
Optimizing MiniSAT Variable Orderings
for the Relational Model Finder Kodkod

Diploma Thesis
of

Markus Iser

Automated Software Analysis Group
Institute for Theoretical Computer Science

Karlsruhe Institute of Technology

Advisor: JProf. Dr. Mana Taghdiri
Second Advisor: Dr. Carsten Sinz

Period of Research: 2012-01-01 – 1012-06-30

i

German Abstract. Kodkod ist ein Constraint Solver für eine relationale Prädikaten-
logik erster Ordnung. Über einem endlichen Universum von Atomen übersetzt Kodkod
relationale Constraint Satisfaction Problems (CSP) in erfüllbarkeitsäquivalente Formeln
in Aussagenlogik. Unter Zuhilfenahme einer der mitgelieferten SAT Solver können diese
Probleme in Folge auf Erfüllbarkeit getestet werden. Die Motivation für diese Arbeit
ergab sich aus der Entdeckung, dass zulässige Permutationen von Aussagen in Kodkod
zu ernormen Laufzeitveränderungen beim SAT Solver führen können. Das liegt daran,
dass diese Permutationen zu unterschiedlichen Eingangsordnungen der aussagenlogischen
Variablen führen, da sich in der Übersetzung die Reihenfolge der erzeugten Klauseln und
Variablen ändert.

Wir haben das Interface zwischen Kodkod und MiniSAT um die Möglichkeit erweit-
ert, Prioritäten für Variablen zu übergeben. Wir nutzen diese Prioritäten in zweierlei
Weise. Zum einen können wir dafür sorgen, dass MiniSAT diese verwendet um den
eigenen dynamischen Score, nach dem MiniSAT Variablen normalerweise ordnet, teil-
weise statisch zu überschreiben. Zum anderen können wir mit diesen Prioritäten den
MiniSAT-internen Score initialisieren, um kontrollierte Anfangsbedingungen zu schaffen.
Wir stellen eine Methode vor die solche Prioritäten anhand von struktureller Analyse
des Kodkod-internen Abstract Syntax Trees (AST) extrahiert.

In einem ersten naiven Ansatz beschränken wir MiniSATs binäre Suche auf Kodkods
Primärvariablen und erklären Zusammenhänge mit ähnlichen Ansätzen, die in der Liter-
atur zu finden sind. Mit diesem ersten Ansatz können wir die Laufzeit von MiniSAT auf
erfüllbaren Instanzen beträchtlich steigern. Dafür verschlechtert sich aber die Laufzeit
auf unerfüllbaren Instanzen. Dieses Phänomen bestätigt bekannte beweistheoretische
Ergebnisse.

In einem zweiten Ansatz können wir mithilfe einer weicheren Priorisierung von Kod-
kods Primärvariablen die guten Laufzeiten auf erfüllbaren Instanzen erhalten und gleich-
zeitig die Performance-Einbußen auf unerfüllbaren Problemen stark dämpfen.

Der dritten Ansatz dreht sich um die strukturelle Analyse von Kodkods Abstract Syn-
tax Tree (AST). Wir berechnen fein verteilte Prioritäten, um Kodkods Primärvariablen
untereinander zu ordnen. Dabei wollen wir erreichen, dass der SAT solver die Suche mit
den Variablen beginnt, für die die meisten Bedingnungen gelten, vor dem Hintergrund,
dass dadurch Sackgassen im Suchbaum früher identifiziert werden können und Folgebe-
dingungen eher propagiert werden. Wir konnten dadurch leichte Verbesserungen erzielen
gegenüber der gleichmäßigen Priorisierung von Primarvariablen, insbesondere aber im
Bereich der unerfüllbaren Probleme. Für die strukturelle Analyse des AST haben wir
Methoden entwickelt, die auch für zukünftige Ansätze interessant sind.

ii

Abstract. Kodkod is a constraint solver for bounded relational first-order logic which
translates problems into equisatisfiable propositional formulas, in turn using an off-the-
shelf SAT solver to check their satisfiability. This work is motivated by the observation
that permuting top-level propositions in Kodkod can lead to great runtime variations in
the SAT solver. The reason for this phenomenon are different initial variable orderings,
as Kodkod processes and translates the constraints in the given order.

We extended the interface between Kodkod and MiniSAT to accept priorities for
variables and used them in two distinct ways. One approach involves a partial override
of MiniSAT’s native variable ordering score, whereas the other is based on score ini-
tialization, leaving MiniSAT a great liberty during the curse of evaluation. We device
a method of extracting variable priorities by structural analysis of Kodkod’s Abstract
Syntax Tree (AST).

In a simple initial approach, we restricted the search to Kodkod’s primary vari-
ables and explain the correspondence to similar experiments regarding input restricted
branching found in literature. While that first naive approach leads to considerable
performance boosts on satisfiable problems, a general performance deterioration is en-
countered on unsatisfiable instances. This phenomenon empirically confirms important
proof-theoretic results.

In a second approach, we uniformly initialized the MiniSAT score related to Kod-
kod’s primary variables, hereby strongly dampening the performance deterioration on
unsatisfiable problems while still yielding the performance improvement on satisfiable
problems expectable due to the initial experiment.

By structural analysis of Kodkod’s AST we calculated a more fine-grained set of
priorities to modify the inner ordering of Kodkod’s primary variables. The objective is
to prioritize the most constraint variables for early discovery of dead ends in the search
tree and to maximize boolean constraint propagation. This third and last approach
leads to runtime improvements on both satisfiable and unsatisfiable instances. In order
to be able to analyze Kodkod’s abstract syntax tree, we developed methods which may
yet remain interesting for future approaches.

I declare that this document and the accompanying code has been composed by
myself, and describes my own work, unless otherwise acknowledged in the text. It
has not been accepted in any previous application for a degree. All verbatim extracts
have been distinguished by quotation marks, and all sources of information have been
specifically acknowledged.

Karlsruhe, 2012-06-30

Contents

1 Introduction 1
1.1 Objective and Motivation . 2
1.2 Methodology and Results . 2
1.3 Example . 3
1.4 Outline . 4

2 Background 5
2.1 Kodkod . 5

2.1.1 Syntax . 5
2.1.2 Translation . 8
2.1.3 Conclusion . 10

2.2 MiniSAT . 10
2.2.1 DPLL Procedure . 11
2.2.2 Clause Learning . 11
2.2.3 Non-Chronological Backtracking 13
2.2.4 Random Restarts . 13
2.2.5 Branching Heuristic . 13
2.2.6 CDCL Algorithm . 14

2.3 Related Work . 15

3 Design and Implementation 18
3.1 Influencing MiniSAT’s variable ordering 18

3.1.1 Activity Overriding . 18
3.1.2 Activity Initialization . 18

3.2 Extracting Criteria for Prioritization . 19
3.2.1 Prioritizing Input Variables . 19
3.2.2 Highly Constraining Formulas . 19
3.2.3 The Sensitivity of Boolean Formulas to Singular Assignments . . . 22
3.2.4 Fast Fuzzy Calculation of Sensitivity-based Dominance 30
3.2.5 A Weighing Algorithm for Relations 35

4 Evaluation 37
4.1 Specifications . 37

iv

CONTENTS v

4.2 Models . 37
4.3 Experiments . 43

4.3.1 Uniform Overriding . 43
4.3.2 Uniform Initialization . 44
4.3.3 Step-like Initialization . 47

4.4 Overhead . 50
4.5 Incrementing Bounds . 55

5 Summary and Outlook 58

Bibliography ix

List of Algorithms

2.1 CDCL Solver . 15

3.1 Dominance Calculation . 34
3.2 Score Distribution . 36

vi

List of Figures

1.1 Kodkod Example Problem . 4

2.1 Kodkod Abstract Syntax . 6
2.2 Example: Translation of Relations . 8
2.3 Example: Translation of Expressions . 9
2.4 Translation of Binary Expressions . 9
2.5 Example: Translation of Formulas . 10

4.1 Runtime: Uniform Overriding . 44
4.2 Runtime: Uniform Initialization . 45
4.3 Parameter Variations: Uniform Initialization 46
4.4 Runtime: Step-like Initialization . 47
4.5 Runtime: Step-like vs. Uniform Initialization 48
4.6 Parameter Variations: Step-like Initialization 49
4.7 Runtime (Overhead): Step-like Initialization 54
4.8 Runtime (Overhead): Step-like vs. Uniform Initialization 54

vii

List of Tables

3.1 Highly Constraining Formulas . 20
3.2 Translation Revisited 1 . 28
3.3 Translation Revisited 2 . 29

4.1 Benchmark Problems . 38
4.2 Overhead of the Weighing Algorithm . 50
4.3 Maximum Bounds (SAT) . 55
4.4 Maximum Bounds (UNSAT) . 57

viii

Chapter 1

Introduction

Kodkod [26] is a model finder for bounded constraint satisfaction problems in relational

logic, that is a first-order logic combined with relational operators. The language is

augmented with transitive closure, integer arithmetic, and cardinality operators. Kodkod

translates the constraints formulated in its bounded relational first-order logic into an

equisatisfiable formula in propositional logic. It interfaces several SAT solvers and uses

one of these to solve the constraint satisfaction problem. It has been developed as a

core API for the Alloy Analyzer [15] [28], a tool used in wide range of applications, due

to its ability of describing general structures and their exploration. The Alloy language

has been used to check security properties of network protocols and for exploration of

their topology. It has also been used to formally verify access control and authentication

protocols. More examples are the modeling of file-systems, software, railway control,

etc. Until today the new core API of Alloy Analyzer 4 (Kodkod) is used in many

other programs in the realm of declarative coding and automated code checking (e.g.

TACO [10], JForge [8], Nitpick [4]).

Kodkod introduced a unique technique to handle types and partial instances effi-

ciently. The declaration of a relation includes the specification of a lower and an upper

bound, where the lower bound contains all the tuples the relation must contain (partial

instantiation), and the upper bound contains all the tuples the relation may contain

(thereby partitioning the universe into types).

The universe of a Kodkod problem is bounded, that means it contains only a fixed

number of atoms. Quantifiers can thus be resolved and the problem translated to propo-

sitional logic. The benefit of improved SAT solver performance is not a mere reduction

in runtime, but also an increased bound on the universe, leading to higher confidence in

the generated proofs.

1

CHAPTER 1. INTRODUCTION 2

Amongst other SAT solvers Kodkod supports MiniSAT [9], an award-winning SAT

solver that can easily be extended due to its open architecture. A SAT solver’s perfor-

mance is very sensitive to the applied branching heuristic that decides which variable

to assign next. In most modern DPLL-based SAT solvers a dynamic variable ordering

heuristic is implemented to optimize their performance. Variants of a method called

Variable State Independent Decaying Sum (VSIDS) which was introduced with the SAT

solver Chaff [24] are now very common to DPLL-based satisfiability testing. With VSIDS

SAT solvers maintain a counter for each variable that is dynamically adjusted during

runtime. At each state this counter induces an ordering on the set of boolean variables.

Also MiniSAT uses an implementation of VSIDS to determine a variable ordering.

1.1 Objective and Motivation

Experiments with Alloy models have shown that the permutation of propositions in

a top-level conjunction may lead to significant variations in MiniSAT’s runtime. The

reason is that Kodkod processes these propositions in the given order and that affects

the order in which it produces constraints and boolean variables. Although the resulting

propositional formulas in Conjunctive Normal Form (CNF) are isomorphic, the input

order of the clauses determines the entry-point where a SAT solver start its search, given

that the chosen solver does not perform an isomorphism-invariant order initialization.

Our goal is to devise a method which allows to determine a good entry-point for a

SAT solver by extracting information from Kodkod’s internal data-structure, the Ab-

stract Syntax Tree (AST). Structural properties of a Kodkod problem that can efficiently

be extracted in its first-order relational representation get lost in its propositional en-

coding. Therefore the objective is to find effective ways to influence the search order of

SAT solvers by exploitation of additional information that is available at the high-level

problem description underlying.

1.2 Methodology and Results

For each non-constant relation Kodkod generates boolean variables, each of which de-

termines whether a certain tuple belongs to that relation or not. Those are called the

primary variables, in distinction to the auxiliary variables emerging during the transla-

tion. A Kodkod model is satisfiable if and only if there exists a satisfying assignment

for its primary variables. Since primary variables usually make up for a few percent

of the total amount of variables, restricting the solver to primary variables leads to a

CHAPTER 1. INTRODUCTION 3

tremendous reduction of the search space. This method is usually referred to as Input

Restricted Branching and numerous case studies can be found in literature about its

application to several problem domains. We will see that MiniSAT benefits a lot from

Input Restricted Branching on satisfiable Kodkod problems. However, the performance

on unsatisfiable problems deteriorates on application of Input Restricted Branching. We

will show how this result corresponds to theory.

We also present a method that tampers with the initial variable ordering of MiniSAT.

Since MiniSAT orders variables by a dynamic score — its activity — that is initialized

with zero by default, we extended the interface between Kodkod and MiniSAT to be

able to initialize the activity array. On uniform initialization of primary variables’ ac-

tivity we encounter similar performance boosts on satisfiable Kodkod problems like in

Input Restricted Branching. Furthermore the performance deterioration on unsatisfiable

problems vanishes.

Kodkod’s relations induce a partition on the primary variables. We present a method

that analyses the Abstract Syntax Tree of Kodkod and distribute scores to relations that

are constraint by subformulas that we classify as being highly constraining. For each

relation the accumulated scores form a weight that induces a partial ordering among

the relations. We will show how these weights can be used to adjust the initial inner

order of the primary variables to match that partial ordering. That finegrained initial-

ization of variable activity gives still a little performance boost compared to the uniform

initialization method; especially on unsatisfiable problems.

A spin-off of the scoring algorithm is a function that quantifies the sensitivity of a

boolean formula on assignments to a specific input variable. For our special case we can

give an efficient fuzzy algorithm to evaluate that function on the formulas emerging in

the translation of Kodkod expressions.

1.3 Example

Figure 1.1 gives an example problem for Kodkod as it could be formally described.

Since Kodkod provides an API for other programs to formulate such problems they are

usually represented by Kodkod’s internal data-structures. In the example we declare a

state transition relation (trans) and a self transition relation (self) over a universe of

two symbolic states {a0, a1}. Furthermore we declare a legal transition relation (legal)

and constrain it to be a subset of trans, and to contain the same self transitions as

the ones in self . The upper bounds of trans and legal are the cross product of all

possible states to allow for arbitrary values, while the upper bound of self constrains

CHAPTER 1. INTRODUCTION 4

example = 〈universe, rels, vars, decl, formula〉

universe = {a0, a1}
rels = {trans, self , legal}
vars = ∅
decl(trans) = 〈{}, {〈a0, a0〉, 〈a0, a1〉, 〈a1, a0〉, 〈a1, a1〉}〉
decl(self) = 〈{}, {〈a0, a0〉, 〈a1, a1〉}〉
decl(legal) = 〈{}, {〈a0, a0〉, 〈a0, a1〉, 〈a1, a0〉, 〈a1, a1〉}〉
formula = (legal ⊆ trans) ∧ (legal ∩ iden = self)

Figure 1.1: Kodkod Example Problem

it to only contain self transitions. The syntax and semantics of Kodkod problems is

further explained in chapter 2. There we will also show how Kodkod would translate

this problem to propositional logic.

