
Translating Alloy Specifications to JML

Masters Thesis of

Daniel Grunwald

At the Department of Informatics
Institute for Theoretical Informatics (ITI)

Reviewer: Prof. Dr. Mana Taghdiri
Advisor: Dr. rer. nat. Christoph Gladisch
Second advisor: Tianhai Liu, M. Sc.

Duration: April 7th 2013 – November 4th 2013

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

Ich versichere wahrheitsgemäß, dass ich die Arbeit selbstständig verfasst habe und keine
anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe, die wörtlich
oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des
Karlsruher Institut für Technologie zur Sicherung guter wissenschaftlicher Praxis beachtet
habe.

Karlsruhe, November 4th 2013

. .

Abstract

The lightweight Alloy specification language has been used for the specification of
Java programs in the context of test-case generation and bounded verification. The
aim of this thesis is the design of an automatic translation from Alloy into the
Java Modeling Language (JML). Our tool "Alloy2JML" transforms relational Alloy
formulas into JML expressions that represent relations using first-order logic. We
use a translation function that has existential semantics and is defined recursively
over the Alloy syntax tree. It is followed by a series of simplification steps that help
remove redundant quantifiers introduced by the translation. The transitive closure
operator is translated into recursively specified model methods.

The translation into JML allows the usage of JML tools on the input programs
using Alloy specifications. We use the KeY theorem prover on the output of the
translation to verify the correctness of two example programs.

The translation of a subset of the Alloy language is formally proven correct using
the Isabelle theorem prover.

Keywords: Alloy, JML, Alloy2JML, KeY, Transitive Closure

Contents

1. Introduction 1

2. Background 5
2.1. Alloy . 5
2.2. JML . 7

2.2.1. JML expression syntax . 7
2.2.2. JML contracts . 8
2.2.3. Query Methods . 8
2.2.4. JML* . 8

3. Alloy Specification Input Format 11
3.1. Alloy signatures for Java classes . 11
3.2. Object creation . 13
3.3. Contract Clauses . 13

3.3.1. Preconditions . 14
3.3.2. Postconditions . 14
3.3.3. Modifies clause . 15
3.3.4. Invariants . 15
3.3.5. Predicates . 15

3.4. Restrictions on the allowable Alloy expressions 16

4. Output Alloy model 19

5. Translation Function 23
5.1. Translation Context . 23
5.2. Translation Predicates . 24
5.3. Translation of relational expressions . 24

5.3.1. Type function . 25
5.3.2. Variables . 25
5.3.3. Type signatures . 26
5.3.4. Field signatures . 26
5.3.5. Built-in relations and literals . 27
5.3.6. Set Union . 27
5.3.7. Set Intersection . 28
5.3.8. Set Difference . 28
5.3.9. Relational Join . 28
5.3.10. Relational Override . 28
5.3.11. Cartesian Product . 29
5.3.12. Transpose . 29
5.3.13. Domain and Range Restriction . 29
5.3.14. Set comprehensions . 29
5.3.15. Conditional expression . 30

vii

viii Contents

5.3.16. Cardinality . 30
5.3.17. Sum quantifier . 30

5.4. Translation of formulas . 30
5.4.1. Logical operators . 30
5.4.2. Binary relational operators . 31
5.4.3. Quantified expressions . 31
5.4.4. Multiplicity Constraints . 31
5.4.5. Quantified formulas . 32
5.4.6. Integer comparisons . 32

5.5. Simplifications . 33
5.5.1. Eliminating existential quantifiers 33
5.5.2. Eliminating redundant casts . 34
5.5.3. Eliminating redundant quantifiers 35

5.6. Translation of Contract clauses . 35
5.6.1. Modifies clause . 36
5.6.2. Predicates . 36

6. Translation of transitive closure 39
6.1. Linked lists . 39
6.2. Generalizing the transitive closure . 41
6.3. Query method definition . 42
6.4. Reflexive closure . 43
6.5. pow[] function . 44

7. Correctness proof of the translation 45
7.1. Type System Formalization . 45
7.2. Alloy Formalization . 46

7.2.1. Alloy dynamic state . 47
7.2.2. Alloy syntax and semantics . 48

7.3. JML . 49
7.3.1. JML dynamic state . 49
7.3.2. JML semantics . 50

7.4. Formalization of the translation function . 52
7.5. Concepts for the proof . 53
7.6. The translation proof . 55

8. Translated specifications in KeY 59
8.1. Linked List . 60

8.1.1. Constructor . 61
8.1.2. Query method expansion . 61
8.1.3. Lemma methods . 63
8.1.4. add() method . 64
8.1.5. getEntry() helper method . 65
8.1.6. removeAt() method . 66

8.2. Binary Search Tree . 66
8.2.1. contains() method . 68
8.2.2. contains_loop . 70
8.2.3. add() method . 71

9. Conclusion 75
9.1. Related Work . 75
9.2. Future Work . 76

viii

Contents ix

Appendix 77
A. Example Translations . 77
B. Implementation Notes . 78

Bibliography 79

ix

1. Introduction

The Java Modeling Language (JML) [LPC+11] is a behavioral interface specification lan-
guage for Java. It combines Eiffel-style design-by-contract programming with Refinement
Calculus. Contracts are embedded as annotations in the Java source code of the program,
using a comment syntax that hides them from normal Java compilers. For the purpose
of this work, we will concentrate on method specifications (preconditions, postconditions
and frame conditions) and object invariants.

There are a wide variety of tools available for JML: a runtime assertion checker, static
verification tools like ESC/Java2, OpenJML, LOOP, JACK; and test-case generation tools
like jmlunit or JET. Of interest to our work is the KeY project [BHS07], which provides
an interactive theorem prover with a JML front-end.

Alloy [Jac06] is a relational specification language. It is a popular language for lightweight
modeling due to its simple semantics, conciseness and especially its fully automatic ana-
lyzer. An Alloy model consists of (among other items):

• type signatures, which define sets of atoms

• field signatures, which define relations

• facts, which are relational formulas that constrain the model

The Alloy Analyzer can be used to find and visualize instances of the Alloy model, or to
verify an assertion about the model by looking for counterexamples and visualizing them.
For this, the user has to provide bounds on the number of atoms in each type signature.
The Analyzer works by translating the Alloy model into propositional logic and finding
a model using a SAT-solver. Alloy is used in a wide variety of areas: from verifying
distributed protocols like Chord[Zav12], over validation of security models, to test-case
generation and program verification.

In the context of design-by-contract programming for Java, Alloy can be used for test-
case generation using tools like TestEra [KYZ+11] and FineFit [DGT13]. These tools
automatically generate test cases that satisfy the method preconditions, which are specified
using the Alloy language. Alloy can also be used for bounded verification of Java programs,
for example using the JForge tool [DCJ06]. JForge transforms the Java program into
Alloy’s relational logic, and verifies the program against the Alloy specification within
user-provided bounds on heap size and number of loop iterations.

1

2 1. Introduction

To enable a full correctness proof for Java programs annotated with Alloy specifications,
we introduce an automatic translation from Alloy to JML. This allows the use of JML
tools on such specifications. In particular, we will use the KeY theorem prover to show
the correctness of two example classes.

Why use Alloy and translate it to JML instead of directly writing JML specifications?
One advantage is that using sets and relations is more expressive for many problems. In
particular, contracts involving set of all nodes in a linked list or binary tree are much easier
to specify using Alloy’s transitive closure operator. Also, the relational override operator
++ can be useful for compactly specifying frame conditions.

Another reason exists when the system was previously modeled on a more abstract level
using the Alloy Analyzer. In this case, it is useful to keep using the same language for
the specification of the implementation, as it allows re-using and refining the existing
specifications.

Finally, the use of Alloy as a specification language followed by a translation to JML allows
using both Alloy and JML tools on the same program.

Java program with
Alloy annotations

JForge

Bounded
Verification

Alloy2JML

Java program with
JML annotations

KeY

Correctness
Proof

Alloy Model

Alloy Analyzer

Visualize
Specification

Figure 1.1.: Possible use-cases for Alloy2JML

Our translation software is called Alloy2JML. As input, it takes a Java program annotated
with specifications in Alloy. The output of the translator is the same Java program,
annotated with JML specifications. Additionally, our software outputs an Alloy model
that contains Alloy signatures for the classes declared by the Java program, and Alloy
signatures for the method specifications. This is very similar to the Alloy model generated
by the TestEra. This model is used internally by our software for semantic analysis of the
Alloy expressions used in the specification. A user may use this model to visualize her
specification using the Alloy Analyzer. An overview of these possible use-cases is given in
figure 1.1.

One possible use of the output Alloy model is to sanity-check invariants or preconditions:
the Alloy Analyzer is used to visualize instances that satisfy the invariants and/or pre-
conditions. By manually viewing several satisfying instances, the user can verify that all
of these are indeed of the expected structure. Unexpected structures indicate that the in-
variants/preconditions are underspecified or incorrect. In this usage, it is often necessary
to write additional predicates within the Alloy Analyzer to restrict the search space.

Another related use case is to visualize the postcondition for a method call with given
arguments. If the Alloy Analyzer can find multiple instances for a method call with

2

3

exactly specified input heap and arguments, this indicates that the postcondition does
not exactly specify the result of the method. Such underspecification may be intentional,
for example if the method allocates temporary helper objects without mentioning them
in the contract. But it can also indicate unintentional underspecification. In one of our
examples, we prove the add(int value) method of an unbalanced binary search tree. Using
the Alloy Analyzer, we found that our first attempt at the method contract allowed the
add() method to re-use existing nodes of an unrelated tree instead of creating a new node
as expected.

In the next chapter, we will give a short overview of the Alloy and JML languages, to
give the background needed to understand this thesis. In chapter 3, we describe the input
format of our translation, i.e. how Alloy specifications are embedded in Java programs.
In chapter 4, we show how these specifications can be visualized with the Alloy Analyzer.
The translation from Alloy to JML using the translation functions B and E is explained
in detail in chapter 5. Then, in chapter 6, we describe the translation of the transitive
closure using JML model methods. After that, we proof the correctness of the translation
in chapter 7 using the Isabelle/HOL theorem prover. At last, in chapter 8, we describe our
experiences using the KeY theorem prover to prove the correctness of two sample programs
with regards to a specification translated from Alloy. Finally, we conclude.

3

2. Background

2.1. Alloy
An Alloy model starts with a declaration of type signatures. The canonical example in
introductions to Alloy specifies a file system:
// A file system object in the file system
abstract sig FSObject { parent: lone Dir }

// A directory in the file system
sig Dir extends FSObject { contents: set FSObject }

// A file in the file system
sig File extends FSObject { }

This example declares three type signatures: FSObject, Dir and File. It also declares two
field signatures: parent and contents.

Every type signature represents a set of values, called atoms. The built-in integer type is
an implicitly defined type signature, so the integer values are also considered to be atoms.

Field signatures represent relations. The two field signatures in the example above are
binary relations, but relations of higher arity are also possible. A field declaration specifies
the set of possible values for the field after the colon: the parent of any file system object
must be a directory; while the contents of any directory can be arbitrary file system objects.
Additionally, the field declaration specifies amultiplicity that restricts the number of atoms
in the field’s value. The default multiplicity for field declarations is one.

mult :=
set Any number of elements.
some At least one element.
lone At most one element.
one Exactly one element.

Table 2.1.: Multiplicities

Inheritance of Alloy type signatures work similarly to Java: only single inheritance is
allowed. Just like a Java object cannot be of multiple unrelated types; an Alloy atom

5

6 2. Background

cannot be a member of two unrelated type signatures. For example, intersection of the
set of directories and the set of files is empty. The abstract modifier specifies that every
atom in the set of file system objects is either a Dir or a File.
In addition to the signatures, an Alloy model contains a set of fact declaration. For
example, the following fact expresses that the contents of a directory must specify that
directory as their parent:
fact { all d: Dir, o: d.contents | o.parent = d }

An Alloy instance assigns concrete relations to the signatures. That is, for each type
signature an instance gives the set of atoms; and for each field signature it gives a relation
that matches the type and multiplicity of the field declaration. Fact declarations restrict
the set of possible instances: it only contains those instances for which all the facts are
valid formulas. If this set is empty, the model is inconsistent.
Finally, an Alloy model contains an instruction to either show all instances that satisfy
a given predicate; or to show all instances that are counterexamples to a given assertion.
Since the Alloy logic is not decidable in general, this analysis requires the user to specify
an upper bound on the number of atoms for each type signature. Such a finite scope makes
the analysis decidable, allowing fully automatic checks of the Alloy model.
Alloy has two kinds of expressions: relational expressions evaluate to a relation; and
formulas evaluate to a Boolean truth value.
Our translation to JML will deal with individual formulas, not whole Alloy models. As
such, we give a full list of expressions in the Alloy language. Only the syntax is given here.
Where the semantics are unclear given an operator name, we will explain the semantics of
the operator in chapter 5, where we also give the translation to JML.

expr :=
identifier variable or signature
number integer literal
expr + expr set union
expr & expr set intersection
expr - expr set difference
expr . expr relational join
expr [expr] relational join
expr ++ expr relational override
expr [mult]->[mult] expr Cartesian product
~expr transpose
expr <: expr domain restriction
expr :> expr range restriction
{varDeclList | formula} set comprehension
formula implies expr else expr conditional
#expr cardinality
sum varDeclList | formula sum quantifier
^expr transitive closure
*expr reflexive and transitive closure

Table 2.2.: Alloy relational expression syntax

An Alloy variable declaration varDecl consists of a variable name, an optional multiplicity,
and a relational expression specifying the quantifier range:
varDecl := identifier : [mult] expr
varDeclList := varDecl [, varDeclList]

6

2.2. JML 7

formula :=
expr [not] in expr subset
expr [not] = expr set equality
expr [not] compOp expr integer comparison
some expr non-empty
one expr singleton
no expr empty
lone expr empty or singleton
not expr negation
formula and formula conjunction
formula or formula disjunction
formula iff formula logical equivalence
formula implies formula implication
formula implies formula else formula conditional
all varDeclList | formula universal quantifier
some varDeclList | formula existential quantifier
mult varDeclList | formula quantifier with multiplicity

Table 2.3.: Alloy formulas

2.2. JML
In this section, we will give an overview of the Java Modeling Language [LPC+11]. We
will only look at the subset of JML that is used by our translation of Alloy.

2.2.1. JML expression syntax

The JML expression syntax is an extension of the Java expression syntax. In addition to
the standard Java logical operators !, || and &&, JML adds the implication operator ==>
and the equivalence operator <==>. The implication a ==> b is semantically equivalent to
!a || b; it is a short-circuiting operator. The equivalence operator a <==> b works the
same as the equality operator a == b on Boolean values, except that it has a lower operator
precedence.

The JML expression syntax also adds several new keywords. To avoid conflicts with
the names of Java program variables, these JML keywords start with a backslash. The
following JML constructs are of importance to our translation:

\fresh(x) Returns whether the object x is newly created in the post-state
\old(x) Evaluates the expression x in the pre-state
\invariant_for(x) Returns whether the invariant for object x is satisfied
\result Refers to the return value of the method
(\exists T v; p) Existential quantifier
(\forall T v; p) Universal quantifier
(\num_of T v; p) Number of objects v for which the expression p evaluates to true
(\sum T v; p; e) Sum of the e for those objects v where p evaluates to true

Table 2.4.: JML constructs

Unlike Java, JML does not have exception handling. However, JML expressions can still
throw an exception instead of evaluating to a value. An example is a member access
on a null reference, which causes a NullPointerException. To handle these cases, JML
uses strict validity semantics [Cha07]. Under these semantics, an exception such as the

7

8 2. Background

NullPointerException causes the whole assertion will be interpreted as invalid. When
discussing JML semantics, we will say that an expression is well-defined if the evaluation
does not cause an exception.

2.2.2. JML contracts

JML contracts are used to specify the behavior of Java methods.

Here is an example contract for a method that calculates the square root of an integer:

//@ public normal_behavior
//@ requires i >= 0;
//@ ensures \result * \result <= i;
//@ ensures (\result + 1) * (\result + 1) > i;
public static /*@ pure @*/ int sqrt(int i) {
...

}

The requires clause specifies a precondition: the contract of this method only applies for
non-negative inputs. For negative inputs, the behavior of our method is left unspecified.
Methods may have multiple specification cases; an additional case could be used to specify
that the method must throw an exception on invalid inputs.

The ensures clause specifies a postcondition. If multiple clauses exist, the postcondition
of the method is the conjunction of all the ensures clauses.

The modifies clause specifies a frame condition: it lists the storage locations that may be
modified by the method. A method marked as pure must not modify the heap at all.

The accessible clause can be used to specify which storage locations are read by the
method.

The measured_by clause is used for recursive methods: it specifies an expression that
computes an non-negative integer value. This value must decrease in recursive invocations
of the method. This is used to prove termination of the recursive calls.

Finally, the invariant clause can be used anywhere within a class (not in method con-
tracts). It specifies an object invariant that is established by the object’s methods (unless
the method is marked with the helper modifier); and also is required as a precondition.

2.2.3. Query Methods

A method marked as pure may be used in specification clauses. For example:

//@ requires sqrt(i) < n;

Model methods are methods that exist in the specification only, and do not have any
implementation. They usually are pure and can be used as an abstraction of the program
state within specifications.

2.2.4. JML*

KeY uses a modified version of JML, which is called JML*. It supports some additional
constructs that are not present in JML, for example, it treats location sets (JML data
groups) as values and provides operators to combine such sets [Wei11, 3.3]. KeY also does
not implement all JML features.

8

2.2. JML 9

Relevant to this work is a semantic difference in the interpretation of quantifiers between
JML and JML*: The range of JML quantifiers extends over all objects of the given vari-
able type, including objects that are not yet created [LPC+11, 12.4.24.6]. In JML*, the
quantifier range includes only those objects which are created in the current heap state.

For example, consider the following invariant that asserts that all doubly-linked list nodes
that have the current node as a successor must be the predecessor of the current node:
invariant (\forall ListNode n; n.next == this ==> this.prev == n);

In JML, the quantifier range includes future ListNode instances that are not yet created in
the current heap state. For these, the semantics of the expression n.next is unclear in the
JML reference manual. In the Daniel Bruns’ formalization of JML [Bru09], the expression
n.next is not well-defined, and so is the the whole quantifier. Under strict validity, this
means the whole invariant is invalid.

