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Abstract. Many applications of SAT solving can profit from minimal
models—a partial variable assignment that is still a witness for sat-
isfiability. Examples include software verification, model checking, and
counterexample-guided abstraction refinement. In this paper, we exam-
ine how a given model can be minimized for SAT instances that have
been obtained by Tseitin encoding of a full propositional logic formula.
Our approach uses a SAT solver to efficiently minimize a given model, fo-
cusing on only the input variables. Experiments show that some models
can be reduced by over 50 percent.

1 Introduction

Many applications in logic and formal methods rely on SAT solvers as core
decision procedures, and in most cases the application is not only interested in
a yes/no answer, but also in a satisfying assignment (model) if one exists.

Models are used, for example, to represent counterexample traces in software
verification, steps leading to a goal in SAT-based planning, or to build candidate
conjunctions of theory atoms in SMT solving based on the DPLL(T) approach
[6]. The employment of models ranges from giving information to the user—
either directly or, more often, after some back-transformation to the application
domain—to guiding a search algorithm when a SAT solver is used to iteratively
enumerate solutions.

Minimized models try to strip off inessential information from a complete
solution produced by a SAT solver. Such reduced models allow, for example, the
user to focus on relevant parts of a counterexample trace, or to guide a SAT-
based search process more efficiently. E.g., in DPLL(T), smaller SAT models
alleviate the work of the theory solver(s), as they get passed smaller conjunctions
of theory atoms; by this, the refinement loop typically needs fewer iterations.

In many cases, formulas from the application domain are not in conjunctive
normal form (CNF) initially, which is, however, the input format that most SAT
solvers require. Thus, they have to be transformed to CNF. A number of efficient
procedures for this transformation are available [3, 9, 12, 17]. But this transfor-
mation, which typically introduces additional encoding variables, increases the
gap between the SAT solver’s solution and its interpretation in the application
domain. The assignment to encoding variables is often not of interest on the
application domain level.
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To illustrate the problem, consider the formula F = a ∨ (b ∧ c), and assume
that we are interested in finding a model for F . One such model would be
{a → 0, b → 0, c → 1}, assigning true to a and b, and false to c. This model
is not minimal though, as setting a to true would already be sufficient to make
the whole formula F true. So how can we obtain minimal models? Computing
them on the CNF level is not sufficient to arrive at minimal models on the
level of full propositional logic, as can be seen from our small example. When
we convert it to CNF (using the Tseitin transformation), we obtain the clauses
{ (x̄ b) (x̄ c) (x b̄ c̄) (ȳ a x) (y ā) (y x̄) (y) }, where x represents the subformula
b ∧ c and y the complete formula F . A minimal model of this clause set would
be {x→ 0, c→ 0, a→ 1, y → 1} and, even after projecting it onto the original
problem variables, we would obtain {c → 0, a → 1}, which is not the minimal
model {a→ 1} that we would like to see.

In this paper, we present algorithms that allow to compute minimal models
(such as {a → 1} for F ) efficiently, using standard SAT solvers to compute an
initial (complete) model, which is then minimized. The main contribution of our
paper is to also take the CNF encoding into account during minimization.1

2 Theoretical Background

We denote the set of propositional formulas by F. Formulas in F are built from
a set of variable symbols V, operators {∧,∨,¬}, and constants {>,⊥}. For each
F ∈ F, the set VF ⊆ V denotes the set of variables occurring in F . A variable
assignment for a given formula F is a (possibly partial) function α : VF  {0, 1}
that assigns a constant value to some variable in VF . We use dom(α) to denote
the set of variables for which α is defined. If dom(α) = VF , we say that the
assignment is complete; otherwise it is partial. Dealing with partial assignments
imposes the need for a three-valued interpretation. The interpretation of a for-
mula F under a (partial) assignment α is denoted by Iα and defined in Figure 1.
Here, 1, 0, and U stand for true, false, and undefined, respectively.

We now extend the standard definition of a model to partial assignments.