1.4 Outline

Chapter 2 provides background information about the relational model finder Kodkod,

its models and their translation to propositional logic. The SAT solver MiniSAT is ex-

plained with respect to the general framework of CDCL solvers and the utilized variable

ordering heuristic. A comprehensive section about related work can also be found in

chapter 2 (see section 2.3). Possibilities and methods of influencing the variable or-

dering of MiniSAT by Kodkod are discussed in chapter 3. An algorithm is presented

(algorithm 3.2) that calculates a partial order among Kodkod’s primary variables which

are further used to influence MiniSAT’s variable ordering. We also devise a method

that quantifies the sensitivity of boolean formulas to singular variable assignments in

section 3.2.3. Several experiments have been conducted with variants of the described

methods. The results are presented in chapter 4. The thesis concludes with a summary

and elaboration of future prospects in chapter 5.

Chapter 2

Background

Kodkod [26] is a constraint solver for bounded relational first order logic. Kodkod trans-

lates Constraint Satisfaction Problems (CSP) into equisatisfiable propositional formulas,

in turn using a SAT solver to determine satisfiability of those problems.

2.1 Kodkod

Kodkod’s language is a first-order logic combined with relational operators like union

or relational composition. It is also capable of encoding integer arithmetic and provides

cardinality operators. Another prominent candidate here is the unary operator ‘reflexive

closure’. Kodkod provides a rich language for the formulation of relational constraints.

The problems are bounded so that sets and relations are drawn from a finite universe,

quantifiers can be resolved and the problems translated to propositional logic. Kodkod

interfaces with several SAT solvers including SAT4J, several versions of MiniSAT and

Lingeling, to name a few. It has been developed as a superset of the Alloy language

and as of Alloy Analyzer 4 it serves as its core component [27]. Today many programs

utilize Kodkod’s powerful features by its well documented API, for example TACO [10],

JForge [8] or Nitpick [4].

2.1.1 Syntax

A problem in Kodkod is represented by a tuple 〈U, rels, vars, decl, F〉. The universe

U = {a1, a2, . . . , an} is a finite set of atom symbols and F is a relational first order

formula expressing the constraints. The set rels = {R1, R2, . . . , Rn} is a set of relation

symbols, and the function decl : rels→ 22U ×22U assigns to each relation R ∈ rels a tuple

〈Rl, Ru〉, where Rl denotes the relations lower bound and Ru denotes its upper bound.

5

CHAPTER 2. BACKGROUND 6

problem ::= 〈U , rels, vars, decl , F 〉

U ::= {‘a1’, . . . , ‘an’}
rels ::= {‘R1’, . . . , ‘Rj’}
vars ::= {‘v1’, . . . , ‘vk’}
decl ::= {R→ 〈Rl, Ru〉 | R ∈ rels, Rl ⊆ Ru ⊆ U d, d > 0}
F ::= formula

varDecl ::= v : exp, v ∈ vars
exp ::= rel | const | v, v ∈ vars
| unaryExp | binaryExp
| ‘{’ varDecl+ ‘|’ formula ‘}’
| ‘Int’ intExp
| ‘if’ formula ‘then’ exp ‘else’ exp

const ::= ‘none’ | ‘iden’ | ‘univ’ | ‘ints’

unaryExp ::= ‘˜’exp | ‘*’exp | ‘ˆ’exp

binaryExp ::= exp ‘∪’ exp | exp ‘∩’ exp | exp ‘\’ exp
| exp ‘→’ exp | exp ‘.’ exp | exp ‘++ ’ exp

intExp ::= number | ‘#’exp | ‘int’ var | binaryIntExp
| ‘if’ formula ‘then’ intExp ‘else’ intExp

binaryIntExp ::= intExp ‘+’ intExp | intExp ‘−’ intExp
| intExp ‘∗’ intExp | intExp ‘/’ intExp

formula ::= ‘not’ formula
| exp ‘in’ exp | exp ‘=’ exp
| intExp ‘<’ intExp | intExp ‘=’ intExp | intExp ‘≤’ intExp
| formula ‘∧’ formula | formula ‘∨’ formula
| formula ‘⇔’ formula | formula ‘⇒’ formula
| ‘no’ exp | ‘one’ exp | ‘lone’ exp | ‘some’ exp
| ‘all’ varDecl+ ‘|’ formula
| ‘some’ varDecl+ ‘|’ formula

The abstract syntax of a Kodkod problem, defined by a tuple containing the finite set of
atoms U (the universe), a formula F , a finite set of relation symbols rels, a finite set of
variable symbols vars and a function decl of relation declarations, mapping each relation
symbol R to its lower and upper bound 〈Rl, Ru〉 of an implicitly defined dimensionality
d.

Figure 2.1: Kodkod Abstract Syntax

CHAPTER 2. BACKGROUND 7

For each R ∈ rels its declaration decl(R) has to satisfy the restriction Rl ⊆ Ru ⊆ Ud

where d is referred to as the arity of relation R. The lower bound contains all the tuples

a relation must contain, whereas the upper bound contains all the tuples a relation may

contain. Hence for each relation R of arity d and its lower and upper bounds Rl and Ru

the following partial order holds: Rl ⊆ R ⊆ Ru ⊆ U d. In Kodkod the upper bound is

used to introduce types and the lower bound is used to specify partial instances.

A relation R is constant if and only if Rl equals Ru. The built-in constant relations

‘none’, ‘iden’, ‘univ’, and ‘ints’ denote the empty set, the identity relation, the uni-

versal set (of all atoms) and the set of all integer atoms (for a user-defined bit-width),

respectively.

Kodkod provides relational operators to construct complex relational expressions

like union ‘R ∪ S’, intersection ‘R ∩ S’, difference ‘R \ S’ and cartesian product ‘R→ S’.

Furthermore ‘R.S’ denotes relational join (composition), and ‘R++S’ denotes relational

override. The unary operators ‘˜R’, ‘ˆR’, ‘*R’ denote transpose, transitive closure and

reflexive transitive closure, respectively, and are applicable to binary relational expres-

sions only. Set comprehensions and ternary if-then-else expressions are also supported.

According to the semantics of the expression operators the expressions have to satisfy the

operator specific arity restrictions, mixed arity expressions for example are not allowed

(see [28]).

Integer expressions evaluate to integer values and are constructed from numbers,

arithmetic operators, set cardinality ‘#’, and if-then-else expressions. The cast operators

‘int’ and ‘Int’ give the integer value corresponding to an integer atom, and vice versa.

Basic Kodkod formulas are constructed using the subset, equality, and integer com-

parison operators, and are combined using the usual logical operators. The formulas

‘no E’, ‘one E’, and ‘lone E’ constrain the cardinality of a relational expression ‘E’ to be

zero, one, and at most one, respectively. The quantifiers ‘all’ and ‘some’ denote the

universal and existential quantifiers.

Figure 2.1 gives an abstract syntax for Kodkod’s input logic. Internally a Kodkod

formula is represented as a DAG (directed acyclic graph) and that data-structure is

referred to as the Abstract Syntax Tree (AST). A formula is structured like a tree, but

as it comes to expressions and relations (each of which might be constraint by multiple

formulas at the leafs of the formula tree) it becomes a DAG. Since the language of Kodkod

is a superset of the Alloy language, details on the semantics of all operators can also be

looked-up in [15]. As Kodkod translates its formulas into equisatisfiable propositional

formulas the semantics now follow from the semantics of the boolean formula constructed

during translation.

CHAPTER 2. BACKGROUND 8

2.1.2 Translation

Kodkod problems are translated to equisatisfiable propositional formulas via a chain of

matrix manipulations [26]. The constraints are first encoded in the circuit data-structure

CBC (Compact Boolean Circuit) — similar to binary decision diagrams (BDD) —that

has been specifically developed for Kodkod, and are then translated from there to CNF

(Conjunctive Normal Form).

Translation of Relations

Given a finite universe of atom symbols U = {a1, . . . , an}, Kodkod encodes a k-ary

relation R ⊆ Uk as a k-dimensional boolean matrix M over U , whose entries are defined

as follows:

m{ik} =


0, if 〈ai1 , . . . , aik〉 /∈ Ru

1, if 〈ai1 , . . . , aik〉 ∈ Rl

r{ik}, otherwise

where {ik} denotes the sequence i1, . . . , ik and r{ik} is a unique boolean variable (for

i1, . . . , ik ∈ [1, n]). A tuple belongs to a relation if and only if its corresponding matrix

element is set to one (either during the translation or in a satisfying instance found by

the SAT solver).

Figure 2.2 shows how the relations declared in the introductory example (figure 1.1)

are translated to boolean matrices according to their bounds. All relations are instan-

tiated according to their upper and lower bounds. The upper bounds of the transition

relations trans and legal contain all possible tuples 〈ai, aj〉 ∈ {a0, a1} × {a0, a1} and

their lower bounds are empty. So for each tuple 〈ai, aj〉 in the upper bound of trans

a boolean variable tij is created, as well as a boolean variable lij for each tuple 〈ai, aj〉
in the upper bound of legal. Only two variables s00 and s11 are created for the self

transition relation self , as its upper bound only contains the diagonal elements 〈a0, a0〉
and 〈a1, a1〉. The non-diagonal elements of self are constantly false or zero, as they are

excluded by the relation bounds. There is no need to individually declare the constant

trans =

[
t00 t01

t10 t11

]
self =

[
s00 0
0 s11

]

legal =

[
l00 l01

l10 l11

]
iden =

[
1 0
0 1

]
Figure 2.2: Example: Translation of Relations

CHAPTER 2. BACKGROUND 9

legal ∩ iden =

[
l00 ∧ 1 l01 ∧ 0
l10 ∧ 0 l11 ∧ 1

]
=

[
l00 0
0 l11

]
Figure 2.3: Example: Translation of Expressions

relation iden since this is a built-in constant binary relation that always contains exactly

the diagonal elements. If it would have to be declared explicitly then both the upper and

the lower bound would have to contain the tuples 〈a0, a0〉 and 〈a1, a1〉 (to demonstrate

the purpose of lower bounds).

Translation of Expressions

Relational expressions are translated by subsequent composition of the boolean matri-

ces emerging in the translation of relations. Intersection and union of two relations, for

example, are encoded as element-wise conjunction and disjunction of their matrices, re-

spectively, and relational composition is encoded as matrix multiplication. Propositional

formulas thus determine the membership of tuples in an expression, like propositional

variables determine the membership of tuples in a relation. The primary variables gen-

erated for relations serve as input variables to the formulas emerging in the expression

translation. Figure 2.3 shows the translation of the intersection from our introductory

example (figure 1.1). It also demonstrates how Kodkod eagerly evaluates constant for-

mulas whenever possible.

Figure 2.4 shows the matrix representation M of Kodkod’s binary expressions, which

is recursively defined over the matrix entries f{id} and g{id} of the enclosed expressions

‘F’ and ‘G’, respectively.

M (‘F ∪ G’) =
(
m{id} = f{id} ∨ g{id}

)
M (‘F ∩ G’) =

(
m{id} = f{id} ∧ g{id}

)
M (‘F \ G’) =

(
m{id} = f{id} ∧ ¬g{id}

)
M (‘F→ G’) =

(
m{im},{jn} = f{im} ∧ g{in}

)
M (‘F.G’) =

(
m{im},{jn} =

∨
k

(
f{im}.k ∧ gk,{jn}

))
M (‘F++G’) =

(
mi0,{in} = gi0,{in} ∨ fi0,{in}

∧
{jn}
¬gi0,{jn}

)
Figure 2.4: Translation of Binary Expressions

CHAPTER 2. BACKGROUND 10

(legal ⊆ trans) : (l00 =⇒ t00) ∧ (l01 =⇒ t01) ∧ (l10 =⇒ t10) ∧ (l11 =⇒ t11)

(legal ∩ iden = self) : (l00 ⇐⇒ s00) ∧ (l11 ⇐⇒ s11)

final formula: (l00 =⇒ t00) ∧ (l01 =⇒ t01) ∧ (l10 =⇒ t10) ∧
(l11 =⇒ t11) ∧ (l00 ⇐⇒ s00) ∧ (l11 ⇐⇒ s11)

Figure 2.5: Example: Translation of Formulas

Translation of Formulas

Relational formulas are translated as boolean constraints over the matrix entries of

Kodkod’s expressions and relations. Subset-formulas for example are translated as an

element-wise implication over the matrix entries of the enclosed expressions. Figure 2.5

shows the stepwise translation of the formula in our introductory example (figure 1.1).

The subset-constraint is translated as an element-wise implication. The equivalence-

constraint is translated as an element-wise bi-implication.

2.1.3 Conclusion

The basic concept in Kodkod is that of a relation. A model in Kodkod specifies for

each relation which tuple it contains and which not. For each relation R and each tuple

t ∈ Ru\Rl a boolean variable is generated. These variables — each of which corresponds

to a membership relation of a tuple and a relation — are called primary variables. A

Kodkod problem is satisfiable if and only if there exists a satisfying assignment for

its primary variables. During the translation from CBC to CNF other variables are

generated. The value of each of those auxiliary variables can be expressed as a boolean

function over a subset of the primary variables. The concept of primary variables thus

corresponds to that of an Independent Variable Set (further explained in section 2.3).

2.2 MiniSAT

Kodkod comes with interfaces to several SAT solvers including MiniSAT, an award-

winning SAT solver widely used in applications. It is also used in research to implement

and test improvements to the state-of-the-art procedure. MiniSAT like most successful

complete SAT solvers is based on the DPLL-algorithm [7] (the abbreviation stands for

the names of the involved authors Davis, Putnam, Logemann and Loveland). MiniSAT

is a CDCL (Conflict Driven Clause Learning) solver. Clause Learning is one of the most

important advances in modern backtracking SAT solvers.

CHAPTER 2. BACKGROUND 11

2.2.1 DPLL Procedure

The DPLL algorithm tries to incrementally build a satisfying truth assignment for a set

of clauses. If a clause is satisfied by the current partial assignment, it is removed from

the clause-set. A literal that is set to false by the current partial assignment is removed

from its clause. If an empty clause is encountered due to all its literals being set to false,

that indicates a conflicting assignment. A satisfying solution is found when all clauses

are satisfied.

At each stage of the procedure, the value of a variable can either be inferred by the

unit-clause rule, or else a variable is selected for branching. The unit-clause rule is still

one of the key techniques in modern SAT solvers. If a clause contains only one literal

(unit-clause), this literal has to be assigned such that it satisfies the clause. This is also

referred to as boolean constraint propagation (BCP) or unit-propagation. Branching

on a variable means that the variable is assigned one of the possible values in {0, 1}.
On encounter of an empty clause, which means that all its literals are set to false by

the current partial assignment, the formula can not be satisfied by the current partial

assignment. In that case the solver tries to undo a former branching; this step is called

backtracking. If such a branching exists, the conflict and the trailing assignment now

imply the opposite branch. If both branches of all trailing decision variables lead to a

conflicting assignment, the formula is unsatisfiable. Otherwise the procedure continues

until it either finds a satisfying solution or another conflict occurs that can not be resolved

by backtracking.