In JML*, the example expression is always well-defined as all values in the JML* quantifier
range are non-null and created in the current heap state.

Our translation will assume the JML* semantics for the range of quantifiers. Apart from
this semantic difference, the output of our translation function will be standard JML.

To obtain the JML* quantifier semantics in JML, we could write quantifiers using a range
predicate:
\forall Object obj; \created(obj); ...

\created is a proposed JML construct that returns whether the object has been created
in the current heap state. It is currently not part of the JML standard.

9

3. Alloy Specification Input Format

JML uses annotations in Java code files. When translating from Alloy to JML, we need
a mapping from Alloy signatures to Java classes. Our tool Alloy2JML will derive this
mapping implicitly from Java source code.

To embed Alloy specifications in Java code, we follow a similar approach to JML and
introduce a new type of comment. Comments of the form //$ and /*$ */ are expected to
contain specifications written in Alloy. The possible Alloy specification clauses are listed
in table 3.1.

We also allow JML specifications using the usual JML syntax with //@ and /*@ @*/ com-
ments. JML comments are mostly ignored by the translation and are copied as-is to
the output file. This allows mixing of both specification languages within the same Java
class. However, a few JML modifiers such as nullable and non_null have an effect on the
translation of Alloy specifications.

//$ requires Method precondition
//$ ensures Method postcondition
//$ modifies Method frame condition
//$ invariant Instance invariant
//$ pred Alloy predicate

Table 3.1.: Alloy contract clauses

An alternative syntax for Alloy specifications would have been to use Java annotations,
for example @Requires("element in head.*next")). This approach is taken by JForge
[DCJ06]. However, this syntax gets cumbersome for more complicated specifications: Java
does not allow duplicate annotations [Dar11]. This means that multiple preconditions
would have to be specified within a single annotation by passing an array of strings.
Moreover, Alloy expressions involving quantifiers often are written on multiple lines for
improved readability, which would require string concatenation syntax as Java lacks multi-
line string literals.

3.1. Alloy signatures for Java classes
To enable Alloy expressions to refer to Java fields, we define a mapping from Java class
definitions to Alloy signatures. This allows us to interpret the semantics of the Alloy
expressions using these generated signatures.

11

12 3. Alloy Specification Input Format

Java type Alloy signature
C (class-type) lone C (C is declared as type signature)
int Int
boolean util/boolean
T[] Array
I (interface-type) lone I (I is declared as subset signature that is equal

to the union of all classes implementing the interface)
null literal none

Table 3.2.: Correspondence between Java types and Alloy signatures

As a first step, every Java class is converted to an Alloy signature:

class C extends B {} ↪→ sig C extends B {}

The signature abstract sig Object {} is used to represent the java.lang.Object base
class.

Every Java field within such a class is converted to a pair of Alloy fields:

T member; ↪→ member : lone T,
member’ : lone T,

Within the postcondition of a method (ensures clause), the Alloy field member represents
the value of the Java field in the pre-state; and member’ refers the value in the post-state.
In all other contexts (preconditions, invariants, and predicates), there are no separate pre-
and post-states available. Only the member field is available in these contexts, it is an error
to refer to member’.

The fields are declared as lone to allow an empty set as a value. Empty sets in Alloy are
used to represents null references in Java. This is the same convention as used by TestEra
[KYZ+11]. It differs from JForge [DCJ06], which uses a null atom to represent the null
reference.

To express that a certain member must not be null when calling a method, the Alloy
precondition would look like this:
requires some this.member
Usage of the null keyword within an Alloy specification is invalid.

The translation of Java types to Alloy types is given in table 3.2. Note that floating-point
types and integers other than int are currently unsupported by Alloy2JML. A field of type
int would be translated as follows:

int member; ↪→ member : lone Int,
member’ : Int,

In the post-state, the member is not marked as lone because Java integers are not nullable.
However, we always mark the pre-state as lone no matter which Java type the field uses.
This is because the Alloy model includes objects that get created during the execution of
the method, and thus exist only in the post-state in the JML world. In the Alloy model,
these fresh objects have all of their pre-state members set to the empty set.

For arrays, we use the following type signature:
sig Array extends Object {
length : Int,
elements : Int -> lone univ,
elements’ : Int -> lone univ

}

12

3.2. Object creation 13

The elements relation maps from array indices to the values stored in the array. For an
out-of-bounds index, the elements relation returns the empty set.

As Java allows array elements to be null, it is possible that valid indices also map to the
empty set. This differs from Alloy’s built-in sequence type "seq".

3.2. Object creation
In this section, we will explain how object creation affects the Alloy model. The previous
section already touched on this topic: pre-state members always are lone because the
Alloy model include objects that are created by the method.

We now define more explicitly: in the Alloy model, the type signature C contains all object
instances of class C, or its subclasses, in the current heap state. For postconditions, the
current heap state is the post-state, so the model includes objects that do not yet exist in
the pre-state. However, objects from other heap states are not contained in the model – all
instances in a type signature C exist in the post-state. Within preconditions, the current
heap state is the pre-state, so all instances in the type signature exists in the pre-state.

This definition is important when quantifying over a type signature, for example
"all obj : C | F" – we want this formula to refer to all objects created by the program so
far, not to the infinite set of possible objects. The definition was chosen this way because
it directly corresponds to the way JML* quantifiers work in KeY. In fact, if our definition
for the contents of a type signature contained any additional objects, we would be unable
to use JML* quantifiers in the translation as they could not make any statements about
the additional objects.

Within postconditions, it is often necessary to specify that certain objects are freshly
allocated. In JML, this is accomplished using the "\fresh(obj)" expression. To make this
feature available in postconditions specified using Alloy, we define the set signature fresh
to represent the set of newly allocated objects.

sig fresh in Object {}

This signature is defined to contain the set of objects that are not yet created in the pre-
state, but are created in the post-state. The use of the fresh signature is only valid within
postconditions.

3.3. Contract Clauses
Semantic analysis of Alloy formulas in contract clauses occurs as if the formula was enclosed
in a predicate of the form:
pred C.predicateName[...] { ...}
where C is the name of the current class.

In particular, the "implicit this" Alloy feature is not available in this context. To access an
instance variable, it must be explicitly qualified with a this reference (this.member). The
identifier member alone refers to the binary relation from the current class C to the type of
the field.

For example, the Alloy formula
//$ requires no this.member
translates to
//@ requires this.member == null;

13

14 3. Alloy Specification Input Format

On the other hand, the Alloy formula
//$ requires no member
translates to
//@ requires (\forall C c; c.member == null);

3.3.1. Preconditions

Preconditions are specified using "//$ requires alloy-formula", and directly correspond
to JML preconditions. They must be declared within a class body, in front of the method
they apply to.

Within the formula of a precondition, the method parameters are available as Alloy vari-
ables (as if they were parameters of the enclosing predicate). As with fields, a null reference
in Java corresponds to an empty set in Alloy.

As in JML, the precondition formula acts on the pre-state heap. If any Alloy type signa-
tures are used in the formula, they do not refer to the whole set of objects (of that type),
but only to those that already exist in the pre-state. This means that type signature C
used in a precondition is equivalent to C - fresh in a postcondition.

It is an error to explicit refer to the fresh signature within a precondition; and also an
error to refer to any post-state fields (member’).

Together, these rules prevent preconditions from accessing the post-state; the preconditions
can only depend on the pre-state.

3.3.2. Postconditions

Postconditions are specified using "//$ ensures alloy-formula", and directly correspond
to JML postconditions.

They have access to method parameters, and additionally can access a special Alloy vari-
able result that holds the method’s return value.

Postconditions can refer to both the pre-state and the post-state. Type signatures used
within a postcondition refer to the post-state. Field names suffixed with the prime char-
acter (’) refer to post-state; the plain field names refer to the pre-state.

When using predicates within a postcondition, there are two options: If the predicate
name is followed by a prime character, it is evaluated in the post-state. This means that
any references to fields within the predicate are accessing the field in the post-state, even
though the predicate definition itself does not use the prime character. In this case, type
signatures within the predicate refer to objects in the post-state.

The other option is to use the predicate name without a prime character. This causes
evaluation of the predicate in the pre-state: any fields refer to the pre-state values, and
type signatures refer to the objects in the pre-state, as if the expression was written within
a precondition.

This syntax of distinguishing pre- and post-state is more flexible than the JML \old(...)
expression. In particular, it is possible to a pre-state field of an object stored in a post-state
variable: this.next’.data

This cannot be directly expressed in JML as the \old keyword cannot be applied to the
data field alone, only to the full expression. However, a formula involving such a construct
can be translated by introducing a quantifier:

14

3.3. Contract Clauses 15

no this.next’.data
translates to
(\forall Node obj; this.next == obj && !\fresh(obj) ==> \old(obj.data) == null)

In this case, the !\fresh(obj) safety check is necessary to avoid accessing \old(obj.data)
on a newly created object. In the Alloy model, such an access is well-defined to produce
an empty set. But in JML, such an access is undefined and would make the whole formula
undefined, similar to accessing a member on a null reference.

3.3.3. Modifies clause
The modifies clause specifies the list of memory locations that may get modified by the
method. As with pre- and postconditions, the modifies clause must be specified in front
of a method declaration.

Syntax: //$ modifies location-list
location-list ::= location | location , location-list
location ::= alloy-expression . identifier

Each location is specified using an Alloy relational expression specifying a set of object
instances, and an identifier specifying the field name.

Semantic analysis of the alloy-expression occurs as within preconditions. In particular,
method parameters may be used; and any access to the post-state is illegal.

As an example, a method that adds/removes nodes from a binary tree can be specified
like this:
//@ modifies this.*(left+right).left, this.*(left+right).right

A similar effect could be achieved using postconditions:
//@ ensures all t : (Tree - fresh - this.*(left+right)) | t.left’ = t.left
//@ ensures all t : (Tree - fresh - this.*(left+right)) | t.right’ = t.right
The example modifies clause is equivalent to these postconditions, except that the modifies
clause also implies that no other fields in the program are changed.

3.3.4. Invariants
Invariants defined using "//$ invariant alloy-formula" correspond to JML instance in-
variants. They must be declared within in a class body.

Invariants are implicitly part of method contracts unless the method is declared using the
JML helper modifier.

It is an error to refer to any post-state fields or post-state predicates from within an
invariant. If type signatures are used in an invariant, their meaning depends on the
current heap state at the place where the invariant is used.

The conjunction of all invariants in a class can be referred to using the Alloy formula
invariantFor[obj], as if invariantFor was a predicate. This corresponds to the JML
\invariantFor(...) construct.

3.3.5. Predicates
Predicates defined using //$ pred provide an abbreviation for an Alloy formula. They can
be referred to by all Alloy contracts in the input file.

Each predicate is translated into a model method of the same name; and any usage of the
predicate will be translated to an invocation of the model method. When mixing both
JML and Alloy specifications within a single file, it is possible to invoke Alloy predicates
within a JML specification.

15

16 3. Alloy Specification Input Format

Example:
/*$ pred Tree.isSorted {

all d : this.*(left+right) {
all vl : d.left.*(left+right).value | vl < d.value
all vr : d.right.*(left+right).value | vr > d.value

}
}

*/

3.4. Restrictions on the allowable Alloy expressions
Not all Alloy expressions are supported by our tool. In this section, we list the restrictions
on the accepted Alloy expressions. Some of these restrictions are fundamental to the
approach used by our translation. In other cases, Alloy language features were merely not
implemented due to time constraints.

The first fundamental restriction is that we do not support sets that contain both objects
and primitive integers or booleans. This restriction exists due to the Java type system:
When the translation to JML introduces a quantifier for an Alloy set, the translation
needs to pick a type for the bound variable that encompasses all values that are possibly
contained in the Alloy set. This is impossible for sets mixing objects and primitive values,
as no suitable Java type exists.

Theoretically, this issue could be fixed by introducing multiple quantifiers instead: one
for objects, and one for each primitive type. However, we have not done so because this
can quickly lead to an exponential increase in the size of the generated JML when such
quantifiers are nested, and because sets with both objects and primitive values are rarely
useful when writing specifications for Java programs.

As a consequence of this first restriction, the built-in univ relation is unsupported. More-
over, the built-in iden relation has slightly different semantics: it is interpreted as the
relation {a : Object, b : Object | a = b}. In comparison to standard Alloy, this means
iden is missing integers and booleans.

The second fundamental restriction is that higher-order quantification is not supported.
Higher-order quantification occurs in Alloy when a variable declaration in an Alloy quan-
tifier uses a multiplicity other than one. The Alloy Analyzer supports higher-order quantifi-
cation only in cases where skolemization can be used to eliminate the quantifier. Alloy2JML
has no support for higher-order quantification at all.

Additionally, we do not support quantification with a range expression having arity greater
than 1; for example "all n : iden | n = ~n". Such quantifiers always involve higher-order
quantification in Alloy1, so they are unsupported in Alloy2JML.

Another fundamental restriction applies to the arguments of predicates: because predicates
are converted to Java methods, we cannot pass any relations/sets to those methods. For
this reason, the argument expressions passed to an Alloy predicate must evaluate to the
empty set or a singleton set. In the Alloy2JML implementation, predicate arguments must
be simple expressions using the following syntax constructs:
simple-expr :=
identifier bound variable or program variable
number integer literal
simple-expr . identifer relational join of simple expression with a field

All simple expressions are statically known to evaluate to an empty or singleton set.
1The default multiplicity for quantification with arity>1 is set, and the multiplicity one is unavailable.

16

3.4. Restrictions on the allowable Alloy expressions 17

In principle, Alloy functions are similar to Alloy predicates. However, we were unable to
add support for functions due to time constraints. Our planned approach to implementing
functions is simple: we treat functions as predicates that accept a tuple. The predicate
would be valid iff that tuple is a member of the relation returned by the function. This
way, the same restrictions apply to the function arguments as for predicate arguments,
but the return value can be an arbitrary Alloy relation.

Regarding the transitive closure operator, there is a small restriction: if the relation being
closed over accesses the heap, it must refer to at most one of the heap states (pre-state or
post-state), not both. As such, the transitive closure "*(left’ + right)" (where left and
right are fields) cannot be translated to JML.

Of the built-in Alloy functions, we only support a couple functions like add[] and sub[].
Most of these would be simple to translate into the directly equivalent JML/Java con-
structs; however we have not done so due to time constraints.

Finally, the Alloy keywords "let" and "disj" are unsupported. The use of any unsupported
construct will result in the translation aborting with an error message.

17

4. Output Alloy model

Apart from the translation to JML, our tool Alloy2JML will also generate an Alloy model
from the Java code and its Alloy annotations. This model can be used with the Alloy
Analyzer to visualize the program specification. This way, mistakes in the specification
can be detected before attempting to verify the program against it.

The Alloy model is constructed by creating Alloy signatures for the Java classes as de-
scribed in section 3.1. Additionally, our tool generates some fact declarations to account
for the the semantics of Java object creation. For every Java field T member within every
class C, we generate the following two facts:

all obj : C & fresh | no obj.member
all obj : C | no (obj.member & fresh)

The former fact enforces that objects that are not yet created in the pre-state, do not have
any field values in the pre-state. The latter fact models that fields in the pre-state cannot
refer to objects that get created later.

Alloy predicates from the input Java file are copied into the Alloy model as-is. Additionally,
a post-state version of these predicates is generated by substituting all references to pre-
state fields with the corresponding post-state fields.

Invariants are handled in the same fashion: for every class C, a predicate with the name
"invariantForC" is constructed by creating the conjunction of all invariant clauses in that
class.

Finally, for every method that has a specification, a pair of predicates "method_pre" and
"method_post" are created. Both predicates have a parameter list corresponding to the
method’s parameters. The pre predicate encodes the method’s preconditions. Apart
from a conjunction of the user-specified requires clauses, it also requires that any object
parameters exist in the pre-state heap, as well as the object invariant. The post predicates
encodes the method’s postcondition. Any modifies clauses are converted into equivalent
postconditions and included in the post predicate.

As an example, we will use an unbalanced binary search tree:
final class Tree {
/*@ nullable @*/ Tree left, right;

int value;

19

20 4. Output Alloy model

/*$ invariant {
all d : this.*(left+right) {

all dl : d.left.*(left+right) | dl.value < d.value
all dr : d.right.*(left+right) | dr.value > d.value

}
}

*/

//$ ensures this.*(left’ + right’).value’ = this.*(left + right).value + v
//$ modifies this.*(left+right).left, this.*(left+right).right
public void add(int v) { /* ... */ }

}

When passed through Alloy2JML, the Java code is converted to the following Alloy model:
abstract sig Object {}
sig fresh in Object {}
sig Tree extends Object {
left : lone Tree, left’ : lone Tree,
right : lone Tree, right’ : lone Tree,
value : lone Int, value’ : Int,

}
fact {
// Objects that are not created in pre-state do not have any field values
all obj : Tree & fresh { no obj.left and no obj.right and no obj.value }
// Fields in the pre-state cannot refer to objects that get created later
all obj : Tree { no (obj.left & fresh) and no (obj.right & fresh) }

}

pred Object.invariantForObject { }
pred Object.invariantForObject’ { }
pred Tree.invariantForTree {
invariantForObject[this]
all d : this.*(left+right) {
all dl : d.left.*(left+right) | dl.value < d.value
all dr : d.right.*(left+right) | dr.value > d.value

}
}
pred Tree.invariantForTree’ {
invariantForObject’[this]
all d : this.*(left’+right’) {
all dl : d.left’.*(left’+right’) | dl.value’ < d.value’
all dr : d.right’.*(left’+right’) | dr.value’ > d.value’

}
}
...

To visualize the invariant, the user can use the Alloy Analyzer to write an additional
predicate that restricts the state space to be visualized:
one sig Root extends Tree {}
pred Show {
view_invariant // generated predicate that disables the post-state signatures

by requiring them to be equal to the pre-state signature
Tree = Root.*(left + right) // only view a single tree
invariantForTree[Root]
Tree.value = 1 + 2 // values in tree = {1,2}

}
run Show for 3

20

21

Figure 4.1.: Visualization of a Tree instance

Using the Alloy Analyzer to view the satisfying instances, we see two possible instances:
one where the value 1 is the root node and 2 its right child; and one where the value 2 is
the root node and 1 the left child. Figure 4.1 shows the former case.

