedure actually behaves

on the given states. Therefore, it rules out not only this particular counterexample,

but also all other counterexamples that invoke the same behavior of the procedure.

The new specification is conjoined with the previous specification of the call site to

form a refined specification.

In the rest of this section, we describe how a proof of unsatisfiability generated

by Kodkod is reduced to a smaller well-formed Alloy formula. The technique is

illustrated by an example.

6.2.1 Generating Small Unsatisfiability Proofs

Given an unsatisfiable formula, Kodkod can return a proof of unsatisfiability as a

well-formed Alloy formula. However, due to the nature of the Alloy formulas that

we analyze (containing complex nested if expressions), the proof generated by the

current implementation of Kodkod is too conservative to use; it can often be reduced

substantially. Therefore, instead of directly using the proof returned by Kodkod, we

use it to extract some information and construct a smaller proof, also as a well-formed

Alloy formula.

We use the proof generated by Kodkod to compute a set Irrelevant, consisting

of the subformulas and subexpressions of the analyzed formula that are not relevant

to the unsatisfiability of that formula. We then use Irrelevant to construct a small

proof.

A proof returned by Kodkod might have been generated by two sources: (1)

Kodkod’s internal reductions, and (2) a proof generated by a SAT solver. In each

case, the set Irrelevant can be computed as follows.
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• Internal reductions. As described in Section 5.4, Kodkod translates an Alloy

formula to boolean by allocating boolean variables for the tuples that may be

contained in each relation. However, instead of boolean variables, it uses the

boolean constants true and false for those tuples that are in the lower bound and

those not in the upper bound of a relation. During the translation of a formula,

these constant values are propagated through matrix operations to simplify the

resulting boolean expressions. As a result of these propagations, it is possible

for an Alloy formula to be simplified to either true or false at the top level. In

this case, Kodkod returns the result immediately without calling a SAT solver.

If solving an Alloy formula with respect to a partial solution simplifies to false,

the formula is unsatisfiable. In this case, Kodkod returns an unsatisfiable sub-

formula of the solved formula as a proof of unsatisfiability. We use this proof

to compute the set Irrelevant: we evaluate every subexpression and subformula

of the returned proof with respect to the partial solution; any subexpression

and subformula that evaluates to a constant value that causes the the top-level

formula to simplify to false is involved in the unsatisfiability. Otherwise, it is

not involved and thus will be included in Irrelevant.

• SAT solver’s proof. If the analyzed Alloy formula does not simplify to a

constant, it is handed to a SAT solver for a solution. Given an unsatisfiable

formula, some SAT solvers can generate a proof of unsatisfiability consisting of

boolean clauses. For this purpose, we configure Kodkod to use the ZChaff SAT

solver [45] as its backend engine. Given an unsatisfiable boolean formula in the

CNF format, ZChaff is capable of generating a proof of unsatisfiability called an

unsat core [63]. The unsat core is a subset of the clauses in the solved CNF that

is unsatisfiable and therefore, is a witness to the unsatisfiability of the original

formula. Although the core generated by ZChaff is not necessarily minimal, it

is usually much smaller than the original formula that was solved.

Given an unsat core, we compute the set Irrelevant as follows: an Alloy subex-

pression or subformula x is involved in the unsatisfiability of the analyzed for-
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mula if any of the boolean variables encoding x is included in the core. Fur-

thermore, if x simplifies to a constant value under the given partial solution, it

is considered to be involved in the unsatisfiability of the analyzed formula. If

neither of these cases holds, x will be included in Irrelevant.

Given an unsatisfiable Alloy formula f and a set Irrelevant of the subexpressions

and subformulas that are not involved in the unsatisfiability of f , we reduce f to a

proof of unsatisfiability by replacing any subformula of f included in Irrelevant with

an unconstrained boolean variable2, and any subexpression of f included in Irrelevant

with an unconstrained relation of the appropriate type. Thus, the resulting formula

constrains only the parts that have actually caused the unsatisfiability.

This reduction, however, generates many new relations. To reduce the number

of new relations, we perform the following optimizations whenever possible: (1) if

a subformula s included in Irrelevant can be removed from f without making it

malformed (e.g. if it is part of a top-level conjunct), we remove s without introducing

any boolean variable to replace it, and (2) if a subexpression s included in Irrelevant is

the right-hand side of an equality, we replace s with the relation of the left-hand side,

thus allowing that relation to take any arbitrary value. No new relation is introduced

in this case.

To clarify how we replace subexpressions and subformulas, consider the following

formula:

v = if (cond1) then e1 else if (cond2) then e2 else e3

where cond1 and cond2 represent two formulas, and e1, e2, and e3 represent some

relational expressions. Suppose that this formula is unsatisfiable with respect to a

given partial solution, and thus we have to compute a proof of unsatisfiability for it.

Let us assume that the set Irrelevant contains the following elements:

Irrelevant = {cond2, e1}

2More precisely, a singleton unary Alloy relation of type boolean.

157



Given this set, the analyzed formula is reduced to the following proof of unsatisfiability

in which choice is a fresh boolean variable representing a non-deterministic choice

and r is a fresh relation of the same type as e1.

v = if (cond1) then r else if (choice) then e2 else e3

This is a well-formed Alloy formula that leaves the irrelevant parts unconstrained.

However, the above-mentioned optimization rules allow us to avoid introducing r and

reuse v instead. Thus the generated proof of unsatisfiability will be the following:

v = if (cond1) then v else if (choice) then e2 else e3

That is, if cond1 holds, any arbitrary value of v is accepted. Otherwise, either e2 or

e3 is chosen nondeterministically for the value of v.

6.2.2 Example

As mentioned before, the counterexample of Figure 6-4 is invalid because its first call

to the fixIns method is invalid. As described in the previous section, this call site

was marked as invalid because the the formula of Figure 6-5(b) was unsatisfiable with

respect to the pre- and post-state values of Figure 6-5(c). For this example, Kodkod

generates the following proof of unsatisfiability:

(source$1 = E0) (E0.node = N0) (E1.node = N1) (N0.outNodesList = L1)

(L1.head = E1) (E1.next = null) (N1.visitedInsNum = 0) (N1.visitedInsNum$1 = 2)

let p1 = n.outNodesList.head,

visitedInsNum1 = visitedInsNum ++ p1.node -> (int(p1.node.visitedInsNum) + 1),

p2 = p1.next,

visitedInsNum2 = visitedInsNum1 ++ p2.node -> (int(p2.node.visitedInsNum1) + 1)

in {

visitedInsNum$1 = if (p1 != null rel) then if (p2 != null rel) then visitedInsNum2

else visitedInsNum1 else visitedInsNum

n = source$1.node }
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The first two lines specify those components of the pre- and post-state that cause the

unsatisfiability3. The other lines give two constraints, one specifying the final value

of visitedInsNum and the other constraining the formal parameter n to be equal to

the actual parameter source.node. These constraints evaluate to false because the

value of N1.visitedInsNum$1 given by the translation constraint conflicts with the

one given in the post-state; the former simplifies to the integer 1 whereas the latter

is the integer 2.

We reduce this proof to a smaller proof using the technique described before. In

this example, the unsatisfiability proof is a result of Kodkod’s internal reductions.

Because the first branching condition (p1 != null$rel) simplifies to true and the

second condition (p2 != null$rel) simplifies to false, the else branch of the first

conditional and the then branch of the second conditional are not involved in the

unsatisfiability of the formula. That is,

Irrelevant = { visitedInsNum2, visitedInsNum }

Therefore, the proof of unsatisfiability is reduced to the following formula:

let p1 = n.outNodesList.head,

visitedInsNum1 = visitedInsNum ++ p1.node -> (int(p1.node.visitedInsNum) + 1),

p2 = p1.next

in {

visitedInsNum$1 = if (p1 != null rel) then if (p2 != null rel) then visitedInsNum$1

else visitedInsNum1 else visitedInsNum$1

n = source$1.node }

That is, the value of visitedInsNum$1 is not constrained in the branches that are

irrelevant to the unsatisfiability of the formula.

This unsatisfiability proof is the new specification of the fixIns method. It is

conjoined with its previous specification, and used to check the topologicalSort

method against the property. In this example, no further counterexamples are found.

3The proof returned by Kodkod does not actually include these values. However, we include
them as parts of the proof to make the proof easier to understand.
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Therefore, the property is validated and the analysis terminates. No further specifi-

cation refinements are needed.
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Chapter 7

Experiments

We have implemented our specification refinement technique in a prototype tool called

Karun, and used it to evaluate our technique from different aspects. Two case studies

have been done to show that the specification refinement technique is applicable to

real Java APIs, and a set of comparisons has been performed to assess its performance.

Furthermore, some experiments have been performed to evaluate the accuracy and

effectiveness of the abstract interpretation technique that we use to extract initial

procedure summaries. This chapter summarizes the results of these experiments.

7.1 Overview

To evaluate our analysis technique, we have developed a prototype tool called Karun.

It takes a Java program in which a procedure is selected for analysis, a property

expressed in Alloy that specifies a pre- and post-condition for the selected procedure,

and two types of bounds: one on the number of iterations of the loops in the code,

and the other on the number of objects considered of each type.

Karun implements the techniques described in Chapters 4 to 6. That is, it uses

the abstract interpretation technique of Chapter 4 to extract initial specifications of

the procedures that are called directly or indirectly by the procedure being analyzed.