In addition to the unit-clause rule the original DPLL procedure contained another

inference rule called the pure literal rule. A literal p is pure if ¬p does not occur in any

non-satisfied clause of the given clause-set (with respect to the current partial assign-

ment). Since the DPLL procedure eagerly seeks to satisfy the given formula, the pure

literal rule states to assign p such that all clauses containing p are satisfied. Late imple-

mentations of the DPLL procedure dropped the pure literal rule, due to the expenses of

pure literal detection at each recursion.

2.2.2 Clause Learning

Clause learning denotes a set of techniques for adding clauses learnt during the search

by conflict analysis to the clause database. This section gives a quick overview on the

underlying techniques. A brief description can also be found in the chapter about CDCL

solvers [23] in the Handbook of Satisfiability [3].

CHAPTER 2. BACKGROUND 12

Resolution

Given two clauses c1 and c2 and a literal l such that l ∈ c1 and ¬l ∈ c2 the resolvent

c1 � c2 is the new clause (c1 \ {l}) ∪ (c2 \ {¬l}). Resolution is a sound and complete

calculus for refutation proofs by deduction of the empty clause, given an unsatisfiable

clause set. However, clause learning is a sequence of selective resolution operations to

generate a new clause that helps pruning the search space. Clause learning does not

affect soundness or completeness. A formula f is satisfiable if and only if f ∪ w is

satisfiable for all its resolvents w.

Conflict Analysis

Starting with zero, whenever branching occurs a global counter indicating the current

decision level is incremented by one. For each assignment (also inferred assignments) the

decision level at which the assignment was made is stored. If a conflict occurs the reasons

for assignment are determined for each literal of the conflict clause. This determination

of reasons is recursively repeated for all implied literals at the current decision level until

the decision-variable of the current decision level is reached. The result is a DAG-like

(Directed Acyclic Graph) structure that is referred to as the implication graph. In the

implication graph each vertex symbolizes a variable. For each variable of the current

decision level that is implied by unit-propagation, incoming edges are drawn rooting at

the false literals of the clause that has become unit (due to assignments in a former

decision level). A conflict clause can now be obtained by a cut in the implication graph,

where the antecedents are on the reason side and the consequences are on the conflict

side. So the conflict clause contains all literals on the reason side that have an edge to

an implied literal on the conflict side. This can be formally described with subsequent

resolution of the conflict clause with the clauses that have become unit at the current

decision level.

Different learning schemes have been proposed and they mainly differ in which cut

they choose and how many clauses are learnt at each conflict. One important notion

that remains is that of a Unit Implication Point (UIP). UIP’s are dominators in the

implication graph, that is each path from the decision variable to the conflict variable

includes the UIP. The most effective SAT solvers make a cut at the first UIP instead

of proceeding with resolution until the current decision variable is reached. This also

results in shorter learnt clauses.

CHAPTER 2. BACKGROUND 13

2.2.3 Non-Chronological Backtracking

CDCL solvers also incorporate non-chronological backtracking as a result of the deeper

conflict analysis in the learning step. As a clause is learnt it is always unit in the con-

flicting literal and therefore assertive. The learnt clause remains unit until backtracking

occurs to the highest decision level of its other literals. Modern SAT solvers like MiniSAT

always take that backtracking step immediately.

2.2.4 Random Restarts

Random restarts help a state of the art SAT solver to leave critical regions of the search

space when a bad decision is made early in the decision tree. A restart means that

all decisions are taken back and the solver starts anew, thereby getting a chance to

select other decision variables first and explore a different region of the search space.

Despite of frequent restarts completeness is still guaranteed since information about the

search’s progress is kept by learnt clauses. Frequent random restarts boost SAT solver

performance a lot and also MiniSAT uses a restart strategy with increasing intervals

based on the Luby-sequence [21] which is a proven statistical optimum.

2.2.5 Branching Heuristic

Making a good choice on which variable to branch on is important. Given the same

algorithm framework, different choices may produce search trees of dramatically different

sizes.

MOMS (Maximum Occurrences in Minimum Sized clauses)

Early branching heuristics kept track of statistical information about variable occur-

rences. They preferred the literals occurring in the maximum number of minimum sized

clauses (see e.g. [18]). Intuitively the literals belonging to the shortest clauses are the

most constraint literals in the formula. Branching on them first might help in early dis-

covery of dead ends in the search tree. Assigning variables occurring in short clauses also

produces new unit-clauses and more assignments can be inferred by unit-propagation.

Variants of the MOMS (Maximum Occurrences in Minimum Sized clauses) heuristic

were very successful in the 1990ies.

CHAPTER 2. BACKGROUND 14

VSIDS (Variable State Independent Decaying Sum)

The original VSIDS (Variable State Independent Decaying Sum) was proposed in the

year 2001 by the authors of the Chaff solver [24]. They maintain a counter for each

literal which is initialized by zero. Each time a clause or a learnt clause is added to the

database the counters of its literals are incremented by one. At each decision the literal

with the highest counter is chosen to be satisfied. Periodically, all counters are divided

by a constant.

VSIDS is a dynamic conflict driven heuristic that directs the search to variables that

were recently involved in conflicts. One of its key advances is its very low overhead

compared to MOMS-like heuristics that need to evaluate statistical information about

the formula that always changes during search. The reason why VSIDS was introduced is

in fact the presence of lazy data-structures in modern SAT solvers, where such statistical

information can not easily be extracted. Variants of VSIDS are implemented in most

successful modern SAT solvers.

MiniSAT’s implementation of VSIDS [9] is a little different from the original. The

main difference is that only variables have counters and not literals. Therefore the

polarity of the next assignment is decoupled from the ordering heuristic. A variables’

counter — its activity — is incremented by a number (starting with 1) each time a

variable occurs in a conflict. At each conflict this increment number decays by a variable

decay factor (set to 0.95 by default). If one counter crosses the constant threshold 10100

all counters are divided by 10100. Since MiniSAT’s variable ordering is solely based on

its activity — which is always zero right after initialization — and not on its initial

occurence-count in clauses, the initial ordering is highly sensitive to the order in which

clauses are read.

2.2.6 CDCL Algorithm

Algorithm 2.1 gives an outline of the general layout a modern CDCL algorithms based

on MiniSAT. At each step of the iteration unit-propagation is executed until all unit-

clauses are satisfied (line 1). If no conflict occurs and there are still unassigned variables,

one variable is selected (line 6), utilizing the implemented variable ordering heuristic.

The variable’s assignment is added to the current partial assignment and the iteration

continues with unit-propagation respecting the new partial assignment. On encounter

of a conflict, conflict-analysis is executed (line 10) and if backtracking is still possible

the generated conflict clause is added to the database (line 13) and backtracking oc-

curs (line 20). Depending on the restart heuristic the solver might also backtrack all

CHAPTER 2. BACKGROUND 15

assignments at that point (line 18).

Algorithm 2.1: CDCL (based on MiniSAT)

// CDCL solver with activity-based VSIDS similar to MiniSAT

Data: clauses: set of clauses
Result: true if clauses are satisfiable, false otherwise

1 while true do
2 unit-propagation

3 if not conflict then
4 if all variables assigned then
5 return true

6 else
7 decision-variable ← select variable with highest activity

8 value ← select polarity

9 assign(decision-variable, value)

10 else
11 analyze-conflict

12 if top-level conflict found then
13 return false

14 add conflict-clause

15 foreach variable ∈ conflict-clause do
16 increment-activity(variable)

17 uniform-activity-decay

18 if restart heuristic activates then
19 backtrack all decisions

20 else
21 backtrack while conflict-clause is unit

2.3 Related Work

Given an input formula on a set of variables N, an ‘Independent Variable Set’ (IVS) is

a (usually small) subset S of N whose assignment is sufficient to determine the truth

value of all variables in N. Input restricted branching is a way of exploiting the existence

of an IVS in SAT solvers by branching only on variables of S, thereby reducing the

search-space from 2|N | to 2|S|.

CHAPTER 2. BACKGROUND 16

There are numerous case-studies on input restricted branching and the results are

mixed. Giunchiglia et al. [13] report positive results on application of restricted branch-

ing to planning problems. They report in another work [12] about their experiments

with restricted branching on problems from several domains under utilization of dif-

ferent branching heuristics. They showed that the outcome is not only specific to the

type of problem but also depends on the applied branching heuristic and backtracking

scheme. Marques Silva and Lynce show in [22] that restricted branching stabilizes and

improves solver runtimes on certain encodings of cardinality constraints that produce

many auxiliary variables.

A P-Solver is a SAT solver that either rejects a formula or solves it in polynomial

time. Williams et al. introduce the notion of backdoor sets [29]. A backdoor is a

set of variables for which there exists an assignment such that the simplified problem is

accepted by a P-Solver. A strong backdoor is a set of variables for which every assignment

simplifies the problem such that it is accepted by a P-Solver. Small backdoor sets exist

in many practical problems and their exploitation leads to a tremendous reduction of

the search-space. However the detection of small backdoors is algorithmically hard.

Notably an IVS is a particular strong backdoor, but possibly not of minimum car-

dinality. However, the proof-theoretic analysis of Järvisalo et al. [17] [16] shows that in

general the power of propositional proof-systems is deteriorating on their extension by

input restricted branching. They utilize proof complexity [6] [2] as a measure to analyze

the efficiency of a propositional proof system. The proof complexity CT (f) of a (unsat-

isfiable) propositional formula f in a proof system T is the size of the shortest refutation

for f in T .

They compare two proof systems by their relative efficiency using polynomial simu-

lation. A proof system T ′ simulates another proof system T if for all infinite problem

families {Pn} there is a polynomial p such that for all Pn p(CT (Pn)) ≥ CT ′(Pn). In [17]

they describe a tablaux method for satisfiability testing on boolean circuits that cor-

responds to DPLL. That way they prove that input restricted DPLL (DPLLi) cannot

simulate DPLL, because there exist problem families {Pn} such that for all polynomials

p it holds that p(CDPLL(Pn)) < CDPLLi(Pn).

A clause learning proof system CL is provably more powerful than DPLL. Beame et

al. have shown earlier that DPLL cannot simulate CL [1]. In [16] Järvisalo et al. prove

that also input restricted CL (CLi) cannot simulate CL. CLi cannot even simulate basic

DPLL.

A backbone is a set of variables which have the same value in every satisfying assign-

ment of a (satisfiable) propositional formula [20]. The size of backbone sets has been

CHAPTER 2. BACKGROUND 17

shown to correlate with problem hardness. Parkes [25] has shown for satisfiable random

3-SAT instances that under-constrained problems have a strong tendency of having very

small backbone sets, whereas highly constrained satisfiable problems tend to have very

big backbones sets.

The notion of careset was introduced by Ganai [11]. A careset is a subset of variables

in a boolean formula that must be assigned in any minimally satisfying assignment

of a formula F . A minimally satisfying assignment for F is an assignment where all

remaining unit propagations are executed and under which F is accepted by a P-Solver.

Furthermore — for minimality — it must satisfy the condition that when taking a

variable away from the assignment it loses the former properties. In contrast to variables

in a backbone set the variables in a careset only have to be assigned and not necessarily to

unique values. Compared to backdoors which are sufficient sets for P-Solver acceptance,

a careset is a necessary set for P-Solver acceptance and might therefore be smaller

than a backdoor set. The notion of careset is extended to unsatisfiable formulas by its

definition on maximum satisfiable subsets. Ganai presents a method that extracts a

careset at the application level and thereby was able to boost solver performance via

restricted branching on that careset.

Chapter 3

Design and Implementation

As the objective is to determine a reasonable Kodkod specific variable ordering for

MiniSAT, in particular to determine a good entry-point to the search space, the approach

is twofold. First we determine possibilities to influence Minisat’s variable ordering by

external priorities. And then we specify criteria to be used to calculate these priorities.

3.1 Influencing MiniSAT’s variable ordering

We extended the JNI interfaces of Kodkod and MiniSAT to accept an array of priorities,

each of which is associated with a variable. Additionally we introduced a flag to switch

between two possible ways for MiniSAT to deal with the given priorities both of which

are explained below.

3.1.1 Activity Overriding

In this approach, the external priorities were used to statically override MiniSAT’s native

score (the variables’ activity). That means variables were ordered by the external score.

Only if the external scores for two variables were equal the variables activity was used

to break ties.

3.1.2 Activity Initialization

In case of activity initialization, the external priorities were used to initialize the values

of MiniSAT’s activity array. Since by default the activity of each variable is initialized

with zero, small values suffice to influence the initial order. Naturally the effect of this

method on variable ordering blurs when MiniSAT adjusts scores during runtime.

18

CHAPTER 3. DESIGN AND IMPLEMENTATION 19

3.2 Extracting Criteria for Prioritization

Our focus is on primary variables since we have direct access to their semantics via the

Abstract Syntax Tree (AST). Kodkod’s primary variables constitute an Independent

Variable Set (IVS) as it is explained in section 2.3. We thus start with mimicking input

restricted branching for Kodkod problems.

3.2.1 Prioritizing Input Variables

The set of primary variables constitutes only a small fraction of the search space, they

usually make up for only a few percent of the total amount of variables. By restricting

the search to primary variables, the size of the search-space is reduced by high orders of

magnitude. We mimicked input restricted branching by uniform activity overriding (see

subsection 3.1.1) on all primary variables to force MiniSAT to assign primary variables

first. Since a complete assignment can be inferred from the assignment of primary

variables this approach corresponds to input restricted branching.

In a second approach we uniformly initialized MiniSAT’s variable activity (see sub-

section 3.1.2) of all primary variables. In this approach the solver only starts in the realm

of primary variables, but then is allowed to rearrange the variables and to also make

assignments on intermediate variables. Both approaches are evaluated in chapter 4.

3.2.2 Highly Constraining Formulas

Utilization of the Kodkod specific partitioning of input variables into relations gives a

more fine-grained control on the priorities to be enforced. By extraction of information

from Kodkod’s AST, and local evaluation of distinct formula nodes, we decide on which

subset of the primary variables (in terms of a relation) the solver should start with

branching.

The proposed algorithm distributes scores to relations constrained by formulas clas-

sified as being highly constraining (HCF). A formula is considered being HCF if expo-

nential decay in the number of possible solutions is encountered under application of

that formula. The idea is to first assign the primary variables that stem from the most

highly constraint relation. Thereby the number of unit propagations should increase and

large parts of the search space can be dropped early due to faster detection of dead ends

in the decision tree.

Consider two unary relations R and S with |R| = |S| = n. Without further restric-

tions the total number of possible instantiations of both relations is 22n = 4n. Given a

CHAPTER 3. DESIGN AND IMPLEMENTATION 20

constraint solution space
category formula without constraint with constraint

relational comparison ‘R in S’ 4n 3n

‘R = S’ 4n 2n

‘#R = c’ 2n
(
n
c

)
cardinality bounding ‘#R ≤ c’ 2n

c∑
k=0

(
n
k

)
‘#R < c’ 2n

c−1∑
k=0

(
n
k

)
‘no R’ 2n 1

‘one R’ 2n n

‘lone R’ 2n n+ 1

Table 3.1: Highly constraining formulas (HCF) and their effects on the size of the solution
space for a universe of size n, unary relations ‘R’ and ‘S’, and a constant number ‘c’.

subset constraint ‘R ⊆ S’ the number of possible instantiations deteriorates from 4n to 3n

(by a factor of (1.5)n). Introduction of an equality constraint ‘R = S’ leaves a total of 2n

possible instantiations. Cardinality constraints of the type ‘#R = c’ for small c are even

more restrictive. For c = 1 the solution space decreases from 2n to n. Since n increases

with the bounds, c is always considered being small with respect to n. Table 3.1 displays

an overview of the formulas that are classified as HCF.