If we introduce a mistake in the invariant, the Alloy Analyzer may find additional instances
that were not intended to be valid binary search trees. For example, consider a modification
to the tree that is intended to allow duplicate values (implementing a multi-set). If this
is done by changing the value comparisons in the invariant to also allow equal values, we
would not only gain the instances with duplicate values as intended, but also instances
that are no trees at all, as the modified invariant no longer prevents cycles from forming.

As for method contracts, the contract of the Tree.add() method is converted to the fol-
lowing pair of predicates:
pred Tree.add_pre[v : Int] {
this not in fresh
invariantForTree[this]

}
pred Tree.add_post[v : Int] {
no result // void
invariantForTree’[this]
this.*(left’ + right’).value’ = this.*(left + right).value + v
// The following formulas are created from
// ’modifies this.*(left+right).left, this.*(left+right).right’:
all o : Tree - fresh - this.*(left+right) | o.left’ = o.left
all o : Tree - fresh - this.*(left+right) | o.right’ = o.right
all o : Tree - fresh | o.value’ = o.value

}

Here, we can use the Alloy Analyzer to visualize the possible invocations of the add method.
To restrict the set of instances to a manageable size, we restrict the input to the method
in a similar way as we did for the invariant:
pred A {
// All tree nodes in the model should be involved in the tree being modified:
Tree = Root.*(left + right + left’ + right’)
Root.*(left+right).value = 1 + 2 // initial values in tree = {1,2}
Root.value = 2 // pick the initial tree where 2 is the root node
Root.add_pre[3] // consider only trees that satisfy the precondition
Root.add_post[3] // restrict the post-state to satisfy the postcondition

}
run A for 4

21

22 4. Output Alloy model

Figure 4.2.: Visualization of the expected result of Tree.add() call

Figure 4.2 shows one of the instances found by the Alloy Analyzer. However, there are
many other instances where existing tree nodes are being replaced with new instances.
This means our specification was underspecified, a more strict specification could demand
that we preserve the existing objects in the tree and only create a single new object. For
the purpose of our Java specification, this kind of underspecification is fine. However, it
makes visualization of possible results of the method difficult, as the result space allowed
by the specification is large. We can add another clause to our predicate to narrow down
the result space: Root.*(left+right) in Root.*(left’+right’)

Now there are two satisfying instances: one where the added node is fresh, and one where
it isn’t. It turns out that this is a real bug in our specification: it allows the add() method
to steal leaf nodes from unrelated tree instances instead of allocating new objects. If further
add() operations add children to the stolen node, the values stored in the unrelated tree
change.

Without using the Alloy Analyzer to explore the space of possible implementations for
the specification, it can be difficult to spot unintentional underspecification of this kind.
The problem may go unnoticed for a long time as long as programs use only a single
tree instance. Only when a program involves multiple trees, verification of the program
may become impossible using the problematic specification. With the Alloy Analyzer and
Alloy2JML, the problem can be discovered early in the specification phase, before any
implementations are written or verified.

22

5. Translation Function

The translation from Alloy to JML is defined using two functions B and E that are defined
recursively on the Alloy syntax tree. The function B is used on Alloy formulas; whereas
E is used for relational expressions. An additional third function I is used for integer
expressions. It is defined in terms of the E function and is not recursive itself.

The translation using these two functions is followed by a simplification pass. This step
dramatically increases the readability of the resulting JML formulas, as the translation
introduces lots of quantifiers that get subsequently removed by the simplification rules.
Readability is important as correctness proofs in the KeY theorem prover may fail and
need manual intervention by the user. In such a case, the more readable translation result
can help the user to relate her original specification to the state of the theorem prover.

5.1. Translation Context
The translation context captures various information about context the in which the to-
be-translated Alloy expression was used:

• The translation context keeps track of whether the expression occurs within a post-
condition. This affects the creation of the JML \old(...) expression.

• The translation context comes with a mapping from Alloy signatures to Java fields.
This mapping is usually derived from the Java program as described in the previous
chapter. By providing this mapping in a different manner, the translation function
could be re-used in a different context.

• The context also maps Alloy predicates to Java model methods. This mapping is
initialized with the translation of predicates to model methods as described in section
5.6.2.

• Finally, the translation context maintains a mapping from bound Alloy variables to
JML variables. Initially, it only contains the program variables (this and method
parameters) that are in scope for the specification clause. When the recursive trans-
lation function encounters Alloy quantifiers, it will extend this mapping with the
additional variables.

In the implementation, the translation context is additionally used to store the state
necessary for creating unique variable names.

23

24 5. Translation Function

5.2. Translation Predicates
A translation predicate is a function that, when given a JML object expression, returns a
JML boolean expression. The boolean expression will evaluate to true when the condition
encoded by the predicate is satisfied by the given object, and false otherwise.

A translation predicate is called well-formed if the following conditions hold:

• If the input object expression does not cause an exception to be raised, the output
boolean expression does not cause an exception to be raised.

• If the input object expression evaluates to a null reference, the output boolean ex-
pression evaluates to false.

• The semantics of the predicate do not depend on the heap state, so that it does not
matter whether it is evaluated within a JML \old expression.

In JML with strict validity semantics, any exception (such as NullPointerException) will
cause the expression to be considered undefined and the whole assertion will be interpreted
as invalid.

For this reason, the recursive translation function will ensure that its output expressions
will never cause exceptions, and always be well-defined. Well-formed predicates play a
crucial role in ensuring that this guarantee is upheld.

An example of a well-formed predicate is the nonnull predicate:

nonnull(e) := (e != null)

The nonnull predicate produces a JML expression that evaluates true for any object, while
evaluating to false for null references as required for well-formed predicates.

The most commonly used predicate is lift(obj), which evaluates to true if the object passed
into the predicate is the same as obj:

lift(obj)(e) := (e == obj)

To ensure that the predicate lift(obj) is well-formed, the expression obj must be statically
known to be exception-free and non-null.

The nonnull predicate and the lift(...) predicates are sufficient for the translation of any
user-specified contract clause. However, when generating the recursive contract for query
methods created for the translation of the transitive closure (see chapter 6), a third kind
of translation predicate will come into play.

5.3. Translation of relational expressions
The translation of Alloy relational expressions is performed using the function:
E«r‖p1, . . . , pn»c

The E function takes 3 arguments, and produces a JML boolean expression as output.

• r is the Alloy relational expression to be translated.

• p1, . . . , pn is a list of translation predicates. The length of the list must be equal to
the arity of the relation r, and the predicates must be well-formed.

• c is the translation context

24

5.3. Translation of relational expressions 25

The resulting JML expression will evaluate to true if and only if there exists a tuple t in
the Alloy relation r so that every predicate is satisfied by the given item in the tuple t.

E«r‖p1, . . . , pn»c evaluates to true ⇐⇒ ∃(t1, . . . , tn) ∈ r : p1(t1) ∧ . . . ∧ pn(tn)

Otherwise, E«r‖p1, . . . , pn»c evaluates to false. The output expression is guaranteed to
never throw an exception.

For relations of arity 1, the usage of the lift(. . .) predicate with the E function corresponds
to element-of semantics:

E«r‖lift(obj)»c evaluates to true ⇐⇒ ∃e ∈ r : lift(obj)(e) evaluates to true

⇐⇒ ∃e ∈ r : (e == obj) evaluates to true

⇐⇒ obj ∈ r

The usage of the nonnull predicate with the E function checks whether an Alloy set is
non-empty:

E«r‖nonnull»c evaluates to true ⇐⇒ ∃e ∈ r : nonnull(e) evaluates to true

⇐⇒ ∃e ∈ r : (e != null) evaluates to true

⇐⇒ r 6= ∅

As e is an atom in an Alloy set, it represents a JML object and thus cannot be the null
reference.

For Alloy relational expressions of higher arity, the list of predicates may contain both
lift(. . .) and nonnull at the same time. This makes the existential translation function E
more flexible than an approach using two separate translation functions for the element-of
and the empty-set cases. We found that this additional flexibility helps produce JML ex-
pressions where the redundant quantifiers are more easily eliminated by the simplification
step.

5.3.1. Type function

The translation makes use of the type function T i[r]. This function takes an Alloy rela-
tional expression r, and returns the Java type for column number i in the relation. This
uses the type mapping from table 3.2.

If the Alloy relation is a union type of different signatures, the function T will return the
most specific common base type.

In the Alloy2JML implementation, we use the Alloy Analyzer’s Java API to perform
semantic analysis of the Alloy expression, so that we can determine the arity and column
types of the Alloy relational expressions.

5.3.2. Variables

Alloy variables are translated to JML by applying the translation predicate to the corre-
sponding JML variable:

E«v‖p1»c := p1(varc(v)))

The notation varc(v) represents the JML variable corresponding to the Alloy variable v.

25

26 5. Translation Function

There are two kinds of Alloy variables encountered by the translation: program variables
(e.g. method parameters or the this pointer), or bound variables introduced by a quan-
tifier. Program variables, viewed from Alloy, hold either the empty set (null reference) or
a singleton set. Bound variables in Alloy always hold a singleton set, as our translation
prohibits higher-order quantification (see chapter 3.4 for details).

Both program variables and bound variables are translated the same way, by applying the
translation predicate. Because the predicate is well-formed, it will produce false when
given a program variable holding a null reference. This is the expected result for an empty
set, as the E function has existential semantics.

5.3.3. Type signatures

As described in chapter 3.1, Alloy type signatures directly correspond to Java classes. To
translate the usage of a type signature to JML, we materialize the existential quantifier
that is implicit in the definition of E :

E«T‖p1»c := (\exists T obj; p1(obj))

The name obj is a placeholder for a unique name generated by the translator. This
is important to avoid name collisions, as the identifier obj may occur with a different
meaning within the predicate.

JML* \exists only quantifies over the objects that exist in the current heap state, so this
translation naturally matches the semantics for type signatures described in chapter 3.3.1.

The introduction of existential quantifiers, followed by an application of the corresponding
translation predicate, is used in many translation rules. Within the quantifier body, we can
operate on a single element as if we had used element-of semantics instead of existential
semantics for the translation function. Note that the quantifiers introduced this way are
often redundant: if the predicate p1 is a predicate of the form lift(e), the quantifier body
can only be true if the bound variable is equal to the expression e. This means that
the simplification step following the translation will be able to eliminate the quantifier,
resulting in the translation:

E«T‖lift(e)»c = (e instanceof T)

This also applies to the translations of most other Alloy constructs: the vast majority of
quantifiers introduced by the translation will be eliminated by the simplification step.

5.3.4. Field signatures

The usage of a field signature in Alloy results in a binary relation that maps objects to
the field value.

E«member‖p1, p2»c := (\exists T 1[member] obj; p1(obj) && p2(obj.member))

T 1[member] is the type of the first column of the binary relation, which is the class declaring
the field member.

The generated expression is guaranteed to be well-defined: no NullPointerException can
occur during the field access, as the existential quantifier ensures that obj is non-null and
has the correct type.

If the value stored in obj.member is null, the Alloy relation corresponding to the member
will not contain a tuple for that obj. The translated expression thus must return false.

26

5.3. Translation of relational expressions 27

This is the reason why we required well-formed predicates to evaluate to false when given
a null reference: it allows us to directly pass the field to the predicate without generating
an explicit null check. Explicit null checks inserted at this point would often be redundant,
as the lift() predicate contains an implicit null check due to the comparison with a non-null
field. By shifting the responsibility for these safety checks into the predicates, we delay
the choice of whether to generate a check until more information is available to determine
if the check is redundant.

If the translation context c indicates that we are currently translating a postcondition,
and the member access does not use the prime suffix for accessing the post-state, the
translation uses the JML \old operator:

E«member‖p1, p2»c := \old((\exists T 1[member] obj; p1(obj) && p2(obj.member)))

It is critical that the \old operator is used outside the existential quantifier: it changes
the semantics of the JML* quantifier so that it only quantifies over the objects that exist
in the old heap state. If we were to use \old only around the obj.member access, we would
end up accessing a field value of an object that does not exist yet. This would cause the
body of the quantifier to evaluate to an undefined value.

Because the code generated by the predicates is within the scope of the \old expression as
well, we require all well-formed predicates to have the same semantics no matter whether
they run within \old or not. An alternative solution that does not require this restriction
on predicates would be to use an explicit \fresh(. . .) check:

(\exists T 1[member] obj; p1(obj) && !\fresh(obj) && p2(\old(obj.member)))

5.3.5. Built-in relations and literals

As described in section 3.4, the built-in iden relation is restricted to objects and does not
work for primitive types. For the same reason, the univ relation is not supported at all,
as the set of all objects can already be referred to using the type signature Object.

E«none‖p1»c := false

E«iden‖p1, p2»c := (\exists Object obj; p1(obj) && p2(obj))

For the built-in relations bool/True and bool/False, as well as for integer literals, the
translation trivially applies the translation predicate to the literal value:

E«True‖p1»c := p1(true)
E«False‖p1»c := p1(false)
E«num‖p1»c := p1(num)

5.3.6. Set Union

As the E function has existential semantics, set union can be simply translated into a
logical or:

E«a + b‖p1, . . . , pn»c := (E«a‖p1, . . . , pn»c || E«b‖p1, . . . , pn»c)

27

28 5. Translation Function

5.3.7. Set Intersection

The existential semantics of E don’t play well with set intersection. We need to materialize
the quantifier for all columns in the relation:

E«a & b‖p1, . . . , pn»c :=(\exists T 1[a&b] o1, . . ., T n[a&b] on;

p1(o1) && ... && pn(on) &&

E«a‖lift(o1), . . . , lift(on)»c && E«b‖lift(o1), . . . , lift(on)»c)

We generate the existential quantifier for the whole tuple, and lift the newly introduced
bound variables for use as translation predicates in the recursive call on E . The variables
introduced by the JML quantifiers are statically known to be non-null, so the lift(oi)
predicates are well-formed.

To avoid name collisions, the oi are newly created unique identifiers.

5.3.8. Set Difference

Set difference works like set intersection, except that the boolean expression generated for
b is negated:

E«a - b‖p1, . . . , pn»c :=(\exists T 1[a-b] o1, . . ., T n[a-b] on;

p1(o1) && ... && pn(on) &&

E«a‖lift(o1), . . . , lift(on)»c && !E«b‖lift(o1), . . . , lift(on)»c)

5.3.9. Relational Join

The relational join operator "." can join any two relations by matching the last col-
umn of the first relation with the first column of the second relation. That is, the re-
lational join a.b contains a tuple (x1, . . . , xn, y1, . . . , ym) if there exists an atom obj so
that (x1, . . . , xn, obj) ∈ a and (obj, y1, . . . , ym) ∈ b.

This corresponds to a simple Java member access if the first relation is a singleton set and
the second relation is a field signature.

The translation works by introducing the existential quantifier for obj, and otherwise
splitting the predicate list:

E«a.b‖p»c :=(\exists T 1[b] obj; E«a‖p1, . . . , pn, lift(obj)»c

&& E«b‖lift(obj), pn+1, . . . , pn+m»c)

where n = arity(a)− 1 and m = arity(b)− 1

To avoid name collisions, obj is a newly created unique identifier.

5.3.10. Relational Override

The relational override of a by b contains all tuples in b, and additionally, any tuples of a
whose first element is not the first element of a tuple in b.

It is useful for describing updates being applied to a field signature.

E«a ++ b‖p1, . . . , pn»c :=(\exists T 1[a++b] t; p1(t) && (E«b‖lift(t), p2, . . . , pn»c ||

(E«a‖lift(t), p2, . . . , pn»c && !E«b‖lift(t),nonnull, . . .︸ ︷︷ ︸
n− 1 times

»c)))

The translation materializes the existential quantifier for the first column. To check for
the existence of any tuple with the first element t, the nonnull predicate is used.

28

5.3. Translation of relational expressions 29

5.3.11. Cartesian Product
To determine whether the product of a and b contains a tuple satisfying the predicate list,
we split the predicate list and check that each input relation individually:

E«a -> b‖p1, . . . , pn+m»c :=(E«a‖p1, . . . , pn»c && E«b‖pn+1, . . . , pn+m»c)

where n = arity(a) and m = arity(b)

While the Alloy grammar allows multiplicities around the Cartesian product operator,
these can only occur when the product expression is used in the specific cases in the
grammar. The translation of the multiplicity is handled in those places; see section 5.4.4
for details.

5.3.12. Transpose
The Alloy transpose operator reverses the order of the columns in a relation. It is translated
by reversing the order of the predicate list:

E«˜a‖p1, . . . , pn»c :=E«a‖pn, . . . , p1»c

5.3.13. Domain and Range Restriction
The domain restriction operator s <: r restricts the domain of the relation r to the set s.
That is, the domain restriction s <: r is the set of tuples from r where the first element
is contained in the set s.

Similarly, the range restriction r :> s is the set of tuples from r where the last element is
contained in the set s.

Both operators are translated by materializing the quantifier for the column being re-
stricted:

E«s <: r‖p1, . . . , pn»c := (\exists T 1[s] t; p1(t) && E«r‖lift(t), p2, . . . , pn»c

&& E«s‖lift(t)»c)

E«r >: s‖p1, . . . , pn»c := (\exists T 1[s] t; pn(t) && E«r‖p1, . . . , pn−1, lift(t)»c

&& E«s‖lift(t)»c)

5.3.14. Set comprehensions
Alloy allows set comprehension syntax inside relational expressions. The syntax declares
variables vi for each column in the relation being defined. The possible values for each
vi are drawn from the set specified by the relational expression ri, which must produce
a unary relation. The relation specified by the comprehension syntax then contains all
tuples v1->. . .->vn for which the formula F is true.

The translation of the set comprehension syntax works by materializing the existential
quantifier for the whole tuple:

E«{v1 : r1, . . ., vn : rn | F }‖p1, . . . , pn»c :=
(\exists T 1[v1] v1, . . ., T 1[vn] vn; p1(v1) && . . . && pn(vn)
&& E«r1‖lift(v1)»c1 && . . . && E«rn‖lift(vn)»cn

&& B«F»cn+1)

As each ri may access the previously declared variables, special care must be taken with
the translation context: The context ci used for the relation ri is the original translation
context c, except that the mapping of Alloy variables to JML variables is extended with
all vj for j < i. Finally, the context cn+1 for the translation of the formula F is the original
context c, extended with all the variables vi.