Definition 1 (Model). Given a formula F , a (partial) assignment α is a model
(or a satisfying assignment) for F iff Iα(F ) = 1. We use α |= F to denote that
α is a model of F .

In what follows, we use Mα to denote the set of true literals in an assignment
α for a formula F . That is, Mα = {v | v ∈ dom(F ) ∧ α(v) = 1} ∪ {¬v | v ∈
dom(F ) ∧ α(v) = 0}. Note that Mα uniquely defines α and vice versa.

Definition 2 (Model Minimization). Given a model α |= F , a model β |= F
is called α-minimized if Mβ ⊆Mα. An α-minimized model β is α-minimal if no
further subset Mγ ⊂Mβ is a model of F. An α-minimal model β is α-minimum

1 In this paper, we specifically consider the Plaisted-Greenbaum encoding [12], but
other encodings, such as the original Tseitin encoding [17], are also supported.
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Iα(⊥) = 0

Iα(v) =


1, if α(v) = 1

0, if α(v) = 0

U, if v /∈ dom(α)

Iα(¬F ) =


1, if Iα(F ) = 0

0, if Iα(F ) = 1

U, if Iα(F ) = U

Iα(>) = 1

Iα(F ∧G) =


1, if Iα(F ) = 1 and Iα(G) = 1

0, if Iα(F ) = 0 or Iα(G) = 0

U, otherwise

Iα(F ∨G) =


1, if Iα(F ) = 1 or Iα(G) = 1

0, if Iα(F ) = 0 and Iα(G) = 0

U, otherwise

Fig. 1. Interpretation of a formula under a (partial) assignment α.

if for each α-minimal model γ it holds that |Mγ | ≥ |Mβ |. If α is clear from the
context we may write minimized instead of α-minimized, and similarly for the
other terms.

Now let Fcnf ⊆ F denote the set of formulas in conjunctive normal form
(CNF). Formulas F ∈ Fcnf are usually represented as sets of clauses, where a
clause is a set of literals. As is well known, each formula can be converted to a
equisatisfiable formula in CNF, e.g., by using Tseitin’s encoding.

Definition 3 (Tseitin Encoding). Given a formula F ∈ F, its Tseitin en-
coding, T (F ) ∈ Fcnf , is defined as below. Our definition uses the well-known
optimization of Plaisted and Greenbaum [12].2

T (F ) = dF ∧ T 1(F )

T p(F ) =


T pdef(F ) ∧ T p(G) ∧ T p(H), if F = G ◦H and ◦ ∈ {∧,∨}
T pdef(F ) ∧ T p⊕1(G), if F = ¬G
>, if F ∈ V

T 1
def(F ) =


(¬dF ∨ dG) ∧ (¬dF ∨ dH), if F = G ∧H
(¬dF ∨ dG ∨ dH), if F = G ∨H
(¬dF ∨ ¬dG), if F = ¬G

T 0
def(F ) =


(dF ∨ ¬dG ∨ ¬dH), if F = G ∧H
(dF ∨ ¬dG) ∧ (dF ∨ ¬dH), if F = G ∨H
(dF ∨ dG), if F = ¬G

The Tseitin encoding works by introducing new propositional variables. In
more detail, given a formula F , its Tseitin encoding G = T (F ) introduces a new
variable symbol df for each sub-formula f of F . We call the variable dF , which

2 Some modern implementations introduce no additional encoding variables for
negated formulas and inline the negation.
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stands for the complete formula, the root variable. The set of variables VG can
be partitioned into input variables V inp

G that stem from the original formula F
and new encoding variables Venc

G .

3 Approach

The starting point of our approach is a Tseitin-encoded formula T (F ) ∈ Fcnf

and a complete satisfying assignment α |= T (F ) for it, as it can be obtained by
a standard SAT solver. It then computes a minimized model α′ of the original
formula F ∈ F. To do this, it takes structural information about the partitioning
of variables in T (F ) into input variables and encoding variables into account, as
well as the structural information from the Tseitin encoding.

