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Abstract: This paper presents a framework for modeling, simulating, and checking
properties of critical systems based on the Alloy language – a declarative, first-order,
relational logic with a built-in transitive closure operator. The paper introduces a new
dual-analysis engine that is capable of providing both counterexamples and proofs.
Counterexamples are found fully automatically using an SMT solver, which provides
a better support for numerical expressions than the existing Alloy Analyzer. Proofs,
however, cannot always be found automatically since the Alloy language is undecid-
able. Our engine offers an economical approach by first trying to prove properties
using a fully-automatic, SMT-based analysis, and switches to an interactive theorem
prover only if the first attempt fails. This paper also reports on applying our framework
to Microsoft’s COM standard and the mark-and-sweep garbage collection algorithm.

1 Introduction

Critical infrastructures such as E-Traffic, E-Energy, and Cloud employ various protocols
to ensure self-organization, self-reconfiguration, load distribution, and failure recovery.
Due to the size, heterogeneousness, and the highly-dynamic nature of those infrastruc-
tures, their protocols are often complex, and thus it is crucial to check their security and
functionality requirements not only after they are implemented and deployed, but also at
their early stages of algorithm design and refinement. This ensures that certain mistakes
are caught early, and thus can be fixed at a lower cost.

Lightweight formal methods [JW96] provide a promising framework for checking critical
software systems continuously in earlier stages. Alloy [Jac06], for example, provides an
expressive, declarative language that can be analyzed fully automatically. The language is
a combination of first-order logic and relational algebra, augmented with a built-in tran-
sitive closure operator which makes it particularly suitable for modeling structure-rich
systems such as network protocols.

Alloy has been used for checking security and functionality aspects of several resource
management, network communication, transportation, and security protocols, supporting
the contention that lightweight formal methods are feasible and economical for critical
systems. Case studies include a role-based access control security schema for protect-
ing the access to sensitive information and resources [ZWCJ03], the intentional naming
system for resource discovery in dynamic networked environments [KJ00], a pull-based
asynchronous rekeying framework for scalable management of group keys in secure mul-



ticast [TJ03], the NASA’s Direct-To system for helping air traffic controllers find flight
plans that safely shorten the flying time [GKMV01], the New York City subway signal-
ing system [SB01], the flash file system that caused the famous 18-day system breakdown
of the NASA’s mars rover Spirit [KJ08], a constraint analysis on Java Bytecodes to de-
tect security vulnerabilities [Rey10], the security domain model analysis to identify illicit
information flows and covert channel vulnerabilities [Sha08], and the Mondex electronic
purse system for decentralized electronic money transactions [Ram07].

While all the above case studies use Alloy to check protocols at the design level, several
tools have been developed that use Alloy for code-level software checking. Jalloy [Vaz04],
JForge [DCJ06], and Karun [TJ07], for example, check functional properties of Java pro-
grams via translation to Alloy. TestEra [MK01], on the other hand, uses Alloy for system-
atic test case generation.

There are three main reasons for Alloy’s popularity: (1) expressiveness of the language, (2)
its fully automatic analysis engine, and (3) support for various abstraction levels. Unlike
typical model checkers that only check temporal safety properties specified as finite state
machines, Alloy is particularly suitable for modeling rich properties of structure-intensive
systems. Such systems can be expressed in the Z specification language [Spi92] as well,
but there is little tool support for automatic analysis of Z specifications. On the other hand,
domain-specific tools such as AVISPA [AVI] and Scyther [Cre08] are fully automatic, but
they are specially designed to check security protocols and are not suitable for checking
general functionality requirements. Furthermore, Alloy’s support of various abstraction
levels (chosen by the user), from the algorithm design to the actual code specification,
makes it possible to check the abstraction refinement properties in a uniform framework.