29

30 5. Translation Function

5.3.15. Conditional expression

Alloy conditional expressions are converted into Java conditionals:

E«f implies a else b‖p1, . . . , pn»c := (B«f»c ? E«a‖p1, . . . , pn»c : E«b‖p1, . . . , pn»c)

An Alloy conditional expression can also be a formula. In that case, it is handled by the
translation rules in section 5.4.1.

5.3.16. Cardinality

The cardinality operator # is translated to the JML \num_of construct.

E«#r‖p1»c = p1(\num_of T 1[r] o1, . . ., T n[r] on; E«r‖lift(o1), . . . , lift(on)»c)

As defined in the JML reference manual, the (\num_of T x; P(x)) quantifier is seen as
syntax sugar for (\sum T x; P(x); 1L). This means that the simplification rule defined
for the quantifier can be applied to the translation of the cardinality operator.

Unfortunately, \num_of is not supported by KeY. As such, the cardinality operator is not
usable when KeY is used with the Alloy2JML output.

5.3.17. Sum quantifier

The sum quantifier "sum x: e | i" computes the sum of all i while binding the variable x
to the values from the set e.

The translation uses the JML \sum operator, as well as the integer translation function I:

E«sum x: e | i‖p1»c = p1(\sum T 1[e] obj; E«e‖lift(obj)»c; I«i»c′)

The translation context c′ is the translation context c, but extended with the variable
mapping from x to obj.

Alloy sum quantifiers with multiple variables are considered to be syntax sugar for nested
sum quantifiers:

E«sum x1: e1, x2: e2 | i‖p1»c = E«sum x1 : e1 | (sum x2 : e2 | i)‖p1»c

5.4. Translation of formulas
The translation of Alloy formulas is performed using the function B«F»c.
c is the translation context; while F is the input Alloy formula. The result of the B
translation function is a JML boolean expression.

5.4.1. Logical operators

The standard logical operators are directly translated to JML:

B«!F»c := (!B«F»c)

B«F and G»c := (B«F»c && B«G»c)

B«F or G»c := (B«F»c || B«G»c)

B«F iff G»c := (B«F»c <==> B«G»c)

B«F implies G»c := (B«F»c ==> B«G»c)

B«F implies G else H»c := (B«F»c ? B«G»c : B«H»c)

30

5.4. Translation of formulas 31

5.4.2. Binary relational operators
To check whether two Alloy relations are subsets of each other, or whether they are equal,
we need to quantify over the tuples in the relation:

B«a in b»c :=(\forall T 1[a+b] o1, . . ., T n[a+b] on;

E«a‖lift(o1), . . . , lift(on)»c ==> E«b‖lift(o1), . . . , lift(on)»c)

B«a = b»c :=(\forall T 1[a+b] o1, . . ., T n[a+b] on;

E«a‖lift(o1), . . . , lift(on)»c <==> E«b‖lift(o1), . . . , lift(on)»c)

We use Alloy set union with the type function T to determine the common base type of
the T i[a] and T i[b].

5.4.3. Quantified expressions
When a multiplicity is used as an unary operator with a relational expression r, it produces
a Boolean based on the number of entries in the relation.

B«no r»c :=(!E«r‖ nonnull︸ ︷︷ ︸
arity(r) times

»c)

B«some r»c :=E«r‖ nonnull︸ ︷︷ ︸
arity(r) times

»c

B«lone r»c :=(\forall T 1[r] a1, . . ., T n[r] an, T 1[r] b1, . . ., T n[r] bn;

(E«r‖lift(a1), . . . , lift(an)»c && E«r‖lift(b1), . . . , lift(bn)»c)

==> (a1 == b1 && . . . && an == bn))

B«one r»c :=(B«some r»c && B«lone r»c)

The no and some translations use the nonnull predicate to check for the emptyness/non-
emptyness of the relation r. The lone translation quantifies over two tuples a and b that
are elements of the relation r, and asserts that those tuples must be the same.

5.4.4. Multiplicity Constraints
Alloy allows occurrences of multiplicities in expressions only on the right-hand side of the
subset operator in; and as part of the range expression for variables introduced in quan-
tifiers. In the latter case, multiplicities other than one cause higher-order quantification
which is not supported by our translation. This means that our translation only needs to
handle multiplicities on the right-hand-side of the subset operator.
For unary relations, the syntax is "a in m b", where m is a multiplicity (lone, some or
one). The multiplicity constraint applies to the relation a, and can be translated as a
quantified expression separately from the subset operator:

B«a in m b»c :=(B«a in b»c && B«m a»c)

Multiplicity constraints on higher-arity relations are also treated as syntax sugar, using
the same approach as [Gei11, 3.2]:

The second form of multiplicity annotations is an annotated product operator
->. For multiplicity keywords n and m, the multiplicity restriction of r in A
n -> m B can be expressed by the following formulas:
all a: A | m a.r
all b: B | n r.b

Annotated product operations may also be nested. These can be desugared
in a similar way, using consecutive join operations. For example, the multipli-
city restriction of r in A -> one B -> lone C is expressed by
(all a: A | one a.r) && (all a: A, b: B | lone b.(a.r))

31

32 5. Translation Function

5.4.5. Quantified formulas

The universal and existential quantifiers in Alloy are translated to the corresponding JML
quantifiers:

B«all v : a | F»c :=(\forall T 1[a] obj; E«a‖lift(obj)»c ==> B«F»c∗)

B«some v : a | F»c :=(\exists T 1[a] obj; E«a‖lift(obj)»c && B«F»c∗)

B«no v : a | F»c :=(\forall T 1[a] obj; E«a‖lift(obj)»c ==> !B«F»c∗))

The translation context c∗ is the translation context c, except that the mapping of Alloy
variables to JML variables is extended with the mapping from v to obj.

Quantified formulas involving multiple variables are desugared into nested usage of quan-
tified formulas:

B«all v1 : a1, v2 : a2 | F»c :=B«all v1 : a1 | (all v2 : a2 | F)»c

B«some v1 : a1, v2 : a2 | F»c :=B«some v1 : a1 | (some v2 : a2 | F)»c

B«no v1 : a1, v2 : a2 | F»c :=B«no v1 : a1 | (some v2 : a2 | F)»c

Alloy allows multiplicity constraints on variable declarations, including those in quantified
formulas. However, the Alloy analyzer does not support the higher-order quantification
that is necessary when a bound variable refers to a set or relation instead of a single
atom. Our translation to JML has the same restriction, and will only accept the default
multiplicity one in quantified formulas.

The one and lone quantified formulas are treated as syntax sugar for the one and lone
quantified expressions in combination with set comprehensions:

B«lone v : a | F»c :=B«lone {v : a | F}»c

B«one v : a | F»c :=B«one {v : a | F}»c

Quantified formulas involving multiple variables are translated using set comprehensions
with multiple variables.

5.4.6. Integer comparisons

The arithmetic comparison operators in Alloy accept sets of integer as their arguments.
If a non-scalar set is supplied, the comparison acts on the sum of the values in the set.
[Jac06, p. 290]

We define a translation function I«r»c that takes an Alloy relational expression r that
represents a set of integers, and returns a JML expression that evaluates to the sum of the
integers in the set.

Unlike E and B, this translation function is not defined recursively over the Alloy syntax
tree. Instead, it always uses the JML \sum quantifier with E function:

I«r»c := (\sum int i; E«r‖lift(i)»c; i)

As usual, i stands for a newly created unique identifier in order to avoid name collisions.

This leads us to the following definition of the comparison operators:

B«a < b»c := (I«a»c < I«b»c)

B«a > b»c := (I«a»c > I«b»c)

B«a =< b»c := (I«a»c <= I«b»c)

B«a >= b»c := (I«a»c >= I«b»c)

32

5.5. Simplifications 33

Like the existential quantifiers in the definition of E , the \sum operator can often be
eliminated by the simplification step following the translation. In particular, if the Alloy
expression is a variable, or a field access on a variable, the \sum operator can always be
eliminated.

This simplification is critical when using the KeY proving tool: KeY only supports the \sum
operator when explicit bounds are provided in the form (\sum int i; i <= lowerBound
&& i < upperBound; i). This is almost never the case with the output of the translation
function1, so integer comparisons must be simplified to be usable with KeY.

It should be noted that it is possible to specify unbounded sums in Alloy. For example,
the expression val =< Int asserts that val is less or equal than the sum of all integers.

In this example, the Alloy Analyzer finds one model for val: the integer −8. This is
because the Alloy Analyzer performs bounded analysis and uses 4-bit integers by default,
with values from −8 to +7. In JML, the quantification uses Java integers, which too are
limited (to 32 bits). This means that, at least in theory, such expressions have a well-
defined value. However, as the value is differs between Alloy and JML (and is nonsensical
in both), unbounded sums should be avoided.

5.5. Simplifications
The translation function E introduces many quantifiers that are often redundant. As an
example, we will consider the translation of the expression "no x.left", where x is a method
parameter of type Tree that is known to be non-null (has no JML nullable annotation):

B«no x.left»c = (!E«x.left‖nonnull»c)

= (!(\exists Tree t; E«x‖lift(t)»c && E«left‖lift(t),nonnull»c))

= (!(\exists Tree t; lift(t)(x)
&& (\exists Tree obj; lift(t)(obj) && nonnull(obj.member))))

= (!(\exists Tree t; x == t

&& (\exists Tree obj; obj == t && obj.member != null)))

Both quantifiers are redundant: they can only be true if the newly introduced variable is
equal to an existing variable.

5.5.1. Eliminating existential quantifiers

A simplification rule can detect this case and eliminate the quantifier:

(\exists T obj; f1 && x == obj && f2(obj))
↪→ (f1 && x instanceof T && f2((T)x)) (5.1)

f1 and x are arbitrary JML expressions that do not use the obj variable. f2 is an arbitrary
JML expression that may use the obj variable.

Special care must be taken if f2 uses obj within an \old(. . .) expression: moving the
expression x into this context may change its semantics. This happens if x accesses the
post-state in some way (contains field access or quantifier). Thus, this simplification rule
is not applied (and the existential quantifier preserved) if x contains such accesses to the
post-state, and f2 uses obj within an \old(. . .) expression. This way, we keep quantifiers

1The translation may match this pattern if the Alloy specification contains such bounds, for example
"{i:Int | i =< 0 and i < 5} = 10".

33

34 5. Translation Function

that are necessary due to the inflexibility of the JML \old keyword as described in chapter
3.3.2.

The simplified expression for the quantifiers contains an instanceof operator and a cast to
ensure that the simplified expression is equivalent even if the type of expression x differs
from T.

5.5.2. Eliminating redundant casts

Casts introduced by the simplification rule above are often redundant. Such redundant
casts are eliminated where possible by additional simplification rules:

(x instanceof T) ↪→ (x != null) (5.2)
if the type of x is a subtype of T

((T)x) ↪→ (x) (5.3)
if the type of x is equal to T

Null checks introduced by this rule are often redundant. If x is statically known to be
non-null, the null check is eliminated:

(x != null) ↪→ true (5.4)

Statically known to be non-null are:

1. bound variables

2. method parameters, unless they a marked with the JML nullable modifier

3. fields, unless they a marked with the JML nullable modifier

Applying these simplifications to our example:

B«no x.left»c = (!(\exists Tree t; x == t

&& (\exists Tree obj; obj == t && obj.left != null)))
5.1= (!(\exists Tree t; x == t

&& (t instanceof Tree && ((Tree)t).left != null)))
5.2= (!(\exists Tree t; x == t

&& (t != null && t.left != null)))
5.4= (!(\exists Tree t; x == t && t.left != null))
5.1= (!(x instanceof Tree && ((Tree)x).left != null))
5.2= !(x != null && x.left != null)
5.4= x.left == null

In general, whenever the translation function is used on a field signature with a lift()
predicate, and the types are correct so that the cast can be eliminated, the simplifications
described so far will allow us to simply invoke the second predicate on the field value:

E«member‖lift(obj), p2»c = p2(obj.member)

The null check simplification 5.4 can always be used here: the usage of lift(obj) as a
predicate implies that obj is statically known to be non-null.

34

5.6. Translation of Contract clauses 35

5.5.3. Eliminating redundant quantifiers

In addition to the elimination of the existential quantifier, we also need a simplification
rule to eliminate universal quantifiers. These occur in the translation of the in operator.

(\forall T obj; f1 && x == obj ==> f2(obj))
↪→ (f1 && x instanceof T ==> f2((T)x)) (5.5)

f1, x and f2 are JML expressions as in the rule for eliminating the existential quantifier
(5.1); and the same restriction regarding JML \old(. . .) applies.

The third related simplification rule is the elimination of the \sum operator that occurs in
the translation of the integer comparisons:

(\sum T obj; f1 && x == obj && f2(obj); f3(obj))
↪→ ((f1 && x instanceof T && f2(x)) ? f3(x) : 0) (5.6)

Again, f1, x and f2 are defined as before, and the \old(. . .) restriction applies. f3 is an
additional JML expression that may access obj. Because the \num_of quantifier is defined
as syntax sugar for \sum, this simplification rule applies to \num_of as well.

A similar rule is useful for simplifying the result of set equality comparisons:

(\forall T obj; f1 && x == obj <==> f2 && y == obj)

↪→ ((f1 ? x : null) == (f2 ? y : null)) (5.7)

In this rule, f1, f2, x and y are arbitrary JML expressions that do not access obj. The
types of x and y also must be subtypes of T, and may not be primitive types.

For example, when x and y are parameters of type nullable Node:

B«x.next = y»c = \forall Node obj; x != null && x.next == obj <==> y == obj
5.7= (x != null ? x.next : null) == y

For the primitive types int and boolean, the rule above cannot be used as these types
do not allow the use of a null reference to indicate a missing value. Instead, we use the
following rule:

(\forall T obj; f1 && x == obj <==> f2 && y == obj)

↪→ ((f1 && f2 && x == y) || (!f1 && !f2)) (5.8)

Simplification of \fresh:

\fresh(x) ↪→ false (5.9)

if the expression x does not access to the post-state, does not contain \result, and does
not contain any free non-program variables, it is impossible for the expression to refer to
a newly created object.

5.6. Translation of Contract clauses
The requires, ensures and invariant clauses all are followed by an Alloy formula. To
translate these clauses into the equivalent JML clauses, the B function is used to translate
the formula into a Boolean JML expression.

35

36 5. Translation Function

In all cases, the initial translation context passed to the B function:

• contains all Alloy predicates declared in the input file

• maps the Alloy variables for the method parameters to the actual Java method
parameters

Additionally, in the case of postconditions (ensures clause), the initial translation context
maps the Alloy result variable to the JML \result variable. The context is also marked
as "within a postcondition", which causes \old(...) expressions to be generated around
accesses to the pre-state. As a special case, methods marked as pure do not have this flag
set. This prevents the translation from creating unnecessary \old(...) expressions, as the
pre-state is equal to the post-state within pure methods.

5.6.1. Modifies clause

The modifies clause specifies a comma-separated list of heap locations that may be mod-
ified by the method. Each location is given by the syntax "alloy-expression . identifier".
The identifier refers to the Java field that may be modified, and the Alloy expression
specifies the set of target object instances.

If the target expression is simple (for example, "this", or another non-nullable parameter),
it can be directly translated into JML. For example, the clause
//$ modifies this.length

can be directly translated into the corresponding JML clause
//@ modifies this.length;

However, in the general case, the target object set cannot be expressed as a JML expression.
In this case, Alloy2JML will generate a JML modifies clause that is less specific: we allow
the modification on the field on all object instances.

In JML* for KeY, this is done using \infinite_union:
//@ modifies \infinite_union(List node; node.next);

In JML, a static data group could be used for the same purpose.

Additionally, we generate a postcondition that specifies that the field value is unchanged
on any objects not in the target object set:
ensures all obj : DeclaringType - fresh - target | obj.field’ = obj.field

This postcondition is translated to JML as usual using the B function.

5.6.2. Predicates

Alloy predicates in the input file are converted into static model methods.

For example:
class LinkedList {

...
int length;

//$ pred isEmpty[list : LinkedList] {
//$ list.length = 0
//$ }

//$ ensures this.isEmpty’
public void clear() { ... }

}

36

5.6. Translation of Contract clauses 37

Translated to JML, we get:
class LinkedList {

...
int length;

/*@ public normal_behavior
ensures \result <==> list != null && list.length == 0;
static model helper strictly_pure
boolean isEmpty(nullable LinkedList l);

@*/

//@ ensures isEmpty(this);
public void clear() { ... }

}

The Alloy expression passed to a predicate must be a simple expression: a program vari-
able, the built-in none set, or a field access on another simple expression. This restriction
exists because the generated model method only accepts a single object instance, not an
arbitrary set. If none is passed, or the program variable or any field involved is null, the
caller will pass a null reference to the model method. This corresponds to an empty set
in Alloy semantics.

The model method is always specified as in the example above; only the right-hand side
of the equivalence operator is translated from the predicate body:
ensures \result <==> B«body»c

The necessary null checks are added by the simplification step (quantifier elimination
followed by rule 5.2).

37

6. Translation of transitive closure

The Alloy operator for the transitive closure "^r" can be applied to any binary relation.
In Alloy, it is defined as a union of relational joins:

^r = r + r.r + r.r.r + . . .

Because the Alloy analyzer works within finite bounds, this definition is finite, and thus
allows the transitive closure to be represented in first-order logic.

Additionally, Alloy defines the reflexive transitive closure *r:
*r = iden + r + r.r + r.r.r + . . .

It should be noted that *r is reflexive on the whole universe, and thus always has the type
univ -> univ.

To implement a transitive closure in JML, the \reach expression looks like a potential
candidate. In JML, \reach(x) is defined to return the smallest JMLObjectSet that contains
x and all objects reachable from x. When x is a data group, \reach(x) only includes the
objects reachable through fields in that data group, thus allowing control over the fields
involved in the transitive closure.

However, there are several problems with using \reach in this way:

• \reach always computes the reflexive transitive closure; there is no corresponding
JML construct for a non-reflexive transitive closure.

• While data groups may be used to specify a set of fields; \reach cannot be used for
the transitive closure of more complex relations. For example, Alloy "node.*(~next)"
refers the set of predecessors of a given node.

• KeY does not support the standard JML \reach predicate with data groups, and
instead uses its own syntax.

We instead use model methods to define our own reachability predicate. This is based on
an approach developed by Gladisch and Tyszberowicz [GT13].