Our minimization algorithm consists of two parts. The first works on the
CNF level, and is based on a transformation of the model minimization problem
to a hitting set problem, in which we search for a set Mα′ that contains at
least one literal from each clause that is assigned to true. We solve this hitting
set problem by converting it to SAT, and using iterative calls to a SAT solver
to obtain a minimal model α′.3 This part is done by procedures normalize

and minimize in Alg. 1. The second part, which works as a pre-processing step,
exploits the structure of a Tseitin-encoded formula to further minimize the model
(procedure prune in Alg. 1). A minimal model for the pruned formula P ⊆ T (F )
is a minimized model for F that is often significantly smaller than a minimal
model for T (F ).

Algorithm 1: High-Level View of Model Minimization Algorithm

Input: Formula T (F ), complete model α of T (F ), root variable dF
Output: Minimized model α′ for F

1 P = prune(T (F ), dF )
2 N = normalize(P, α)
3 α′ = minimize(α,N)
4 return α′

The three main steps of our algorithm are explained in what follows, starting
with the normalize and minimize procedures that do not take information
about the initial formula’s structure into account.

3.1 Normalization

Given a formula F ∈ Fcnf and a model α |= F , the normalization step generates
a problem F ′ ∈ Fcnf which is an encoding of the hitting set problem mentioned
above. This problem is then solved in the minimization step of the algorithm.

3 Our main algorithm only computes an approximative solution for the hitting set
problem, but in a variant of it we can also compute minimum models (see Sec. 4).
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The first step of normalization, called purification, consists of removing ir-
relevant literals from F , i.e. those literals which are assigned to false by α.

Definition 4 (Purification). Given a formula F ∈ Fcnf and a model α |= F ,
the purified formula pα(F ) is defined as follows.

pα(F ) = {C ∩Mα | C ∈ F}

Lemma 1. Given a formula F ∈ Fcnf and a model α |= F , for any assignment
α′ for which Mα′ ⊆Mα, we have α′ |= F iff α′ |= pα(F ).

After purification we eliminate negated literals by flipping their signs. As all
literals in pα(F ) are pure (i.e. they occur only in one polarity), no new negations
are introduced by this step, and all literals are positive afterwards.

The whole process of purification followed by flipping negated literals we call
normalization. The formula obtained by normalization is denoted by να(F ) and
forms the basis for our minimization strategy.

3.2 Iterative Minimization

Computation of a minimal model for F is equivalent to finding a model for να(F )
with a minimal number of true variables. Since we are generally only interested
in models with a minimal number of input variables (i.e., from V inp

F ), we directly
minimize assignments to these.

Minimization works by adding a version of a cardinality constraint to να(F ),

which starts with a bound k = |V inp
F |, iteratively decreasing it, and checking by

calling a SAT solver whether still a satisfying assignment with this bound exists.

Algorithm 2: Iterative Minimization

Input: Formula F ∈ Fcnf , complete model α of F , input variables V inp
F

Output: Minimized model αmin as a set Mαmin of literals
1 F ′ = να(F ), M ′ = VF ′

2 repeat
3 C = ∅, E = ∅, M = M ′

4 for v ∈ V inp
F do

5 if v ∈M then C = {¬v} ∪ C
6 else E = {{¬v}} ∪ E
7 (r,M ′) = solve(F ′ ∪ {C} ∪ E)

8 until r = ⊥
9 M+

αmin
= {v | v ∈M, and v has not been flipped by να(F )}

10 M−αmin
= {¬v | v ∈M, and v has been flipped by να(F )}

11 return M+
αmin

∪M−αmin

Algorithm 2 outlines the procedure. We use a “cardinality clause” C, which
forbids assigning all k variables to true. Moreover, we remember variables already



6

excluded from a minimal model in a set E. The SAT solver call solve in Line 7
is assumed to return both the satisfiability status r (> for satisfiable, ⊥ for
unsatisfiable) and a model M , if one exists. Construction of clause C ascertains
that the constraint is strengthened in each iteration. Finally, we obtain a minimal
model of να(F ), which we then map back to the original problem F by taking
back the variable flips that were made by the normalization procedure.