It then uses Forge, as described in Chapter 5, to construct an Alloy formula that

abstracts the analyzed procedure, and Kodkod to check the resulting formula against
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the property of interest. As described in Chapter 6, Karun checks the validity of

any found counterexample using Kodkod again, and refines procedure specifications

based on the proofs of unsatisfiability that are generated by the SAT solver used as

Kodkod’s engine. Although we use the ZChaff SAT solver in all of our experiments,

any SAT solver capable of generating proofs of unsatisfiability can potentially be used

by Karun.

We evaluated our analysis technique with different sets of experiments. The first

set of experiments used Karun to check some properties of two open source Java

APIs: a job scheduler, Quartz [2], and a graph package, OpenJGraph [1]. Typical of

Java code, in both APIs, the procedures make many calls – in one case, a top-level

procedure invoked 81 other procedures directly or indirectly – and use a variety of

data structures from the Java standard library.

We checked the procedures of the Quartz API against properties that we extracted

from the informal comments available in the code. Our experiments uncovered two

previously unknown bugs in this API that are actually observable by Quartz users.

Both bugs involve deeply structural properties of the code, and are caused by the

errors in some called procedure rather than the top-level procedure analyzed. We

reported the bugs to the Quartz developers and they fixed them.

The second Java API that we analyzed, namely OpenJGraph, implements some

well known graph algorithms. Therefore, we were able to extract the correctness

properties of the API procedures from a widely used algorithms textbook [12]. In ad-

dition to checking these correctness properties, we also checked the code with respect

to some representation invariants extracted from the informal comments available in

the code. All checks passed successfully with respect to the analyzed bounds.

In a second set of experiments, we evaluated the performance of our analysis

technique. We compared Karun with our implementation of another technique that

also translates the code to Alloy and checks it for a counterexample using Kodkod.

This technique, however, does not abstract procedure calls; it inlines all call sites

reachable from the analyzed procedure. Therefore, the results of this comparison

show how the on-demand specification inference technique affects the performance
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of the analysis. Our experiments suggest that our technique substantially reduces

the analysis time when the analyzed property is partial. However, in checking full

properties of the code, a simple analysis that inlines all procedures is more effective.

We performed a third set of experiments to evaluate our abstract interpretation

technique that extracts initial procedure summaries. These experiments evaluate

both the accuracy and the effectiveness of the extracted summaries. The accuracy

is evaluated by checking if the summaries generated for a number of procedures are

sufficient to prove their specifications. For this purpose, we used the standard Java

implementation of linked list (whose procedures are small, but structurally complex),

and the OpenJGraph API (whose procedures use different data structures and make

many calls). In 17 of the 30 procedures, the generated summaries were sufficient to

check the full specifications; in 16 procedures, the generated summaries included all

frame conditions, and provided some partial specifications. Only in one case there

was a significant loss of information.

We evaluated the effectiveness of our abstract interpretation technique by com-

paring the extracted summaries against frame conditions – specifications that only

constrain which variables and fields are not modified by a procedure. We verified a

number of procedures using our specification refinement technique, once starting from

the summaries extracted by abstract interpretation, and once starting from frame con-

ditions. Our experiments show that in almost all cases the summaries extracted by

abstract interpretation result in a substantially reduced analysis time. This implies

that not only are they effective in ruling out many invalid executions of the abstract

code, but also that the overhead of extracting these summaries is negligible in the

overall analysis time. These results suggest that our abstract interpretation technique

represents a useful balance between tractability and accuracy.

7.2 Case Studies

In this section, we describe the experiments that we performed on two open source

Java APIs, namely Quartz and OpenJGraph. Typical of Java code, they both use a
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class java.util.Set {

/*
* contains$rel: Set —> Data
*/

/* contains$rel’ = contains$rel + (this —> d)
* add$return = if (d in this.contains$rel) then false$rel else true$rel */
boolean add(Data d) {. .}

/* contains$rel’ = contains$rel - (this —> d)
* remove$return = if (d in this.contains$rel) then true$rel else false$rel */
boolean remove(Data d) {. .}

/* contains$return = if (d in this.contains$rel) then true$rel else false$rel */
boolean contains(Data d) {. .}

/* contains$rel’ = contains$rel - (this —> univ) */
void clear() {. .}

/* size$return = size(this.contains$rel) */
int size() {. .}

}

Figure 7-1: Specifications used for the Set data structure.

variety of data structures from the Java standard library. Although we could have

treated the calls to the library like other method calls of the code (that is, to in-

fer their specifications on-demand using their actual implementations), we chose to

provide their specifications manually instead. This allowed the analysis to be per-

formed over abstract representations of the data structures, rather than their actual

implementations and thus made the analysis more efficient and properties easier to

write. However, replacing library calls with their specifications depends on the as-

sumption that the implementations provided by the library actually conform to the

specifications used. Therefore, a separate analysis (e.g. similar to the one performed

by Dennis, et. al. [14]) is needed to check the library implementations against their

specifications.

Figures 7-1 and 7-2 show the specifications that we used for the Java.util.Set

and Java.util.Map data structures, respectively. Figure 7-1 gives the specifications

of a Set data structure that stores objects of type Data. It uses a binary relation
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contains$rel to represent the contents of sets. Unlike the relations declared for the

fields of user-defined datatypes, this relation is not constrained to be functional. That

is, it can map a Set object to any arbitrary number of Data objects, thus allowing

sets of cardinality more than one.

For each operation defined for the Set datatype, we have to provide a specification.

Figure 7-1 shows the ones that are widely used. The specification of the add operation

ensures that in the post-state, the receiver set contains the argument data. It returns

true if the set did not already contain that data, and false otherwise. Similarly

the remove operation is specified by ensuring that the given data is not included

in the receiver set in the post-state. It returns true if the set contained the given

data, and false otherwise. The specification of the contains method checks for

set membership using an Alloy if expression. The clear method is specified by

removing all data from the receiver set. Finally, the return value of the size method

is specified by the set cardinality operator in Alloy.

Figure 7-2 gives the specifications that we use for the java.util.Map data struc-

ture, mapping objects of type Key to those of type Data. It uses a ternary relation

mapping$rel to represent the contents of maps. This relation maps each object of

type Map to an arbitrary number of pairs of type Key -> Data. The specifications

of get, put, remove, containsKey, containsValue, clear and size are straight-

forward: the updates to a map are specified by adding and removing tuples to and

from the relation mapping$rel, and memberships are tested by forming Alloy if

expressions. The specifications of keySet and values, however, depend on our repre-

sentation of Set. They return a fresh object of type Set, denoted by New$Set, whose

contents are constrained to be the keys (given by this.mapping$rel.univ) or the

values (given by univ.(this.mapping$rel)) stored in the receiver map.

As shown in Figures 7-1 and 7-2, the types of the specification relations that

abstract data structures of the Java library depend on the types of the contents of

those data structures. In the Java library, however, these data structures are generic,

and the actual types of their contents are declared only in the code using them. Since

this type information is lost in the bytecode, we have to get that information from
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class java.util.Map {

/*
* mapping rel : Map —> Key —> Data
*/

/* get$return = if some k.(this.mapping$rel) then k.(this.mapping$rel) else null$rel */
Data get(Key k) {. .}

/* mapping$rel’ = mapping$rel - (this —> k —> univ) + (this —> k —> d)
* put$return = if some k.(this.mapping rel) then k.(this.mapping$rel) else null$rel */
Data put(Key k, Data d) {. .}

/* mapping$rel’ = mapping$rel - ((this —> k) —> univ)
* remove$return = if some k.(this.mapping$rel) then k.(this.mapping$rel) else null$rel */
Data remove(Key k) {. .}

/* containsKey$return = if some k.(this.mapping$rel) then true$rel else false$rel */
boolean containsKey(Key k) {. .}

/* containsValue$return = if (some this.mapping$rel.d) then true$rel else false$rel */
boolean containsValue(Data d) {. .}

/* mapping$rel’ = mapping$rel - (this —> univ —> univ) */
void clear() {. .}

/* size$return = size(this.mapping$rel) */
int size() {. .}

/* keySet$return = New$Set
* contains$rel’ = contains$rel + (New$Set —> (this.mapping$rel.univ)) */
Set keySet() {. .}

/* values$return = New$Set
* contains$rel’ = contains$rel + (New$Set —> univ.(this.mapping$rel)) */
Set values() {. .}

}

Figure 7-2: Specifications used for the Map data structure.
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the source code prior to the analysis. That is, before analyzing a piece of Java code,

we syntactically modify its source code so that instead of using the generic datatypes

of the Java library, it uses our library specifications with appropriate contents types.

It should be noted that it is possible to take an alternative approach in which the

specification relations are also declared to be generic, i.e. they are declared over the

type Object. However, the Object type is the union of all other types used in the

analyzed code and can get very big. Therefore, solving an Alloy formula that contains

relations over this type can become prohibitively costly.

7.2.1 Quartz API

Quartz [2] is an open source Java API apparently used by thousands of people. It

provides a job scheduling facility that can be integrated with different applications to

repeatedly execute a set of jobs according to their schedules. For example, a backup

job can be defined that saves the contents of a database to a backup storage at 7pm

on all weekdays except holidays.

We have checked 4 classes of this package that provide some core functionalities

of Quartz. The analyzed classes are as follows:

• The QuartzScheduler class is the main class responsible for scheduling jobs,

executing them, and registering and unregistering their listeners.

• The SimpleTrigger and CronTrigger classes provide two different types of

triggers. Triggers are used to schedule jobs: they specify at what times and

how many times a job should be fired (executed). A job can have multiple

triggers, but each trigger has exactly one job associated with it. SimpleTrigger

provides a simple schedule that can be represented by the start time, end time,

repeating intervals, and the number of repeats. CronTrigger provides a more

complex schedule represented by seconds, minutes, hours, day of the week, day

of the month, month, and year. Furthermore, a trigger may be associated with

a calendar that disallows firing jobs at certain times.
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/**

* Get the names of all of the jobs that have the given group name.