Despite all the successful applications of Alloy to critical systems, the Alloy engine lacks
certain capabilities essential for checking critical infrastructures. The Alloy Analyzer
(AA) analyzes Alloy specifications fully automatically. This analysis, however, is per-
formed with respect to a finite scope – a user-provided bound on the size of the analyzed
system – and thus is called bounded verification. For critical infrastructures, however, it
is essential to have a complete proof of correctness. AA’s lack of proof capability results
from the fact that it translates Alloy specifications to (satisfiability-equivalent) proposi-
tional formulas, and uses a SAT solver to solve those formulas. Consequently, AA provides
a poor support for integer arithmetic (handles them with respect to only a small bitwidth),
which is essential in modeling smart meters, E-Energy, and E-traffic infrastructures.

Furthermore, AA’s translation of Alloy to propositional logic is exponential in the scope
size, causing AA to run out of memory while translating complex systems in even small
scopes. Therefore, the user cannot check the system in a desirable scope by even letting
AA run longer (for example overnight).

In a previous paper [GT11], we described how proof capability can be added to AA with-
out sacrificing its full automation. However, since the Alloy logic is undecidable, it is not
always possible to automatically prove properties of the systems expressed in Alloy. In
this paper, we present a dual framework, capable of providing both proofs and counterex-
amples based on a 3-step strategy: (1) a fully automatic bounded verification based on
SMT (Satisfiability Modulo Theories) that potentially improves on AA’s scalability and



integer support; (2) a fully automatic proof engine based on SMT and unbounded inte-
gers that can be incomplete; and (3) a complete1 but interactive proof engine based on
the KeY interactive theorem prover [BHS07]. The framework promises an economical ap-
proach for the use of formal methods in the context of critical infrastructures, by requiring
user interaction as a last resort – only if it is really needed.

There are other approaches that implement a similar tool chain – from fully automatic
to interactive proving – for other languages. The HOL-Boogie approach [BLW08], for
instance, introduces a multi-phase proof engine for proof obligations emerging from the
VCC compiler. The majority of obligations can automatically be discharged by an SMT
solver. Only the most sophisticated problems are presented to the user for interactive prov-
ing. Another example is the Why system [BFMP11] that is used for software verification.
Proof obligations can be discharged either using automatic provers or by opening them
in interactive proof assistants. Our approach provides a similiar tool chain for the Al-
loy language, but adds another step to the chain to quickly inspect models for potential
counterexamples during early design stages.

This paper first gives an overview of our analysis framework, then describes various phases
of the framework using an example, and finally reports on our experimental results.

2 Overall Framework

To our knowledge, all previous attempts to provide proof capability for the Alloy language
were based on interactive theorem provers (ITP). Dynamite [FPM07], for example, proves
properties of Alloy specifications using the PVS theorem prover [OSR92] via a translation
to fork algebra. Prioni [AKMR03] integrates the Alloy Analyzer with the Athena theorem
prover. In these approaches, proof capability comes at the price of user interaction, regard-
less of the complexity of the problem. Furthermore, to our knowledge, neither approach
handles integer arithmetic expressions allowed in the Alloy language.

Compared to ITP, SMT solvers can efficiently handle a rich combination of decidable the-
ories without sacrificing completeness or full automation. Although adding first-order
quantifiers to these theories makes them undecidable, recent SMT solving approaches
[GdM09, BLdM09, GBT09] have shown significant advances in handling quantifiers. Our
framework exploits this. In the full-verification mode, it always tries fully automatic SMT
solving first, and switches to ITP only if SMT solving fails.

Since trying to prove an invalid property is particularly costly (an SMT solver may out-
put unknown or time out, and an ITP may never terminate), our framework starts in the
bounded-verification mode, trying to find a counterexample in a finite scope first. This
allows the user to increase the scope arbitrarily in order to gain more confidence about
the correctness of the property before switching to the full-verification mode. It should
be noted that under certain circumstances, a minimum scope can be computed so that
correctness for that scope implies already correctness for any scope [Mom05].

1Modulo integer arithmetic
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Figure 1: Stages of our analysis – CE: counterexample, BV: bounded valid, FV: fully valid, UK:
unknown

Figure 1 gives an overview of our framework. It uses the Alloy IDE to take advantage of
Alloy’s facilities such as type checking and instance visualization. Technical details of the
strategies are discussed in the next section.