By assigning the highly constraint subset of primary variables first, we expect the

initial amount of boolean constraint propagations to increase. Intuitively this is best

captured by observation of equality formulas. If one side of the equality is fixed, the

other side can be inferred by it.

Another justification for that approach can be found in literature. As described

in subsection 2.3, Parkes [25] has shown for satisfiable 3-SAT instances that the more

constraints are added (in terms of clauses) the larger the backbone size of the overall

formula gets. In highly constraint subsets of Kodkod’s primary variables the probability

for each variables being backbone should therefore increase. Since backbone variables

have the same polarity in all satisfying truth assignments, assigning them first can also

lead to early discovery of dead ends in the search space.

CHAPTER 3. DESIGN AND IMPLEMENTATION 21

Dominance of Relations in Expressions

Since Kodkod formulas constrain relational expressions and not necessarily relations —

relations are leaf-expressions — we need to devise a measure to be able to quantify the

importance of a single relation in an arbitrary expression, as we want to distribute scores

to the relations enclosed by highly constraint expressions. Constraining the union ‘R ∪ S’

for example — consider the case where the upper and lower bound of ‘R’ and ‘S’ share

tuples (Ru ∩ Su 6= ∅) — might not have as much of a constraining effect as two separate

constraints on ‘R’ and ‘S’. That means we need to moderate the score we distribute to

‘R’ and ‘S’.

In our introductory example 1.1, we detect two highly constraining formulas: (legal ⊆
trans) and (legal ∩ iden = self). In the subset formula (legal ⊆ trans) both relations

legal and trans are directly constraint; therefore we can distribute whatever score we

chose for subset-formulas directly to those relations. We encounter another situation by

looking at the equality constraint (legal ∩ iden = self). Here, only the relation self

is directly constraint by equivalence. On the left side though, the intersection legal ∩
iden — the element-wise conjunction of legal and iden — is constraint by equivalence

(figure 2.3). Since iden is a constant relation, still only elements of legal are constraint,

but due to non-diagonal elements of iden constantly being zero, only half of the elements

of legal are constraint.

We want to quantify the dominance of each relation in a relational expression by

looking at the effect their evaluation has on the expression. Note that not only the

expression type but also the bounds of the enclosed relations have to play an important

role in such a measure. The bounds of each relation determine the width of the boolean

formulas emerging in the expression translation and especially whether they are constant

or not. Therefore we evaluate that relation dominance we are looking for tuple-wise.

Before giving the complete formula, the needed function is abstractly defined in

definition 3.1. The missing function δ(v, f) measures the dominance of a relation’s

primary variable in an expression’s matrix entry (the propositional formulas emerging

in expression translation). We deduce such a measure in subsection 3.2.3.

Definition 3.1 (Average Dominance). The average dominance of a relation R (with

primary variables r{in}) in an expression E (with matrix entries e{jm}) is the aggregated

dominance δ
(
r{in}, e{jm}

)
of its primary variables r{in} in the boolean formulas e{jm}.

dom(R,E) =
1∣∣{r{in}}∣∣

∑
{in}

∑
{jm}

δ
(
r{in}, e{jm}

)

CHAPTER 3. DESIGN AND IMPLEMENTATION 22

3.2.3 The Sensitivity of Boolean Formulas to Singular Assignments

Let F be the set of propositional formulas and V be the set of boolean variables. In

the following the set {0, 1,¬,∧,∨} of syntactic symbols is used as an algebraic basis for

boolean formulas. Every variable v ∈ V is a boolean formula, every constant c ∈ {0, 1}
is a boolean formula, for every formula g ∈ F also ¬g and for every pair of formulas

g1, g2 ∈ F also g1 ∧ g2 and g1 ∨ g2 are boolean formulas with the usual semantics.

Solution Rate

Let vars : F → 2V be a function assigning to every formula g ∈ F its set of input

variables. Let |g| := | vars(g)| denote the number of input variables of g. Then 2|g| is the

number of possible assignments to the variables of g. The possible assignments to input

variables of a formula g can be divided into satisfying and non-satisfying assignments.

Let #g denote the number of satisfying assignments to variables of g and let #�g denote

the number of non-satisfying assignment to variables of g. So it clearly holds that

#g + #�g = 2|g|.

Definition 3.2 (Solution Rate). Given a propositional formula g, the solution rate is

the satisfying fraction of all assignments denoted by

ρ+(g) =
#g

2|g|

For convenience the abbreviation ρ(g) = ρ+(g) will be used.

Example 3.1 (Solution Rate). Given the formula g = a∨ (b∧¬c) where a, b, c ∈ V are

variables, the solution rate is given by

ρ(g) =
#g

2|g|
=

5

23
=

5

8

Trivially the solution rate of constant formulas is ρ(0) = 0 and ρ(1) = 1 and the solution

rate of all variables v ∈ V is ρ(v) = 1
2 .

Corollary 3.1 (Inverse Solution Rate). The inverse solution rate ρ−(g) = 1 − ρ+(g)

denotes the non-satisfying fraction
#�g
2|g|

of all assignments of g.

The solution rate of a propositional formula g practically denotes the probability

of a randomly chosen assignment to be a satisfying assignment for g. Conversely, the

CHAPTER 3. DESIGN AND IMPLEMENTATION 23

inverse solution rate of g denotes the probability of a randomly chosen assignment to be

a non-satisfying assignment for g. Our focus lies on the analysis of the proportions of

the search space (w.r.t. the number of satisfying and non-satisfying assignments) and

how the assignment to a singular variable changes these proportions.

Since the solution rate is based on propositional model counting (#SAT), its calcu-

lation is generally #P-complete [14] and therefore algorithmically hard. However, under

the assumption that two distinct boolean formulas share no input variable (independent

variables assumption) the number of models of their conjunction and disjunction can

efficiently be calculated by recursion. For almost all expressions in Kodkod models this

assumption holds, since a relation usually participates in an expression only once, and

each relation contributes its unique set of primary variables.

Corollary 3.2 (Recursive Model Counting). Let f and g be boolean formulas. Assuming

that vars(f) ∩ vars(g) = ∅ the following equations hold

#(f ∧ g) = #f ·#g

#(f ∨ g) = 2|f |+|g| −#�f ·#�g

Utilization of the independent variables assumption leads to a simple recursive for-

mulation of the solution rate that is crucial for efficient calculation.

Lemma 3.1 (Recursive Solution Rate). Let f and g be boolean formulas. Assuming

that both formulas have their unique set of input variables (∗ vars(g) ∩ vars(f) = ∅)
the solution rate of formulas where f and g occur as sub-formulas can recursively be

expressed in terms of the solution rates of its child formulas.

ρ(¬g) = 1− ρ(g) (3.1a)

ρ(f ∧ g)
∗
= ρ(f) · ρ(g) (3.1b)

ρ(f ∨ g)
∗
= 1− ρ−(f) · ρ−(g) = ρ(f)− ρ(f) · ρ(g) + ρ(g) (3.1c)

Proof. 3.1a

ρ(¬g) =
#(¬g)

2|g|
=

#�g
2|g|

= ρ−(g) = 1− ρ(g)

CHAPTER 3. DESIGN AND IMPLEMENTATION 24

Proof. 3.1b

ρ(f ∧ g) =
#(f ∧ g)

2|(f∧g)|

∗
=

#f ·#g
2|f |+|g|

=
#f

2|f |
· #g

2|g|
= ρ(f) · ρ(g)

Proof. 3.1c

ρ(f ∨ g) =
#(f ∨ g)

2|(f∨g)|

∗
=

2|f |+|g| −#�f ·#�g
2|f |+|g|

= 1− #�f ·#�g
2|f |+|g|

= 1− #�f
2|f |
· #�f

2|f |
= 1− ρ−(f) · ρ−(g)

= ρ(f)− ρ(f) · ρ(g) + ρ(g)

Example 3.2 (Recursive Calculation). Given again the formula g = a∨ (b∧¬c) where

a, b, c ∈ V are variables, the solution rate can also be calculated by recursive application

of Lemma 3.1.

ρ(g) = ρ(a)− ρ(a) · ρ(b ∧ ¬c) + ρ(b ∧ ¬c)

= ρ(a)− ρ(a) · ρ(b) · (1− ρ(c)) + ρ(b) · (1− ρ(c))

=
1

2
− 1

2
· 1

2
· 1

2
+

1

2
· 1

2
=

5

8

Derived Formulas

The solution rate provides information about the proportions of the search space. An

assignment of a variable v splits the search space of a formula g into that of the two

derived formulas gv and gv̄ with usually different proportions.

Definition 3.3 (Derived Formula). For each g ∈ F and variable v ∈ V let gv denote the

formula derived from g where every occurrence of v is replaced by 1 and let gv̄ denote

the derived formula where v is replaced by 0.

CHAPTER 3. DESIGN AND IMPLEMENTATION 25

Derived formulas are pure syntactic constructs that are used to simulate partial

assignments. Defining it at the syntax level has the advantage that the input variable

used for the derivation vanishes. Thus g, gv and gv̄ are distinct formulas and vars(gv) =

vars(gv̄) = vars(g) \ {v}.

Example 3.3 (Solution Rate of Derived Formulas). Given the formula g = a∨ (b∧¬c)
where a, b, c ∈ V, the solution rates of the derived formulas are given by

ρ(ga) = 1 ρ(gā) =
1

4

ρ(gb) =
3

4
ρ(gb̄) =

2

4

ρ(gc) =
2

4
ρ(gc̄) =

3

4

We will refer to the solution rate of derived formulas later on with the term derived

solution rate. So for each variable v ∈ V and formula g ∈ F there are two possible

derived solution rates, the solution rate of gv denoted by ρ(gv) and the solution rate of

gv̄ denoted by ρ(gv̄). Note that if v /∈ vars(g) it always holds that ρ(gv) = ρ(gv̄) = ρ(g).

Lemma 3.2 (Coherence). For any formula g and input variable v the following equation

holds

ρ(gv) + ρ(gv̄) = 2ρ(g)

Proof.

ρ(gv) + ρ(gv̄) =
#gv

2|gv |
+

#gv̄

2|gv̄ |
=

#gv + #gv̄

2|g|−1
=

2#g

2|g|
= 2ρ(g)

From the coherence lemma an upper bound for derived solution rates can be directly

formulated. We need those bounds as well as the coherence lemma later on for fuzzy

optimization techniques.

ρ(gv) ≤ 2ρ(g) , ρ(gv̄) ≤ 2ρ(g)

Sensitivity

Given a formula g ∈ F and a variable v ∈ vars(g) it is now possible to measure the

sensitivity of g on assignments to v by comparing the search space proportions of the

two derived formulas gv and gv̄. The idea is that variables that are capable of setting a

formula constant (or almost constant) are more dominant than others whose assignment

CHAPTER 3. DESIGN AND IMPLEMENTATION 26

has little effect on the search space proportions of their derived formulas. Note that for

variables that are capable of setting a formula constant, either one of its derived solution

rates is either 1 or 0.

Definition 3.4 (Sensitivity). The sensitivity of a formula g to assignments of a variable

v is the difference between the solution rates of gv and gv̄.

σ(g, v) = ρ(gv)− ρ(gv̄)

Example 3.4 (Sensitivity). Given the formula g = a ∨ (b ∧ ¬c) its sensitivity to each

variable a, b, c ∈ V is given by

σ(g, a) =
3

4
σ(g, b) =

1

4
σ(g, c) = −1

4

Note that variable a in example 3.4 clearly dominates the given formula g = a∨ (b∧
¬c), since it is capable of setting the whole formula constant, and thereby dominating

all assignments to the other variables b and c. This is reflected in the higher magnitude

of the formula’s sensitivity to a.

Solution Rate of Kodkod specific Boolean Formulas

Under application of Lemma 3.1 the solution rates of the matrix entries corresponding

to Kodkod expressions can be expressed recursively in terms of the solution rates of the

matrix entries of their child expressions. For all relations R the solution rate of the

corresponding matrix entries r{in} is given by

ρ
(
r{in}

)
=


0 if 〈ai0 , ai1 , . . . , ain〉 /∈ Ru

1 if 〈ai0 , ai1 , . . . , ain〉 ∈ Rl

1
2 otherwise

For union, intersection, and difference expressions E, the solution rates of the corre-

sponding matrix entries e{in} is given by

ρ
(
e{in}

)
=


ρ
(
f{in}

)
· ρ
(
g{in}

)
if E = ‘F ∩ G’

1− ρ−
(
f{in}

)
· ρ−
(
g{in}

)
if E = ‘F ∪ G’

ρ
(
f{in}

)
· ρ−
(
g{in}

)
if E = ‘F \ G’

CHAPTER 3. DESIGN AND IMPLEMENTATION 27

For product and join expressions E the solution rate of the matrix entries e{in},{jm} is

given by

ρ
(
e{in},{jm}

)
=


ρ
(
f{in}

)
· ρ
(
g{jm}

)
if E = ‘F→ G’

1−
∏
k

(
1− ρ

(
f{in},k

)
· ρ
(
gk,{jm}

))
if E = ‘F.G’

For override expressions E = ‘F++G’ the solution rate for each matrix entry ei0,{in} is

given by

ρ
(
ei0,{in}

)
= 1− ρ−

(
gi0,{in}

)
· ρ−
(
fi0,{in}

)
·
∏
j 6=i

ρ
(
gi0,{jn}

)
Dominance

The sensitivity is a function that assigns to every tuple (g, v) ∈ F×V a value in the closed

interval [−1, 1]. The sign preserves polarity information that indicates which polarity of

an assignment produces the largest number of satisfying solutions. The magnitude of

the sensitivity can be used to measure the dominance of a variable in a formula.

Definition 3.5 (Dominance). The dominance δ(v, g) of a variable v in a formula g is

the magnitude of the formula’s sensitivity on v

δ(v, g) = |σ(g, v)|

Now we can finally augment our definition mentioned at the beginning, where we

defined the average dominance of a relation in an expression (definition 3.1), by the

above definition of the dominance of a singular variable in a propositional formula.