6.1. Linked lists

In the simple case where the transitive closure is directly applied to a field signature
(*next), the transitive closure contains all nodes in the singly-linked list formed by the
field next. Here, we can use a getNext() method to retrieve nodes from the list:

39

40 6. Translation of transitive closure

/*@ normal_behavior
ensures (n < 0 ==> \result == null);
ensures (n == 0 ==> \result == head);
ensures (n > 0 ==> \result == (

head != null ? getNext(head.next, n-1) : null));
ensures (n > 0 ==> \result == (

getNext(head, n-1) != null ? getNext(head, n-1).next : null));
accessible \infinite_union(Entry e; e.next);
measured_by n;

@*/
public static /*@ helper strictly_pure nullable @*/ Entry getNext(/*@ nullable @

*/ Entry head, int n)
{ ... }

The accessible clause is using the JML* construct "\infinite_union" to specify that the
value of the getNext() method depends only on the next field. In regular JML, the same
accessible clause could be specified using a static JMLDataGroup that contains the next field
of all Entry instances. However, KeY currently does not support data groups, which forces
us to use the equivalent JML* syntax. The accessible clause is an over-approximation:
the value does not actually depend on all Entry instances, but only those in the transitive
closure. We use this over-approximation as we cannot specify the transitive closure in the
accessible clause in terms of the getNext() method, and would require another way to
specify the transitive closure.

Using the getNext() method, we can obtain the transitive closure over the next field by
quantifying over the number of steps:

E«^next‖p1, p2»c := (\exists T 1[next] obj; p1(obj) &&

(\exists int steps; steps > 0; p2(getNext(obj, steps))))

For example, when checking whether a given node is contained in the linked list starting at
head, most of the quantifiers can be eliminated by the simplification, and the translation
looks like this:

B«node in head.^next»c =
(\exists int steps; steps > 0; getNext(head, steps) == node)

The usage of an explicit number of steps may cause problems for automatic theorem
provers: they may be unable to find the correct instantiation for the number of steps.
However, it can also be of an advantage if the number of steps plays an explicit role in the
program, for example in a linked list implementation where methods access list items by
index.

In fact, treating a linked list as a sequence that can be indexed is so useful that we expose
this functionality to our input Alloy specifications. We do this by defining a function
"pow[r, steps]" that joins the relation r with itself steps times.

Using this function, we can specify the behavior of a linked list’s get() method:
//$ requires i >= 0
//$ ensures result = head.(pow[next,i]).data
public Object get(int i) { ... }

This allows Alloy specifications to talk about explicit numbers of steps, while simultane-
ously allowing easy access to the set of all list elements using the transitive closure.

40

6.2. Generalizing the transitive closure 41

6.2. Generalizing the transitive closure
However, this approach to the transitive closure only works for simple fields, as they can
be treated as a singly-linked list (potentially with cycles). In general, an arbitrary relation
can be interpreted as a directed graph, with the transitive closure being the set of nodes
that are reachable in any number of steps. Any approach using a get()-style method
would have to take an argument that specifies a path through the graph.

For a simple union of several fields, like the transitive closure "^(left+right)" that might
get used in the specification of a binary tree, the path could be encoded within an integer
argument:

getNode(obj, 1) = obj
getNode(obj, 2*i) = getNode(obj, i).left
getNode(obj, 2*i+1) = getNode(obj, i).right

With this definition, an inductive proof over the graph structure would require complete
induction, or a custom induction rule. Additionally, it is unclear how this would work
with arbitrary Alloy relations. Consider a graph where nodes contain a dynamically-sized
array of child nodes: Every single step can reach an arbitrary number of nodes, so that
we would need to use a list of integers to represent a path. Forming the transitive closure
would then require quantifying over all possible lists. For more complicated Alloy relations
(for example, one constructed using a set comprehension), it is even less clear how paths
could be represented.

So, instead of providing a get(start, i) query method that returns the node after i steps,
we will use a boolean query method that returns whether a node can be found after a
given number of steps. For the binary tree example, this method is specified as follows:
/*@
public normal_behavior
ensures steps < 0 ==> \result == false;
ensures steps == 0 ==> (\result <==> root == node && root != null);
ensures steps > 0
==> (\result <==> root != null && (hasNode(root.left, steps - 1, node)

|| hasNode(root.right, steps - 1, node)));
ensures steps > 0 ==> (\result <==> node != null &&

(\exists Tree parent; hasNode(root, steps - 1, parent)
&& (parent.left == node || parent.right == node)));

measured_by steps;
static model helper strictly_pure
boolean hasNode(nullable Tree root, int steps, nullable Tree node);

@*/

This method returns true if, starting from the node root, the node entry can be reached
in exactly the given number of steps. Otherwise, the method returns false. In case of
invalid input (negative number of steps, or null reference for one the tree nodes), the
method always returns false.

Note the two postconditions for the steps > 0 case: both a head-recursive and a tail-
recursive specification are available. Both are equivalent and either can be proven from
the other by induction over the number of steps. As both kinds of recursion may be
necessary to verify a given program (for example, see contains_loop in chapter 8.2.2), our
translation will generate both the head-recursive and the tail-recursive specifications.

The recursive specifications split the path through the graph of length steps into a path
of length steps-1 (which is handled by the recursive hasNode() call) and a single step (at
either the beginning or the end of the longer path). This single step can be handled by

41

42 6. Translation of transitive closure

our existing translation function. Therefore, the hasNode() approach can be generalized
to translate the transitive closure of almost any Alloy relational expression supported by
our translation.

6.3. Query method definition
Given an Alloy relational expression r, we define the query method Qr to be the hasNode()-
style method where the recursive specification (the "single step") is given by the relation r:

/*@
public normal_behavior
ensures steps < 0 ==> \result == false;
ensures steps == 0 ==> (\result <==> root == node && root != null);
ensures steps > 0 ==> (\result <==> root != null && E«r‖lift(root), headrecr»c);
ensures steps > 0 ==> (\result <==> node != null && E«r‖tailrecr, lift(node)»c);
measured_by steps;
static model helper strictly_pure
boolean Qr(nullable T root, int steps, nullable T node);
@*/

In this definition, the type T is the type of the transitive closure as determined by Alloy’s
type inference – in symbols, T 1[^r].

headrecr and tailrecr are translation predicates that recursively call the method Qr:
headrecr(e) := (e instanceof T && Qr((T)e, steps-1, node))

tailrecr(e) := (e instanceof T && Qr(root, steps-1, (T)e))

In the head-recursive ensures clause, the E function is used to produce an expression that
evaluates to true if the relation r contains a pair (root, e) where node is reachable from e in
steps-1 steps. Similarly, the tail-recursive postcondition uses E to create a JML expression
that signifies whether the relation r contains a pair (e, node) so that e is reachable from
root in steps-1 steps.

Overall, the Qr specification works the same way as the hasNode specification: considering
the graph where objects are nodes and the set of edges is given by the relation r, the call
Qr(a,n,b) returns true if and only if b is reachable from a in exactly n steps.

It should be noted that the translation predicates involved are well-formed: the explicit
null-checks ensure that the lift() predicates are well-formed. For the headrecr and tailrecr
predicates, explicit type checks are used to ensure that the method call is possible. The
instanceof operator also ensures the translation predicates return false when given a null
reference, although this is not strictly necessary as the recursive Qr call is specified to
return false on null references.

The last rule for well-formed translation predicates is that they must have the same se-
mantics when they are evaluated within an \old expression as they have outside of such
an expression. This is trivially guaranteed because the method Qr is pure, so that the
pre-state and post-state are the same.

Using the Qr definition, we can translate the transitive closure as follows:

E«^r‖p1, p2»c := (\exists T 1[^r] obj1, obj2; p1(obj1) && p2(obj2) &&

(\exists int steps; steps > 0; Qr(obj1, steps, obj2)))

One problem with the definition as described above is that the query method does not
have access to the variables in the context of its call. This would cause the translation to

42

6.4. Reflexive closure 43

fail if the Alloy relation r accesses one of those variables. To solve this problem, we pass
such variables to the query method as additional parameters.

Consider a specification that takes the transitive closure not over the current left and
right relations, but also adds an edge from node a to node b, where a and b are both
program variables. This can be specified in Alloy using the following expression:
^(left + right + (a -> b))
When translated to JML, the parameter list of the query method will be:
boolean query(Tree root, int steps, Tree node, Tree a, Tree b)

Finally, we disallow taking the transitive closure (or using the pow function) of a relation
that accesses both the pre- and post-state. This is necessary as it is impossible to pass
multiple heap states to a JML model method. If the transitive closure accesses only the
pre-state, we use the \old operator around the call to the query. In fact, we need to place
the \old operator around the quantifiers as follows:

E«^r‖p1, p2»c := (\old(\exists T 1[^r] obj1, obj2; p1(obj1) && p2(obj2) &&

(\exists int steps; steps > 0; Qr(obj1, steps, obj2))))

The reasoning for this quantifier placement is the same as for field accesses (see 5.3.4):
If we were to pass objects that might be freshly created in the post-state to the query
method, that might cause it to access field values of those objects in the pre-state. Such
field accesses would not be well-defined behavior.

6.4. Reflexive closure
Now we will consider the translation of the reflexive transitive closure, *r. A simple
adjustment to the translation would be to change the requirement on the step count from
steps > 0 to steps >= 0. Indeed, in many contexts where the transitive closure is used,
this change is sufficient. However, it does not fully capture the semantics of the Alloy *
operator.

In Alloy, *r is defined to be iden + ^r. That is, the resulting relation is reflexive over
the whole Alloy universe, not just the domain of relation r. As our query method uses
strongly-typed parameters, it cannot accept these additional elements. An easy fix to this
problem would be to treat *r as syntax sugar for iden + ^r. However, this means the
special case for iden is always generated, even when doing so is not necessary. Frequently,
the transitive closure is immediately joined with a head node, for example in:
all n : this.*(left+right) | n.value = 0.
Because this already is a tree node, the translation of the transitive closure with steps >= 0
is sufficient, and it does not make sense to introduce a special case for the unused larger
domain of the reflexive closure. For this reason, we chose the following translation for the
reflexive closure:

E«*r‖p1, p2»c := (

(\exists Object obj; p1(obj) && p2(obj) && !(obj instanceof T 1[^r]))
||

(\exists T 1[^r] obj1, obj2; p1(obj1) && p2(obj2) &&

(\exists int steps; steps >= 0; Qr(obj1, steps, obj2)))

)

The first part of the disjunction corresponds to the translation of iden, except that it
excludes all objects that are supported by the query method and are handled in the
second part of the disjunction.

43

44 6. Translation of transitive closure

This translation may look more complicated, but it works well with the existing simplifi-
cation rules. If either p1 or p2 is a lift(...)-style predicate, the quantifier for obj can be
eliminated. This causes the expression obj to be replaced with the lifted expression, which
usually has a more specific type. If this type is a subtype of the type T 1[^r], this allows
the simplification rule 5.2 to replace the instanceof check with the constant true. Further
simplification based on the use of constants in logical operators will then eliminate the
disjunction, leaving only the second part.

This means that for the vast majority of use cases, the translation output of the reflexive
transitive closure *r is no more complicated than that of the transitive closure ^r.

6.5. pow[] function
Finally, let us consider the translation of the pow[] function that we mentioned at the end
of section 6.1. The Alloy semantics of this function are given by the following definition:
fun pow[r : univ -> univ, steps:set Int] : univ->univ {

(0 in steps implies iden else none->none)
+ (1 in steps implies r else none->none)
+ (2 in steps implies r.r else none->none)
+ (3 in steps implies r.r.r else none->none)

// ... continue up to the max. integer
}

That is, the pow function joins the relation r with itself steps times. The steps parameter
may be a set of step counts; in this case the function returns the union of its results for
the individual step counts.

In fact, the pow function can be considered to be a generalized version of the transitive
closure:

*r = pow[r, Int]
^r = pow[r, Int-0]

In Alloy, the function is implemented by exhaustively listing the possible number of steps.
In the translation to JML, we translate pow[r, steps] similarly to the reflexive closure:

E«pow[r, steps]‖p1, p2»c := (

(\exists Object obj; p1(obj) && p2(obj) && E«steps‖lift(0)»c

&& !(obj instanceof T 1[^r]))
||

(\exists T 1[^r] obj1, obj2; p1(obj1) && p2(obj2) &&

(\exists int num; E«steps‖lift(num)»c && Qr(obj1, num, obj2)))

)

As with the reflexive closure, the simplification step will usually dramatically simplify the
translation output of pow.

44

7. Correctness proof of the translation

We use the Isabelle/HOL theorem prover to formally prove the correctness of our trans-
lation function. We started the formal proof when we discovered inconsistencies in the
handling of null references in an old version of the translation function. Fixing these in-
consistencies led to the development of the notion of well-formed predicates (chapter 5.2),
and we started a simple version of the correctness proof using Isabelle/HOL.

Later, we discovered additional correctness problems in our translation function regarding
the range of quantifiers, in particular how the JML \old keyword and the choice of variable
types affects the set of objects being quantified over. As our initial correctness proof did
not model any types or heap states at all, this issue went undetected for some time. After
we discovered these additional issues, we significantly extended the formal correctness
proof, adding an explicit representation of the Alloy and JML syntax trees and modeling
the language semantics using evaluation functions.

In this chapter, we will first explain the decisions and definitions used for formally modeling
Alloy, JML and our translation function. We will then describe the structure of our
correctness proof.

In particular, the proof about the translation function will show:

• The output JML expression compiles; it is well-typed.

• The output JML expression does not throw exceptions or produce undefined results.

• The output JML expression evaluates to true if and only if the input Alloy formula
was valid.

7.1. Type System Formalization
Because the Java classes are used as the source for defining the Alloy signatures, we first
formalize the necessary portions of the Java type system. This will be used by both the
Alloy and JML formalizations.

typedecl JClassDecl — Java class declaration
typedecl JField — Java field declaration
typedecl Object — Object instance (at runtime)
typedecl VariableName

datatype JType = JBoolean | JInt | JNullType | JClass JClassDecl

45

46 7. Correctness proof of the translation

These are the basic declarations for the formalized type system. The data type JType
represents a Java type reference. For simplicity, we left out interface types, generics, and
the primitive types other than boolean and int. Also, we added JNullType, which is the
type of the null literal. The null type will allow us to assign a static type to every JML
expression. In addition to the definition above, we will use JObject to refer to the class
type of java.lang.Object.

On these types, we inductively define the subtype relation T v S:

inductive isSubtypeOf :: "JType ⇒ JType ⇒ bool" ("_ v _")
where

type_reflexive[simp]: "T v T"
| type_trans[trans]: " [[T v U; U v S]] =⇒ T v S"
| classes_are_objects[intro]: "JClass C v JObject"
| classes_are_nullable[intro]: "JNullType v JClass C"
| type_inheritance: " [[Some C1 = parentClass C2]] =⇒ JClass C1 v JClass C2"

The null type is a subtype of every type except for the primitive types boolean and int.

For objects, we assume the existence of a function objectType that returns the type of the
object instance (like Object.getClass()):

fun objectType :: "Object ⇒ JType"

The objectType is guaranteed to be a class-type, it cannot be a primitive type or the null
type.

For fields, we assume the existence of two functions declaringType and fieldValueType
that return the class that declares the field, and the static type of the field’s value, respec-
tively.

fun declaringType :: "JField ⇒ JType"
fun fieldValueType :: "JField ⇒ JType"

The declaringType is guaranteed to be a class-type, while the fieldValueType has no
restrictions.

Finally, we define the data type JVal to model the possible values of a JML expression:

datatype JVal = BoolVal bool | IntVal int | null | ObjRef Object
abbreviation "true ≡ BoolVal True"
abbreviation "false ≡ BoolVal False"

7.2. Alloy Formalization

Alloy is a small language with simple semantics. However, for the purposes of this proof,
a full formalization of Alloy would still be a significant task. Instead, we simplify Alloy
further: first, we will only concentrate on a subset of the Alloy language that we think is
the most important for the correctness proof of our overall translation approach. We will
not prove all of the translation rules in chapter 5 correct, but only those that correspond
to the basic Alloy language constructs modeled here.

As a second simplification, we make some adjustments to the Alloy type system to bring
it closer to that of Java/JML. An Alloy type represents the type of a relation. We will
define an Alloy type AType to be the list of the relation’s column types. To represent the
column types, we will use the Java types defined in the previous section.

type_synonym AType = "JType list"

46

7.2. Alloy Formalization 47

This direct usage of Java types within Alloy relation types helps make the translation proof
significantly simpler. However, it does have some effects on the semantics of the modeled
language, to the point where it differs from the real Alloy. The major consequence of using
the Java type system is that no universal type univ exists. We will use the Object type as
an approximation – it is a supertype of all types except for the primitive types.

One consequence of this approximation to the real Alloy semantics is that, in our model,
Alloy expressions involving a union of primitive integers/booleans and other atoms cannot
be well-typed. Another is that the built-in relations univ and iden are restricted to objects
and do not contain primitive integers or booleans. This corresponds to the restrictions on
the allowable input of our translation in chapter 3.4.

A related difference is that Java does not have the none type. Instead, we will approximate
it using the type of the null literal, JNullType. This does not affect the semantics of the
none relation as that is the empty set either way, but it causes some expressions that
are well-typed in regular Alloy to be invalid in our formalization. This means our formal
correctness proof does not extend to such expressions, though we believe our translation
of none is correct nonetheless.

It should be noted that the Alloy language also has union types. Our formalization omits
these completely. While our translation can handle union types by translating them to
a common base type, in our formalization we expect the input expression to be already
typed using that common base type.

We now define an Alloy Atom as an analogue to the Java value JVal, except that we do
not allow null references:

datatype Atom = IntAtom int | BoolAtom bool | ObjAtom Object
type_synonym Tuple = "Atom list"
type_synonym Relation = "Tuple set"

Tuples are defined as list of atoms, and relations as sets of tuples. This definition allows
relations with mixed arities (tuples of different lengths). Indeed, we will define the Alloy
semantics in an arity-independent way that allows such relations. However, in any well-
typed Alloy expression, each relation will have a single, statically known arity.

