AT

Karlsruhe Institute of Technology

Bounded Program Verification using an SMT Solver:
A Case Study

Tianhai Liu, Michael Nagel, Mana Taghdiri

2012-04-18

AUTOMATED SOFTWARE ANALYSIS GROUP
INSTITUTE FOR THEORETICAL COMPUTER SCIENCE, DEPARTMENT OF INFORMATICS

.
@ Fifth IEEE Internatior

s 2 1™ s Tact: ~ \/I~ £
ottware testing, vVerl l

cation and Valida i
"ff‘,,w-r-;. S ; e e
s R 7 1S T 7 I B A P = Y

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association



Bounded Verification Tool: InspectJ -\\-‘(IT

® Modular verification
® Can check methods in isolation
® Rich data-structure properties of OO code
® Arbitrarily complex object configurations in the heap
® Scalability
W Target High-level simplications of QBVF solvers
B Usability
® Fully automatic infrastructure
® Soundness
® Error traces reported by InspectJ are real bugs
® Bounded completeness

® If a bug exists wrt. bounds, InspectJ finds it
® Only wrt. finite number of objects, and loop/recursion unrolling
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Architecture ﬂ("‘
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Target Logic AT
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® Quantified bit-vector formulas (QBVF) with theory
of arrays.

® QBVF were traditionally handled by flattening
guantifiers using conjunctions and disjunctions.

® Recent QBVF solvers (e.g. Z3) perform several

high-level simplifications before flattening
guantifiers

B skolemization

® miniscoping

® Rewriting

B ... = makes them more efficient!
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Encoding Control Flow --- after 1 loop unrolling AT
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a )
public class A {
B[] f; int sum;
void foo(int i) {
while (i<10) {
sum+=f[i] .v;
i++;
b1}

class B{int v;}

a

i =10

i <10

= Nodes labeled with numbers stand for states
» Edges stand for transitions or branches chosen
» CF is encoded with edge variables
" e Ey1VEo4, Eoqn = Eq
= Each edge variable is a predicate

sum = sum + f[i].v

i=i+1

= Predicates evaluation depends on stmt. i=10
u eg EO,l - <10
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Encoding Control Flow --- after 1 loop unrolling AT

fa

J

public class A {
B[] f; int sum;
void foo(int i) {
while (1<10) {
sum+=f[i] .v;
i++;
b1}

class B{int v;}

a

= Nodes labeled with numbers stand for states
» Edges stand for transitions or branches choosen
» CF is encoded with edge variables
" e.0.Ey1VEg4, Eogqy = Eq
= Each edge variable is a predicate
» Predicates evaluation depends on stmt.
" e0.Ey; 2ip <10

>

Motivation

Foundations

Karlsruhe Institute of Technology

= Each variable (field, argument, local variable) is suffixed

by a number N
= N means variable update times
= N starts from O

lo = 10
ip <10
sumy = sumgy + fyliol. v
il - iO + 1
ip =10
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Encoding Control Flow --- after 1 loop unrolling AT

fa

J

public class A {
B[] f; int sum;
void foo(int i) {
while (1<10) {
sum+=f[i] .v;
i++;
b1}

class B{int v;}

a

= Nodes labeled with numbers stand for states
» Edges stand for transitions or branches choosen
» CF is encoded with edge variables
" e.0.Ey1VEg4, Eogqy = Eq
= Each edge variable is a predicate
» Predicates evaluation depends on stmt.
" e0.Ey; 2ip <10

>

Motivation

Foundations

by a number N

= N means variable update times

= N starts from O

= Correct variable when in join nodes
" e.0.Eyy2ip=210&&i4 =i

10210&&l1=l0

Karlsruhe Institute of Technology

Each variable (field, argument, local variable) is suffixed

O
ip <10
(V)
sumy = sumgy + fyliol. v
(2)
i =ig+1
(3
ip =10
(4
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Exceptions AT
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fa )
class A {