Definition 3.6 (Average Dominance (Final)). The average dominance of a relation R

(with primary variables {r{in}}) in an expression E (with matrix entries {e{jm}}) is the

aggregated dominance δ
(
r{in}, e{jm}

)
=
∣∣σ(e{jm}, r{in})∣∣ of its primary variables r{in} in

the boolean formulas e{jm}.

dom(R,E) =
1∣∣{r{in}}∣∣

∑
{in}

∑
{jm}

∣∣σ(e{jm}, r{in})∣∣

CHAPTER 3. DESIGN AND IMPLEMENTATION 28

Example

We now show how the algorithm would distribute scores to the highly constraint expres-

sions in our introductory example 1.1 based on the average dominance of relations in

expressions (definition 3.6). First we look at the constraint (legal ⊆ trans). Recapitu-

late the translation of the relations legal and trans (Table 3.2).

trans =

[
t00 t01

t10 t11

]
legal =

[
l00 l01

l10 l11

]
Table 3.2: Translation Revisited 1

The algorithm would distribute an unmoderated score of 1 to either one of the partic-

ipating expressions, since the relations are directly constraint and the average dominance

of a relation in itself is 1. We can calculate that with the given formula.

dom(trans, trans) =
1

|trans|
∑

v∈trans

∑
f∈trans

|σ(f, v)|

=
1

4
·
(
|σ(t00, t00)|+

=0︷ ︸︸ ︷
|σ(t00, t01)|+ |σ(t00, t10)|+ |σ(t00, t11)|+

|σ(t01, t01)|+
=0︷ ︸︸ ︷

|σ(t01, t00)|+ |σ(t01, t10)|+ |σ(t01, t11)|+

|σ(t10, t10)|+
=0︷ ︸︸ ︷

|σ(t10, t00)|+ |σ(t10, t01)|+ |σ(t10, t11)|+

|σ(t11, t11)|+
=0︷ ︸︸ ︷

|σ(t11, t00)|+ |σ(t11, t01)|+ |σ(t11, t10)|
)

=
1

4
·
(=1︷ ︸︸ ︷
|σ(t00, t00)|+

=1︷ ︸︸ ︷
|σ(t01, t01)|+

=1︷ ︸︸ ︷
|σ(t10, t10)|+

=1︷ ︸︸ ︷
|σ(t11, t11)|

)
= 1

This is a very trivial case and we present the details to show how the result corresponds

to intuition. Most of the summands above evaluate to zero, since the primary variables

in trans are not sensitive to each other. Trivially, for any variable v ∈ V and formula

f ∈ F when v /∈ vars(f) it holds that σ(f, v) = 0. And for all variables v ∈ V it

holds that its sensitivity to assignments to itself is σ(v, v) = 1 − 0 = 1. Like the above

calculation for trans the average dominance of legal in itself is dom(legal, legal) = 1.

Now we have a look at the second constraint (legal ∩ iden = self). Recapitulate

the translations of legal ∩ iden and self (Table 3.3). For the built-in constant relation

iden no variables are generated, so there is no dominance to be calculated for iden.

The relation legal gets 4 variables, but only the diagonal elements of them are being

CHAPTER 3. DESIGN AND IMPLEMENTATION 29

legal ∩ iden =

[
l00 ∧ 1 l01 ∧ 0
l10 ∧ 0 l11 ∧ 1

]
=

[
l00 0
0 l11

]
self =

[
s00 0
0 s11

]
Table 3.3: Translation Revisited 2

constraint by equivalence due to the intersection with iden. The relation self gets 2

variables and both of them are constraint by equivalence. We will see how this is reflected

in the average dominance by calculating it.

dom(legal, legal ∩ iden) =
1

|legal|
∑

v∈legal

∑
f∈legal∩iden

|σ(f, v)|

=
1

4
·
(
|σ(l00, l00)|+

=0︷ ︸︸ ︷
|σ(l00, l01)|+ |σ(l00, l10)|+ |σ(l00, l11)|+

=0︷ ︸︸ ︷
|σ(0, l01)|+ |σ(0, l00)|+ |σ(0, l10)|+ |σ(0, l11)|+

=0︷ ︸︸ ︷
|σ(0, l10)|+ |σ(0, l00)|+ |σ(0, l01)|+ |σ(0, l11)|+

|σ(l11, l11)|+
=0︷ ︸︸ ︷

|σ(l11, l00)|+ |σ(l11, l01)|+ |σ(l11, l10)|
)

=
1

4
·
(=1︷ ︸︸ ︷
|σ(l00, l00)|+

=1︷ ︸︸ ︷
|σ(l11, l11)|

)
=

1

2

The average dominance of legal in the intersection is 1
2 and that is exactly the fraction

of variables in legal that participates in the constraint. However, the average dominance

of self is again just 1 since all of its variables participate in the constraint. We just skip

the zeros in the following equation.

dom(self, self) =
1

2
·
(
|σ(s00, s00)|+ |σ(s11, s11)|

)
= 1

Again those are trivial cases, but they perfectly demonstrate how the average domi-

nance works for arbitrary expressions. The example 3.4 we used for the deduction of a

formula’s sensitivity to singular assignments gives a glimpse into what the dominance of

relations in more complex expressions looks like.

CHAPTER 3. DESIGN AND IMPLEMENTATION 30

Formulas like that in example 3.4 (a∨(b∧¬c)) emerge in the translation of expressions

like A ∪ (B \ C) where A,B and C are relations and a, b and c are primary variables.

Depending on the bounds of those relations some tuples may contribute a dominance

corresponding exactly to the values calculated in example 3.4. Others might contribute

a dominance of 0 or 1 depending on the relation bounds.

3.2.4 Fast Fuzzy Calculation of Sensitivity-based Dominance

To calculate the dominance of a relation R in an expression E, a naive implementation of

the nested sum in definition 3.6 would have to iterate over all propositional formulas in

the expression’s matrix and calculate the derived solution rates for each primary variable

of R. There exist several optimizations to that naive approach.

Crisp Expression Bounds

Most matrix entries of an expression E ⊆ Un are constant. By recursive descent to the

enclosed relations and based on their bounds, the expression specific upper and lower

bounds can be calculated. For each expression E and its boolean matrix (e{id}) its upper

bound is given by Eu = {〈ai0 , ai1 , . . . , aid〉 | e{id} 6≡ 0}. Accordingly its lower bound is

given by El = {〈ai0 , ai1 , . . . , aid〉 | e{id} ≡ 1}. Having calculated the expression bounds,

dominance calculation can safely be restricted to the non-constant tuples in Eu \ El.

Leaf Variables

Without further inspection of an expression it might not be obvious which subset of a

relation’s primary variables is input to which entry in an expression’s boolean matrix. On

the other hand, iteration over all primary variables for each entry in Eu \El to calculate

its sensitivity to that variable — thereby getting many zeros — is too expensive. The

presented algorithm makes no eager assumption about the participation of variables,

and descents into E only once for each tuple t ∈ Eu \ El. In a list it keeps track of the

variables encountered in the recursion, and the derived solution rates for all of them can

be calculated in parallel.

Coherence

By refinement of Lemma 3.2 it is sufficient to calculate only one derived solution rate

for each variable. If the plain solution rate of the formula is known, the sensitivity is

CHAPTER 3. DESIGN AND IMPLEMENTATION 31

then implied by the coherence.

ρ(gv) + ρ(gv̄) = 2ρ(g) =⇒

ρ(gv)− ρ(gv̄) = 2ρ(g)− 2ρ(gv̄) =⇒

σ(g, v) = 2(ρ(g)− ρ(gv̄))

(3.2)

Fuzzy Expression Bounds

As expressions’ depth and dimensionality increase and especially in case of matrix mul-

tiplications the number of input variables for each formula in the expression bounds

increases exponentially. Calculation of all derived solution rates for those variables

therefore is algorithmically intractable. Fortunately, the sensitivity of such large formu-

las to singular assignments is generally small enough to be safely ignored. As a rule of

thumb we can state that the wider an or-gate gets, the closer its solution rate gets to 1

and the wider an and-gate gets, the closer its solution rate gets to 0. With respect to

the solution rate of a formula we can proof two upper bounds (Lemma 3.3 and 3.4) for

the magnitude of its sensitivity to any variable.

Lemma 3.3 (Sensitivity Bound Zero). For all variables v ∈ V the double of the solution

rate of g is an upper bound for the magnitude of the sensitivity of g on v.

|σ(g, v)| ≤ 2ρ(g)

Proof. The proof has to be taken two ways. First we proof that σ(g, v) ≤ 2ρ(g) and

second we proof that σ(g, v) ≥ −2ρ(g). We start with the refinement of the coherence

lemma we already got from equation 3.2.

σ(g, v) = 2ρ(g)− 2ρ(gv̄) =⇒ σ(g, v) ≤ 2ρ(g)

For the second part of the proof we utilize the inequality ρ(gv̄) ≤ 2ρ(g) which follows

directly from the coherence lemma 3.2.

σ(g, v) = 2ρ(g)− 2ρ(gv̄) =⇒ σ(g, v) ≥ 2ρ(g)− 4ρ(g) =⇒ σ(g, v) ≥ −2ρ(g)

For the second bound (Lemma 3.4) we need some intermediate steps to be able to

proof it. First we give an inverted definition of sensitivity (corollary 3.3) and then follows

an inverted formulation of the coherence lemma (corollary 3.4).

CHAPTER 3. DESIGN AND IMPLEMENTATION 32

Corollary 3.3 (Inverted Sensitivity). The sensitivity can be rewritten in its inverted

form.

−σ(g, v) = ρ−(gv)− ρ−(gv̄)

Proof.

σ(g, v) = ρ(gv)− ρ(gv̄) =⇒

−σ(g, v) = ρ(gv̄)− ρ(gv) =⇒

−σ(g, v) = (1− ρ(gv))− (1− ρ(gv̄)) =⇒

−σ(g, v) = ρ−(gv)− ρ−(gv̄)

Corollary 3.4 (Inverted Coherence). The coherence lemma can be rewritten in its

inverted form.

ρ−(gv) + ρ−(gv̄) = 2ρ−(g) (3.3)

Proof.

ρ−(gv) + ρ−(gv̄) =
#�gv
2|gv |

+
#�gv̄
2|gv̄ |

=
#�gv + #�gv̄

2|g|−1
=

2#�g
2|g|

= 2ρ−(g)

Lemma 3.4 (Sensitivity Bound One). For all variables v ∈ V the double of the inverted

solution rate of g is an upper bound for the magnitude of the sensitivity of g on v.

|σ(g, v)| ≤ 2(1− ρ(g)) (3.4)

Proof. Again the proof is taken two ways. First we prove that −σ(g, v) ≤ 2(1 − ρ(g))

and second we prove that −σ(g, v) ≥ −2(1−ρ(g)). We start with the inverted definition

of sensitivity we gave in corollary 3.3.

ρ−(gv) + ρ−(gv̄) = 2ρ−(g) =⇒

ρ−(gv)− ρ−(gv̄) = 2ρ−(g)− 2ρ−(gv̄) =⇒

−σ(g, v) = 2ρ−(g)− 2ρ−(gv̄) =⇒

−σ(g, v) ≤ 2ρ−(g) =⇒

−σ(g, v) ≤ 2(1− ρ(g))

CHAPTER 3. DESIGN AND IMPLEMENTATION 33

For the second part of the proof we utilize the inequality ρ−(gv̄) ≤ 2ρ−(g) which follows

directly from the inverted coherence given in corollary 3.4.

−σ(g, v) = 2ρ−(g)− 2ρ−(gv̄) =⇒

−σ(g, v) ≥ 2ρ−(g)− 4ρ−(g) =⇒

−σ(g, v) ≥ −2ρ−(g) =⇒

−σ(g, v) ≥ −2(1− ρ(g))

We conclude that, when the solution rate of a formula is very small or very close

to one, its sensitivity to any assignment is very small. Since most highly constraint

expressions contribute relatively big scores, small values (≤ 0.01) are hardly recognized

in the accumulated score. Furthermore, such small scores never change the order induced

by the accumulated weight.

Our presented algorithm incorporates an early detection of such formulas by first

calculating the solution rate for each tuple in the expression bounds. We introduced

a constant ε (feasible values are e.g. 10−3 ≤ ε ≤ 10−2), and refer to ε as the amount

of fuzziness. If the solution rate is smaller than ε then the tuple is removed from the

expression’s upper bound. If the solution rate is greater than 1 − ε the tuple is added

to the expression’s lower bound. The algorithm thus further treats those formulas like

constants, and expensive parts of the calculation that would only add microscopic weights

are skipped.

Algorithm 3.1 summarizes the procedure. First the crisp upper and lower bounds

of the expressions are determined by recursion to the relations (line 2). Then for each

tuple in the crisp bounds the solution rate is calculated. A predefined constant specifies

the amount of fuzziness (line 1). If a tuple’s solution rate is very close to one (line 7) it

is added to the expression’s fuzzy lower bound. If a tuple’s solution rate is very close to

zero (line 5) it is removed from the expression’s fuzzy upper bound. Now for dominance

calculation only those tuples are respected that add a reasonably large score to the sum.

For each tuple and each variable one derived solution rate is calculated (line 10). Based

on the tuple’s solution rate and a variable’s derived solution rate the dominance of that

variable can be calculated (line 13). Depending on which relation the variable belongs

to (line 12) that singular dominance is added to the relation’s dominance. The average

dominance of one relation is obtained by division through the total number of variables

of that relation (line 15).

CHAPTER 3. DESIGN AND IMPLEMENTATION 34

Algorithm 3.1: CalculateDominances(exp)

Data: exp: An Expression Node of the AST
Result: The dominance of each leaf relation in exp

1 calculate crispUpper and crispLower bounds of exp

2 ε ← 10−2

3 fuzzyUpper ← crispUpper
4 fuzzyLower ← crispLower
5 foreach tuple ∈ crispUpper \ crispLower do
6 if ρ(tuple) ≤ ε then
7 remove tuple from fuzzyUpper

8 if ρ(tuple) ≥ 1− ε then
9 add tuple to fuzzyLower

10 foreach tuple ∈ fuzzyUpper \ fuzzyLower do
11 derivedSolutionRates ← calculate ρ(tuplevar=0) for each var ∈ tuple
12 foreach ρ(tuplevar=0) ∈ derivedSolutionRates do
13 relation ← determine relation where var stems from

14 dom(relation, exp)
+← 2 · |ρ(tuple)− ρ(tuplevar=0)|

15 foreach relation do
16 dom(relation, exp) /= nvars(relation)

CHAPTER 3. DESIGN AND IMPLEMENTATION 35

3.2.5 A Weighing Algorithm for Relations

Algorithm 3.2 performs a depth-first search on the AST and determines highly con-

straining formula nodes — a concept described in subsection 3.2.2. For each expression

that is constraint by such a formula it distributes a weight to the participating relations

(lines 10, 12 and 16). For each relation its individual weight is determined by calculation

of its dominance in the currently examined expression. An additional penalty is calcu-

lated based on the width of the enclosing disjunction (line 4), taking into account the

decaying constrainedness when several paths in the AST can satisfy the formula. For

the same reason existential quantifiers are skipped. The disjunction size of existentially

quantified formulas depends on the size of the quantified relation, so the penalty would

be very high anyway. Apparently speaking of high constrainedness makes no sense when

a formula only has to hold for an arbitrary small number of elements in a relation.

Three special cases are handled for comparison formulas. First of all (line 6), self-

equivalences are simply skipped since they merely add tautological information as soon

as Kodkod has created all primary variables. In fact they are only present to let Kodkod

also create the variables for unconstrained relations. Also comparison formulas stating

the equivalence between variables declared over the same relation are included in the

check for self-equivalence. Another special case are subset constraints where the left

expression’s cardinality is bounded (line 7). In such cases the constraining effect of the

subset formula is restrained to a few elements before violating the cardinality constraint;

hence such subset-constraints are ignored. Comparison formulas where at least one

expression is constant are skipped as well (line 8). Most of such constraints can be

evaluated during translation.