*/

public List<String> RAMJobStore.getJobNames(SchedulingContext ctxt,

String groupName) {

..

}

(a)

getJobNames$return.contents’ =

univ.(groupName.(this.jobsByGroup.mapping$rel).mapping$rel).jobDetail.name

(b)

Figure 7-3: An example of (a) an informal comment, and (b) its corresponding for-
malization in Alloy.

• The RAMJobStore class stores jobs and their triggers in the RAM, allowing

a fast access to jobs. The data, however, is not persistent between program

shut-downs.

We have checked a total of 40 public methods in these classes, requiring 3900 lines

of source code to compile. 15 public methods, however, cannot be handled by the

current implementation of Karun. This is mainly because of Karun’s lack of support

for recursion, string manipulating operations, and arithmetic expressions other than

integer additions and subtractions.

We checked each method against a property extracted from the informal comments

available in the code. That is, we formalize the comments as formulas in Alloy and

use them to check the correctness of the methods. Whenever possible, the property

is broken into several partial properties that are then checked separately.

Figure 7-3 provides an example of an informal comment and its corresponding

Alloy formula. The comment states that the method is supposed to return the names

of all jobs with a specific group name. The formula formalizes this comment in terms

of the contents of the two Map data structures that are involved in the code. This

example shows that the formal properties are expressed in terms of the fields of the

data structures that are actually used in the implementation.
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procedure property heap size/ time
unrollings (sec)

getTriggerNames returns the triggers with the group name 5/3 23
getJobNames returns the jobs having the group name 5/4 87
removeCalendar if no trigger has the calendar, removes it 5/5 95
getTriggersOfJob returns triggers associated with a job 4/4 77
resumeJob resumes only jobs with given name/group 3/3 55
scheduleJob returns a date in calendar of given trigger 3/3 11
storeCalendar recomputed firing times belong to calendar 4/2 65

Table 7.1: A sampling of the properties analyzed in Quartz, their bounds, and analysis
time.

We checked every property of a method with respect to different bounds for loop

iterations and the heap size. In most cases, increasing the bounds increases the

analysis time exponentially. In all of our experiments we increase the bounds until

the analysis time exceeds 15 minutes (using a Pentium 4, 1.8GHz with 512 MB of

RAM). Table 7.1 gives a sampling of the properties, bounds, and the analysis times.

The bounds give the maximum number of objects of each type and the maximum

number of loop iterations considered in the analysis. The time column gives the total

analysis time in seconds.

Our experiments uncovered two previously unknown bugs in the Quartz API that

are actually observable by Quartz users. Both bugs involve deeply structural proper-

ties of the code, and are caused by the errors in some called method rather than the

top-level method analyzed.

The first bug was found while checking the storeJob method shown in Figure 7-4.

The method takes a job argument (newJob) and stores it in the job store implemented

by a map data structure (jobsByFQN) if the job does not already exist in the store or

if the boolean argument replaceExisting is set to true. The corresponding Alloy

property is shown in that figure too. It specifies that if either of the above conditions

holds, after the execution of the method, the store should contain a job which is

equal to the argument job. The subformula preCondition mentioned in this property

represents some representation invariants that ensure different data structures used

by the code are initially consistent. Checking this property with respect to 7 objects
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/**
* Store the given job.
*
* @param newJob: the job to be stored.
* @param replaceExisting: if true, any job existing in the jobStore with the
* same name and group should be over-written.
*/

/* @property:

* preCondition =>

* (((key(newJob) !in this.jobsByFQN.mapping$rel.univ) or

* (replaceExisting = true)) =>

* (some jw: JobWrapper | jw in univ.(this.jobsByFQN’.mapping$rel’) and

* jobDetailsEqual(newJob, jw.jobDetail’)))

*/

public void storeJob(JobDetail newJob, boolean replaceExisting, ..) {

JobWrapper jw = new JobWrapper(newJob.clone());

..

jobsByFQN.put(jw.key, jw);

}

Figure 7-4: The first buggy method found.

of each type and one loop unrolling results in a counterexample.

Examining the counterexample shows that the property does not hold because the

order of the job listeners associated with the stored job may be different from that of

the argument job, and thus the two jobs are not exactly equal. This wrong behavior

is a result of a bug in the clone method which is called by storeJob. The clone

method does not necessarily preserve the order of job listeners while cloning a job’s

information. This bug is actually observable by the users of Quartz. We reported the

bug, and the developers fixed the code. Checking the property in the fixed method

does not produce any more counterexamples.

The second bug was found when the storeCalandar method shown in Figure

7-5 was checked. The loop is simplified to improve readability. The method takes a

calendar and stores it in a calendar store. In addition to that, if the updateTriggers

argument is set to true, it recomputes the next firing time of all triggers associated

with the given calendar name so that the new firing time belongs to the new calendar.

The Alloy property given in Figure 7-5 is not the full specification of the code; it is
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/**
* Store the given calendar.
*
* @param calendar: the calendar to be stored.
* @param updateTriggers: if true, all triggers existing in the jobStore that reference
* an existing calendar with the same name will have their
* next fire time re-computed with the new calendar.
*/

/* @property:

* preCondition =>

* (all t: Trigger | (t.nextFireTime’ != t.nextFireTime) =>

* ((t.nextFireTime’ = null) || included(t.nextFireTime’, calendar)))

*/

public void storeCalendar(String name, Calendar calendar,

boolean updateTriggers, ..) {

..

for (Trigger trig : getTriggersForCalendar(name)) {

..

trig.updateWithNewCalendar(calendar, getMisfireThreshold());

}

..

}

Figure 7-5: The second buggy method found.

only a partial specification of how firing times are updated. It specifies that any

firing time recomputed by this method should either be set to null (meaning that it

will never be fired again) or belong to the new calendar. Checking the code against

this property with respect to 4 objects of each type and 1 loop unrolling results in a

counterexample, witnessing a case where the firing time is updated but is not included

in the given calendar.

Examining the counterexample shows that this wrong behavior is a result of a

bug in the updateWithNewCalendar method implemented in both CronTrigger and

SimpleTrigger classes, two subclasses of Trigger. In fact, the two implementations

are copies of each other. This method may be called by the dynamic dispatch of the

call site in storeCalendar. This bug is also observable by Quartz users. We reported

the bug and the developers fixed the code in both classes. Checking the fixed code

did not generate any more counterexamples.
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7.2.2 OpenJGraph API

We performed a second case study using the OpenJGraph package [1]. This pack-

age is an open source Java API that provides some popular algorithms (e.g. graph

traversals, shortest paths, and minimum spanning trees) for different kinds of graphs

(e.g. directed, undirected, and weighted). We have checked all the methods in the

following two classes of this API:

• The GraphImpl class provides the core implementation of the graph data struc-

ture. It represents a graph as a map from each vertex to its list of adjacent

edges and uses a separate set to record all the edges of the graph.

• The MinimumSpanningTreeKruskalAlgorithm class implements Kruskal’s al-

gorithm for computing a minimum spanning tree of a graph.

We checked a total of 20 methods in these two classes, requiring 2200 lines of

source code to compile. All the analyzed methods are publically available to the API

users. Most of them make several calls. The minimum spanning tree method, for

example, invokes 81 other methods directly or indirectly.

The methods of the GraphImpl class were checked against the properties extracted

from the informal comments available in the code. That is, we formalized the com-

ments as Alloy formulas manually and checked if the methods satisfied those prop-

erties. The minimum spanning tree method, however, was checked against a set of

partial properties extracted from a widely used algorithms textbook [12].

Table 7.2 gives a sampling of the analyzed properties along with the bounds, and

the analysis time. We checked each property with respect to several combinations of

the bounds on the number of objects of each type and the number of loop iterations.

We increased the bounds until the analysis time exceeded 15 minutes.

In addition to the correctness properties, we also checked each method against a

set of representation invariants: the consistency conditions that should hold among

the data structures used in the code. The representation invariants are extracted

from the informal comments available in the code and are checked by properties
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procedure property heap size/ time
unrollings (sec)

add(v) edge list of v is either empty or unchanged 4/4 71
addEdge(e) if e added, e’s both ends belong to graph 4/4 19
addEdge(v1, v2) edge lists of other vertices unchanged 4/4 46
removeEdge(e) only edge lists of e’s ends may change 4/4 67
removeEdge(e) e is removed from edge lists of its ends 4/4 13
minSpanTree() edges of returned mst are in original graph 5/5 35
minSpanTree() vertices with no edges are not in mst 5/5 154

Table 7.2: A sampling of the properties checked in OpenJGraph.

that specify that if a representation invariant holds in the pre-state, it holds in the

post-state too. Some of the analyzed representation invariants are listed below:

• The set of edges of a graph is the union of the edges in the adjacency lists of

individual vertices.

• An undirected edge between two vertices v1 and v2 is contained in the adjacency

lists of both v1 and v2.

• Each edge appears at most once in each adjacency list.

• An edge can be contained only in the adjacency lists of its two ends.

All methods analyzed in OpenJGraph successfully passed all the checks. That is,

no counterexamples were found within the analyzed bounds.

7.2.3 Discussions

Our case studies show that Karun can be used to check complex correctness properties

of the code even when the code accesses several data structures and makes many

external calls. It is capable of finding errors not only in the top-level procedure being

analyzed, but also in the called procedures if they prevent the top-level procedure

from satisfying the property of interest.