B[] f; int sum;
void foo(int i) {

Exceptions will be caught by an exc node

while (i<10) { ip =10 && iy = i
sum+=f[i] .v;
it++; ip <10
}1) ip <O0|| ip = fo.length
class B{int v;} ]
a _ 0<ip<fylength
folio] = null
exc
fO [io] = null
sumy; = sumgy + folipl - vo
l1 = io -+ 1
11 > 10
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Encoding Classes -\\-‘(IT

® Instances are bounded

® Given a bound n for a class A
® Aencoded as (define—sort A () (_BitVecm)), m = [log(n + 1)]
® Not all values represent instances
® value 0 stands for Java null, denoted by nullA
® values belonging to (n, 2™] are ignored.

0 n om
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Encoding Classes (cont.) -\\-‘(IT

® How to achieve bounded completeness

® no bug exists within a bound n implies no bug exists Iin
any bounds less than n.

® an index idxA Is introduced to represent the last
allocated object, idxA € [0, n].

. m
O ee e ldxA cee n L 2
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Encoding Classes (cont.) -\\-‘(IT

@ in pre-state, valid range of Ais |0, idxA]
B in post-state, valid range of Ais [0, idxA’]

® translation of allocation statement ,A a = new A();"

® (assert(and
(=idxA;4+; (bvadd idxA; (_bvl m)))
(= aidxAiyq)
(bvuge idxA;,, idxA;)
(bvuge idxA;,1 (_bvl m))
))
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Encoding Fields A{]]
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® Encoded as arrays over bit-vectors
B (declare—fun f () (Array A B))

] Q )
® Using theory of array ass AL
B Read o.f: (select f 0) } B,
® Write o.f = b : (store f o b) G

® Values of all fields must be valid in pre-state

B (assert (forall (x A)
(=> (and (not (= x nullA)) (bvule x idxA))
(bvule (select f_0 x) idxB))))
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Encoding Arrays AT
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® array objects of type A[ | are encoded by
iIntroducing a new type ArrayObjA and a
reference Ref A from ArrayObjA to their contents.
® (define—sort ArrayObjA (_ BitVect))

® (declare—fun RefA () (Array ArrayObjA (Array integer

A)))
class A{ ’ class A j class ArrayODbjA j
I}A[] arr; ArrayODbjA arr; [contents] RefA; 0 1 ... arrlength-1
real array contents
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Encoding Arrays --- bitwidth 5, instance 3 -\\J(IT

(define-sort int () (_ BitVec 5))
(define-sort A () (_ BitVec 2))
(define-sort ArrayODbjA () (_ BitVec 2))

(@ )

class A { Define types
Al] arr;
void foo(){

A elem = arr[@0];
int len = arr.length

d
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Encoding Arrays --- bitwidth 5, instance 3 ST

(@

class A {
A[] arr;
void foo(){
A elem = arr[0];
int len = arr.length

}

Karlsruhe Institute of Technology

(define-sort int () (_ BitVec 5))
(define-sort A () (_ BitVec 2))
(define-sort ArrayODbjA () (_ BitVec 2))

(declare-fun this () A)

(declare-fun elem () A)
(declare-fun len () int)

Define local variables

d
Motivation >  Foundations Approach >>  Evaluation >  Related Work >>  Conclusion
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Encoding Arrays --- bitwidth 5, instance 3 ST
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(define-sort int () (_ BitVec 5))
(define-sort A () (_ BitVec 2))
(define-sort ArrayObjA () (_ BitVec 2))

@ D (declare-fun this () A)
class A { (declare-fun elem () A)
ALl arr; (declare-fun len () int)

void foo(){

A elem = arr[0]; :
int len = arr.length (declare-fun arr (A) ArrayObjA)

} (declare-fun RefA (ArrayObjA) (Array int A))
} (assert (= elem
c (select (select RefA (select arr this)) (_ bv0 5)))