3 Approach

Our framework provides three strategies for checking a property of an Alloy specification:
(1) Bounded verification checks Alloy specifications with respect to a bounded scope, aim-
ing at finding counterexamples. Any counterexample reported by this phase is guaranteed
to be valid; no false alarms are generated. Lack of a counterexample, however, does not
constitute proof; it only implies that no counterexample exists within the analyzed scope.
(2) SMT-based full verification aims at proving the correctness of the property fully au-
tomatically using the Z3 SMT solver [dMB08]. If Z3 outputs “unsat”, the property has
been proven correct, and if it outputs a counterexample preceded by the keyword “sat”, a
valid counterexample has been found. However, since Alloy is undecidable, Z3 does not
guarantee a complete analysis: it may output a counterexample preceded by the keyword
“unknown”, implying that the property may or may not be valid, or time out. (3) ITP-
based full verification provides a complete proof engine based on the KeY theorem prover
[BHS07]. Due to our extensive set of axioms and lemmas, in some cases, the property can
be proved automatically. In general, however, this analysis requires user interactions to
guide the theorem prover and thus, its performance depends on the user’s level of exper-
tise.

This section describes the basics of the Alloy language and our three analysis strategies
using a running example. It focuses on the main ideas involved in each analysis in order
to clarify their differences. Technical details and further evaluations of the SMT-based
full verification can be found elsewhere [GT11]. Details of our bounded verification and
ITP-based full verification will follow in our future publications.



1 open util/ordering[Book] as ord
2 abstract sig Target {}
3 sig Name extends Target {}
4 sig Address extends Target {}
5 sig Book {
6 names: set Name,
7 addr: names→ some Target
8 }
9 fact acyclicity { all b: Book, n: Name | not (n in n.̂ (b.addr)) }

10 fun lookup [b: Book, n: Name]: set Address { n.̂ (b.addr) & Address }
11 pred add [b, b’: Book, n: Name, t: Target] {
12 (t in Address) or (t in Name and some lookup [b, t])
13 b’.addr = b.addr + n→t
14 }
15 pred del [b, b’: Book, n: Name, t: Target] {
16 (no b.addr.n) or (some n.(b.addr) − t)
17 b’.addr = b.addr - n→t
18 }
19 pred traces [] {
20 no ord/first.addr
21 all b’: Book - ord/first | let b = ord/prev[b’] |

some n: Name, t: Target | add[b, b’, n, t] or del[b, b’, n, t]
22 }

Figure 2: Example – an address book specified in Alloy

3.1 Example

Figure 2 gives a sample model in Alloy. The model specifies the address book of an email
client where names are mapped to email addresses [Jac06]. Line 1 imports the ordering
module from the Alloy library to order the elements of type Book. The ordering functions
will be used later by the traces predicate (Lines 19 - 22). In order to allow the use of
aliases and group names for email addresses, the model declares a hierarchical type system
(Lines 2 - 4) where Name and Address are subtypes of the basic type Target. Types
are declared using the sig keyword and represent sets of elements. The extends keyword
specifies that the subtypes are disjoint, and the abstract keyword denotes that any element
of the supertype must belong to one of the extending subtypes.

Lines 5 - 8 declare the Book type. The field names represents all the names in the address
book, and declares a binary relation of type Book → Name. The multiplicity keyword
set allows each Book to be mapped to an arbitrary number of Names. The addr field
declares a ternary relation of type Book→ Name→ Target where only those elements
of Name that are included in the names relation are allowed. The multiplicity keyword
some denotes that for every b : Book, and every n : Name included in b.names, the pair
(b, n) must be mapped to at least one Target.

A fact represents a constraint that is assumed to hold. The acyclicity fact (Line 9) con-
strains that no name can appear in its own set of targets directly or indirectly. The opera-



tors . and ˆ represent relational join and transitive closure, respectively.