CHAPTER 3. DESIGN AND IMPLEMENTATION 36

Algorithm 3.2: DistributeScores(f)

Data: formula: A Formula Node of the AST
Result: Assigns a score to each non-constant relation

/* execute depth-first search on the subtree and distibute weights

along expressions involved in formula-nodes considered to be

highly constraining */

1 if formula is Existential Quantifier then return

2 foreach child ∈ formula do
3 DistributeScores(child)

4 w ← number of disjoint paths
5 penalty← 2w

6 if formula is ComparisonFormula then
/* formula is of the form exp1 ⊆ exp2 or exp1 = exp2 */

7 if exp1 ≡ exp2 then skip
8 if ∃ CardinalityBound on exp1 ∧ formula is Subset then skip
9 if exp1 is constant or exp2 is constant then skip

10 foreach leaf ∈ exp1 do

11 weight(leaf)
+← dom(leaf, exp1) · penalty

12 foreach leaf ∈ exp2 do

13 weight(leaf)
+← dom(leaf, exp2) · penalty

14 else if formula is CardinalityBound then
/* formula is of the form one(exp) or no(exp) or lone(exp) or

¬some(exp) */

/* or intExpr < c or intExpr ≤ c or intExpr = c */

/* or ¬(intExpr > c) or ¬(intExpr ≥ c) */

15 foreach exp whose cardinality is bounded by formula do
16 foreach leaf ∈ exp do

17 weight(leaf)
+← dom(leaf, exp) · penalty

Chapter 4

Evaluation

In this section we present our evaluation of the several possibilities to prioritize primary

variables. We start with giving the specifications of the machine that ran the benchmarks

and the software we used in section 4.1. A comprehensive list of the benchmark problems

used with additional details about the generated propositional formulas can be found in

section 4.2, whereas section 4.3 contains a full runtime-analysis of the devised methods.

In section 4.4 we analyze the overhead produced by the weighing algorithm with respect

to different amounts of fuzziness. All devised methods are revisited and analyzed in

section 4.5, with respect to the possibility of incrementing the bounds.

4.1 Specifications

For all experiments we used Kodkod version 1.5.1 and MiniSAT version 2.2. They were

conducted on a Linux system (Ubuntu 11.04) with an AMD Athlon II X4 640 Processor

and 3.6 GiB of main memory. In all experiments the default configuration options of

Kodkod and MiniSAT were used, with the sole exception being the solver Kodkod uses,

that would have been Sat4J by default.

4.2 Models

For evaluation we chose a set of Alloy models and increased the bounds to an extent

where runtimes are expressive (≥ 1 second) yet small enough to allow for a large number

of experiments. For a few problems however, the bounds could not be increased to

achieve higher default runtimes, since their memory consumption ended up exceeding

any sensible limits. Those were basically simple satisfiable problems.

37

CHAPTER 4. EVALUATION 38

The following table lists some details about the benchmark models we used in our

experiments. All models are off-the-shelf Alloy models and most of them can be found in

the set of examples shipped with Alloy Analyzer 4. We additionally used some models

created by Eunsuk Kang (MIT) [19]. The table is organized as follows: In the first

column the filename is given where the model is defined. Those marked with an asterisk

can be found in the examples shipped with Alloy Analyzer 4. In the second column the

command line is given, specifying the name of the constraint and the bounds. There

might be several commands per file. For each command the total amount of clauses and

variables after translation is given, followed by the clause-variable-ratio and the fraction

of variables being primary. The last column specifies whether it is a satisfiable instance

or not.

Table 4.1: Benchmark Problems

file command clauses variables c/v p/v

dijkstra.als* Check DijkstraPrevents-

Deadlocks for 12 State,

12 Process, 10 Mutex

217380 62925 3.45 0.05 unsat

Run ShowDijkstra for 28

State, 7 Process, 7 Mu-

tex

163698 57406 2.85 0.05 sat

opt-

spantree.als*

Run BadLivenessTrace

for 6 but 8 State

43771 21109 2.07 0.03 unsat

Check Closure for 6 but

8 State

27650 14699 1.88 0.05 unsat

Run SuccessfulRun for

10 State, exactly 12 Pro-

cess, 8 Lvl

338063 138359 2.44 0.02 sat

Run TraceWithoutLoop

for 6 but 8 State

62006 56888 1.09 0.01 unsat

peterson.als* Check NotStuck for 16

but 3 pid, 4 priority, 5 la-

bel t

29470 12204 2.41 0.07 unsat

Check Safety for 20 but 3

pid, 4 priority, 5 label t

28640 12977 2.21 0.08 unsat

Run ThreeRun for 64 but

5 pid, 5 priority, 6 la-

bel t

205066 83937 2.44 0.08 sat

CHAPTER 4. EVALUATION 39

Benchmark Problems

file command clauses variables c/v p/v

Run TwoRun for 64 but

5 pid, 5 priority, 6 la-

bel t

201320 81999 2.46 0.08 sat

ringlead.als* Check LeaderHighest for

8

176912 90731 1.95 0.04 unsat

Check Liveness for 6

but 8 Msg, 2 Bool, 4

NodeState

97095 47680 2.04 0.05 unsat

Run NeverFindLeader

for 6 but 8 Tick, 2 Bool,

4 NodeState

86284 44452 1.94 0.05 sat

Check OneLeader for 6

but 2 Bool, 4 NodeState

63912 33824 1.89 0.05 unsat

Run SomeLeader for 5 33260 17858 1.86 0.06 unsat

stablemutex-

ring.als*

Check Closure for 5 but

4 Process, 6 Val

12012 6266 1.92 0.04 unsat

Run TraceShorterThan-

MaxSimpleLoop for 24

but 12 Process, 12 Val

346824 173383 2.00 0.03 sat

Run TwoPrivileged for

20 but 10 Process, 10 Val

200071 95743 2.09 0.03 sat

stableorient-

ring.als*

Check Closure for 6 but

12 Tick, 2 Bool, 18 Pro-

cess

471365 199341 2.36 0.03 sat

Run SomeState for 6 but

12 Tick, 2 Bool, 18 Pro-

cess

452374 193645 2.34 0.03 sat

stable-

ringlead.als*

Run CBadLivenessTrace

for 9

328530 93238 3.52 0.01 unsat

Check CMustConverge

for 8 but 10 State

294418 85493 3.44 0.01 sat

Run CTraceWithout-

Loop for 12 but 8

State

474156 130373 3.64 0.01 sat

Run ConvergingRun for

10 but 8 State

350296 96480 3.63 0.01 sat

CHAPTER 4. EVALUATION 40

Benchmark Problems

file command clauses variables c/v p/v

Run DBadLivenessTrace

for 6

99446 28660 3.47 0.01 sat

Run DTraceWithout-

Loop for 7

159315 51185 3.11 0.01 sat

chordbug-

model.als*

Run FindSuccessor-

Works for 5 but 2

State

106611 66625 1.60 0.01 unsat

Run ShowMe3 for 12 but

5 State

1163524 488585 2.38 0.01 sat

Run ShowMeCorrect-

SuccessorEg for 11 but 3

State

895295 364163 2.46 0.01 sat

Check StrongerFindSuc-

cessorWorks for 12 but 4

State

758912 293567 2.59 0.02 sat

chord2.als* Check FindSuccessor-

Works for 5 but 2 State,

4 Node, 4 NodeData

117556 79063 1.487 0.008 unsat

chord.als* Check FindSuccessor-

Works for 12 but 4

State

838020 330401 2.54 0.02 sat

Check InjectiveIds for 10 588499 183858 3.20 0.03 unsat

Check Same1 for 8 but 1

State

103321 51509 2.01 0.05 unsat

Check Same2 for 8 but 1

State

98362 48592 2.02 0.05 unsat

Check SameCPF for 5

but 2 State

89751 36712 2.44 0.02 unsat

Check SameCPF1 for 5

but 2 State

59447 35510 1.67 0.02 unsat

Check SameCPF2 for 6

but 2 State

91695 35176 2.61 0.03 unsat

Check SameFC for 5 but

1 State

76361 28753 2.66 0.02 unsat

Check SameFP for 9 but

2 State

585296 254883 2.30 0.01 sat

Check SameFP1 for 6

but 1 State

95641 44817 2.13 0.02 unsat

CHAPTER 4. EVALUATION 41

Benchmark Problems

file command clauses variables c/v p/v

Check SameFP2 for 5

but 1 State

51015 23800 2.14 0.03 unsat

Run ShowMe1 for 13 2353289 780261 3.02 0.02 sat

Run ShowMe1Node for

24 but 8 State, 8 Node

2958093 1203655 2.46 0.02 sat

Run ShowMe2 for 12 2024161 749698 2.70 0.01 sat

Run ShowMeCPF for 10

but 2 State

1885166 1362123 1.38 0.00 sat

Run ShowMeFC for 16

but 8 State

3744016 1301265 2.88 0.02 sat

sync.als* Run SyncSpecNotU-

nique for 7

40410 17659 2.29 0.02 unsat

com.als* Check Theorem1 for 10 150064 76677 1.96 0.03 unsat

Check Theorem2 for 10 149654 76677 1.95 0.03 unsat

Check Theorem3 for 14 486222 245657 1.98 0.02 unsat

Check Theorem4a for 10 149863 76785 1.95 0.03 unsat

Check Theorem4b for 14 486657 245881 1.98 0.02 unsat

firewire.als* Check AtMostOne-

Elected for 7 Op, 2 Msg,

3 Node, 6 Link, 3 Queue,

9 State

33581 17813 1.89 0.03 unsat

Check NoOverflow for 7

Op, 2 Msg, 3 Node, 6

Link, 5 Queue, 9 State

39282 20207 1.94 0.03 unsat

iolus.als* Check Outsider-

CantRead for 5 but

3 Member

129049 52659 2.45 0.01 unsat

abstract-

Filesystem.als

Check WriteIdempotent

for 5 but 5 int, 8 seq

32780 12236 2.68 0.04 unsat

Check WriteLocal for 7

but 7 int, 14 seq

114000 40022 2.85 0.04 unsat

Run run1 for 25 but 14

AbsFsys

655263 334273 1.96 0.04 sat

Run run2 for 24 but 13

AbsFsys

676767 320168 2.11 0.04 sat

CHAPTER 4. EVALUATION 42

Benchmark Problems

file command clauses variables c/v p/v

block-

Manager.als

Run gcTest for 8 but 8

int, 8 seq, 5 BlockMan-

ager, 5 GarbageCollec-

tor, 5 Device, 12 Block,

12 PhysicalAddr

558963 182740 3.06 0.02 sat

consensus-

Paxos v2.als

Run run1 for 10 but 2

Round, exactly 6 Accep-

tor, exactly 2 Proposer,

exactly 8 Phase

1073762 329226 3.26 0.02 unsat

flash.als Check ProgramIdempo-

tent for 5

30586 11409 2.68 0.04 unsat

Check ProgramLocal for

9

143103 52618 2.72 0.04 unsat

Run eraseSome for 14 394872 159793 2.47 0.04 sat

Run readSome for 16 570783 221189 2.58 0.05 sat

Run writeSome for 12 286331 107017 2.68 0.04 sat

naming.als Check WriteLocal for 9 3459520 6364003 0.54 0.00 unsat

Check WriteRemove-

Consistent for 6

397726 462610 0.86 0.01 unsat

Run run1 for 10 but 5

Namespace

3143334 3430274 0.92 0.00 sat

naming-

Object0.als

Check RenamePre-

servesStructure for 7 but

3 Namespace

385704 269440 1.43 0.01 unsat

Check RenameSamePath

for 5 but 3 Namespace

98991 66681 1.48 0.01 unsat

Run remove for 10 but 5

Namespace

2875739 3469862 0.83 0.00 sat

Run show rename for 9

but 5 Namespace

1845678 2136894 0.86 0.00 sat

Run write for 9 but 5

Namespace

1734984 2111058 0.82 0.00 sat

peterson2p.als Check MutualExclusion-

Satisfied for 30 but ex-

actly 2 System, exactly 8

Proc

235398 91714 2.57 0.06 unsat

CHAPTER 4. EVALUATION 43

Benchmark Problems

file command clauses variables c/v p/v

Check ProgressGuaran-

teed for 30 but exactly 2

System, exactly 8 Proc

234725 89064 2.64 0.06 sat

Run run1 for 30 but ex-

actly 2 System, exactly 8

Proc

225259 86087 2.62 0.06 sat

planner.als Run run1 for 28 3517236 1082092 3.25 0.02 sat

javatypes.als* Check TypeSoundness

for 4

34305 16579 2.07 0.04 unsat

lists.als* Check reflexive for 10 54607 16379 3.33 0.03 unsat

Run show for 28 1018738 270502 3.77 0.01 sat

Check symmetric for 8 28939 9188 3.15 0.03 unsat

marksweep-

gc.als*

Check Completeness for

7

40412 17170 2.35 0.05 unsat

Check Soundness1 for 9 80651 30633 2.63 0.06 unsat

Check Soundness2 for 7 40286 17163 2.35 0.05 unsat

views.als* Check zippishOK for 8

but 10 State, 4 View-

Type

799675 248128 3.22 0.01 sat

4.3 Experiments

In the first experiments (subsections 4.3.1 and 4.3.2) all primary variables were uni-

formly prioritized under application of the two methods proposed in section 3.1. In a

third experiment (subsection 4.3.3) the weights calculated by algorithm 3.2 were used to

initialize MiniSAT’s activity array. All runtime comparisons have been conducted with

a timeout of five minutes. We also compared all methods with respect to the maximum

bound to be solved within 60 seconds (subsection 4.5).

4.3.1 Uniform Overriding

With Uniform Overriding, equal priorities were distributed to all primary variables and

the overriding flag was activated as described in subsection 3.1.1. The solver was thereby

forced to only assign primary variables. Due to the primary variables constituting an

Independent Variable Set (IVS), the approach corresponds to Input Restricted Branch-

ing. The inner order of the primary variables remained untouched and MiniSAT’s native

CHAPTER 4. EVALUATION 44

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000 1e+06

’U
ni

fo
rm

O
ve

rr
id

e’

’DEFAULT’

wall-clock time (in ms)

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000 1e+06

’U
ni

fo
rm

O
ve

rr
id

e’

’DEFAULT’

wall-clock time (in ms)

Figure 4.1: Uniform Activity Overriding (SAT / UNSAT)

activity-driven ordering was used to break ties.

The two scatter plots in figure 4.1 show a runtime comparison between the default

runtime of MiniSAT and the runtimes of MiniSAT under application of uniform activity

overriding on primary variables. The left side displays the speedup encountered on

satisfiable instances. The considerable runtime improvement on satisfiable instances can

be explained by the exponential decay in the size of the search space. However, there

are also several runtime deteriorations, especially one timeout (indicated by a red dot

at the upper border of the scatter-plot).

Many runtime deteriorations are encountered on unsatisfiable problems, among those

were nine timeouts. As Järvisalo et al. [16] prove, CDCL solvers generally benefit from

additional variables allowing them to produce exponentially shorter proofs. The runtime

deterioration on unsatisfiable problems displayed in the right scatter plot of figure 4.1

empirically confirms their theoretical results.