7.2.1. Alloy dynamic state

We will now define the context information necessary to evaluate an Alloy expression:
type_synonym Env = "AVariable ⇀ Atom"

An Alloy environment maps Alloy bound variables to atoms. Alloy variables are declared
as a pair of variable name and type. A variable is identified by both type and name:
two variables with the same name but different types do not collide with each other. In
the syntax tree, the variable type will be encoded in all references to the variable. This
definition helps us to assign static types to Alloy expressions without having to use type
environments.

An environment is called well-formed if it maps every variable to an atom of a compatible
type:

definition wellFormedEnv :: "Env ⇒ bool"
where "wellFormedEnv e

≡ ∀ v atom. e v = Some atom −→ atomtype atom v avartype v"

The environment is a partial function: the absence of a value for a variable means that the
variable does not exist in the environment. Modeling the environment as a total function
from all possible variables would cause the definition of well-formed environments to be

47

48 7. Correctness proof of the translation

unsatisfiable: for variables of type none, no value of a compatible type can exist. To keep
the evaluation function total, evaluation of a missing variable is defined to return an empty
set.

type_synonym Model = "Signature ⇒ Relation"

An Alloy model maps Alloy signatures to relations. A model is well-formed if the relation
returned for a signature is compatible to that signature’s type:

definition wellFormedModel :: "Model ⇒ bool"
where "wellFormedModel m ≡ ∀ S. m S inType (sigtype S)"

Because both the environment and the model are mostly passed around recursively through
the evaluation function and are rarely used individually, we combine them into a single
parameter of the pair type ModelEnv. We call the ModelEnv well-formed if both its model
and its environment are well-formed:

definition wellFormed :: "ModelEnv ⇒ bool"
where "wellFormed m ≡ wellFormedModel (model m) ∧ wellFormedEnv (env m)"

7.2.2. Alloy syntax and semantics

We now define the Alloy syntax tree using the mutually recursive type declarations AExpr
and BExpr. AExpr refers to relational expressions; while BExpr refers to Alloy formulas. To
syntactically distinguish Alloy operators from Isabelle/HOL operators, we mark them with
the "A" suffix. The evaluation functions are denoted as "A [[a]]m" and "B [[f]]m" respectively.

primrec evalA :: "AExpr ⇒ ModelEnv ⇒ Relation" ("A [[_]]_")
and evalB :: "BExpr ⇒ ModelEnv ⇒ bool" ("B [[_]]_")

where
"A [[ALit i]]m = {[IntAtom i]}"

| "A [[AVar v]]m = (case (env m v) of Some atom ⇒ {[atom]} | None ⇒ {})"
| "A [[ASig S]]m = model m S"
| . . .

Literals evaluate to a singleton set. Variables are read from the environment; and signa-
tures are read from the model.

| "A [[a +A b]]m = A [[a]]m ∪ A [[b]]m"
| "A [[a .A b]]m = relational_join (A [[a]]m) (A [[b]]m)"

Union are directly mapped to the corresponding operators for HOL sets. The relational
join is implemented using a seperate definition:

definition relational_join :: "Relation ⇒ Relation ⇒ Relation"
where
"relational_join r1 r2 = {t1@t2 |t1 t2 atom. t1@[atom]∈r1 ∧ [atom]@t2∈r2}"

An explanation of the Isabelle/HOL syntax involved here: the relational join is defined to
be the set of tuples that are constructed by concatenating two tuples t1 and t2, where
the tuple t1 concatenated with some atom is from the first relation, and the same atom
concatenated with t2 is an element of the second relation.

Next, we define the semantics of Alloy set comprehensions. While, Alloy allows an ar-
bitrary number of variables in set comprehensions, we will only allow a single variable
in set comprehensions. In addition, we introduce the construct of a "relation extension
comprehension", using the custom syntax "{v : a ‡ b}":

| "A [[{v : a | f}A]]m = {[atom] |atom. [atom]∈A [[a]]m ∧ B [[f]]m〈v:atom〉}"
| "A [[{v : a ‡ b}A]]m = {[atom]@ts |atom ts. [atom]∈A [[a]]m ∧ ts∈A [[b]]m〈v:atom〉}"

48

7.3. JML 49

The semantics of "{v : a ‡ b}" are: the expression b gets evaluated with the variable v
set to each atom from the set a. Every tuple returned by the evaluation of b gets prefixed
with the value of v that was used for its evaluation. This construct allows us to desugar
set comprehensions involving multiple variables:
{v1 : a1, v2 : a2 | f} is equivalent to {v1 : a1 ‡ {v2 : a2 | f}}
This allows us to translate (and then proof) set comprehensions one variable at a time.

Finally, these are the semantics of Alloy formulas. The operators for Alloy formulas are
marked with the "B" suffix.

| "B [[notB f]]m = (¬B [[f]]m)"
| "B [[someB a]]m = (A [[a]]m 6= {})

We left out quantified formulas because they can be desugared into quantified expressions
with set comprehensions1.

7.3. JML
Our JML formalization is roughly based on the Diploma thesis of Daniel Bruns [Bru09].
Following the approach in the Diploma thesis, we will model an evaluation function and a
well-definition predicate for JML. Additionally, we will use a static well-typedness predi-
cate. But we will also simplify JML for our formalization: we only define those language
constructs that are used by the output of the translation function. JML is only "weakly
side-effect free". That is, expressions in specifications cannot modify any existing objects
on the heap, but they may allocate new objects. Since our translation does instantiate
any objects, our subset of JML is complete side-effect free. We do not model side-effects
in our formal JML semantics at all, which greatly simplifies the semantics.

As with our Alloy formalization, we identify variables by their signature (type, name,
and nullability). Again, this helps us to assign static types to all JML expressions while
avoiding the complexity of type environments.

Our JML syntax allows the use of an arbitrary JVal as a literal – apart from integer
literals, boolean literals and the null reference, this also includes object literals. However,
any expression containing such object literals is considered not to be well-typed. Since the
correctness proof of the translation entails proving that the translated expression is well-
typed, we can be sure that the output of the translation function is valid JML and does
not contain any object literals. Object literals will get some limited use in the correctness
proof of the translation.

7.3.1. JML dynamic state
record Heap =

created :: "Object ⇒ bool"
read :: "Object ⇒ JField ⇒ JVal"

The heap structure captures the state of the Java heap at a single point of time. It provides
the function ’created ’ for determining whether an object is created in that heap state; and
the function ’read ’ for reading the value of a field. The read function is total, and assigns
field values even to objects that are not yet created or are of a different class than the
field’s declaring type.

A heap is called well-formed if the following condition holds: if an object obj is created in
the heap and its type is a subtype of the declaring type of a field F , then reading obj.F will
result a value that is compatible with the field’s type. Additionally, if such a read produces

1In the case of the all quantifier, we also need negation.

49

50 7. Correctness proof of the translation

Definition Type Meaning
S v T JType ⇒ JType ⇒ bool S is subtype of T or equal
JT e JExpr ⇒ JType static type of expression
WT e JExpr ⇒ bool is expression well-typed?
freeJ e JExpr ⇒ JVariable set set of free variables in JML expr
s〈old〉 JState ⇒ JState Updates s to set the inOld flag

s〈var:=val〉 JState ⇒ JVariable Updates s to change local variable⇒ JVal ⇒ JState
quantset s v JState ⇒ JVariable ⇒ JVal set Quantifier range
J [[e]]s JExpr ⇒ JState ⇒ JVal JML evaluation function
D [[e]]s JExpr ⇒ JState ⇒ bool JML well-definedness predicate

Table 7.1.: Overview of important definitions for JML semantics

an object reference, the referenced object is also created in that heap. This means a heap
cannot contain references to future objects. All other reads are left completely undefined.

record JState =
locals :: "JVariable ⇀ JVal" — Map of local variables to their values
pre :: Heap — The pre-state heap
post :: Heap — The post-state heap
inOld :: bool — Whether evaluation is within \old(...)

The JState structure captures the context necessary to evaluate a JML expression. The
mapping of local variables to values is a partial function.

A JState is called well-formed if all of the following conditions hold:

• Both its heaps are well-formed.

• Any objects that are created in the pre-state, must also be created in the post-state.

• The values stored in local variables are compatible with the variable types.

• Only variables marked as nullable may hold a null reference.

7.3.2. JML semantics

For quantifiers, an important consideration is the range of objects being quantified over.
In JML, these are normally all objects of the bound variable’s type, including those from
future heap states. However, in KeY’s JML*, quantifiers only range over the set of objects
in the current heap state. In our formalization, we will use the JML* definition. We define
the quantset to formalize the range of a quantifier:

definition quantset :: "JState ⇒ JVariable ⇒ JVal set"
where "quantset s var = {val. (valtype val v vartype var)

∧ isCreatedOrPrimitive s val
∧ (varnullable var ∨ val 6= null)}"

The helper function isCreatedOrPrimitive returns whether an object is created in the
current heap state. For all other values (ints, booleans, and null references), it always
returns true.

The function J [[e]]s evaluates the JML expression e in the JState s:

primrec JEval :: "JExpr ⇒ JState ⇒ JVal" ("J [[_]]_")
where

"J [[JLit val]]s = val"

50

7.3. JML 51

| "J [[JVar var]]s = (case locals s var of Some val ⇒ val)"
| "J [[a &&J b]]s = BoolVal (J [[a]]s = true ∧ J [[b]]s = true)"
| "J [[a ==J b]]s = BoolVal (J [[a]]s = J [[b]]s)"
| "J [[!Je]]s = BoolVal (J [[e]]s 6= true)"
| "J [[e instanceofJ T]]s = BoolVal (valtype (J [[e]]s) v T ∧ J [[e]]s 6= null)"
| "J [[existsJ v; e]]s = BoolVal (∃ val ∈ (quantset s v). J [[e]]s〈v:=val〉 = true)"
| "J [[e .J F]]s = (case J [[e]]s of ObjRef obj => read (heap s) obj F)"
| "J [[oldJ(e)]]s = J [[e]]s〈old〉"
| "J [[freshJ(e)]]s = BoolVal (case J [[e]]s of

ObjRef obj ⇒ created (heap s) obj ∧ ¬created (pre s) obj
| null ⇒ False)"

If the expression e is not well-typed, the evaluation function may produce an undefined or
misleading result. Examples are negating a non-boolean value, or reading a field from an
object of an incompatible type. The JEval function may also produce an undefined value
if an exception occurs during the evaluation. For example, a null reference may occur as
the target for reading a field, leading to a an undefined result as the case distinction in
the J [[e.F]]s semantics does not handle null references.

To check whether the evaluation of a JML expression is free of such errors, we use the
defined-ness predicate D [[e]]s :

primrec JDefined :: "JExpr ⇒ JState ⇒ bool" ("D [[_]]_")
where "D [[JLit v]]s = True"

| "D [[JVar v]]s = (locals s v 6= None)"
| "D [[a &&J b]]s = (D [[a]]s ∧ (J [[a]]s 6= true ∨ D [[b]]s))"
| "D [[a ==J b]]s = (D [[a]]s ∧ D [[b]]s)"
| "D [[!Je]]s = D [[e]]s"
| "D [[e instanceofJ T]]s = D [[e]]s"
| "D [[existsJ v; e]]s = (∀ val ∈ (quantset s v). D [[e]]s〈v:=val〉)"
| "D [[e .J F]]s = (D [[e]]s ∧ J [[e]]s 6= null ∧ isCreatedOrPrimitive s (J [[e]]s))"
| "D [[oldJ(e)]]s = D [[e]]s〈old〉"
| "D [[freshJ(e)]]s = (D [[e]]s ∧ ¬inOld s)"

The definition of D [[a &&J b]]s implements the short-circuiting behavior of the Java logic
operators. The other JML logic operators such as a || b or a ==> b are defined as syntax
sugar for a && b with the appropriate negations.

Of particular importance is the defined-ness of the member-access operator ’e.F’: it requires
’e’ to be both non-null, and to refer to an object that exists in the current heap state2.
Thus, the quantifier (\exists List o; \old(o.next) == null) is undefined if there are any
newly created List objects in the post-state. A correct translation of the Alloy formula ’no
List.next’ has to use the \old() operator outside of the quantifier:
(\old(\exists List o; o.next == null))

We then prove that the semantics of a JML expression do not depend on the value of local
variables that are not free in the expression:

lemma eval_in_update[simp]: "var /∈ freeJ e =⇒ J [[e]]s〈var:=val〉 = J [[e]]s"

lemma defined_in_update[simp]: "var /∈ freeJ e =⇒ D [[e]]s〈var:=val〉 = D [[e]]s"

The two lemmas are proven by induction over the JML syntax tree. They are used in the
correctness proof of the translation, as it is necessary for translation predicates to maintain
their semantics while additional variables unrelated to the predicate are introduced.

2The requirement that the object be of a type compatible with the field’s declaring type is not included
in the definition of D [[e]]s. It instead follows from the well-typedness WT e.

51

52 7. Correctness proof of the translation

7.4. Formalization of the translation function
The translation function is formalized as a pair of mutually recursive functions:

fun translateA :: "AExpr ⇒ Pred list ⇒ TContext ⇒ JExpr" ("E«_‖_»_")
and translateB :: "BExpr ⇒ TContext ⇒ JExpr" ("B«_»_")

The translation often creates quantifiers of the form (\exists T v; p(v) && . . .).
As defined previously in this thesis, we would need to use a "unique fresh variable name" to
ensure that the bound variables of multiple generated quantifiers do not collide. However,
formalizing these would require the translation function to maintain global mutable state.

Instead, we will allow re-use of variable names, and avoid collisions by allocating variables
names in a top-down manner: The translation context maintains a set of variables that
the translated code might refer to and thus must not be hidden by quantifiers. When a
quantifier is generated, it picks a variable name that is not in the set, and performs any
nested calls to the translation function using a modified translation context that includes
the new variable in the used variable set. We will use the syntax "c〈usevar v〉" to denote
the translation context based on c, except that the variable v was added to the set of used
variables.

— Produces fresh variable name that does not collide with any name in the set
definition freshVariableName :: "VariableName set ⇒ VariableName"
where "freshVariableName s = (SOME n. n /∈ s)"

— Creates a fresh variable of the specified type and nullability
definition freshVariable :: "TContext ⇒ JType ⇒ bool ⇒ JVariable"
where "freshVariable c T nullable

≡ (|varname=freshVariableName (varname‘usedvars c),
vartype=T,
varnullable=nullable |)"

— Creates a JML exists quantifier using a new non-nullable variable of type T
definition makeExists

:: "AColType ⇒ TContext ⇒ (JVariable ⇒ TContext ⇒ JExpr) ⇒ JExpr"
where "makeExists T c B ≡ (let v = freshVariable c T False in

(existsJ v; B v (c〈usevar v〉)))"

The translation context also maintains a map from Alloy variables to JML variables.
Initially, this map is empty. When translating an Alloy construct that declares a new
variable3, this map will get extended by mapping the Alloy variable to the corresponding
JML variable. To denote the this change of the translation context, we will use the syntax
"c〈vA → vJ〉".

Translation predicates could be modeled as functions "JExpr ⇒ JExpr". However, instead
of using such functions bare, we wrap them in the distinct type "Pred", with an explicit
apply operation:

datatype Pred = NewPred "JExpr ⇒ JExpr"

primrec applyPred :: "Pred ⇒ JExpr ⇒ JExpr" (infix "apply" 300)
where "(NewPred p) apply e = p e"

This allows the theorem prover to distinguish predicate application from other function
applications of type JExpr ⇒ JExpr. This way, we can define introduction lemmas for
predicate application as follows:

lemma wellFormedPred_D[intro]:
"wellFormedPred c p =⇒ compat c s m =⇒ D [[e]]s =⇒ D [[p apply e]]s"

3In our desugared Alloy version, only the set comprehension declares new Alloy variables.

52

7.5. Concepts for the proof 53

Without the explicit "apply" operation, this lemma would confuse the automatic proof
search, as it would be usable in too many other contexts where it is not helpful.

We define the nonnull and lift predicates as explained in chapter 5.2:

definition nonnull :: Pred
where "nonnull ≡ NewPred (λe. e !=J null)"

definition lift :: "JExpr ⇒ Pred"
where "lift objExpr ≡ NewPred (λe. e ==J objExpr)"

Using these constructs, we can now define the translation function itself:

fun translateA :: "AExpr ⇒ Pred list ⇒ TContext ⇒ JExpr" ("E«_‖_»_")
and translateB :: "BExpr ⇒ TContext ⇒ JExpr" ("B«_»_")
where

"E«ALit i‖[p]»c = p apply (IntVal i)"
| "E«AVar vA‖[p]»c = p apply (case varmap c vA of Some vJ ⇒ vJ)"
| "E«ASig (TypeSig T)‖[p]»c = makeExists T c (λv c. p apply (JVar v))"
| "E«ASig (PreFieldSig F)‖[p1,p2]»c

= oldJ(makeExists (declaringType F) c
(λv c. p1 apply (JVar v) &&J p2 apply (v.JF)))"

| "E«ASig (PostFieldSig F)‖[p1,p2]»c
= makeExists (declaringType F) c

(λv c. p1 apply (JVar v) &&J p2 apply (v.JF))"
| "E«ASig FreshSig‖[p]»c

= makeExists JObject c (λv c. p apply (JVar v) &&J freshJ(v))"
| — Union

"E«a +A b‖ps»c = (E«a‖ps»c ||J E«b‖ps»c)"
| — Relational Join

"E«a .A b‖ps»c
= makeExists (hd (AT b)) c

(λv c. E«a‖(take (arity a - 1) ps)@[lift (JVar v)]»c
&&J E«b‖lift v#drop (arity a - 1) ps»c)"

| — Set comprehension
"E«{vA : a | f}A‖[p]»c

= makeExists (avartype vA) c
(λvJ c. p apply (JVar vJ) &&J E«a‖[lift vJ]»c &&J B«f»c〈vA→vJ〉)"

| — Relation extension comprehension
"E«{vA : a ‡ b}A‖p#ps»c

= makeExists (avartype vA) c
(λvJ c. p apply (JVar vJ) &&J E«a‖[lift vJ]»c &&J E«b‖ps»c〈vA→vJ〉)"

| "B«notB b»c = !JB«b»c"
| "B«someB a»c = E«a‖replicate (arity a) nonnull»c"

7.5. Concepts for the proof
We already have a notion of well-formed JML heaps, well-formed states and well-formed
Alloy models. We will now also define what "well-formed" means for translation contexts
and translation predicates.