Since Karun does not require users to provide any intermediate annotations, the

only cost involved in using Karun is to specify the property. Our experiments suggest
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that the correctness properties of the programs manipulating data structures can be

efficiently expressed in a relational logic like Alloy that provides a transitive closure

operator. All properties (including the representation invariants) checked in our case

studies were written as succinct Alloy formulas: they contained only 15 relational

operators on average.

Although properties are often expressed as small Alloy formulas, they usually

encode complex behaviors of the underlying code. Therefore, in order to write them,

one should know exactly which data structures are involved in producing the behavior

of interest and how those data structures are actually implemented (or how they are

abstracted in case of library data structures). That is, it often requires deep knowledge

about the code. In fact, it took the author of this thesis 4 weeks to understand the

Quartz package well enough to write the analyzed properties. Therefore, the cost of

applying our analysis technique will be minimized if it is used by programmers or

those who have the required knowledge about the implementation details of the code.

7.3 Evaluating Performance

We performed a set of experiments to evaluate the improvements gained by our spec-

ification refinement approach. In these experiments, we compared the performance of

Karun with that of a technique that is identical in all respects except that it inlines

called procedures. In order to achieve a fair comparison, we shared code between the

two implementations whenever possible. That is, they both use Alloy as an interme-

diate language, Kodkod as the constraint solver, and the ZChaff SAT solver as the

backend engine.

We analyzed some procedures of the OpenJGraph and Quartz APIs using both

implementations. The results of these experiments are given in Table 7.3. The

objs/unrolls column indicates the maximum number of objects considered for each

type and the number of times the loops are unrolled during the analysis. The time

columns give the total analysis time (including all refinements in the specification re-

finement case) in seconds. The refs column shows the number of refinements needed
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inline spec ref.
procedure property objs/ time time refs speed-

unrolls (sec) (sec) up
scheduleJob returns valid date 3/3 >900 11 5 >82
addEdge others unchanged 4/4 110 46 0 2.4
removeEdge edge removed 4/4 271 13 4 20.8
minSpanTree subgraph 5/5 >900 36 0 >25
resumeJobGrp others not resumed 3/2 >900 115 49 >8
storeCalendar triggers updated 4/2 >900 65 45 >14

remove calendar removed if 5/5 46 95 5 0.5
Calendar not in use
retrieveJob correct job returned 7/1 64 166 19 0.4
getJobGrpNames correct groups returned 7/7 621 >900 - <0.7

Table 7.3: Experimental results: performance evaluation.

to analyze each procedure by the specification refinement technique. The last column

summarizes the speedup gained as a ratio between total analysis times without and

with specification refinement.

The first 6 rows of the table, where the speedup is greater than 1, give the results

of checking partial properties of the procedures. That is, the properties involve only a

subset of the procedures’ code. Current experiments suggest that in those cases, the

specification refinement technique always improves the analysis time substantially. In

fact, as shown in this table, the initial summaries extracted by the abstract interpre-

tation technique are sometimes sufficient to check a property; no further refinements

are needed. Although in order to check each of these properties only a small portion

of code need be analyzed, the inlining version spends considerable time to translate

the whole code into a boolean formula. Consequently, the generated formula is much

bigger than needed, and thus harder for the SAT solver to check.

Other rows of the table (the last 3 ones) give the results of analyzing full properties,

those that depend on the complete code of all called procedures. In these cases,

our specification refinement technique must perform several refinements to infer the

full specifications of all call sites, and thus a simple analysis that inlines all called

procedures upfront performs much better.

As shown in Table 7.3, checking different properties requires different number of
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refinements. In general, the number of required refinements depends on the amount

of code that is related to the property being checked. Furthermore, it also depends

on the order in which the SAT solver finds counterexamples: to rule out some invalid

counterexamples, a rich specification is inferred that prevents some future counterex-

amples too.

These experiments suggest that when the analyzed property is partial, our specifi-

cation refinement technique considerably improves the analysis timed by (1) reducing

the translation time, and (2) generating smaller boolean formulas that can be checked

faster.

7.4 Evaluating Initial Summaries

In this section, we describe the experiments that we performed to evaluate the quality

of the initial procedure summaries that we generate. Summaries are evaluated from

two aspects: accuracy and effectiveness. We evaluate the accuracy of the generated

summaries by checking if they are sufficient to prove correctness properties of the

code they summarize. The effectiveness is evaluated by comparing the generated

summaries with frame conditions of the code.

The experiments were done using the following constants for the abstract inter-

pretation parameters:

• Maximum number of operators allowed in an expression before it is widened to

the universal relation is set to 1300.

• Maximum number of allocations enumerated before an uninterpreted set of

objects is allocated is set to 5.

• Maximum number of unions before widening to closure is set to 3.

• Maximum number of contexts for which a procedure is summarized is set to 5.
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7.4.1 Accuracy

We ran our abstract interpretation technique to generate summaries for a number

of procedures from two Java libraries: the standard Java implementation of linked

list and the OpenJGraph API. To evaluate the accuracy of the generated summaries,

we used them to check properties of their corresponding procedures. We performed

two experiments: (1) we summarized small, structurally complex procedures and

compare those summaries to pre-existing full specifications. For this study, we used

the Java linked list library. (2) we summarized procedures with more typical object-

oriented code which uses several different data structures and makes many external

calls. Since full specifications were not available, we assessed the summaries against

manually written partial specifications. For this study, we used the OpenJGraph

package. The accuracy of the generated summaries varied, but no summary took

more than 3 seconds to generate even though some procedures had as many as 81

procedure calls.

The summaries were analyzed using Kodkod: for a procedure p and a specification

S we checked if the formula (summary(p) =⇒ S) holds, where summary(p) is the

summary generated by our abstract interpretation technique. Since Kodkod analyzes

formulas with respect to finite scopes, we first checked the summaries in a high scope

and then inspected them manually. Our technique generated full specifications for

13 of the 30 procedures. In the remaining 17 procedures, our technique generated

all frame conditions, and in 16 of them it inferred some major properties. In one of

the procedures the generated summary was too rough to be useful for more than its

frame conditions.

Java Linked List Implementation. We generated summaries for 10 procedures

in Sun’s standard implementation of linked list in the Java Collections Framework.

The implementation represents a list as a circular doubly linked list with a dummy

header entry. An integer field size keeps track of the size of the list. Since our

current technique does not handle arithmetic expressions (it widens all of them to

the set of all possible integers Int), we ignored all accesses to size, and only analyzed
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/*
clone$return = New$LinkedList
element’ ⊇ element
element’ ⊆ element + (NewSet$Entry —> (this.header.^next & (Entry’- this.header)).element)
next’ ⊇ next
next’ ⊆ next + (NewSet$Entry —> NewSet$Entry)
previous’ ⊇ previous
previous’ ⊆ previous + (NewSet$Entry —> NewSet$Entry)
header’ = header ++ (New$LinkedList —> NewSet$Entry)
Entry’ ⊇ Entry
Entry’ ⊆ Entry + NewSet$Entry
LinkedList’ = LinkedList + New$LinkedList

*/

public Object clone() {
LinkedList clone = new LinkedList();
for (Entry e = header.next; e != header; e = e.next) {

Entry newEntry = new Entry(e.element, clone.header, clone.header.previous);
newEntry.previous.next = newEntry;
newEntry.next.previous = newEntry;

}
return clone;

}

Figure 7-6: The clone method.

procedures that do not depend on integer arithmetic.

We generated summaries for 10 methods: add, addFirst, addLast, remove,

removeFirst, removeLast, getFirst, getLast, clear, and clone. These methods

are small and mostly self-contained, but their correctness depends on their complex

mutations of the underlying doubly linked data structure.

For each method, we checked if the generated summary is accurate enough to show

that the method’s JML specification [23] holds. In 8 of the 10 analyzed methods,

we were able to check the complete specifications. The summaries generated for

clone and remove were not accurate enough to prove the full specifications, although

they still provided limited descriptions. These methods cause our technique difficulty

because they mutate the same relation that is being traversed in a loop.

The summary generated for the clone method, shown in Figure 7-6, specifies that

a fresh list is constructed and returned, and that it contains some freshly allocated

entries whose elements are chosen from the set of the elements of the receiver list.
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Although the summary does not specify that the size of the constructed list is the

same as the receiver list nor that the copy preserves order, it still specifies useful

information about the method – for example, that the elements of the returned list

are all chosen from the receiver list, and that the receiver list is not changed at all.

The remove method removes the first occurrence of a given element from the list.

Although the list is updated at most once (for the first occurrence), the update is

done as part of the loop. This prevents the analysis of the loop from stabilizing by

inferring the closure, and the loop analysis instead terminates by widening to the

universal relation. That is, the generated summary allows the values of the next

and previous fields of any Entry object to change, meaning that any number of

entries may be removed from the list. The summary therefore only provides the

frame conditions.

OpenJGraph API. We used our abstract interpretation technique to generate

summaries for 20 procedures of the OpenJGraph package. Instead of generating

summaries for the Java map and set data structures using their implementations,

we provided their specifications in the style of the summaries that our technique

generates. Doing so demonstrates how our technique is compositional and can exploit

off-the-shelf specifications when available.

