
Optimizing MiniSAT Variable Orderings for the
Relational Model Finder Kodkod

(Poster Presentation)

Markus Iser, Mana Taghdiri, Carsten Sinz

Karlsruhe Institute of Technology (KIT), Germany
markus.iser@student.kit.edu,

{mana.taghdiri, carsten.sinz}@kit.edu

Introduction. It is well-known that the order in which variables are processed
in a DPLL-style SAT algorithm can have a substantial effect on its run-time.
Different heuristics, such as VSIDS [2], have been proposed in the past to obtain
good variable orderings. However, most of these orderings are general-purpose
and do not take into account the additional structural information that is avail-
able on a higher problem description level. Thus, structural, problem-dependent
strategies have been proposed (see, e.g., the work of Marques-Silva and Lynce
on special strategies for cardinality constraints [1]).

In this paper, we propose a new, structural variable ordering heuristic that is
specific to the relational model finder Kodkod [3]. Kodkod transforms first-order,
relational logic formulas into equisatisfiable propositional formulas and solves
them using a SAT solver. Structural properties of a Kodkod problem that can
efficiently be extracted in its first-order relational representation get lost in its
propositional encoding. Our proposed heuristic computes the “constrainedness”
of relations, and gives priority to the propositional variables that stem from the
most constrained relations. The constrainedness is computed from Kodkod’s ab-
stract syntax tree, and thus takes the structure of the original relational formula
into account.

Kodkod is a model finder for a widely-used first-order relational logic—a
constraint language that combines first-order logic and relational algebra, and is
augmented with transitive closure, integer arithmetic, and cardinality operators.
It has been used as the backend engine of several software analysis tools in order
to find bugs in the design and implementation of various software. A problem in
Kodkod consists of a universe declaration, a number of relation declarations, and
a formula over those relations. The universe defines a finite set of uninterpreted
atoms that can occur in the models of the problem. A relation declaration spec-
ifies both an upper and a lower bound on the value of that relation. An upper
bound of a relation denotes all the tuples that the relation may contain, whereas
a lower bound denotes all the tuples that it must contain. Relation bounds are
used to specify various information such as partitioning the universe into types,
or defining a partial model for the problem.



Method. Based on the observation that shuffling variables in the SAT encoding
produced by Kodkod can have a tremendous effect on the run-time of the SAT
solver, we developed strategies to obtain better, Kodkod-specific orderings. We
experimented with two ways to modify MiniSAT’s standard variable ordering:

1. Initializing VSIDS: Instead of using MiniSAT’s default initialization that
assigns variables in the same order in which they occur in the CNF file, we
used a Kodkod-specific initial order.

2. Overriding VSIDS: Here, we partition variables into subsets (S1, . . . , Sk),
and assign variables in Si before any variable occurring in a subset Sj , j > i.
Within each subset, we use VSIDS scores to order variables.

Kodkod-specific variable orderings are computed based on the constraining
effect that a subformula exerts on a relation’s possible values. For example, a
subset formula R ⊆ S, written as “R in S” in Kodkod’s language, forces the
entries of the relation R to be false, as soon as the corresponding entries in S are
false. Similarly, for a cardinality restriction, written as “#R <= c” in Kodkod,
where the constant c is small, many entries in R have to be set to false. Thus, the
constraining effect of a cardinality restriction is usually high. We therefore try
to assign variables corresponding to such relations first. The intuition is that the
number of unit propagations on the SAT level can be maximized thereby. In our
approach, we iteratively compute the effect of highly constraining operators (like
subset or cardinality restrictions) on the relations that occur in the constrained
relational expressions. The effect is summarized as a weight that we assign to
each relation.

Conclusion. We have implemented several variants of the heuristic outlined
above in a modified version of MiniSAT. Experiments show that the initialization-
based approach is superior to score-overriding. The initial scores blur rapidly
while search advances, but, since MiniSAT is a learning solver, the impact of
score-initialization lasts longer than the induced priorities remain intact.

Experiments with score-overriding reveal no evident trend regarding runtime.
However, using an initialization-based strategy the SAT solving run-time can be
improved considerably in many cases. On a test set of 91 Kodkod problems,
run-times could be improved by a factor of two or more for 26 instances (only
for 6 problems, the runtime got worse by a factor of two or more); the maximal
speed-up was over 800, while the worst deterioration was less than a factor of 4.
Run-time was improved on 58 instances and deteriorated on 33.

References

1. Marques-Silva, J.P., Lynce, I.: Towards robust CNF encodings of cardinality con-
straints. In: CP’07. pp. 483–497 (2007)

2. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: DAC’01. pp. 530–535 (2001)

3. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: TACAS’07. pp.
632–647 (2007)