A translation context c, is called well-formed if its set of used variables is finite, and all
JML variables in the image of the Alloy→JML variable map are contained in the set of used
variables. The first constraint is used to ensure that the infinite set of possible variable
names is never exhausted. The second constraint is necessary so that newly created fresh
variables do not collide with those used in the variable map.

The well-formedness of translation predicates in more involved. It is dependent on a
translation context c:

53

54 7. Correctness proof of the translation

• If the predicate is applied to a well-typed expression, the resulting expression is
well-typed and of type boolean.

• If applying the predicate to an expression e introduces additional free variables in
the resulting expression, those free variables must be in the set of used variables in
the translation context c.

Additionally, for every well-formed JState s, these conditions hold:

• Applying the predicate to a well-defined expression produces an expression that is
also well-defined.

• Applying the predicate to an expression acts like variable substitution: if two expres-
sions are semantically equivalent, the resulting expressions after applying a predicate
are also equivalent.

• Applying the predicate to the null literal results in an expression that evaluates to
false.

Next, we define a function state2model that takes a JML state s and returns the corre-
sponding Alloy model:

primrec state2model :: "JState ⇒ Model"
where
"state2model s FreshSig = {[ObjAtom obj]

|obj. ¬created (pre s) obj ∧ created (post s) obj}"
| "state2model s (TypeSig T) = {[atom]

|atom. atomtype atom v T ∧ isCreatedOrPrimitive s (atomval atom)}"
| "state2model s (PreFieldSig F) = {[ObjAtom obj, atom]

|obj atom. created (pre s) obj ∧ objectType obj v declaringType F
∧ read (pre s) obj F = atomval atom}"

| "state2model s (PostFieldSig F) = {[ObjAtom obj, atom]
|obj atom. created (post s) obj ∧ objectType obj v declaringType F

∧ read (post s) obj F = atomval atom}"

We now define the relation "compat" that specifies compatibility between a JState and a
Model in a given translation context:
The JState s is compatible with the ModelEnv m in the translation context c if all of the
following conditions hold:

• s is a well-formed state.

• c is a well-formed translation context.

• The model of m is equal to state2model(s).

• For every entry (vJ 7→vA) in the translation context’s variable map, the JML variable
vJ has the same value in the state s as the Alloy variable vA in the environment of
m. Also, if the value is an object, it must be created in the post-state.

• All variables marked as used in the translation context are defined in the state s.

• Finally, the state s is not marked as being inside the \old() operator.

The last point is a critical precondition of the translation function: within the \old()
operator, the post-state is completely unavailable and any references to field signatures in
the post-state could not be translated. Also, quantifiers would be limited to objects in the
pre-state. The condition that any object referred to in the environment must be created
exists for a similar reason: if the environment contained an object that is not created in
any of the two heap states, that object would not be included in any of the quantifiers we
are generating.

54

7.6. The translation proof 55

Finally, we define the concept of a translation predicate accepting an Alloy atom:
abbreviation predAccepts :: "JState ⇒ Pred ⇒ Atom ⇒ bool" ("_ ~ _ ~ _")
where "s~p~a ≡ (J [[p apply (JLit (atomval a))]]s = true)"

To test whether a predicate accepts an Alloy atom, we create a JML literal with the
atom’s value, apply that literal to the predicate, and evaluate the resulting expression.
This definition depends on a JState because the predicate might access local variables.
Note that if the atom is an object, this definition ends up using object literals. These do
not really exist in JML, and are not well-typed in our formalization. However, they are
sufficient for the purpose of the predAccepts definition.

This definition can be extended to a list of predicates accepting a tuple. For this, we will
use the syntax "s~ps~~t". A predicate list accepts a tuple iff the predicate list has the
same length as the tuple, and every predicate accepts its respective atom.

7.6. The translation proof
The proof operates by induction over the syntactic structure of the expression being trans-
lated.

For an Alloy relation expression a, the induction hypothesis is:

compat c s m Compatibility between JState s and ModelEnv m
∧ wellFormedPreds c ps The predicates are well-formed.
∧ length ps = arity a The number of predicates matches the relation’s arity.
∧ WTA a The Alloy expression is statically well-typed.
∧ freeA a ⊆ dom (varmap c) All free Alloy variables are mapped to JML variables.

=⇒
D [[E«a‖ps»c]]s The translated expression does not throw exceptions.

∧ (J [[E«a‖ps»c]]s = true The translated expression evaluates to true
←→ (∃ t∈A [[a]]m. s~ps~~t)) iff there is a tuple that satisfies the predicates.

For an Alloy formula f, the induction hypothesis is:

compat c s m Compatibility between JState s and ModelEnv m
∧ WTB f The Alloy formula is statically well-typed.
∧ freeB f ⊆ dom (varmap c) All free Alloy variables are mapped to JML variables.

=⇒
D [[B«f»c]]s The translated expression does not throw exceptions.

∧ (J [[B«f»c]]s = true The translated expression evaluates to true
←→ B [[f]]m) iff the Alloy formula is valid.

The induction hypothesis can only be used if a compatible ModelEnv exists for the recur-
sive call. However, if a quantifier ends up quantifying over an empty set (for example,
"all x : none | F"), no such ModelEnv can exist. In this case, the induction hypothesis
isn’t necessary to show the well-definedness and semantic equality of the subexpression,
as the JML existential quantifier will never evaluate its subexpression. However, we still
need to show the static well-typedness of the quantifier body. Because we cannot satisfy
the "compat c s m" premise of the induction hypothesis, well-typedness cannot be proven
as part of the induction hypothesis described above. Therefore, we prove well-typedness
in a separate induction over the translation function, using very similar premises in the
induction hypothesis, but just requiring a well-formed translation context instead of the
full "compat" premise:

55

56 7. Correctness proof of the translation

wellFormedContext c ∧ wellFormedPreds c ps ∧ length ps = arity a
∧ WTA a ∧ freeA a ⊆ dom (varmap c)

=⇒
WT (E«a‖ps»c) The translated expression is well-typed.

∧ JT (E«a‖ps»c) v JBoolean The translated expression is of type boolean.
∧ freeJ (E«a‖ps»c) ⊆ usedvars c All free variables in the output are marked as

used in the translation context.
For Alloy formulas and the B translation function, a similar induction hypothesis is used.
This translation well-typedness proof involves some manual instantiations and several in-
termediate steps that help the automatic proof search along, but did not pose any note-
worthy difficulties.

As part of the translation semantics proof, we need to show that the generated JML*
quantifiers have a range that includes all atoms that are potentially contained in the
corresponding Alloy relation. For example, consider the set comprehension {v : a | f},
which is translated to (\exists T v[v]; p(v) && E«a‖lift(v)»c && B«f»c′). We need to show
that any atom in the relation A [[{v : a | f}]]m is of a type that is a subtype of the quan-
tifier’s variable type T 1[v]. This requires Alloy’s type safety: because we require the Alloy
input expression to be well-typed and the model m to be well-formed, Alloy’s type safety
provides us with the guarantee that the relation A [[{v : a | f}]]m is compatible with the
static type of the set comprehension expression, which is defined to be the variable type.
Additionally, we need to show that any atom in the Alloy relation is created in the cur-
rent heap state, so that it is included in the JML* quantifier range. For this, we use
the "compat c s m" premise: it implies that the current heap state is the post-state. We
then show that any Alloy evaluation using a model that is compatible to some JState will
produce a relation where all atoms are created in that relation’s post-state. This is proven
by a separate induction over the evaluation of Alloy expressions.

Finally, we show that the premises of our induction hypothesis are satisfied using the initial
translation context when translating an Alloy formula that does not involve free variables:

definition initialContext :: TContext
where "initialContext ≡ (| varmap=empty, usedvars={} |)"

theorem
assumes "freeB f = {}" "WTB f" "wellFormedState s" "¬inOld s"
shows "let e = (B«f»initialContext) in

WT e ∧ D [[e]]s ∧ (B [[f]](state2modelenv s) ←→ J [[e]]s = true)"

This concludes the formal correctness proof of the translation. The full Isabelle code can
be found in the file TranslationProof.thy.

The formal proof presented here is only defined for some core Alloy language constructs.
Many operators are missing; most critically, the proof did not include the transitive clo-
sure operator. We have another correctness proof (OldProof.thy) that includes more Alloy
operators including the transitive closure; but that proof does not use the full JML se-
mantics presented here. In particular, the Java type system and well-definedness of JML
expressions are not modeled.

For the simplification step after the translation, we have verified the simplification rules
in KeY by using JML specifications like the following:
/*@ public normal_behavior
ensures
(\exists SomeClass obj; f0() && x == obj && f1(obj))

<==>
(f0() && x instanceof SomeClass && f1((SomeClass)x));

56

7.6. The translation proof 57

@*/
public void existsSimp(/*@ nullable @*/ SomeClass x) { }

Here, f0() and f1() are pure methods that are otherwise unspecified. They are used as
uninterpreted function symbols to stand as placeholders for the arbitrary JML expressions
in the simplification rule.

57

8. Translated specifications in KeY

Using two example programs, we will show how to prove programs with specifications
translated from Alloy are proven with KeY. We explore the limitations of KeY’s automatic
proof search in combination with the output from our translation, in particular translation
of the transitive closure using query methods.

For the first example, we present a specification of a singly-linked list, which makes use
of the transitive closure over the "next" field, as well as the pow[] function for explicit
numbers of steps.

As a second example, we use the specification of the add() method in a binary search
tree. This involves the more complicated transitive closure "*(left+right)", which leads
to much more complex use of quantification.

We used an experimental KeY version that has improved support for recursively specified
query methods. Unfortunately, a lot of time was consumed working around bugs in KeY.
For example, if automatically generated query methods are placed at the end of the class
instead of the beginning, KeY fails to parse the generated linked list example. We also
encountered bugs that made it impossible to re-load a saved proofs, as well as unsoundness
in the experimental "Replace query with postcondition" feature.

Unless mentioned otherwise, we will use the following settings for the KeY proof search
strategy:

• Proof splitting: delayed

• Cut pruning: on

• Loop treatment: invariant

• Method treatment: contract

• Dependency contracts: off

• Query treatment: restricted

• Expand local queries: off

• Replace query by post: off

• Arithmetic treatment: basic

• Quantifier treatment: No Splits with Progs

• Auto Induction: Off

59

60 8. Translated specifications in KeY

8.1. Linked List
The following is the definition of the class Entry, which represents a node in the linked
list:
class Data { .. }
class Entry {
/*@ nullable @*/ Entry next;
/*@ nullable @*/ final Data data;

//$ ensures no this.next’
//$ ensures this.data’ = d
public /*@ pure @*/ Entry(/*@ nullable @*/ Data d) {
this.data = d;

}
}

The class LinkedList itself refers to the first entry, the head of the list. The head node does
not contain any data, and exists even for the empty list. This simplifies insertion/removal
at the beginning of the list, as the head pointer never changes; only the next pointers.
class LinkedList {
final Entry head;
int length;
...

}

Apart from the head pointer, our linked list implementation also maintains an integer that
contains the length of the list. Within the proof, the length is used to ensure that the
linked list is finite, which is necessary to ensure the termination of methods that traverse
the list. Note that instead of an actual program field, a JML ghost field could have been
used for this purpose instead.

Next, we specify the invariants of the linked list:
//$ invariant this.length >= 0
//$ invariant all k : Int | 0 =< k and k =< this.length
//$ implies (some this.head.(pow[next, k]))
//$ invariant no this.head.(pow[next, add[this.length, 1]])

The second invariant ensures that the linked list is sufficiently long: every index from 0
to this.length must refer to a valid entry. Entry number 0 is the head node itself, which
doesn’t carry any data and exists even for empty lists. The third invariant ensures that
the linked list ends after the last entry. It also implies that linked lists cannot be cyclic.

When translated to JML, these invariants are:
//@ invariant this.length >= 0;
//@ invariant (\forall int k; 0 <= k && k <= this.length

==> getNext(this.head, k) != null);
//@ invariant getNext(this.head, this.length + 1) == null;

The getNext method is defined recursively as described in chapter 6:
/*@ public normal_behavior

ensures index < 0 ==> \result == null;
ensures index == 0 ==> \result == head;
ensures index > 0 ==> \result ==
(head != null ? getNext(head.next, index-1) : null);

ensures index > 0 ==> \result ==

60

8.1. Linked List 61

(getNext(head, index-1) != null ? getNext(head, index-1).next : null);
accessible \infinite_union(Entry e; e.next);
static model helper strictly_pure nullable
Entry getNext(nullable Entry head, int index);

@*/

8.1.1. Constructor

For our first proof, we start with the constructor of the class:
//$ ensures this.length’ = 0
public /*@ pure @*/ LinkedList() {
head = new Entry(null);

}

The correctness proof needs to show that the constructor establishes the object invariants.
The first invariant about the non-negative length is shown trivially, as is the method’s
postcondition.

For the second invariant, all that needs to be shown is that getNext(head, 0) != null in
the post-state. In KeY, this is represented by the formula "LinkedList::getNext(@postHeap,
self_0, 0) = null" in the antecedent1. In that formula, self_0 refers to the newly created
head object, while @postHeap is a manually created abbreviation2 for the heap state in the
post-state of the constructor.

Because this new head object cannot be null, the formula "self_0 = null" occurs in the
succedent.

To prove this goal, we need to use the contract of the getNext() method, which guarantees
that "getNext(..., self_0, 0) = self_0".

8.1.2. Query method expansion

To use such a query method contracts within KeY, the option "query treatment" needs to
be enabled.

Queries can also be expanded manually by the user when using KeY for interactive proving.
When a query is expanded, KeY adds an assumption to the antecedent that equates the
query call with a newly introduced result variable. Additionally, KeY adds an assumption
that after an execution of the query method, the method result is equal to the result of
the query call.

For the "LinkedList::getNext(@postHeap, self_0, 0)" query under discussion, the addi-
tion to the antecedent looks as follows:
!{heap:=@postHeap || head:=self_0 || index_0:=0}

\<{method-frame(source=getNext(Entry, int)@LinkedList): {Entry queryResult;
queryResult=getNext(head,index_0);

}
}\> !queryResult = res_getNext

& LinkedList::getNext(@postHeap, self_0, 0) = res_getNext

The method call can then be replaced by the method’s contract as usual. This has the
effect of splitting the proof into multiple goals:

1KeY always eliminates negations by moving the formula to the opposite cedent.
2@postHeap = store(store(heapAfter_Entry, l_2, head, self_0), l_2, <initialized>, TRUE),
where l_2 is the linked list and heapAfter_Entry is the heap-state after the call to the Entry
constructor.

61

62 8. Translated specifications in KeY

1. "Pre" goal to show that the precondition of the query method is satisfied. This is
shown trivially for the query methods generated by our translation, as they do not
have any preconditions.

2. "Exceptional Post" goal to handle the case where the query method throws excep-
tions. Again, this case is trivial for our query methods, because they are specified
to never throw exceptions.

3. "Post" goal to handle the case where the query method completes normally. Here,
the postconditions of the query method are available as assumptions.

Using the "query treatment" setting to automatically perform query expansion, the cor-
rectness proof for the LinkedList constructor completes after 1467 automatic proof steps.
A big problem here is that KeY performs query expansion only after proof splitting (e.g.
for disjunctions in the antecedent). This causes the proof steps involving the query ex-
pansion to be done multiple times, on each side of the split. In the trivial example of the
LinkedList constructor, interactively expanding the query just before KeY performs the
first split reduces the proof size to 753 steps.

Because expanding a query introduces this additional nesting layer to the proof tree, as well
as a new variable for the holding result, the sequent can quickly become unreadable when
lots of query expansions are involved. This is a problem when debugging proofs: it can be
hard to tell whether a proof does not complete automatically because it is impossible (for
example, due to a missing precondition); or just because KeY’s automatic proof search
failed to find the proof so that manual steps may be necessary.

KeY query expansion is a breadth-first search over the queries to be expanded. This
lets the proof search avoid cycles – for example, a depth-first search starting with the
expansion of "getNext(head, length)" would continue with "getNext(head, length - 1)",
"getNext(head, length - 2)" ad infinitum.

However, in some proofs, multiple successive query expansions are necessary. For example,
in the add() method below, we need to expand "getNext(head, 2)" to "head.next.next",
which requires three query expansions. In the breadth-first-search, KeY prefers query
methods in "older" formulas on the proof branch over formulas that were just added to the
sequent3. If the goal involving "getNext(head, 2)" is newly added, and there are many
other unrelated getNext() calls in the sequent (for example, the object invariants), then
the breadth-first search will try all other query expansion paths of length 3 before finding
the correct one.

We can do better by adding a user-defined taclets that aggressively expands the base case
of the recursive query method call. The custom rule getNext_0 finds any occurrences of
"getNext(..., node, 0)" and replaces them with "node":
getNext_0 {
\find (LinkedList::getNext(heap, node, 0))
\sameUpdateLevel
"getNext_0 use":
\replacewith (node);

"getNext_0 heap valid":
\add (==> wellFormed(node));

"getNext_0 object valid":
\add (==> node = null | boolean::select(heap, node,

java.lang.Object::<created>) = TRUE)
\heuristics(simplify_boolean)

};

3This behavior implements the queue for the search.

62

8.1. Linked List 63

This rule splits the proof into three goals. The first goal performs the replacement and
is used to continue the actual proof. The other two goals are used to prove the implicit
preconditions4 of the getNext() method: it requires a well-formed heap and for all input
objects to be created in the heap state used to call the method. These two goals are
usually proven automatically by KeY in less than 20 steps each.

This custom rule has a relatively high priority in KeY: it runs before any case-distinctions,
much earlier than normal query expansion. As a result, the base case of the getNext()
recursion is expanded before any more complex cases. This decreases the effective height of
the search tree that needs to be visited by KeY query expansion, dramatically decreasing
the number of steps taken by the breadth-first search.

A similar custom taclet can be used when the step count is the constant 1: we replace
"getNext(node, 1)" with "node == null ? null : node.next". This removes another level
from the search tree.

Moreover, the custom taclets have an additional benefit: they allow expanding the query
without introducing a new variable to represent the query result. This means the proof
sequent tends use "some_node.next" instead of an automatically generated name. This
greatly increases the readability when debugging a proof.

8.1.3. Lemma methods

Another approach for dealing with query expansion in KeY are lemma methods. These
are normal Java methods with an empty method body. Using their postcondition, they
provide a lemma to their call-site.