Most procedures in this package make a considerable number of external calls,

either directly or indirectly. Our technique generates full specifications for 5 of the

20 procedures. In order to evaluate the quality of the summaries generated for the

other 15 procedures, we checked them against two sets of properties:

• Representation invariants. The graph package assumes some invariants about

the shape of the data structures used and the consistency of the data stored in

them. The invariants are given as informal comments in English. We encoded

them as relational invariants in Alloy and checked whether or not our gener-

ated summaries are sufficient to show the preservation of these invariants. 6

invariants were checked in 15 procedures. Out of those 90 checks, 67 of them

passed and the other 23 failed. The invariant with the highest failure rate is

the one stating that the edge-set data structure contains all edges in the adja-
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procedure time (sec) property
containsVertex(v) 0.1 no object fields are mutated
containsEdge(e) 0.1 no object fields are mutated

add(v) 0.1 v’s final edge list is either empty or unchanged
the edge lists of non-v vertices are unchanged

addEdge(e) 0.7 no new edges are added apart from e
only adjacency lists of ends of e are changed

addEdge(v1, v2) 0.8 only adjacency lists of v1 and v2 are changed
no edge is added except between v1 and v2
final graph has an edge connecting v1 to v2

removeEdge(e) 0.5 only adjacency lists of ends of e are changed
all edges but e remain in the graph

remove(v) 0.9 the final graph does not contain v
minSpanningTree() 2.7 all edges of MST belong to the original graph

nodes with no edges are not added to MST
edges of the original graph are unchanged

Table 7.4: Partial specifications checked in graph procedures.

cency lists of the vertices. In most of the procedures, the adjacency lists and

edge set are modified within branches. Since the effects of different branches

are unioned to form the final summaries, the summaries for such procedures

allow any combination of modifications, and thus they are too weak to show

the edge-set consistency invariant.

• Post conditions. Lacking formal specifications of the procedures, we checked the

generated summaries for the 15 procedures against some partial post conditions.

Table 7.4 shows a subset of the properties that the summaries were sufficient

to check. The time column gives the time to generate a summary in seconds,

and the property column is an English description of the checked partial post-

condition.

The most important cases of information loss are from the following two cases:

(1) A procedure which returns a boolean value, as happens in containsEdge and

containsVertex. Our technique unions the possible return values and reports

that the return value is either true or false. The summary still provides a frame

condition indicating which variables and fields are unchanged by the procedure,
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but the information about the return value is not useful. The two such cases in

this study have no side effects, so the summaries are the full frame conditions.

(2) A procedure with a loop that mutates the same field it is traversing, as in

remove. Our technique is able to determine whether or not the resulting ele-

ments are a subset of the prior elements, but it typically cannot tell which is

removed or if the order remains the same.

7.4.2 Effectiveness

In order to evaluate the effectiveness of procedure summaries that we generate, we

compared Karun – which performs specification refinement starting from the initial

summaries produced by our abstract interpretation technique – to another imple-

mentation that performs the same analysis, but starts from frame conditions. Frame

conditions specify what fields and variables are not mutated by a procedure, but they

provide no information about how the mutated fields and variables are modified. Al-

though such summaries are simple and very cheap to compute, they may cause the

specification refinement technique to go through many refinements in order to check

a property.

Frame conditions cannot be computed statically with complete accuracy of course.

Therefore, we compute conservative conditions: no frame condition is generated for a

variable or field that may be modified at a call site. In order to take care of possible

aliasings, if a procedure updates a field f of an object of type T , the generated

summary allows f to change in all objects of type T .

In order to achieve a fair comparison, whenever possible, we shared code between

Karun and the implementation based on frame conditions. That is, both implementa-

tions use the same translation of code to Alloy and solve the generated formulas using

Kodkod. They both use ZChaff in the backend and unsat core to refine specifications.

The comparison, therefore, shows the effects of the initial abstraction on the analysis

performance.

We analyzed some procedures of the OpenJGraph and Quartz APIs using both
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frame abstract in-
conditions terpretation

procedure property objects/ time refs time refs speed-
unrolls (sec) (sec) up

scheduleJob returns valid date 3/3 189 12 11 5 17.2
add vertex added 5/5 52 15 1 0 52
addEdge other edges are 4/4 157 61 46 0 3.4

unchanged
addEdge an edge added 6/6 30 5 1 0 30

b/w given nodes
minSpanTree subgraph 5/5 3272 64 36 0 90.9
getTrigNames all names returned 5/2 8 3 7 1 1.4
storeCalendar triggers updated 4/1 38 47 22 31 1.7
storeJob job is stored 7/1 399 65 149 12 2.7

Table 7.5: Experimental results: comparing abstract interpretation to frame condi-
tions.

implementations. The results are given in Table 7.5. The time columns give the total

analysis time, including the time spent on initial abstraction and all refinements, in

seconds. The refs columns show the number of refinements needed to check the

property in each case. The last column summarizes the speedup gained as a ratio

between total analysis times using frame conditions and abstract interpretation.

As shown in this table, in most cases, using the abstract interpretation technique

improves the analysis time substantially. This is because, in general, the summaries

generated in this way are much more effective in ruling out invalid program execu-

tions. Since the initial abstraction contains fewer invalid executions, in general, fewer

refinements are needed to check a property, and thus the analysis time is improved.

In a few cases, however, the gained speedup is close to one. That is, there is no

considerable difference between the performances of the two implementations. This

is because either the called procedures are so complex that the abstract interpreta-

tion cannot infer much more than frame conditions about their behaviors (e.g. the

storeCalendar case) or they are so simple that even starting from frame condi-

tions, the analysis can infer their behaviors in a few refinements very easily (e.g. the

getTrigNames case).

Although computing initial summaries using the abstract interpretation technique
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takes more time than computing frame conditions, the resulting summaries improve

the performance so much that the overhead of computing them is negligible compared

to the total analysis time. In other words, our current experiments suggest that they

are much more cost-beneficial than frame conditions. More experiments have yet to

be done to evaluate the technique on procedures with deeply nested calls.
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Chapter 8

Conclusion

This chapter first summarizes the thesis by describing the main ideas briefly, then

compares our analysis technique to other related work, and finally concludes the thesis

by discussing different aspects of our technique and highlighting some opportunities

for future research.

8.1 Summary

This thesis described a framework for statically checking a given procedure against

a property. The framework introduces an analysis that does not depend on any

user-provided annotations beyond the property to check. It performs a modular

analysis in which specifications of called procedures are inferred automatically from

the code. In order to provide scalability to large programs, the specifications are

inferred on demand: initial specifications are only rough over-approximations of the

code; they are refined further only if checking the property requires more precise

specifications. The analysis terminates when either the property is validated or a

valid counterexample is found.

The framework is parameterized over some basic operations: a translation func-

tion that converts the code to a logical formula, a specification extraction function

that extracts the initial specifications of called procedures, a solving operation that

solves the generated logical formula, and a proof generation mechanism that com-
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putes a proof of unsatisfiability whenever the solved formula is unsatisfiable. Any

instantiation of the framework must provide these operations.

The thesis also described a lightweight, flow-sensitive, context-sensitive technique

for generating symbolic summaries of object-oriented procedures. These summaries

that are expressed in Alloy, a relational first order logic with transitive closure, can be

thought of as detailed frame conditions; they describe which memory locations might

be changed and in what ways. The technique is a simple application of the abstract

interpretation framework that generates approximations of procedure specifications,

to be later refined if needed. To that end, it is focused on generating summaries that

are safe (they describe a superset of possible program behaviors), fast to generate

(the time to extract a summary is linear in the size of the procedure and the number

of fields), and small (we are often able to concisely summarize the effect of a loop by

using transitive closure).

Furthermore, the thesis described our instantiation of the framework that is imple-

mented in a prototype tool called Karun. This instantiation provides a fully automatic

technique for checking Java programs against data structure properties of the heap

expressed in Alloy. It translates the code along with call sites’ specifications to a

boolean formula that is handed to a SAT solver for solution. The specification refine-

ment process is implemented using the unsat core facility provided by the SAT solver.

Since Karun’s translation of Java to boolean requires bounding the number of loop

iterations and the size of the analyzed heap, it can only check properties with respect

to bounded domains. Any counterexample returned by Karun is a real bug in the

code. Lack of a counterexample, however, does not constitute proof of correctness; a

bug may be found if the analysis is performed with respect to more loop iterations or

a bigger heap.

We evaluated our analysis technique by using Karun to check some correctness

properties of two open source Java APIs, namely OpenJGraph and Quartz. The

OpenJGraph package successfully passed all the checks. Analyzing Quartz, however,

resulted in finding two previously unknown bugs. We reported the bugs to the devel-

opers and they subsequently fixed them.
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Furthermore, we evaluated the performance of our analysis technique by compar-

ing Karun to a simple analysis that inlines all procedure calls. The results suggest

that our technique performs substantially better when the analyzed property is a

partial specification of the analyzed code. However, when the code is checked against

its full specification, a simple inlining may perform better.

We also evaluated our abstract interpretation technique that generates the initial

summaries of called procedures against two criteria: accuracy and effectiveness. The

results were very encouraging: in many cases, our summaries were accurate enough

to prove some major properties of the corresponding procedures. Only in a few cases,

was there a significant loss of information. Furthermore, the summaries rule out

many invalid executions of the abstract program and thus reduced the number of

refinements needed to check a property. These experiments suggest that our abstract

interpretation technique represents a useful balance between tractability and accu-

racy. More experiments have yet to be done to evaluate the summaries generated for

larger programs.

8.2 Related Work

8.2.1 Underlying Ideas

Our analysis technique is based on three main concepts: (1) performing a fully auto-

matic counterexample-guided refinement of procedure specifications, (2) translating

code to boolean formulas and analyzing them using a SAT solver, and (3) auto-

matically extracting procedure summaries that can be used to compute the initial

abstraction of code. In this section, we describe the work related to each of these

concepts.