To describe the dynamic behavior of the system, the model defines additional predicates
and functions. The lookup function (Line 10) returns all the addresses that correspond
to a name in a particular book. The & operator denotes set intersection. Predicate add
(Lines 11 - 14) specifies the addition operation: a pair (n, t) : Name × Target can be
added to an address book b if t is an Address or if it is a Name that is already mapped to
some Address in b (directly or indirectly). Predicate del (Lines 15 - 18) specifies the
deletion operation: a pair (n, t) : Name×Target can be deleted from an address book b
if no name is mapped to n or if n is also mapped to targets other than t. The operators +, -,
and→ denote set union, set difference, and Cartesian product, respectively.

Predicate traces (Lines 19 - 22) specifies that the Book elements represent a sequence
of add and del operations: the first book in the ordering is empty and thus contains no
addresses (Line 20), and any consecutive pair of books are related by either the add or
del operation (Line 21). The rest of this section describes how various properties of this
address book model can be analyzed by our different analysis strategies.

3.2 SMT-based Bounded Verification

Given an Alloy specification and a scope – a bound on the size of each type, we translate
the Alloy specification to a satisfiability-equivalent, bounded SMT problem. Compared to
Alloy Analyzer that bit-blasts Alloy problems to SAT, our translation preserves the original
structure by axiomatizing Alloy constructs as first-order SMT axioms over bounded sorts –
fixed-sized bitvectors. The resulting SMT problem lies within QBVF (quantified bitvector
formula) logic, and thus is decidable [WHdM10].

Top-level types of the Alloy problem are translated to SMT bitvectors, according to the
scope information. Since SMT-Lib – the standard SMT language – does not support sub-
types, we use membership functions to enforce type hierarchies. For an Alloy subtype S,
we declare a membership function isS : T [S] → Bool where T [S] denotes the top-level
supertype of S2. This function denotes which elements of T [S] belong to S. To enforce
multi-level type hierarchies, additional axioms in the form of membership implications are
used.

Relations, the central concept in Alloy, are translated to boolean-valued, uninterpreted,
membership functions. An Alloy relation R : A1 → . . .→ An is represented by an SMT
function Rsmt : (T [A1] × . . . × T [An]) → Bool, and constrained to hold only elements
of its admissible type using the axiom

∀a1 : T [A1], . . . , an : T [An]; R
smt(a1, . . . , an)⇒ isA1(a1) ∧ . . . ∧ isAn(an)

Furthermore, multiplicity keywords used in relation declarations are translated using aux-
iliary SMT functions. For example, to represent a relation declarationR : A1 → someA2,
we declare an additional, uninterpreted SMT function oneR : T [A1] → T [A2] that non-

2In certain cases, it is necessary to declare membership functions for top-level types as well.



1 (declare-fun isAddr (BitVec[5]) Bool)
2 (declare-fun isName (BitVec[5]) Bool)

;; Target is abstract
3 (assert (forall (t BitVec[5]) (or (isAddr t)(isName t))))

;; Addr and Name are disjoint
4 (assert (forall (t BitVec[5]) (not (and (isAddr t) (isName t)))))

;; names: Book→ set Name
5 (declare-fun names (BitVec[5] BitVec[5]) Bool)
6 (assert (forall (b BitVec[5]) (t BitVec[5]) (⇒ (names b t) (isName t))))

;; addr: Book→ names→ some Target
7 (declare-fun addr (BitVec[5] BitVec[5] BitVec[5]) Bool)
8 (assert (forall (b BitVec[5]) (t1 BitVec[5]) (t2 BitVec[5])

(⇒ (addr b t1 t2) (Book.names b t1))))
;; Multiplicity keyword “some”

9 (declare-fun oneTarget (BitVec[5] BitVec[5]) BitVec[5])
10 (assert (forall (b BitVec[5]) (t1 BitVec[5]) (t2 BitVec[5])

(⇒ (names b t1) (addr b t1 (oneTarget b t1)))))

Figure 3: Example – bounded SMT translation of the address book declaration part

deterministically maps each element of T [A1] to exactly one element of T [A2]. The fol-
lowing axiom is then used to ensure that Rsmt maps each element of A1 to at least one
element of A2 (the semantics of some):

∀a : T [A1]; isA1(a)⇒ Rsmt(a, oneR(a))

Figure 3 gives the translation of the declaration part of the address book example. The
translation assumes a scope of 32, and thus the top-level types, namely Book and Target,
are represented by bitvectors of width 5, i.e. BitVec[5].