4.3.2 Uniform Initialization

Now applying Uniform Initialization, we distributed equal priorities to all primary vari-

ables as before, except for mere initialization of MiniSAT’s native activity array as

described in subsection 3.1.2.

Figure 4.2 shows a runtime comparison between MiniSAT’s default runtime and

MiniSAT’s runtime after uniform activity initialization of primary variables. The activity

of all primary variables was initialized with a value of 3. The left scatter plot shows the

CHAPTER 4. EVALUATION 45

 100

 1000

 10000

 100000

 100 1000 10000 100000

’U
ni

fo
rm

In
iti

al
iz

e-
3.

00
’

’DEFAULT’

wall-clock time (in ms)

 100

 1000

 10000

 100000

 100 1000 10000 100000

’U
ni

fo
rm

In
iti

al
iz

e-
3.

00
’

’DEFAULT’

wall-clock time (in ms)

Figure 4.2: Uniform Activity Initialization (SAT / UNSAT)

performance gain on satisfiable problems, although the effect of activity initialization

blurs as MiniSAT adjusts activities. Due to the blurring, the runtime deterioration on

unsatisfiable problems vanishes as can be seen by the right scatter plot. Non-primary

variables are still allowed for assignment, depending on how MiniSAT adjusts their

activity.

As small activity values are already sufficient to boost the runtime, one might expect

this effect to change or even converge to the results of activity overriding as higher

values are selected for activity initialization. Figure 4.3 indicates that this assumption

is wrong. On the contrary, the runtimes are in fact fluctuating depending on the chosen

initial value. The cactus plots show the accumulated runtimes, separated by satisfiable

and unsatisfiable benchmark problems, after activity initialization with the values 5, 233,

1346269 and 7778742049 (an arbitrary selection of fibonacci-numbers). The plots reveal

no pattern correlating the size of the initial activity value with the runtime. The results

show how rapidly the effect of activity initialization blurs, thereby also demonstrating

how learning affects the search a runtime long.

CHAPTER 4. EVALUATION 46

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20 25 30 35

w
al

l-c
lo

ck
 ti

m
e

(in
 m

ill
i-s

ec
on

ds
)

number solved instances

U5
U233

U1346269
U7778742049

DEFAULT

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20 25 30 35 40 45

w
al

l-c
lo

ck
 ti

m
e

(in
 m

ill
i-s

ec
on

ds
)

number solved instances

U5
U233

U1346269
U7778742049

DEFAULT

Figure 4.3: Uniform Activity Initialization with different initial values (SAT / UNSAT)

CHAPTER 4. EVALUATION 47

 100

 1000

 10000

 100000

 100 1000 10000 100000

’S
te

pl
ik

eI
ni

tia
liz

e-
2.

00
-2

.0
0’

’DEFAULT’

wall-clock time (in ms)

 100

 1000

 10000

 100000

 100 1000 10000 100000

’S
te

pl
ik

eI
ni

tia
liz

e-
2.

00
-2

.0
0’

’DEFAULT’

wall-clock time (in ms)

Figure 4.4: Step-like Activity Initialization (SAT / UNSAT)

4.3.3 Step-like Initialization

The set of relations induces a partition {V0, . . . , Vn} on the primary variables such that

Vi denotes the variables corresponding to relation Ri. Algorithm 3.2 generates for each

relation Ri a weight w(Ri) inducing an ordering such that w(Ri) ≥ w(Ri+1). Since

the absolute value of those weights strongly depends on the underlying problem, the

weights were normalized with respect to the biggest weight. Let w(R0) be the biggest

weight, then the normalized weight of each relation Ri is given by the formula n(Ri) =

w(Ri)/w(R0). The normalized weights can now serve as input to a linear function

act(Vi) = b + f · n(Ri) — with a scaling factor f and a baseline b — to calculate the

initial activity for each primary variable v ∈ Vi corresponding to a relation Ri. We could

thus establish an initial ordering among the primary variables by activity initialization

in a step-like manner. This differs from the uniform initialization approach, where the

inner order of primary variables was not touched.

The two scatter plots in figure 4.4 show the results of a structure-based step-like

activity initialization of primary variables. The parameter setting for the initialization

function act(Vi) = b+ f · n(Ri) was such that b = 2 and f = 2. Increased performance

is encountered in both satisfiable and unsatisfiable problems. The performance increase

on unsatisfiable problems is only slight. As we have seen in the former approaches,

prioritizing primary variables is generally not a good idea for unsatisfiable problems.

Prioritizing highly constraint primary variables, however, breaks the ties a bit.

As uniform activity initialization already performs very well, the scatter plot in fig-

CHAPTER 4. EVALUATION 48

 100

 1000

 10000

 100000

 100 1000 10000 100000

’S
te

pl
ik

eI
ni

tia
liz

e-
2.

00
-2

.0
0’

’UniformInitialize-3.00’

wall-clock time (in ms)

 100

 1000

 10000

 100000

 100 1000 10000 100000

’S
te

pl
ik

eI
ni

tia
liz

e-
2.

00
-2

.0
0’

’UniformInitialize-3.00’

wall-clock time (in ms)

Figure 4.5: Uniform vs. Step-like Activity Initialization (SAT / UNSAT)

ure 4.5 displays a cross-comparison between runtimes after uniform activity initialization

and structure-based step-like initialization. Most problems benefit from the more fine-

grained structure-based initialization, but the improvement is small since there are also

several deteriorations encountered compared to the uniform approach. Although hardly

recognized, the step-like initialization approach outperforms uniform initialization on

unsatisfiable problems.

Like in the Uniform Initialization approach we experimented with different parameter

settings. The scatter plots in figure 4.6 display the accumulated runtimes with different

scaling factors f , separated by satisfiable and unsatisfiable problems. Again the plots

reveal no pattern correlating the size of the initial activity value with the runtime.

CHAPTER 4. EVALUATION 49

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20 25 30 35

w
al

l-c
lo

ck
 ti

m
e

(in
 m

ill
i-s

ec
on

ds
)

number solved instances

F5
F233

F1346269
F7778742049

DEFAULT

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20 25 30 35 40 45

w
al

l-c
lo

ck
 ti

m
e

(in
 m

ill
i-s

ec
on

ds
)

number solved instances

F5
F233

F1346269
F7778742049

DEFAULT

Figure 4.6: Step-like Activity Initialization with different scaling factors (SAT / UNSAT)

CHAPTER 4. EVALUATION 50

4.4 Overhead

The methods Uniform Activity Overriding and Uniform Activity Initialization produce

close to no overhead due to the information about which variables are primary be-

ing already present in Kodkod’s data-structures. However, the weighing algorithm (al-

gorithms 3.1 and 3.2) used for Step-like Activity Initialization produces a significant

amount of overhead. We have dealt with this problem by introducing a certain amount

of fuzziness into the calculation of relation dominance and other algorithmic optimiza-

tions (subsection 3.2.4).

Table 4.2 lists the benchmark problems and the generated overhead caused by the

weighing algorithm. The overhead strongly depends on the chosen amount of fuzziness,

and as stated earlier, without a tiny amount of fuzziness the weighing approach would

be algorithmically infeasible. The table compares weighing overhead with respect to two

different amounts of fuzziness ε = 10−3 and ε = 10−2. As fuzziness increases, some runs

of the weighing algorithm are further accelerated, so in our experiments we used the

higher amount of fuzziness (ε = 10−2). The two rightmost columns show the highest

accumulated score a relation achieved with respect to different amounts of fuzziness, in

order to show how the precision is slightly deteriorating for some problems, and to give

an impression of the order of magnitude of the accumulated scores. Runtimes are printed

boldface if the runtime improvement gained by increased fuzziness was greater than 1

second. Scores are printed bold whenever increased fuzziness changed their precision.

Table 4.2: Overhead and highest score w.r.t. different amounts of fuzziness ε

problem overhead in ms highest score

ε = 10−2 ε = 10−3 ε = 10−2 ε = 10−3

dijkstra DijkstraPreventsDeadlocks 203 218 20.75 20.75

dijkstra ShowDijkstra 77 77 15.00 15.00

opt spantree BadLivenessTrace 33 37 8.97 8.97

opt spantree Closure 33 39 8.97 8.97

opt spantree SuccessfulRun 66 57 2.00 2.00

opt spantree TraceWithoutLoop 28 30 8.97 8.97

peterson NotStuck 25 27 18.08 18.08

peterson Safety 32 37 20.08 20.08

peterson ThreeRun 151 150 23.32 23.32

peterson TwoRun 147 148 22.32 22.32

ringlead LeaderHighest 61 473 25.81 25.81

ringlead Liveness 45 208 21.51 21.51

ringlead NeverFindLeader 129 132 22.37 22.37

CHAPTER 4. EVALUATION 51

Overhead and highest score w.r.t. different amounts of fuzziness ε

problem overhead in ms highest score

ε = 10−2 ε = 10−3 ε = 10−2 ε = 10−3

ringlead OneLeader 177 107 22.32 22.32

ringlead SomeLeader 125 53 20.60 20.60

stable mutex ring Closure 12 13 7.36 7.51

stable mutex ring TraceShorterTMSL 160 160 6.15 6.15

stable mutex ring TwoPrivileged 80 81 10.09 10.09

stable orient ring Closure 80 84 25.75 26.18

stable orient ring SomeState 80 84 26.75 27.18

stable ringlead CBadLivenessTrace 5 5 1.00 1.00

stable ringlead CMustConverge 4 4 0.25 0.25

stable ringlead ConvergingRun 5 5 1.00 1.00

stable ringlead CTraceWithoutLoop 6 6 1.00 1.00

stable ringlead DBadLivenessTrace 10 9 0.50 0.50

stable ringlead DTraceWithoutLoop 13 14 0.30 0.30

chord2 FindSuccessorWorks 795 848 18.19 18.26

chordbug FindSuccessorWorks 117 2800 12.86 12.90

chordbug ShowMe3 119 121 43.53 43.53

chordbug ShowMeCorrectSuccessorEg 76 79 43.53 43.53

chordbug StrongerFindSuccessorWorks 84 86 14.67 14.67

chord FindSuccessorWorks 116 110 14.67 14.67

chord InjectiveIds 87 96 16.07 16.07

chord Same1 54 49 36.69 36.69

chord Same2 53 49 21.72 22.24

chord SameCPF1 21 15 34.49 36.30

chord SameCPF 21 15 36.69 36.69

chord SameCPF2 33 24 12.71 12.71

chord SameFC 59 26 19.60 19.98

chord SameFP1 23 49 12.45 12.45

chord SameFP2 26 27 29.20 29.46

chord SameFP 45 73 12.11 12.19

chord ShowMe1 175 176 15.06 15.50

chord ShowMe1Node 341 405 15.82 15.90

chord ShowMe2 148 148 20.61 20.64

chord ShowMeCPF 75 450 27.59 27.59

chord ShowMeFC 327 308 18.19 18.26

com Theorem1 23 44 9.13 9.49

com Theorem2 24 44 8.63 8.99

CHAPTER 4. EVALUATION 52

Overhead and highest score w.r.t. different amounts of fuzziness ε

problem overhead in ms highest score

ε = 10−2 ε = 10−3 ε = 10−2 ε = 10−3

com Theorem3 61 73 9.92 9.99

com Theorem4a 24 44 9.63 9.99

com Theorem4b 62 72 10.42 10.49

firewire AtMostOneElected 13 17 19.78 19.78

firewire NoOverflow 16 23 19.78 19.78

iolus OutsiderCantRead 29 117 29.57 29.57

sync SyncSpecNotUnique 4 4 29.62 29.62

abstractFilesystem run1 191 195 9.00 9.00

abstractFilesystem run2 165 172 15.75 15.75

abstractFilesystem WriteIdempotent 7 6 7.88 7.88

abstractFilesystem WriteLocal 26 26 7.88 7.88

blockManager gcTest 137 147 23.91 23.91

consensusPaxos run1 276 298 29.69 29.72

flash eraseSome 128 131 13.12 13.12

flash ProgramIdempotent 9 8 12.12 12.13

flash ProgramLocal 34 41 8.24 8.24

flash readSome 195 199 7.88 7.88

flash writeSome 79 80 9.84 9.84

namingObject0 remove 426 455 84.75 84.94

namingObject0 RenamePreservesStructure 106 117 46.79 46.79

namingObject0 RenameSamePath 44 4328 116.20 116.21

namingObject0 show rename 303 322 73.42 73.44

namingObject0 write 301 319 46.81 46.81

naming run1 331 386 104.09 104.22

naming WriteLocal 428 1069 87.35 87.35

naming WriteRemoveConsistent 92 92 87.35 87.35

Peterson2P MutualExclusionSatisfied 115 115 30.50 30.50

Peterson2P ProgressGuaranteed 114 116 30.50 30.50

Peterson2P run1 114 115 30.50 30.50

planner run1 248 250 14.00 14.00

javatypes TypeSoundness 27 75 16.76 16.76

lists reflexive 5 10 7.42 7.61

lists show 43 45 7.75 7.75

lists symmetric 5 6 8.80 8.80

marksweepgc Completeness 10 11 9.53 9.53

marksweepgc Soundness1 16 22 8.93 8.95

CHAPTER 4. EVALUATION 53

Overhead and highest score w.r.t. different amounts of fuzziness ε

problem overhead in ms highest score

ε = 10−2 ε = 10−3 ε = 10−2 ε = 10−3

marksweepgc Soundness2 11 10 9.53 9.53

views zippishOK 95 95 16.60 16.66

Figure 4.7 displays the scatter plots comparing the runtimes of the step-like initial-

ization approach to the default runtimes, this time including the overhead caused by the

weighing algorithm. The benefit of a faster runtime is still recognized. However, as the

benefit compared to the uniform initialization approach was already small, it vanishes as

we include weighing overhead. Figure 4.8 shows the new cross-comparison including the

overhead. Especially the small clusters of dots which were already close to the diagonal

in figure 4.5 are now blurred across the diagonal in figure 4.8.

CHAPTER 4. EVALUATION 54

 100

 1000

 10000

 100000

 100 1000 10000 100000

’S
te

pl
ik

eI
ni

tia
liz

e-
2.

00
-2

.0
0’

’DEFAULT’

wall-clock time (in ms)

 100

 1000

 10000

 100000

 100 1000 10000 100000

’S
te

pl
ik

eI
ni

tia
liz

e-
2.

00
-2

.0
0’

’DEFAULT’

wall-clock time (in ms)

Figure 4.7: Step-like Activity Initialization with Overhead (SAT / UNSAT)

 100

 1000

 10000

 100000

 100 1000 10000 100000

’S
te

pl
ik

eI
ni

tia
liz

e-
2.

00
-2

.0
0’

’UniformInitialize-3.00’

wall-clock time (in ms)

 100

 1000

 10000

 100000

 100 1000 10000 100000

’S
te

pl
ik

eI
ni

tia
liz

e-
2.

00
-2

.0
0’

’UniformInitialize-3.00’

wall-clock time (in ms)

Figure 4.8: Uniform vs. Step-like Activity Initialization with Overhead (SAT / UNSAT)

CHAPTER 4. EVALUATION 55

4.5 Incrementing Bounds

Since not only the runtime but also the maximum feasible bound on the universe is

important in bounded model checking, we ran another series of benchmarks in which we

subsequently increased the overall bound of our Alloy models. Note that the semantics

of a few Alloy models might thus have changed, as some of them depend on a more

fine grained bound initialization (In Alloy-models universe bounds can be distributed

signature-wise, where a signature basically is a relation, but all signatures are disjoint).