Counterexample-guided Abstraction Refinement

Using counterexamples to iteratively refine abstract models of a system was first

introduced by Kurshan [36], and then appeared in a number of analysis techniques
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(e.g. [3, 11, 41]) that focused on checking finite systems. Clarke, et. al. [11], for

example, used this framework to analyze programs represented by labeled Kripke

structures with respect to properties expressed in a fragment of ACTL*. A Kripke

structure is a finite state machine in which each state has at least one transition,

and a labeling function maps each state to a set of atomic propositions that holds in

that state. ACTL* is a form of the computational tree logic (CTL), a temporal logic

in which time is modeled using a tree structure (each moment of time has several

possible futures). CTL* is an extension of CTL that allows path and state operators

to be freely mixed. The ACTL* logic is a subset of CTL* that only allows universal

quantifiers over paths. Formal definitions of Kripke structures and different temporal

logics can be found elsewhere [59].

Clarke’s analysis uses the transition blocks corresponding to the variables of a

given Kripke structure to partition those variables into some equivalence classes and

compute the initial abstraction function. This function is used to construct the initial

abstract Kripke structure. Standard model checking techniques are used to check

the abstract structure with respect to the given ACTL* property. If a spurious

counterexample is found, the abstraction function is refined by further partitioning

one of the equivalence classes. This technique is implemented in NuSMV and was

successfully used to check a Fujitsu IP core design. However, it can only handle

systems that can be described as a finite state machine.

To our knowledge, the software model checker SLAM [4] is the first tool that has

applied the counterexample-guided abstraction refinement framework to a program

with an infinite number of states. SLAM checks a given C program with respect

to a temporal safety property without requiring any user-provided intermediate an-

notations. A temporal safety property constrains that the code contains no bad

executions, in the form of a finite state machine. An example is a property specify-

ing that the code does not release a lock without acquiring it first. Since verifying

such properties in an arbitrary piece of code is undecidable, SLAM is not guaran-

teed to terminate. However, in practice, it always terminates successfully, meaning

that either the property has been verified, or a nonspurious counterexample has been
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found.

SLAM performs the analysis by iteratively refining a predicate abstraction [25]

of the code to eliminate spurious counterexamples. Its analysis consists of three

components: (1) C2BP, which abstracts a given C program as a boolean program (a C

program in which all variables are of boolean type) using a given set of predicates, (2)

BEBOP, which model checks boolean programs, and (3) NEWTON, which discovers

additional predicates to refine a boolean program.

Predicate abstraction consists of abstracting concrete states of a program based on

the values of a set of predicates. C2BP computes the initial abstract program based on

the predicates extracted from the property. For each statement, it computes weakest

preconditions of the predicates and strengthens them to a combination of the available

predicates. This requires a potentially exponential number of calls to a theorem prover

(in the number of predicates). BEBOP then checks if the error state is reachable in

the resulting boolean program by applying a data-flow analysis that computes the set

of reachable states for each statement. It handles loops by computing a fixpoint over

the set of states associated with each statement. These sets are represented using

binary decision diagrams (BDDs). NEWTON uses verification condition generation

to check the validity of any found counterexample in the original C program and

generates new predicates in response to spurious counterexamples. These predicates

are used by C2BP to compute a new abstraction and the process starts over.

BLAST [26] is similar to SLAM. It uses predicate abstraction and constructs a

reachability tree which represents a portion of the reachable, abstract state space of

the program. If an error node is reachable in the generated tree, the corresponding

error is checked for validity. In case of invalidity, a theorem prover suggests new ab-

straction predicates which are used to refine the program. BLAST differs from SLAM

in that it uses lazy abstraction and local refinements to achieve better performance.

Although SLAM and BLAST have been successfully used to analyze substantial

programs, they both aim at checking temporal safety properties of the code and can-

not handle the rich data structure properties that we target. Their analyses terminate

rapidly for properties about control state transitions of the code, but not necessar-
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ily for data structure properties. In fact, because of lack of transitive closure, even

their specification languages have limited support for expressing rich data structure

properties.

SAT-based Analysis

Our method is inspired by Jalloy [58], a tool for checking data structure properties

of Java programs. Its analysis process is very similar to ours: it translates Java code

to an Alloy formula by bounding the number of loop iterations and the heap size. It

then checks the generated formula with respect to a specification, also expressed in

Alloy, using a SAT solver. Jalloy is different from our tool in that it inlines all called

procedures whose specifications are not provided by the user. It has been applied

successfully to some small Java programs including an implementation of a red-black

tree. Although Jalloy can check very rich properties of complex data structures, the

experiments show that inlining limits its scalability to large programs. This motivated

us to develop a technique that automatically infers procedure specifications as needed

in order to provide better scalability.

Saturn [62] is another SAT-based tool that checks C programs with respect to

temporal safety properties. Similar to our tool, Saturn’s translation to a boolean

formula requires finitizing loop executions. Therefore, it is aimed at finding bugs

rather than proving correctness. However, unlike our tool which is guaranteed to

return only valid counterexamples, Saturn may generate false positives. Therefore,

its returned counterexamples must be manually inspected for validity.

Saturn handles procedure calls by computing procedure summaries similar to a

type signature that can be efficiently used for interprocedural analysis. A procedure

summary represents the relevant behavior of a procedure by a finite state machine.

Given a set of states, input predicates, and output predicates, a procedure summary

is computed as a set of tuples (o, Pin, s, Pout, s
′) denoting that the procedure causes a

state transition in the object o (which is accessible by both the caller and the callee)

from the state s to the state s′ if the input predicates of the set Pin hold before the

procedure call. If this state transition takes place, the output predicates of the set
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Pout will hold after the procedure call. These summaries are computed by making

several calls to a SAT solver: all possible state transitions are enumerated under all

combinations of predicates, and their feasibility is checked using a SAT solver. The

sets of states and input and output predicates of each called procedure are specific to

the property being checked and have to be provided separately. Inadequate choice of

predicates can cause the analysis to produce false alarms.

The automatic procedure summarization technique implemented in Saturn allows

it to scale to large programs. In fact, it has been successfully used to detect memory

leaks and erroneous sequences of locks and unlocks in a Linux kernel. However,

the summarization technique used in Saturn is highly tuned for checking finite state

machine properties and cannot be applied to the kind of data structure properties

that we target.

Magic [8] is also a modular software analysis tool that checks C programs against

finite state machine specifications using a SAT solver. The specifications are expressed

as labeled transition systems (LTS), finite state machines that differ from Kripke

structures in that their transitions are labeled by actions rather than their states

being labeled by propositions. Magic uses LTS not only as a specification language,

but also as an abstract domain to represent the behavior of the procedure being

analyzed. Since a procedure might behave differently under different settings of its

input parameters, Magic abstracts a procedure as a list < g1, L1 >, . . . , < gn, Ln >

where each Li is an LTS and each gi is a guard formula over the input parameters of

the procedure that encodes the condition under which Li is executed.

Abstract labeled transition systems are computed based on predicate abstraction

using a theorem prover. A SAT solver is used to check whether an abstract LTS

conforms to the LTS that represents the given property. Any found counterexamples

should be checked for validity. To our knowledge, Magic performs the abstraction

phase automatically, but requires the user’s guidance to check the validity of found

counterexamples. If a counterexample is invalid, the abstraction is refined, again

based on the user’s inputs. Although Magic provides a modular analysis, it assumes

that the user provides specifications of called procedures; any procedure with no
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specification is inlined. That is, unlike our technique, it provides no mechanism for

summarizing procedures automatically. Furthermore, since it only accepts finite state

machines for properties, it cannot handle the kind of data structure properties that

we do.

Automatic Specification Extraction

The problem of summarizing the behavior of a procedure has been widely studied.

In fact, almost all analysis techniques that statically check a program against a prop-

erty compute an internal abstract model that summarizes the behavior of the code.

Some such techniques have already been discussed. Other techniques, including shape

analysis and theorem prover-based analyses, will be discussed later. In this section,

however, we describe some of the techniques that compute procedure summaries not

only to be used internally in a specific analysis, but also to be output to the user in

order to be used in other settings. These techniques are compared with our abstract

interpretation technique that extracts procedure summaries. Although we use those

summaries to compute an initial abstraction, they are, in fact, stand-alone summaries

that can be used in a variety of settings.

Heap manipulating procedures are summarized from different aspects: pointer

analysis techniques (see e.g. [9,50,61]), for example, summarize the pointer informa-

tion of a given procedure. They compute the set of memory locations to which a

reference variable can point at each control point of the program. Side-effect analysis

techniques (e.g. [10,27,43,49,52]), on the other hand, conservatively compute the set

of heap locations that may be mutated by a procedure. They typically use a pointer

analysis to approximate the objects to which the pointers can point. Pointer and

side-effects analyses are particularly useful in optimizing, parallelizing and analyzing

programs.

Our abstract interpretation technique is similar to those analyses in that it seeks

the same end, but by different means: it uses relational expressions to approximate the

set of objects pointed to by a variable, and then uses them to safely identify the set of

locations that may be mutated by a procedure. Our technique differs from side-effect
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analyses in that it computes both may side-effects, i.e. the memory locations that

can be mutated in some program execution, and must side-effects, i.e. the memory

locations that are mutated in all program executions. Side-effect analyses typically

compute only may side-effects. Furthermore, our technique computes not only what

locations can be mutated by a procedure but also how those locations are mutated.

Therefore, our analysis aims at providing more precise information about the code.

Tkachuk and Dwyer used side effect analysis to generate summaries [55]. To check

a property of a program unit more efficiently, they approximate the behavior of the

rest of the program with summaries. As in our approach, they generate both may and

must side effects and specify the mutations that can be performed by a procedure.

However, our analysis is potentially capable of generating more precise summaries

(1) by recording the history of field updates by symbolic override expressions, rather

than conservatively updating the field in all objects that may be aliased, and (2) by

exploiting loop conditions in abstracting loop bodies.