In addition to signatures and relations, Alloy formulas involve set and relational operators.
Our translation specifies set-based semantics of these operators using first-order axioms
over membership functions. Details of this axiomatization can be found elsewhere [GT11].

Using this translation, we can check the following property of the address book model.

assert delUndoesAddBuggy {
all b, b’, b”: Book, n: Name, t: Target |

(add[b, b’, n, t] and del[b’, b”, n, t])⇒ b.addr = b”.addr
}
check delUndoesAddBuggy for 32

The assertion states that if a pair (n, t) is first added to an address book b and then deleted
afterwards, the addr relation of the final book b′′ is equal to the that of the original book
b. As the name suggests, this property is invalid. The Z3 SMT solver finds the following
counterexample which represents the case where the initial book b already contains the pair



to be added. The book b′ after adding (n, t) then also contains the pair, and so deleting it
results in the empty book b′′. The property delUndoesAddBuggy is therefore violated
since b and b′′ differ.

(define n bv1[5]) Alloy types are translated to bitvectors.
(define t bv0[5]) Hence, the counterexample defines
(define b bv1[5]) bitvector constants for all symbols in the
(define b’ bv16[5]) model. For instance: n refers to name 1,
(define b” bv0[5]) b to book 1, b′ to book 16, etc.
(define (addr (x1 (bv 5)) (x2 (bv 5)) (x3 (bv 5)))

(if (and (= x1 bv1[5]) (= x2 bv1[5]) (= x3 bv0[5])) true =⇒ b.addr = {(n, t)}
(if (and (= x1 bv16[5]) (= x2 bv1[5]) (= x3 bv0[5])) true =⇒ b′.addr = {(n, t)}
false))) =⇒ b′′.addr= ∅

Z3 produces this counterexample in 1.41 seconds whereas the Alloy Analyzer requires
58.01 seconds to find a counterexample in this scope.

3.3 SMT-based Full Verification

The second strategy of our framework is to prove correctness of Alloy assertions fully auto-
matically using the Z3 SMT solver again. In contrast to the bounded analysis that produces
an SMT problem in the decidable logic of quantified bitvectors, the unbounded analysis
uses the AUFLIA logic 3 that allows quantifiers over free sorts, and thus is undecidable.
Consequently, three outcomes are possible: (1) unsat, implying that the SMT solver has
successfully proven the property correct, (2) a counterexample preceded by the keyword
sat, implying that the SMT solver has successfully found a valid counterexample to the
property being checked, and (3) a counterexample preceded by the keyword unknown, im-
plying that the counterexample may or may not be valid, and must be double-checked. An
invalid counterexample denotes an inconclusive analysis.

The translation rules used in this unbounded, SMT-based analysis are very similar to the
ones used in the previous section, except for type declarations. While our bounded trans-
lation represents top-level types as fixed-sized bitvectors, our unbounded translation rep-
resents them as uninterpreted, free sorts in SMT. Furthermore, the unbounded translation
exploits the theory of linear integer arithmetic provided by SMT solvers to translate Al-
loy’s integers. Figure 3.3 shows the unbounded translation of the address book type hi-
erarchy. All other axioms must be rewritten over top-level sorts. Further details can be
found elsewhere [GT11].

To continue with the address book example, one can fix the delUndoesAddBuggy
property based on the feedback from the previous counterexample. The corrected property
delUndoesAdd, shown below, constrains the initial address book to be empty.

3Closed first-order formulas over the theory of linear integer arithmetic and arrays, extended with free sort
and uninterpreted function symbols.