Define array fields and access array

Motivation >>  Foundations »>  Approach >>  Evaluation >  Related Work >>  Conclusion
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Encoding Arrays --- bitwidth 5, instance 3 ST

ttttttttttttttttttt f Technology

(define-sort int () (_ BitVec 5))
(define-sort A () (_ BitVec 2))
(define-sort ArrayObjA () (_ BitVec 2))

@ D (declare-fun this () A)
class A { (declare-fun elem () A)
ALl arr; (declare-fun len () int)

void foo(){

A elem = arr[@0]; :
int len = arr.length (declare-fun arr (A) ArrayObjA)

} (declare-fun RefA (ArrayObjA) (Array int A))
} (assert (= elem
c (select (select RefA (select arr this)) (_ bv0 5)))

(declare-fun length () (Array ArrayODbjA int))
(assert (= len
(select length (select arr this))))

Define array length
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Encoding JML Specifications -\\-‘(IT

® Standard JML plus the \reach clause

® Simply transform to FOL formulas except...

@ Constraint variables of a reference type A must be in
A's instance range.

class A{
B f:
[/@ invariants \forall o A; o.f == null;
void foo(){}
} l transform

(assert (forall (0 A)) (=> (and (not (= o nullA)) (bvule o idxA))
(= (select f 0) nullA))))
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Reachability AT
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B expressed as \reach(x,T, f)

B Generally Transitive Closure encoded as

(inspired by Claessen)
1) Vx,y.xRy & P(x,y) =1
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Reachability AT
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B expressed as \reach(x,T, f)

® Generally Transitive Closure encoded as
(inspired by Claessen)
1) Vx,y.xRy & P(x,y) =1
2) Vx,y,z.P(x,y) >0&&P(x,z) >0= P(x,z) >0
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Reachability AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

B expressed as \reach(x,T, f)

® Generally Transitive Closure encoded as

(inspired by Claessen)
1) Vx,y.xRy & P(x,y) =1
2) Vx,y,z.P(x,y) >0&&P(x,z) >0= P(x,z) >0
3) Vx,y.P(x,y) >1=3Iw.(P(x,w) =1&&P(x,y) = P(w,y) +
1)
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Reachability AT
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B expressed as \reach(x,T, f)

® Generally Transitive Closure encoded as

(inspired by Claessen)
1) Vx,y.xRy & P(x,y) =1
2) Vx,y,z.P(x,y) >0&&P(x,z) >0= P(x,z) >0
3) Vx,y.P(x,y) >1=3w.(P(x,w) =1&&P(x,y) = P(w,y) +
1)
® Additional constraints in Java context
1) Vx.P(null,x) =0
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Reachability AT
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B expressed as \reach(x,T, f)

® Generally Transitive Closure encoded as

(inspired by Claessen)
1) Vx,y.xRy & P(x,y) =1
2) Vx,y,z.P(x,y) >0&&P(x,z) >0= P(x,z) >0
3) Vx,y.P(x,y) >1=3w.(P(x,w) =1&&P(x,y) = P(w,y) +
1)
® Additional constraints in Java context
1) Vx.P(null,x) =0
2) Vx.xRx =>Vy.(x #y) = (P(x,y) =0)
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Evaluation Benchmark -\\-‘(IT
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® Djjkstra algorithem implemented using
BinaryHeap data structure in Java

B 7 classes
® 346 Java source lines
® 37 methods
B 27 lines of JML specification, which checks binary heap
data structure internal intergrity.
® runtime compared with JForge
Motivation >>  Foundations »>  Approach >>  Evaluation »»  Related Work >  Conclusion
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Properties Checked

AT
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BinaryHeapElement Class

key: 4

heaplndex:3

data: actual data

X
/ stored in the heap.

heaplndex is an index into ,heap”
(inside BinaryHeap class)