There are also some dynamic techniques that generate procedure summaries au-

tomatically. Unlike static techniques that only use the text of a program, dynamic

techniques execute the code to analyze its behavior. Daikon [18], for example, detects

likely invariants about programs by executing a program, which is instrumented to

write out certain variable values at each program point, over a test suite. An offline

analysis then processes these values for an extensive set of invariants at each program

point and outputs the invariants that are true in all executions. The most substantial

difference between Daikon and our technique is that Daikon’s results are not sound.

That is, although the invariants returned by Daikon are guaranteed to hold in all test

cases of the test suite used, there is no guarantee beyond that; they do not necessarily

hold in general.

8.2.2 Overall Goal

In this section, we describe the static analysis tools that focus on checking data

structure properties of code. Many of them, however, can only handle a subset of the

data structure properties that we target.
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Theorem Proving

The extended static checker for Java (ESC/Java) [21] checks a Java program with

respect to a user-provided property. Similar to our technique, it performs the analysis

on a finitized code (in which loops are unrolled a finite number of times), but expects

users to provide specifications for all reachable procedure calls. Users express both

the property and the intermediate annotations in the ESC/Java annotation language

which is very similar to the Java modeling language (JML) [38]. However, since JML

is designed for full program specification and the ESC/Java annotation language

is intended for only lightweight specifications (for example, null dereferences, array

bounds errors, and deadlocks), the two languages have some differences.

ESC/Java analyzes the code for counterexamples using the Simplify theorem

prover [15]. It translates the given program to Dijkstra’s guarded commands [16],

encoding the property as an assert command. It then computes weakest precon-

ditions to generate verification conditions as predicates in a first order logic. The

Simplify theorem prover is used to prove the result. Failed proofs are turned into

error messages and returned to the user. Since Simplify may loop forever on some

invalid formulas, its analysis time is bounded in advance. Therefore, it sometimes re-

ports a counterexample that might, with more effort, have been shown to be invalid.

Consequently, unlike our technique, ESC/Java can produce false counterexamples.

JML provides a facility, namely model fields and model methods, for defining abstrac-

tion functions. Such abstractions can be defined in Alloy as well. Our analysis,

however, does not currently handle properties in terms of abstraction functions. This

capability is included in Forge [14] and will be incorporated into Karun in future.

The developers of ESC/Java report that although the tool has been successfully

used to check a number of programs, the overhead of annotating all procedure calls is

the main obstacle to using it for larger systems [21]. This inspired Houdini [22], the

annotation assistant for ESC/Java, which extracts procedure annotations automati-

cally from the code. Houdini works as follows. For each called procedure, it generates

a set of candidate annotations based on some heuristics. For example, for each vari-
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able v of integer type, it generates a number of annotations of the form v cmp expr

where cmp is an integer comparison operator and expr is either another integer vari-

able/field or a constant. For a reference variable v, it generates an annotation of the

form v ! = null, constraining v to be non-null.

Once a candidate set of annotations is computed, Houdini uses ESC/Java to verify

or refute each annotation. Incorrect annotations will be removed from the candidate

set and the remaining annotations will be checked again. This process is repeated

until a fixpoint is reached. Once a consistent set of annotations is computed, Houdini

calls ESC/Java for the last time in order to check the annotated program against the

given property, and presents the output to the user.

Houdini is similar to our tool in that it extracts procedure summaries automati-

cally from the code. However, unlike our technique that does not assume any specific

structure of the inferred specifications, Houdini relies on some initial heuristics that

provide a template for the annotations that are possibly of interest. Furthermore,

Houdini’s specification inference process is highly tuned for inferring simple data

structure properties (e.g. whether a pointer is null or not), and cannot handle the

kind of rich data structure properties that we target.

Inspired by ESC, Flanagan introduced a method [19] to check properties of code by

translating it to a constraint logic program (CLP) [31]. Each procedure is translated

by two relations: one describing the program states that may cause an assertion to

be violated, and the other describing a relation between pre- and post-states when

the procedure executes normally. Since all procedures are translated, there is no need

for user-provided procedure specifications.

Because the resulting formula can become very large, it is solved iteratively using

the abstraction refinement framework: the constraint logic query is abstracted as a

boolean formula using predicate abstraction. If the boolean formula has a solution,

the solution is converted to a trace of the constraint logic query and a proof generating

theorem prover, e.g. Verifun [20], is used to check whether the trace is satisfiable or

not. In case of unsatisfiability, the theorem prover generates a proof by calling a

decision procedure for the appropriate domain, e.g. linear arithmetic, or the theory
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of arrays. The proof is used to infer additional predicates in order to refine the current

abstraction. The process then starts over at the abstraction phase.

Unlike our technique that aims at finding bugs, Flanagan’s method proves that

the given property holds in all program executions. That is, its output is either a

‘yes’ indicating that the property has been proved, or a ‘no’ which means a non-

spurious counterexample has been found. However, because the problem of checking

a program against a given property is undecidable, his method is not guaranteed to

terminate. Flanagan’s analysis is similar to ours in that they both use the proof of

unsatisfiability generated by a decision procedure (a theorem prover in his case, and

a SAT solver in our case) to refine the abstract model. However, unlike our technique

that translates the code on demand, his technique first translates the whole code into

CLP and then checks its satisfiability iteratively. To our knowledge, this technique

only targets simple properties similar to those checked by ESC/Java, and does not

handle the kind of data structure properties that we check.

Hob [37] and Jahob [35] use theorem provers to analyze a program against a

given data structure property. Hob assumes a simplified object-oriented language

which is structured by modules, and allows a subset of Java constructs including field

dereferences and dynamic object allocations, but not inheritance or polymorphism.

It handles data structure properties that can be expressed by the boolean algebra of

sets. That is, the properties can involve equality, containment, and disjointness of

sets of objects. For example, in a minesweeper game, the property can constrain the

set of exposed cells to be disjoint from the mined cells.

Unlike our technique, Hob aims at full verification of programs: it terminates ei-

ther when the property has been proved or when a counterexample has been found.

In order to provide scalability to large programs, Hob analyzes the code in a modu-

lar way, checking one procedure at a time. It provides a suite of static analyses and

decision procedures, each suitable for checking a particular set of data structure prop-

erties. Although Hob can handle properties about the contents of data structures, its

specification language is not as expressive as ours. It cannot handle, for example, the

properties involving relationships between the objects (e.g. if a key object is linked
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to a value in a map data structure), or the ordering of objects (e.g. in a list data

structure). Furthermore, although in certain cases, Hob can automatically produce

loop invariants, in general, it requires users to provide specifications for all called

procedures and loops reachable from the analyzed procedure.

Jahob is a successor of Hob that handles a richer subset of Java as well as richer

specifications. Its specification language is a subset of the language of the Isabelle

interactive theorem prover [46] that allows verification of data structure implemen-

tations based on singly and doubly-linked lists, trees with parent pointers, priority

queues, and hash tables. Although Jahob can verify important data structures, it still

cannot handle arbitrary shapes of objects that our technique targets. Furthermore,

it still requires user-provided annotations in order to analyze procedure calls.

Shape Analysis

Shape analysis techniques (see e.g. [24, 44, 47, 51]) are in general, similar to our ap-

proach in that they target data structure properties of programs. That is, they check

properties that constrain the shape of the objects in the heap of a program. How-

ever, unlike our technique that only aims at finding bugs in a bounded domain, shape

analysis techniques aim at proving the correctness of properties in general. Conse-

quently, they can typically analyze a restricted class of data structures, and cannot

handle arbitrary linked data structures as we do. These techniques are traditionally

difficult to scale to large programs because of their complexity and limited support

for modularity.

Parametric shape analysis (PSA) [51], for example, encodes the heap of a pro-

gram as a graph in which the nodes represent memory locations and edges represent

field relations. Since these concrete graphs can be arbitrarily large, PSA conserva-

tively abstracts them by merging all nodes equivalent under a particular set of shape

predicates into a single node. By construction, the resulting abstract shape graph is

guaranteed to have a bounded size.

There are two categories of shape predicates: core predicates, and instrumentation

predicates. Core predicates are necessary for the analysis. They are either pointer
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variables treated as unary predicates, or pointer fields treated as binary predicates.

Instrumentation predicates, however, are a means to fine tune the analysis. They

can be provided by the user in order to compute more accurate abstract graphs. An

example is a predicate specifying that all elements of a data structure are reachable

from a root variable.

PSA evaluates predicates using Kleene’s 3-valued logic [34]. In this logic, the value

of each formula can be true, false, or unknown. Therefore, the output of checking a

data structure property can be true, meaning that the property is proved to be correct,

false, meaning that the property is known to be incorrect, or unknown, meaning that

nothing can be deduced.

Parametric shape analysis has been instantiated in TVLA (three-valued logic an-

alyzer) [39]. It takes the initial shape graphs as input, and performs an abstract

interpretation based on the semantics of each statement in the program. It requires

the user to specify how each statement affects each predicate of interest. TVLA has

been successfully used to verify insertion sort and bubble sort [40] as well as some

operations of mutable lists and binary search trees [48].

PSA performs a one-pass analysis whose precision depends on the user-provided

set of predicates. Our technique, however, does not require any user-provided an-

notations. It can automatically refine the abstraction until a conclusive result is

obtained. However, unlike PSA, our method cannot verify the property in general; it

only performs a bounded verification aimed at finding bugs.