1 (declare-sort Target)
2 (declare-sort Book)
3 (declare-fun isAddr (Target) Bool)
4 (declare-fun isName (Target) Bool)

Figure 4: Example – unbounded SMT translation of the address book type hierarchy

assert delUndoesAdd {
all b, b’, b”: Book, n: Name, t: Target |

(no n.(b.addr) and add[b, b’, n, t] and del[b’, b”, n, t])⇒ b.addr = b”.addr
}

Our bounded analysis reports that this assertion has no counterexamples in the scope of
32. Therefore, with confidence in the correctness of the property, we use the unbounded
analysis to prove the property correct. Z3 proves this property in 0.01 seconds.

3.4 ITP-based Full Verification

In the interactive verification stage, the Alloy model is proven using the KeY system. For
this purpose, the model is translated to KeY’s typed first-order logic (FOL), which also
provides support for subtyping.

Since Alloy centers around relations, we need a relational first-order theory. We therefore
introduce the top-level types Relation and Tuple for relations and their elements, respec-
tively. The uninterpreted predicate in : Tuple × Relation connects the two types and
denotes membership of a tuple in a relation.

To lower the burden of interactively proving a model correct, the translation should be as
transparent as possible; the correspondence between the original model and its translation
should be obvious. To achieve this, we define a FOL counterpart for each of the Alloy
operators. The semantics of the usual set operations, like union and intersection, can
be axiomatized using the membership predicate in. Defining the semantics of relational
operators requires the possibility to access the components of a tuple. For this purpose, we
introduce subtypes of Tuple and Relation to capture arity information:

Atom,Tuple2 ,Tuple3 , . . . <: Tuple

Rel1 ,Rel2 ,Rel3 , . . . <: Relation

We also introduce constructor functions for tuples of any arity greater than one, for in-
stance,

binary : Atom ×Atom → Tuple2

ternary : Atom ×Atom ×Atom → Tuple3



We use additional axioms to specify that (1) the image of a constructor contains all tuples
of its particular arity, and (2) constructor invocations are equal iff all of their parameters
are equal.

Having these notions defined, it is straightforward to define relational operators. A draw-
back of this translation approach is that relations of different arities have to be treated
separately. For every arity, a distinct set of operators has to be defined (which we denote
by subscripting the operator names with the arities they are defined for). For example, the
cartesian product of two unary relations r and s is defined by

prod1×1 : Rel1 × Rel1 → Rel2

∀a, b : Atom; (in(binary(a, b), prod1×1(r, s)) ⇔ in(a, r) ∧ in(b, s))

Signatures and fields of an Alloy model are represented by constant function symbols of
the appropriate type. The address book example of Figure 2 declares four signatures and
two relations that give rise to the following declarations:

Target ,Name,Address,Book : Rel1

names : Rel2 addr : Rel3

In order for these to only capture admissible instances of the model, we restrict the con-
stants to meet additional model constraints: (1) The signatures Name and Address are
disjoint subsets of Target, (2) Target is abstract, (3) The fields names and addr are
bound by their appropriate types and respect the multiplicity constraints.

Since every Alloy entity has a counterpart in FOL, translating an Alloy formula is straight-
forward and preserves its structure. To prove a property correct, we construct a proof
obligation stating that the desired assertion follows from the model constraints.

Alloy formulas are translated using the operators from the relational first-order theory. By
solely applying their definitions, we can rewrite the formulas to equivalent ones, in which
only the uninterpreted symbols (i.e. the membership predicate in and the constructor func-
tions) appear, but none of the operators. Although this approach might be appropriate for
a purely automatic verification engine, we consider this not suitable for the task of in-
teractive proving since it breaks any correspondence between the model and the proof.
Moreover, this approach is inefficient in many cases, because formulas grow significantly
in size and will contain a lot of quantifiers. We therefore define numerous inference rules
that allow efficient reasoning on a higher abstraction level. These rules can be seen as
lemmas and have been proven to follow from the axioms of the relational theory. Consider
these representatives:

unionSubset
r ⊆ s

union1(r, s) ; s
useSubset

in(a, r) r ⊆ s
in(a, s)

The first one is a conditional simplification rule. When the premise r ⊆ s holds, it rewrites
union1(r, s) to s. The useSubset rule has two conditions, namely in(a, r) and r ⊆ s,
and infers a new formula in(a, s).