Tables 4.3 and 4.4 list the maximum bound solved within a timeout interval of one

minute for each benchmark model. Results are separated by satisfiable (table 4.3) and

unsatisfiable (table 4.4) problems. Many satisfiable problems included in the original

benchmarks had to be dropped since the maximum bound for the default case is already

high enough for the solver to run out of memory before finding a bound that takes longer

than one minute to solve.

Column default lists the maximum bounds for the default method. Column restricted

lists the maximum bounds for uniform activity overriding, whereas uniform lists the

maximum bounds for uniform activity initialization of all primary variables. Column

step-like lists the maximum bounds for step-like activity initialization of all primary

variables. The smallest bound reached is always colored gray, so there might be rows

with all bounds printed gray when no method could reach a higher bound. A bound is

printed bold when no other method could reach a bound that high. The sign ≥ indicates

that the experiment had to be stopped as the system ran out of memory.

For the satisfiable problems (table 4.3) input restricted branching is a clear winner.

problem default restricted uniform step-like

opt spantree SuccessfulRun sat 13 16 14 14
opt spantree TraceWithoutLoop sat 10 12 11 11
ringlead NeverFindLeader sat 15 15 14 15
stable mutex ring TraceShorterTMSL sat 13 15 14 32≥

stable orient ring Closure sat 18 19 19 17
stable orient ring SomeState sat 20 26 20 24
stable ringlead CMustConverge sat 13 22 14 13
stable ringlead CTraceWithoutLoop sat 15 23 15 14
stable ringlead ConvergingRun sat 8 8 8 8
stable ringlead DTraceWithoutLoop sat 9 13 9 9
chord FindSuccessorWorks sat 17 19≥ 18≥ 17
chord SameFP sat 10 14≥ 16≥ 13
chord ShowMe2 sat 15 18≥ 18≥ 19≥

abstractFilesystem run1 sat 41 58≥ 58≥ 58≥

blockManager gcTest sat 16 14 20 19

Table 4.3: Maximum bounds solved before reaching the timeout of 60 seconds, SAT

CHAPTER 4. EVALUATION 56

In 6 out of the 15 benchmarks it could reach the maximum bounds of all devised methods

and in 4 other cases the maximum bound within one minute could not be determined

due to memory restrictions. Uniform activity initialization had the best bound in only 1

case and in the same four other cases the maximum bound within one minute could not

be determined due to memory restrictions. Also step-like activity initialization could

reach a maximum bound in 1 case and additionally ran out of memory afterwards, so

that this maximum bound could also be higher. There are cases as well where the best

bound is shared among several methods and the cases where it is unclear which one is

best. Notably for the satisfiable problems the default method’s bound was never best

compared to all other methods.

For the unsatisfiable problems (table 4.4) in 2 out of a total of 46 test cases the default

method still reaches the best bound compared to all other methods. Also input restricted

branching solves the best bound 2 times. Uniform activity initialization reaches the best

bound in 3 cases. In 5 cases step-like activity initialization has the best bound for which

in 3 cases the experiment had to be stopped since the bounds were getting so high, that

the system ran out of memory.

CHAPTER 4. EVALUATION 57

problem default restricted uniform step-like

dijkstra DijkstraPreventsDeadlocks unsat 24 21 23 24
dijkstra ShowDijkstra unsat 10 11 11 10
opt spantree BadLivenessTrace unsat 7 7 7 7
opt spantree Closure unsat 11 7 9 10
peterson NotStuck unsat 11 8 10 10
peterson Safety unsat 30 30 29 39≥

peterson ThreeRun unsat 17 17 17 17
peterson TwoRun unsat 16 17 16 16
ringlead LeaderHighest unsat 9 9 11 11
ringlead Liveness unsat 9 9 9 9
ringlead OneLeader unsat 9 9 9 9
ringlead SomeLeader unsat 6 5 6 6
stable mutex ring Closure unsat 6 7 6 6
stable mutex ring TwoPrivileged unsat 18 22 18 18
stable ringlead CBadLivenessTrace unsat 9 9 9 9
stable ringlead DBadLivenessTrace unsat 6 6 6 6
chord InjectiveIds unsat 14 14 14 14
chord Same1 unsat 9 8 9 9
chord Same2 unsat 10 9 10 9
chord SameCPF unsat 5 5 5 5
chord SameCPF1 unsat 6 6 6 6
chord SameCPF2 unsat 7 6 7 7
chord SameFC unsat 5 4 5 5
chord SameFP1 unsat 6 5 7 7
chord SameFP2 unsat 7 5 7 7
chord2 FindSuccessorWorks unsat 5 5 5 5
chordbug FindSuccessorWorks unsat 5 5 5 5
firewire AtMostOneElected unsat 12 13 12 40≥

firewire NoOverflow unsat 11 13 12 34≥

iolus OutsiderCantRead unsat 5 5 6 5
sync SyncSpecNotUnique unsat 7 5 7 7
abstractFilesystem WriteIdempotent unsat 9 2 10 8
abstractFilesystem WriteLocal unsat 8 2 8 12
flash ProgramIdempotent unsat 10 3 10 9
flash ProgramLocal unsat 16 5 17 17
flash eraseSome unsat 23 24 22 26
flash readSome unsat 25 25 27 24
flash writeSome unsat 20 21 20 21
naming WriteRemoveConsistent unsat 7 4 7 7
namingObject0 RenameSamePath unsat 5 5 5 5
javatypes TypeSoundness unsat 4 3 4 3
lists reflexive unsat 14 13 15 14
lists symmetric unsat 9 9 9 9
marksweepgc Completeness unsat 7 5 7 7
marksweepgc Soundness1 unsat 12 7 12 10
marksweepgc Soundness2 unsat 8 6 8 8

Table 4.4: Maximum bounds solved before reaching the timeout of 60 seconds, UNSAT

Chapter 5

Summary and Outlook

In this work two methods have been devised to influence MiniSAT’s variable ordering

(section 3.1). In the first one we overrode and in the other one we initialized MiniSAT’s

native activity score. The approaches have been restraint to ways of directing MiniSAT

to Kodkod’s primary variables (subsection 3.2.1). As the uniform overriding approach

plays out its strength mainly on satisfiable problems, strong runtime deteriorations to

the point of timeouts are encountered on unsatisfiable problems (subsection 4.3.1). With

the uniform initialization approach we could settle these runtime deteriorations and still

keep most of the better runtimes on satisfiable problems (subsection 4.3.2).

By structural analysis of Kodkod’s Abstract Syntax Tree (AST) and distribution of

a “constrainedness” score (subsection 3.2.2), we were able to induce an inner ordering

of the primary variables. Utilization of this inner ordering in our step-like initializa-

tion approach even lead to slight runtime improvements on unsatisfiable problems and

outperformed the uniform initialization approach on unsatisfiable instances.

The results generally confirmed the importance of auxiliary variables for unsatisfi-

able problems. Therefore future research might include those and their importance to

efficient branching heuristics as well. It is remarkable that, starting with highly con-

straint primary variables, the bounds of some unsatisfiable problems could be increased

significantly, although prioritizing primary variables in general seemed not to be such

a good idea for unsatisfiable problems. This insight can be used in future approaches

prioritizing non-primary variables.

As an intermediate step in the translation to CNF (Conjunctive Normal Form) Kod-

kod creates a problem representation as a CBC (Compact Boolean Circuit). This repre-

sentation is similar to Binary Decision Diagrams (BDD) but optimized for the specific

needs of Kodkod. As this work was purely based on analysis of Kodkod’s AST, ap-

58

CHAPTER 5. SUMMARY AND OUTLOOK 59

proaches dealing with auxiliary variables could start analysis at the lower representation

level of Kodkod’s CBC. Utilization of a “constrainedness” score on all variables (in-

cluding auxiliary variables) might boost the performance of unsatisfiable problems as

well.

Not only the variable order but also the chosen polarity at each branching is crucial

to the performance of SAT solvers. In future research one might thus also try to extract

criteria for a suggested polarity for the first assignment of a variable. The polarity

of a formula’s sensitivity (subsection 3.2.3) might be taken into account to influence

branching order.

Cabodi et al. [5] combined BDD-based search and SAT solving by feeding the solver

with additional constraints gathered in preliminary BDD traversals, thereby gaining

faster runtimes of the SAT solver. This also indicates that extraction of information at

the BDD level — or CBC level as it comes to Kodkod — is a fertile ground for future

performance optimization of SAT solvers in Kodkod.

We devised a measure that quantifies the sensitivity of boolean formulas to singu-

lar assignments (subsection 3.2.3). Furthermore we presented an algorithm that under

the independent variables assumption can efficiently calculate high sensitivities (subsec-

tion 3.2.4). Studying its coherence with existing optimality criteria might give further

insight into the development of fast branching heuristics for satisfiability problems or

efficient algorithms for building minimal Ordered Binary Decision Diagrams (OBDD).

Bibliography

[1] P. Beame, H. Kautz, and A. Sabharwal. Towards understanding and harnessing the

potential of clause learning. Journal of Artificial Intelligence Research, 22:319–351,

2004.

[2] P. Beame and T. Pitassi. Propositional proof complexity: Past, present, and future.

In Current Trends in Theoretical Computer Science, pages 42–70. 2001.

[3] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors. Handbook of

Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications.

IOS Press, February 2009.

[4] J. C. Blanchette and T. Nipkow. Nitpick: a counterexample generator for higher-

order logic based on a relational model finder. In Proceedings of the First interna-

tional conference on Interactive Theorem Proving, ITP’10, pages 131–146, Berlin,

Heidelberg, 2010. Springer-Verlag.

[5] G. Cabodi, S. Nocco, and S. Quer. Improving sat-based bounded model checking

by means of bdd-based approximate traversals. J. UCS, 10(12):1696–1730, 2004.

[6] S. A. Cook, Robert, and A. Reckhow. The relative efficiency of propositional proof

systems. Journal of Symbolic Logic, 44:36–50, 1979.

[7] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.

Commun. ACM, 5(7):394–397, July 1962.

[8] G. Dennis, F. S.-H. Chang, and D. Jackson. Modular verification of code with sat.

In ISSTA, pages 109–120, 2006.

[9] N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and Applications

of Satisfiability Testing (SAT’03), pages 502–518, 2003.

ix

BIBLIOGRAPHY x

[10] J. P. Galeotti, N. Rosner, C. G. López Pombo, and M. F. Frias. Analysis of in-

variants for efficient bounded verification. In Proceedings of the 19th international

symposium on Software testing and analysis, ISSTA ’10, pages 25–36, New York,

NY, USA, 2010. ACM.

[11] M. K. Ganai. Propelling sat and sat-based bmc using careset. In FMCAD, pages

231–238, 2010.

[12] E. Giunchiglia, M. Maratea, and A. Tacchella. Dependent and independent vari-

ables in propositional satisfiability. In Proceedings of the European Conference on

Logics in Artificial Intelligence, JELIA ’02, pages 296–307, London, UK, UK, 2002.

Springer-Verlag.

[13] E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and the rest will follow:

Exploiting determinism in planning as satisfiability. In AAAI/IAAI, pages 948–

953, 1998.

[14] C. P. Gomes, A. Sabharwal, and B. Selman. Model Counting, chapter 20, pages

633–654. Volume 185 of Biere et al. [3], February 2009.

[15] D. Jackson. Software Abstractions: Logic, Language and Analysis. MIT Press, 2006.

[16] M. Järvisalo and T. Junttila. Limitations of restricted branching in clause learning.

Constraints, 14:325–356, September 2009.

[17] M. Järvisalo, T. A. Junttila, and I. Niemelä. Unrestricted vs restricted cut in a

tableau method for boolean circuits. Ann. Math. Artif. Intell., 44(4):373–399, 2005.

[18] R. G. Jeroslow and J. Wang. Solving propositional satisfiability problems. Ann.

Math. Artif. Intell., 1:167–187, 1990.

[19] E. Kang. Official website. http://people.csail.mit.edu/eskang/.

[20] P. Kilby, J. K. Slaney, S. Thiébaux, and T. Walsh. Backbones and backdoors in

satisfiability. In M. M. Veloso and S. Kambhampati, editors, AAAI, pages 1368–

1373. AAAI Press / The MIT Press, 2005.

[21] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of las vegas algorithms.

In ISTCS, pages 128–133, 1993.

http://people.csail.mit.edu/eskang/

BIBLIOGRAPHY xi

[22] J. P. Marques Silva and I. Lynce. Towards robust cnf encodings of cardinality

constraints. In Principles and Practice of Constraint Programming (CP’07), pages

483–497, 2007.

[23] J. P. Marques-Silva, I. Lynce, and S. Malik. Conflict-Driven Clause Learning SAT

Solvers, chapter 4, pages 131–153. Volume 185 of Biere et al. [3], February 2009.

[24] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-

neering an efficient SAT solver. In (DAC’01), 2001.

[25] A. J. Parkes. Clustering at the phase transition. In In Proc. of the 14th Nat. Conf.

on AI, pages 340–345. AAAI Press / The MIT Press, 1997.

[26] E. Torlak. A Constraint Solver for Software Engineering: Finding Models and Cores

of Large Relational Specifications. PhD thesis, MIT, 2008.

[27] E. Torlak and G. Dennis. Kodkod for alloy users, 2006.

[28] E. Torlak and D. Jackson. Kodkod: A relational model finder. In Tools and Al-

gorithms for Construction and Analysis of Systems (TACAS’07), pages 632–647,

2007.

[29] R. Williams, C. P. Gomes, and B. Selman. Backdoors to typical case complexity.

In IJCAI, pages 1173–1178, 2003.

	1 Introduction
	1.1 Objective and Motivation
	1.2 Methodology and Results
	1.3 Example
	1.4 Outline

	2 Background
	2.1 Kodkod
	2.1.1 Syntax
	2.1.2 Translation
	2.1.3 Conclusion

	2.2 MiniSAT
	2.2.1 DPLL Procedure
	2.2.2 Clause Learning
	2.2.3 Non-Chronological Backtracking
	2.2.4 Random Restarts
	2.2.5 Branching Heuristic
	2.2.6 CDCL Algorithm

	2.3 Related Work

	3 Design and Implementation
	3.1 Influencing MiniSAT's variable ordering
	3.1.1 Activity Overriding
	3.1.2 Activity Initialization

	3.2 Extracting Criteria for Prioritization
	3.2.1 Prioritizing Input Variables
	3.2.2 Highly Constraining Formulas
	3.2.3 The Sensitivity of Boolean Formulas to Singular Assignments
	3.2.4 Fast Fuzzy Calculation of Sensitivity-based Dominance
	3.2.5 A Weighing Algorithm for Relations

	4 Evaluation
	4.1 Specifications
	4.2 Models
	4.3 Experiments
	4.3.1 Uniform Overriding
	4.3.2 Uniform Initialization
	4.3.3 Step-like Initialization

	4.4 Overhead
	4.5 Incrementing Bounds

	5 Summary and Outlook
	Bibliography