The pointer assertion logic engine (PALE) [44] is another tool for verifying data

structure invariants. It can analyze the properties of all data structures that can be

described by graph types. Given an annotated program, PALE translates the code and

the annotations to formulas in monadic second order logic. These formulas are solved

by the MONA decision procedure [33]. When the analysis terminates, either the

invariants have been proved or a counterexample has been generated. Although the

MONA logic is decidable, it has an inherent non-elementary worst-case complexity1.

1A problem has non-elementary complexity if there is no algorithm for it whose runtime is bounded
by expk(n) for any k. The expression exp is defined as exp0(n) = n and expk(n) = 2expk−1(n).
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PALE, however, has been shown to perform efficiently in practice.

A graph type is a data structure defined by records that have two kinds of fields:

data fields which define a backbone tree structure, and pointer fields which can point

to any node of that tree. A pointer field is annotated with an expression that specifies

its destination. Examples of graph type data structures include trees with parent

pointers, linked lists, and red-black trees.

In order to use PALE, the user annotates the program by providing pre- and post-

conditions of called procedures, loop invariants, and data abstraction invariants. The

annotations are expressed in pointer assertion logic (PAL) and are treated as hints

for the underlying decision procedure. PAL is a monadic second-order logic expressed

over records, pointers, and booleans.

Although PALE can verify a large class of data structures, it checks them one at

a time. Therefore, it is not suitable for checking representation invariants between

different datatypes of a program. Furthermore, the success of its analysis depends on

the user-provided annotations. Our technique, however, does not require any user-

provided annotations beyond the property to check, and can handle any number of

data structures with arbitrary shapes. But it does not provide a general proof, only

verifying the property in a bounded domain.

In order to reduce the amount of user-provided annotations, some shape analysis

techniques use predicate abstraction to infer loop invariants. Bohne [60], for exam-

ple, takes a set of abstraction predicates and performs a symbolic shape analysis on

boolean heap programs [47]. A boolean heap is an abstraction of the heap in which

the abstract state is represented by a set of bitvectors (rather than a single bitvector)

over the abstraction predicates. Bohne uses a number of decision procedures to infer

loop invariants that may contain reachability predicates, universal quantifiers, and

numerical expressions. User-provided annotations are needed to hint on the predi-

cates that should be used in the abstraction of each code fragment. The system then

verifies that the inferred invariants are sufficient for proving the post-condition by

generating weakest pre-conditions. Bohne has been successfully used to verify some

operations of linked lists, trees, two-level skip lists, arrays, and sorted lists.
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Lazy shape analysis [7] also incorporates predicate abstraction into shape analysis.

It is implemented by extending BLAST [26] with calls to TVLA. The analysis starts

with using the predicate true for predicate abstraction, and a trivial shape graph that

represents all heaps, for heap abstraction. Upon finding spurious error paths, it refines

the abstraction by using Craig interpolation [42] to discover additional predicates

automatically. To improve performance, lazy shape analysis constructs the initial

abstraction on-the-fly and refines it only at the necessary program locations.

The predicates inferred during refinement include both the ones used in predicate

abstraction, and those used in the abstraction of the shape graphs. Rich predicates

(i.e. the instrumentation predicates of TVLA) are inferred using pre-defined shape-

class generators (SCG). An SCG is a function that takes as input the pointers and

fields that should be tracked, and returns a set of predicates. Since the abstraction

and its subsequent refinements are local, each program location has its own SCG.

During the course of the analysis, an SCG might be shown to be insufficient, and

thus be replaced by a finer SCG. If a finer SCG cannot be found, the algorithm

terminates without being able to check the property.

Lazy shape analysis is similar to our technique in that it verifies a data structure

property by iteratively refining the granularity of an abstraction. However, unlike our

technique, it is not fully automatic yet; its refinement phase depends on a pre-defined,

carefully constructed set of shape class generators that is provided as an input to the

algorithm. If the algorithm terminates, it outputs a sound ‘yes’ or ‘no’ answer. Our

technique, on the other hand, always terminates, but only performs verification with

respect to a finite domain.

8.3 Discussion

8.3.1 Merits

We have presented a static program analysis technique that targets data structure

properties of heap-manipulating programs. Several analysis techniques were devel-
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oped to check this class of properties. Most of them, however, aim at proving cor-

rectness, and thus do not scale to large programs without extensive user-provided

annotations. Most program analysis techniques that scale to large programs, on the

other hand, cannot check data structure properties; they only target control-intensive

properties described by finite state machines.

Our analysis represents a useful balance between tractability and scalability. It

provides a fully automatic technique that potentially scales to large programs, but

does not require any user-provided guidance or annotations beyond the property

being checked. The technique, however, cannot prove correctness of properties; it

only checks them in a bounded domain, looking for counterexamples.

Our analysis technique is modular. It checks a procedure against a property using

the specifications of its called procedures as surrogates for their code. Although it

infers the specifications of called procedures automatically and does not rely on user-

provided annotations, it can benefit from such annotations whenever available. That

is, the user can improve the analysis time by providing the specifications of some

procedures. Our experiments exploited this; in checking Java APIs, we manually

provided the specifications of the calls to the library procedures rather than having

the tool infer them from their code.

The analysis framework introduced in this thesis provides a unified approach in

which a constraint solver is used for both checking the property and refining specifi-

cations. Although our instantiation of this framework uses a SAT solver as constraint

solver, any constraint solver capable of generating proofs of unsatisfiability can be

used as the backend engine.

We also presented a lightweight static technique to extract procedure specifications

automatically from their code. The technique generates summaries that describe

how a procedure mutates the state of a program, by specifying its both may and

must side-effects in a relational logic. Although used as part of our program analysis

technique, this summarization technique can be applied in a variety of settings. To our

knowledge, the summaries that we generate are more precise than the ones generated

by other sound techniques available.
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8.3.2 Limitations

What we presented in this thesis has a number of limitations. Our prototype tool,

Karun, handles only a basic subset of the Java language. It currently does not sup-

port arrays, exceptions, multithreading, and any numerical expressions other than

integer additions and subtractions. One-dimensional arrays, exceptions, and full in-

teger arithmetic have been recently added to the Forge language and can be easily

incorporated into Karun. However, multi-dimensional arrays, multithreading con-

structs, and non-integer numerical expressions remain topics for future research.

Our analysis is not complete. It verifies properties only with respect to finite heaps

and bounded loops. Therefore, although all found counterexamples are valid, lack of

a counterexample does not constitute a proof of correctness. In fact, if the bounds

are too small, no execution of the code will be possible, and thus any property will be

vacuously true. Increasing the analysis bounds can result in higher confidence in the

analysis results, though it often increases the analysis time exponentially. Therefore,

users have to make a trade-off between the length of the analysis time and their level

of confidence in the results.

We assume that the property of interest is expressed in terms of the data struc-

tures used in the analyzed procedure. That is, analyzed properties are code-level

specifications, not system-level requirements. This limitation implies that the tool

is best-suited to be used by programmers, or people with enough knowledge about

the implementation details of the system. Any high-level requirement of the system

should be converted to a specification in terms of the code’s datatypes before be-

ing checked by our tool. A methodology to perform this conversion was proposed

elsewhere [53].

Our technique for extracting procedure summaries also has a number of shortcom-

ings. Currently, branch points always introduce imprecision into our summaries since

we need to account for arbitrarily complex conditions. However, many conditionals

have simple conditions and can be precisely summarized with a relational expres-

sion, and there is no fundamental reason why our technique should not do so. Such
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an extension might permit us to produce precise summaries for simple conditional

procedures such as isEmpty methods.

We have found that matching a common loop pattern (traversal of simple linked

data structures) generates considerably more precise summaries at a very low cost.

We expect that several more common but simple patterns could be similarly bene-

ficial. One such pattern one can consider is for remove operations; their summaries

are currently not very accurate, but they often have short, precise, relational specifi-

cations.

8.3.3 Future Directions

Experimenting with our analysis technique raised some interesting questions that are

topics for future research. Karun currently checks the validity of a counterexample by

checking all of its called procedures in the order in which they are actually called. This

phase might be optimized by first computing some priorities for procedure calls based

on their relevance to the analyzed property, and then checking procedure calls in that

priority order. We can further optimize the analysis by using SAT solutions in which

some variables are marked as don’t care, and thus guaranteed to be irrelevant, and

multiple unsat cores that eliminate several inconsistent values of a call site post-state

in one iteration of the technique. Investigating these ideas is left as future work.

Currently, a major obstacle that limits the scalability of our technique is handling

call sites that require dynamic dispatch. Forge handles dynamic dispatch by expand-

ing each call site to statically invoke all methods that may be called at that site.

While this approach allows the analysis to consider all possible method calls, it does

not scale to large Java applications with nested dynamically dispatched calls. Ex-

ploring other possible approaches to alleviate this problem remains a topic for future

research.

Our technique aims at analyzing single-threaded programs. Several techniques

are available that analyze the behavior of multi-threaded code. To our knowledge,

however, they all aim at finding deadlocks or race conditions. Developing a technique

for checking data structure properties of concurrent programs is an open problem.
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Karun checks programs with respect to a finite domain: the size of the heap and

the number of loop iterations are both bounded by user-provided values. If Karun

does not find a counterexample, it only means that the property has been verified with

respect to the analyzed domain; nothing beyond that is guaranteed. An interesting

question is to evaluate the level of confidence that this kind of analysis achieves. This

might be done by calculating the number of objects of each type that are needed to

exhaust all possible executions of a specific program. If such bounds were available,

checking a property of the program with respect to those bounds would result in

a complete analysis; equivalent to proving correctness. A method to compute such

bounds for state-based Alloy models has been proposed before [54]. Exploring similar

approaches to compute sufficient bounds for program-derived Alloy models remains

a topic for future research.
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