The KeY system’s proof search strategy has been adjusted to automatically apply most
of the lemmas that were defined. Although the strategy is usually not capable of proving
functionally complex properties, our tests show that the necessary user interaction is often
narrowed down to the most central steps of the proof, and most subgoals can be closed
automatically.

We illustrate our interactive reasoning approach by proving the lookupYields assertion
in the address book model:

assert lookupYields {
traces[]⇒ (all b: Book, n: b.names | some lookup[b, n])
}

The assertion states that every name known in an address book is actually mapped to some
address. This assertion is valid only if all books are constructed by proper insertions and
deletions. We therefore assume the traces predicate to hold. Since Z3 can not prove
this assertion (it times out), we hand it to the KeY system.

The address book model linearly orders the elements of type Book by importing the
ordering module. To reflect the linear ordering in the translation, we define a function
b to enumerate all elements of Book, using KeY’s built-in integer type int. The following
axioms make b a bijection from the non-negative integers to Book4:

b : int → Atom ∀a : Atom; (in(a,Book)⇒ ∃i : int ; (i ≥ 0 ∧ a .
= b(i)))

∀i : int ; (i ≥ 0⇒ in(b(i),Book)) ∀i, j : int ; (i, j ≥ 0⇒ (b(i)
.
= b(j)⇔ i

.
= j))

While proving the assertion, we face two main challenges: (1) The traces predicate
defines Book inductively. So we use induction on non-negative integers to prove the
objective for all elements of Book. (2) The lookup function uses the transitive closure
of a mutable relation, namely addr, that changes due to insertions and deletions. We
therefore use an induction principle for transitive closure, which is defined by the following
rule for an arbitrary parameterized formula φ:

tc induct

∀a, b : Atom; (in(binary(a, b), r)⇒ φ(a, b))
∀a, b, c : Atom; (in(binary(a, b), r) ∧

in(binary(b, c), transClos(r)) ∧ φ(b, c)⇒ φ(a, c)

∀a, b : Atom; (in(binary(a, b), transClos(r))⇒ φ(a, b))

The instantiation of φ for this rule and the induction hypothesis have to be provided manu-
ally and require a solid insight on the model. The remaining interactive steps provide tech-
nical guidance of the prover. Overall, out of a total of 6522 rule applications necessary to
prove lookupYields, 122 were interactive, which included the above tc induct rule (2
times), induction over the elements of Book (2 times), quantifier instantiations (52), case
distinctions (17), hiding of unnecessary formulas (25), and miscellaneous minor steps (24).

4Note that this makes Book an infinite set. However, for this particular model, the proof remained correct
when we changed the bijection from a function over all non-negative integers to one over a finite interval, thus
finitizing Book.



AA BOUNDED Z3 UNBOUNDED Z3 KEY
PROPERTY SCOPE TIME RES TIME RES TIME RES STEP RES

delUndoesAdd 16 0.8 CE 0.4 CE
-Buggy 32 58 CE 1.0 CE – NA – NA

delUndoesAdd 32 150 BV 0.0 BV
64 TO UK 0.0 BV 0.0 FV – NA

lookupYields 8 101 BV 147 BV
16 TO UK TO UK TO UK 122 FV

Table 1: Evaluation results for the address book example – CE: counterexample, BV: bounded valid,
FV: fully valid, UK: unknown, NA: not applicable, TO: time out (> 10min.)

AA BOUNDED Z3 UNBOUNDED Z3 KEY
PROPERTY SCOPE TIME RES TIME RES TIME RES TIME RES

BuggyCOM 16 427 CE 3.6 CE
Theorem 1 17 TO CE 1.9 CE – NA – NA

COM 16 451 BV 0.0 BV
Theorem 1 17 TO UK 0.3 BV 0.0 FV – NA

mark sweep 9 140 BV 17 BV
Soundness 1 10 TO UK 107 BV TO UK 10 FV

Table 2: Evaluation results for other case studies – CE: counterexample, BV: bounded valid, FV:
fully valid, UK: unknown, NA: not applicable, TO: time out (> 10min.)