Keys Match
keys of instances related
by val must match

Structural Heap Sanity

this.elems[this.heap[i].val].heapindex == i

key: 4

val: 1

BinaryHeapindexKey Class

val is an index into ,elems®
(inside BinaryHeap class)
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Bugs found T
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Copy by reference bug null pointer dereference
[*@ invariant /[l VERSION WITH BUG

@(\forall inti; i >= 0 && i < this.heap.len this.dropHeap();

@ ==> this.elemsJthis.heap]i].val].key == X = heap[1];

@ this.heapli].key)

@*/

// VERSION WITH BUG // VERSION WITHOUT BUG
heap[index2] = heap[index1]; X = heap[1];

heap[index2].key = k; this.dropHeap();

[l VERSION WITHOUT BUG
heap[index2].key = heap[index1].key;
heap[index2].val = heap[index1].val;
heap[index2].key = k;

Motivation >>  Foundations »>  Approach >>  Evaluation »>  Related Work »>  Conclusion
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Runtime Evaluation Results A‘(!T

JForge |nspeCt arlsruhe Institute of Technolo
Method Bit Obj Loop e ey
PrePro. Z3 Total Result Result PrePro. Z3 Total
3 3 3 0.6 61.8 62.4 unsat unsat 15 0.4 -
4 4 4 0.7 82.5 83.2 unsat unsat 1.5 8.7 -
decreaseKey
5 5 5 1.8 TO TO - unsat 1.5 31.3 -
7 7 6 66.0 TO TO - unsat 1.6 507.5 -
3 3 3 0.5 0.6 - unsat unsat 1.7 0.2 1.9
4 4 4 15 36.4 37.9 unsat unsat 1.7 3.4 -
deleteMin
5 5 5 4.8 TO TO - unsat 1.7 52.5 -
6 6 6 29.5 TO TO - unsat 1.7 133.4 -
3 3 3 0.5 0.5 - unsat unsat 1.6 0.4 1.9
4 4 4 1.5 14.8 15.6 unsat unsat 1.6 5.4 -
insert
5 5 5 2.1 409.8 411.9 unsat unsat 1.6 86.8 -
6 6 6 11.3 TO TO - unsat 1.6 110.0 -
4 4 4 0.5 0.2 - unsat unsat 1.4 0.0 1.4
minElement 7 7 7 49.5 16.6 66.1 unsat unsat 1.4 0.0 -
8 8 8 TO - - - unsat 1.4 0.0 -
4 4 1 16.7 4.3 21.0 sat sat 3.2 6.9 -
run
7 7 1 371.1 299.0 TO - sat 3.2 2.4 -
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SMT-based program checking -\\-‘(IT

B ESC/Java, ESC/Java2

® Unrolling loops bounded only
® Undecidable target logics

® Armando et al.[09], Cordeiro et al. [09], Ganal et al.
[06], Sinz et al. [10] and LAV

® Quantifier-free target logics

® Check finite-state-machine properties

® No data-structure properties checked
® Boogie

® Undecidable target logics

® Loop invariants required

® Spurious counterexamples
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Rich-Data-Structure checkings -\\-‘(IT

® Bounded verification approaches

B SAT solver used and fully bounded
® JAlloy, JForge, TACO, Miniatur, Karun and MemSAT

® SMT solver used and only loops are bounded
® ESC/Java and ESC/Java2

® Dynamic checking with bounded heap
B TestEra and Korat

B Java PathFinder + Korat
B Deductive verification

m Key, LOOP
Motivation >>  Foundations »>  Approach >>  Evaluation >  Related Work>»  Conclusion
29 2012-06-29 Tianhai Liu — Bounded Program Verification using an SMT Solver: A Case Study Automated Software Analysis Group

Friday Institute for Theoretical Computer Science



AT
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conclusion =N o

® Main contribution

B First attempt to use SMT solver on bounded data-
structure-rich program verification.

® Present a translation from subset of Java to QBVF with
theory of arrays.

® Future

® incorporating optimizations to reduce the burden of the
underlying solver

® finding relationship between the number of objects and
loop unrollings
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