Structural Pruning. Assuming that we know that our formula T (F ) uses an
encoding like in Definition 3, and given that we also know the root variable dF
and the input variables V inp

F , we can reconstruct the structure of the original
formula, by recursively following the definitions of the sub-formulas of dF until
we reach a definition that is solely based on input variables.

As of Definition 3, for each subformula S of F there exists a variable dS that
is defined by clauses T pdef(S) ⊂ T (F ). It is easy to see that an encoding variable
dS has the same polarity in all its defining clauses. All literals dX that are used to
define dS are either input variables or are themselves defined by clauses T pdef(X).
Now let Clauses(l, F ) = {C ∈ F | l ∈ C} denote all clauses in F containing the
literal l. If F is clear from the context, we may simply write Clauses[l].

Lemma 2 (Opposite Polarity). For all C ∈ T pdef(S) and all direct sub-formulas

dX /∈ V inp
T (F ) of S it holds that

dX ∈ C =⇒ T pdef(X) = Clauses(¬dX , T (F ))

¬dX ∈ C =⇒ T pdef(X) = Clauses(dX , T (F ))

It follows that by parsing the defining clauses of any formula S we can recur-
sively discover the defining clauses of its sub-formulas. Starting with the top-level
Tseitin literal dF we can thus reconstruct the syntax tree of the original formula.

The idea of structural pruning is to create a new formula F ′ ⊆ T (F ) by
purging all clauses that belong to definitions of sub-formulas that are not satis-
fied by α. Algorithm 3 outlines the procedure. We start with an empty formula
(Line 1) and prepare the set of all satisfied encoding literals (Line 2). We recon-
struct parts of the structure of F by following only the definitions of satisfied
sub-formulas (Line 6), thus building a new formula that contains only the clauses
belonging to the satisfied sub-formulas of F (Line 5).

After pruning we can normalize the new formula F ′ ⊆ T (F ) and minimize
α with respect to the pruned formula as shown above.

4 Experimental Results

We implemented our approach as a patch on top of MiniSAT 2.2.0 and performed
the experiments on a PC (3.40GHz × 8 CPU, 8 GB Memory) running Linux
(Ubuntu 12.04). Our evaluation benchmarks consist of a collection of satisfiable
problems from (1) software checking problems that are shipped with the Alloy
Analyzer 4 [16], (2) AIG benchmarks from SAT-Race 2010 [1], and (3) program
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Algorithm 3: Structural Pruning

Input: Formula F ∈ Fcnf , model α, input variables V inp
F , root encoding var. dF

Output: Pruned formula F ′ ⊆ F
1 F ′ = ∅
2 L = {l ∈Mα | var(l) ∈ Venc

F }
3 Stack.push(Clauses[¬dF ])
4 while C = Stack.pop do
5 F ′ = F ′ ∪ C
6 for l ∈ C ∩ L do
7 L = L \ {l}
8 Stack.push(Clauses[¬l])

verification problems generated by JForge [4]. In order to perform minimization,
one needs to know the set of input variables of a given CNF formula, which
usually occupy the first consecutive block of variable identifiers. Furthermore,
in order to perform structural pruning, one needs to know the identifier of the
root variable. We modified the CNF generators to produce this information as
additional CNF comments (“c input $n”) and (“c output $i”), respectively.

In this section, we report on those benchmarks where at least 1% of their
input variables are don’t care. We present the quality and performance of our
approach with and without structural pruning. The results are given in Table 4.
The first column gives the problem name and the second column gives the num-
ber of input variables. The next three columns give the final number of input
variables, percentage of reduction (of input variables), and the runtime of our
minimization approach without structural pruning. The last three columns give
the results for our approach with structural pruning.