4 Experiments

In this section, we first summarize our analysis of the address book example, and then
report on applying our framework to Microsoft COM standard and the mark-and-sweep
garbage collection algorithm.

Table 1 shows the performance of our framework on the address book example, and com-
pares the results with the Alloy Analyzer (AA). The time (in seconds) is measured on an
Intel Core2Quad, 2.8GHz, 8GB memory. The Alloy analysis time is the total of the time
spent on generating CNF by AA 4.1.10 and solving it using the SAT4J solver. We used Z3
version 2.19 as the underlying SMT solver. Table 1 shows the typical progression of an in-
tegrated formal design process: First the model is analyzed using decidable, yet bounded
technologies to identify errors in the specification (row 1). Having corrected the errors
(row 2), the full (unbounded) verification is launched to automatically prove the proper-
ties. Since the unbounded problem is significantly harder and undecidable in general, we
may have to resort to interactive verification (row 3). The steps in this row indicate the
number of interactive rule applications required.



To further evaluate our framework, we have checked Microsoft’s Component Object Model
(COM) standard [Box98], a component integration architecture that is adopted by numer-
ous software component vendors, and provides the basis for higher-level standards such as
OLE/ActiveX and COM+. We have also checked the mark-and-sweep garbage collection
algorithm, which is widely used for memory management. The original Alloy specifica-
tions of these two systems are distributed with the Alloy Analyzer. However, since neither
model contains an invalid assertion, we seeded a bug in the COM model (in the Identity
axiom) for a case with a counterexample (denoted by BuggyCOM ). The results of our
experiments on these two systems are given in Table 2.

As shown in these tables, in most cases, the runtime of our bounded verification is signifi-
cantly better than AA. This is because unlike AA that flattens all formulas for all possible
values in the propositional form, our translation preserves the structure of the formulas, and
thus exploits high-level simplifications offered by Z3. However, for lookupYields, our
bounded verification does not perform as well as Alloy. This is because traces used in this
assertion pose a challenge for our current translation. We are investigating further opti-
mizations to simplify our axiomatization of traces in order to improve our performance.

Bounded verification of COM-Theorem1 and delUndoesAdd shows another advan-
tage of using QBVF. These properties have no counterexamples, and Z3 can deduce that
in almost zero seconds, independent of the analyzed scope. This is because the decision
procedure for QBVF can potentially deduce a contradiction from the quantified formulas
independently from the sizes of the bitvectors. That is, the same quantifier instantiations
that produce a contradiction for smaller bitvectors can produce contradictions for larger
bitvectors without any significant overhead.

So far in our experiments, our SMT-based, unbounded verification has either proved a
property correct or timed out with an inconclusive (unknown) result. A third outcome is
also possible where this phase finds a counterexample that was missed by the previous
bounded verification phase (because the model was not analyzed in a big-enough scope).
Our current experiments, however, do not expose this case. In cases where Z3 cannot
verify a property (e.g. mark-and-sweep and lookupYields), the KeY interactive
prover is invoked. As explained in Section 3.4, in order to prove lookupYields, the
user needs to guide KeY by manually selecting 122 rule applications out of a total of 6522
rules necessary (the rest are selected automatically by KeY ). In the mark-and-sweep
case, however, a complete proof is found fully automatically by KeY in 10 seconds.

5 Conclusions

The framework presented in this paper supports modeling, checking, and proving prop-
erties of critical infrastructures expressed in the Alloy language. It offers an economical
approach by introducing a new dual-analysis engine that is capable of finding counterex-
amples in faulty systems and proving properties of sound systems. The analysis starts with



our SMT-based, bounded, fully automatic, and decidable verification technique that aims
at finding counterexamples, and potentially outperforms AA. In this phase, the user can
increase the scope in order to gain more confidence about the correctness of the property
before switching to the full-verification mode. Full verification starts with our SMT-based,
fully automatic proof engine, and switches to our interactive, ITP-based, complete verifi-
cation only if the automatic proof engine fails.
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