As can be seen in the table, both approaches (with and without pruning) run
quickly; they actually take less than a second to perform minimization even for
large CNF formulas. The quality of the results, however, differs substantially.
In many cases, pruning can eliminate many more input variables without in-
troducing much runtime overhead. This is because pruning takes advantage of
the structure of the Tseitin-encoded formulas and avoids all sub-formulas whose
encoding variable is a don’t-care.

Optimal Minimization. Since our iterative minimization approach does not
guarantee to find a minimum assignment, we performed a second set of experi-
ments in which we compared the outcome of iterative minimization to that of an
optimal algorithm. We computed the optimal minimization using a cardinality
encoding based on parallel counters [15], and iteratively calling a SAT solver to
check whether the number of input variables can be reduced.

In our experiments the simpler iterative minimization approach we presented
above was always able to find a minimum assignment. Moreover, its runtime
turned out to be much better than the optimal algorithm (up to a factor of 168
in our tests).
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w/o Pruning w/ Pruning

problem nInput nInput % time (sec) nInput % time (sec)

ibm18-len29-sat 983 764 22.3 0.03 575 41.5 0.04
ibm20-len44-sat 1493 1277 14.5 0.06 991 33.6 0.09
ibm22-len52-sat 2245 1932 13.9 0.11 1664 25.9 0.16
ibm23-len36-sat 1515 1308 13.7 0.06 1083 28.5 0.08
ibm29-len26-sat 362 211 41.7 0.01 134 63.0 0.02
intel-003-k-ind-30 1489 1477 0.8 0.05 1441 3.2 0.08
intel-016.aig.smv.kind-b20 27970 27833 0.5 0.49 26917 3.8 0.46
intel-019-k-ind-10 3786 3729 1.5 0.06 3587 5.3 0.10
intel-025.aig.smv.kind-b30 20399 20357 0.2 0.41 19939 2.3 0.40
intel-025-k-ind-20 13939 13895 0.3 0.50 13504 3.1 0.76
intel-032-k-ind-10 6521 6488 0.5 0.16 6188 5.1 0.24
intel-033.aig.smv.kind-b10 28428 28294 0.5 0.46 26376 7.2 0.42
itox-vc1033 57775 57040 1.3 0.37 56870 1.6 0.28
itox-vc1044 58776 58009 1.3 0.42 57822 1.6 0.29
opt-spantree Closure 673 668 0.7 0.00 201 70.1 0.00
opt-spantree SuccessfulRun 2664 2559 3.9 0.06 2559 3.9 0.07
peterson NotStuck 835 835 0.0 0.01 54 93.5 0.00
set.intersect.cegar 29497 29432 0.2 0.05 4290 85.5 0.03

Table 1. Experimental results with and without structural pruning

5 Related Work & Conclusion

Minimization of SAT models has been a research topic for many years. In litera-
ture the minimization goal usually is to reduce the number of positive literals in
a model (e.g. [2, 10]). Thus the minimize function of Koshimura et al. [10] and
ours are almost identical. However their algorithm omits the normalization

step, which means that satisfiability according to their notion of minimality still
depends on the negative literals, while our approach guarantees that all negative
literals belong to don’t care variables.

Other work on model minimization is often directed towards a particular
application, such as model checking [11], bounded model checking [8, 13, 14],
SMT solving [5] or QBF solving [7]. None of the approaches seems to work on
general formulas, taking only the structural information of the CNF encoding
into account as in our approach.

This paper introduced an algorithm for minimizing a given model of a CNF
formula with respect to the original input variables (as opposed to the inter-
mediate encoding variables that are introduced during CNF conversion). We
transform the model minimization problem to a hitting set problem (also pre-
sented as a SAT problem), and solve it by iteratively calling a SAT solver. An
optional pruning preprocess can be applied when structural information about
the CNF encoding is available. Our experiments show that the algorithm per-
forms well with respect to both quality and runtime. Future work that we could
envisage is using our minimization approach in model counting.
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