For example, consider the following method:
/*@ normal_behavior
requires index >= 1 && index <= length + 1;
requires (\forall int k; 0 <= k && k <= length ==> getNext(head, k) != null);
ensures getNext(head, index) == getNext(head, index - 1).next;

@*/
private /*@ helper strictly_pure @*/ void lemma_expandNext(int index) { }

The postcondition of this method is a simple tail-recursive expansion of the recursive
getNext query. The preconditions are used to ensure that the objects involved are not
null. The lemma method itself can be proven automatically using KeY.

To use the lemma, the programmer calls the lemma method like a normal Java method.
When proving the call-site, this has the effect of splitting the proof into the "Post", "Ex-
ceptional Post" and "Pre" goals as usual for any method call. In the "Post" goal, the lemma
is usable as an assumption, and instantiated for the parameters passed to the method. In
the "Pre" goal, the preconditions for the lemma method need to be shown – which is trivial
in the case of lemma_expandNext, as the index tends to already be known to be from a valid
range, and the second precondition is a simple copy of one of the object invariants.

Effectively, lemma_expandNext allows the programmer to give explicit hints about query
expansion to the KeY theorem prover.

Another lemma that is often useful is the fact that nested query method invocations
correspond to an addition of the step counts:
/*@ public normal_behavior
ensures (\forall int a; a >= 0; (\forall int b; b >= 0; (\forall Entry head;

getNext(getNext(head, a), b) == getNext(head, a + b))));

4This implicit precondition exists for every method call in the KeY logic.

63

64 8. Translated specifications in KeY

@*/
static /*@ helper strictly_pure @*/ void lemma_getNextAdd() {}

This lemma can be proven by induction over b.

Finally, we prove that our object invariants ensure that linked lists cannot be cyclic:
/*@ public normal_behavior
requires 0 <= k && k < l && k <= length;
ensures getNext(head, k) != getNext(head, l);

@*/
private /*@ strictly_pure @*/ void lemma_acyclic(int k, int l) { ... }

The proof works by contraction: we assume that the two different indices k and l refer to
the same entry. Then, we use lemma_getNextAdd to follow that l + (l - k) must also refer
to that entry instance, as we traverse the cycle once more. We can repeat this addition
until we exceed the list’s length, thus showing that the repeated entry must be null. This
is a contradiction to the fact that the initial indices were valid and thus referring to a
non-null entry.

The proof is encoded as a Java program calling a variant of lemma_getNextAdd() using
arguments to provide an instantiation for explicit integer values. The repetition is im-
plemented as a Java while loop. This allows the KeY theorem prover to automatically
complete the proof of lemma_acyclic.

8.1.4. add() method

Next, we prove the correctness of a method that inserts a node at the beginning of the
linked list:
//$ ensures this.head.^next’.data’ = this.head.^next.data + d
//$ ensures this.length’ = add[this.length, 1]
//$ modifies this.head.next, this.length
public void add(Data d) {
lemma_acyclic();
Entry newEntry = new Entry(d);
newEntry.next = head.next;
head.next = newEntry;
length++;

}

The contract of this method is underspecified and allows the method to insert the new
node in an arbitrary position.

Translated to JML, the contract looks as follows:
//@ ensures (\forall Data obj88;
//@ (\exists int num9; num9 > 0 && getNext(this.head, num9) != null &&

getNext(this.head, num9).data == obj88)
//@ <==> (\exists int num10; num10 > 0 && \old(getNext(this.head, num10)) !=

null && \old(getNext(this.head, num10).data) == obj88) || d == obj88);
//@ ensures this.length == \old(this.length) + 1;
//@ modifies this.head.next, this.length;

In this kind of specification involving the transitive closure and set operators, the Alloy
specification is much more readable than the JML specification.

When trying to prove this method, we run into a problem: because we modify the next
member, the getNext calls in the post-state may return different values than the same calls
in the pre-state.

64

8.1. Linked List 65

Thus, the first goal in our proof should be to establish a relation between the post-state
getNext and the pre-state getNext:
(\forall int n; n>0 ==> getNext(this.head, n + 1) == \old(getNext(this.head, n)))

Because KeY currently does not support JML assertions, we added this formula as an
additional postcondition. Alternatively, we could have interactively introduced it as a cut
in the KeY solver. Unfortunately the technique of lemma methods is not applicable in this
case, as we cannot pass two different heap states to the method.

The proof of this lemma proceeds via induction over n. We start this induction manually
in KeY using rule autoInduct_Lemma. For the base case n = 1, we need to show that
getNext(this.head, 2) == \old(getNext(this.head, 1))).
Note that at this time, the antecedent still holds all our previous assumptions, including
the validity of the object invariants in the pre-state. Unfortunately, the prover requires
an enormous number of steps to automatically solve this goal, because KeY does not pick
the correct order to expand the queries. For example, the third invariant "getNext(head,
length + 1) = null" is expanded first.

Because the recursive specification comes with both head- and tail-recursive specifications,
each recursive query expansion enables not one, but two further expansions. Additionally,
every such useless expansion tends to introduce additional case distinctions due to the null
check in the getNext specification. All together, there is a very quick exponential blow-up
in the proof size, which already makes the case n = 1 extremely slow. In our testing, the
proof search aborted with an out-of-memory error after more than 500000 steps.

If the user-defined taclets discussed in section 8.1.2 are used, the proof for the base case of
the induction completes dramatically faster: It is found automatically in 3851 steps with
174 branches.

For the step case of the induction, we need to expand the queries getNext(@postheap,
head, n + 1) and getNext(heap, head, n + 1). Using lemma_acyclic, the induction step
can then be proven automatically.

After the relation between the pre- and post-state getNext method is established, the
remaining postconditions of the add() method can be proven automatically.

8.1.5. getEntry() helper method

To access an entry by index in the Java program, we internally use the getEntry method:

//$ requires n >= 0
//$ ensures result = this.head.(pow[next, n])
private /*@ helper strictly_pure nullable @*/ Entry getEntry(int n)
{
int i = 0;
Entry e = head;

/*@ loop_invariant 0<=i && i<=n && e == getNext(head, i);
assignable \strictly_nothing;
decreases n-i; @*/

while (i < n) {
if (e != null)
e = e.next;

i++;
}
return e;

}

65

66 8. Translated specifications in KeY

The proof for this method completes automatically in 677 steps using KeY’s automatic
query expansion. Note that loop invariants are currently not support by Alloy2JML, so
they need to be written in JML.

8.1.6. removeAt() method
We now consider a method that removes an element from the linked list:
//$ requires index >= 1 and index =< this.length
// All entries before ’index’ will be unchanged
//$ ensures all n : Int | n >= 0 and n < index

implies this.head.(pow[next’, n]) = this.head.(pow[next, n])
// All entries after ’index’ will move to the previous position.
//$ ensures all n : Int | n >= index implies this.head.(pow[next’, n])

= this.head.(pow[next, add[n, 1]])
// Length will be reduced by one
//$ ensures this.length’ = sub[this.length, 1]
//$ modifies this.length, this.head.(pow[next, sub[index,1]]).next
public void removeAt(int index) {
lemma_acyclic();
lemma_expandNext(index);
Entry e = getEntry(index - 1);
e.next = e.next.next;
length--;

}

With both query expansion and auto-induction enabled, KeY will find the correctness
proof for this method fully automatically in 4079 steps. Note that the automatic proof
search fails without the explicit query expansion using lemma_expandNext.

8.2. Binary Search Tree
Our second example is an unbalanced binary search tree. Here, we use the transitive
closure this.*(left+right) to refer to the set of all sub-nodes of the current node. The
following is the definition of the class Tree:
final class Tree {
/*@ nullable @*/ Tree left;
/*@ nullable @*/ Tree right;

int height;
int value;

//$ invariant all n : this.*(left + right) {
//$ n.height >= 0
//$ some n.left implies n.left.height < n.height
//$ some n.right implies n.right.height < n.height
//$ }
...

}

The height field along with its invariant is used to disallow cyclic or infinite trees. This
is necessary to ensure that operations on the tree terminate. Translated to JML, the
invariant is:
//@ invariant (\forall Tree n; (\exists int num; num >= 0 && query(this, num, n))
//@ ==> n.height >= 0
//@ && (n.left != null ==> n.left.height < n.height)
//@ && (n.right != null ==> n.right.height < n.height)
//@);

66

8.2. Binary Search Tree 67

The method query is a model method generated by Alloy2JML. It is the same as the
hasNode example query in chapter 6.2:

/*@
public normal_behavior
ensures steps < 0 ==> \result == false;
ensures steps == 0 ==> (\result <==> root == node && root != null);
ensures steps > 0
==> (\result <==> root != null && (query(root.left, steps - 1, node)

|| query(root.right, steps - 1, node)));
ensures steps > 0 ==> (\result <==> node != null &&

(\exists Tree parent; query(root, steps - 1, parent)
&& (parent.left == node || parent.right == node)));

accessible \infinite_union(Tree obj; obj.left),
\infinite_union(Tree obj; obj.right);

static model helper strictly_pure
boolean query(nullable Tree root, int steps, nullable Tree node);

@*/

So far, our invariant does not ensure that the binary tree is sorted. We use an Alloy
predicate to formalize this condition:

/*$ pred Tree.isSorted {
all d : this.*(left+right) {

all dl : d.left.*(left+right) | dl.value < d.value
all dr : d.right.*(left+right) | dr.value > d.value

}
}

*/

Alloy2JML converts this predicate into a model method:

/*@ public normal_behavior
ensures \result <==>
(\forall Tree d; self != null

&& (\exists int num3; num3 >= 0 && query(self, num3, d))
==> (\forall Tree dl; dl.left != null && (\exists int num1; num1 >= 0

&& query(d.left, num1, dl))
==> dl.value < d.value)

&& (\forall Tree dr; d.right != null && (\exists int num2; num2 >= 0
&& query(d.right, num2, dr))

==> dr.value > d.value));
static model helper strictly_pure boolean isSorted(nullable Tree self);

@*/

Now, consider the constructor that creates a new tree with a single value:

//$ ensures this.isSorted’
public /*@ pure @*/ Tree(int initialValue) {
this.value = initialValue;

}

For this constructor, KeY automatically finds the proof in 11242 steps5. When using
custom taclets for the base cases of the query function (null argument or steps=0), the
same proof takes 4348 steps.

5cut-pruning enabled; query treatment=restricted; auto-induction disabled

67

68 8. Translated specifications in KeY

8.2.1. contains() method

We now consider a simple recursive method for searching a value in the binary tree:

//$ requires isSorted[this]
//$ ensures result = True iff v in this.*(left+right).value
//$ measured_by this.height
/*@ strictly_pure @*/ boolean contains(int v) {
if (v < this.value)
return left != null && left.contains(v);

if (v > this.value)
return right != null && right.contains(v);

return true;
}

Unfortunately, KeY is unable to find the proof for this method automatically. The proof
search already stops in the simple case where "v == this.value". In this case, all that
needs to be shown is that "v in this*.(left+right).value", or in KeY’s logic:

\exists Tree obj48;
((obj48.<created> = TRUE | obj48 = null)
& !obj48 = null
& (\exists int num4; (num4 >= 0 & query(self, num4, obj48) = TRUE)

& obj48.value = v))

The problem is that KeY does not find the instantiations obj48=self and num4=0. After
explicitly providing these instantiations, the proof for the case "v == this.value" can be
completed automatically. In fact, reordering the quantifiers and providing the instantiation
num4=0 is sufficient; KeY then is able to find the instantiation for obj48 automatically.

Similar issues occur in other parts of the proof. For example, at one point, the automatic
KeY proof search performs the cut "self.right.height >= 0". To show that this expression
is true, all that is necessary is that the object invariant is instantiated for "n = self.right"
and "num = 1". Again, KeY fails to perform this instantiation automatically and requires
user intervention.

We experimented with user-defined taclets that automatically introduce assumptions of
the form "query(node, 0, node) = TRUE" for any node object occurring in the sequent
("node.<created> = TRUE" assumption). Additionally, for every assumption of the form
"query(node1.right, steps, node2) = TRUE", we introduce an additional assumption
"query(node1, 1 + steps, node2) = TRUE".

Because this taclet introduces assumptions about query calls for "self" and "self.right",
it helps KeY to automatically find the instantiations above. However, the taclet also causes
new problems: it causes the proof to run into a loop, creating infinitely many assumptions
in the series "query(self, 1, self.right)", "query(self, 2, self.right.right)" etc.

This happens because the KeY uses the new assumptions to instantiate the quantifier in
the object invariant. This creates a formula with an additional level of ".right". KeY
then performs a cut to to test whether this new object is null. In the proof branch where
it isn’t, our taclets then create query calls for the object expression with the additional
.right. This enables further instantiations of the quantifier, thus sending the prover into
a loop.

For proofs about the binary search tree, we had success with an approach that uses the
KeY proof search on minimalist settings, combined with manual proof steps and the use
of an SMT solver.

68

8.2. Binary Search Tree 69

We use KeY with the following settings:

• Proof splitting off

• Query treatment off

• Quantifier treatment none

• User-defined taclets enabled, including the add_assumption taclets.

In this mode, KeY performs few automatic steps. For the most part, it just performs
symbolic execution of the Java program, eliminating the modal operators. As query and
quantifier treatment is disabled, the add_assumption taclets cannot cause loops in the
proof.

For the most part, the resulting sequent stays readable after the automatic proof search
stops6. For any incomplete branch of the proof, we would then try to see if the goal can
be solved automatically. We first the automatic KeY proof search using the options at
the beginning of this chapter, turning on proof splitting, query and quantifier treatment,
while turning off the add_assumption taclets. If this search is not successful, we revert the
proof state.

Alternatively, we let KeY transform the problem into first-order logic and pass it to the
Z3 SMT solver[DMB08]. If Z3 finds a fully automatic proof, we can use it in KeY to close
the current goal. Z3 can handle complex quantifiers better than KeY. However, Z3 still
has problems with "hasNode"-style query methods. Even if Z3 is passed the contract for
these methods (which KeY does not do automatically), it usually fails to find non-trivial
proofs involving query expansion.

If neither KeY nor Z3 can find an automatic proof for the current goal, we manually
perform the next proof steps. These usually involve providing explicit instantiations, or
manually triggering query expansion.

In the case of the contains() method, the initial automatic steps leave the proof with 7
open goals. After expanding the "isSorted(self)" query on all of these branches7, three of
the goals can be solved automatically by Z3. The automatically closed goals correspond to
the non-recursive code paths through the contains() method: returning true if the value
is found, returning false if left is null, and returning false if right is null.

The remaining four goals deal with the recursive contains() calls: First, we need to show
that the preconditions of the recursive call met. That is, if the current node (this) of the
tree is sorted and the invariants are valid, then the same holds for the this.right child
node. Additionally, the recursion must be shown not to be infinite.

After manually splitting the conjunction of these three parts into separate goals, we can
re-run the automatic proof search with the add_assumption taclets. This has the effect
of skolemizing the quantifications in the isSorted definition and the invariant of the for
the child node. With some automatic simplifications, the assumption "query(self.right,
num_2, n_2) = TRUE" appears in the antecedent. This triggers our custom add_assumption
taclet, adding the assumption "query(self, 1 + num_2, n_2) = TRUE". After this, the au-
tomatic proof search stops. At this point, Z3 can automatically solve all three cases,
completing the proof for the precondition of the recursive call.

The next open goal involves showing the method’s postcondition ("result = True iff v in
this.*(left+right).value") holds, under the assumption that the postcondition already
holds for recursive call. We proceed by case distinction on the value of result. The case

6if quantifier treatment was enabled, normalization of quantifier bodies seriously harms the readability
7This can be done automatically using the ’replace query by postcondition’ setting

69

70 8. Translated specifications in KeY

result=false can be automatically solved by Z3. In the result=true case, we need to re-run
the KeY proof search. Again, this skolemizes the quantifier introduced by the translation
of the transitive closure in the postcondition, thus allowing the add_assumption taclet to
introduce an assumption of the form "query(self, 1 + num_2, n_2) = TRUE". After this
step, automatic proof search stops, and the remaining goal can be solved automatically
by Z3.

The remaining two goals again deal with the pre- and postconditions of the recursive call,
this time on the left child. The proof proceeds analogously to the right child.

Note that without the add_assumption taclet, we would have needed to provide several
instantiations for quantifiers manually, as neither KeY nor Z3 try to instantiate quantifiers
with 1 + num_2 unless this expression already occurs somewhere in the sequent.

Instead of using the user-defined add_assumption taclet, we can also use an equivalent
lemma method:
/*@

ensures (\forall Tree root, entry; (\forall int depth; query(root.left,
depth, entry) ==> query(root, depth+1, entry)));

ensures (\forall Tree root, entry; (\forall int depth; query(root.right,
depth, entry) ==> query(root, depth+1, entry)));

@*/
/*@ helper strictly_pure @*/ static void lemmas_for_Z3() {}

The lemma method has the advantage that the lemma is passed to Z3, whereas user-defined
taclets are invisible to the SMT solver. Using this lemma method, the contains() method
can be proven with minimal interactivity: use KeY proof search on minimal settings to
eliminate the modal operators; then pass all remaining goals to Z3 – they all complete
automatically.

Note that when using such lemmas, the same caveats apply as with the add_assumption
taclet: with quantifier treatment enabled, the KeY proof search tends to run into loops.
Unlike user-defined taclets, they cannot be easily toggled on/off in the KeY interactive
prover8. It would be nice if KeY allowed the selection of user-defined taclets for translation
to SMT, as it already does for built-in taclets.

8.2.2. contains_loop

Let us consider an alternative implementation of the contains method using a loop instead
of recursion:
//$ requires isSorted[this]
//$ ensures result = True iff v in this.*(left+right).value
/*@ strictly_pure @*/ boolean contains_loop(int v) {
lemmas_for_Z3();
Tree n = this;
int steps = 0;
/*@ loop_invariant steps >= 0 && query(this, steps, n)

&& (\forall Tree obj; (\exists int num4; num4 >= 0; query(this, num4,
obj)) && obj.value == v

==> (\exists int num5; num5 >= 0; query(n, num5
, obj)));

modifies \strictly_nothing;
decreases n.height;

@*/
while (true) {

8It is possible to do so using the hide and insert_hidden rules.

70

8.2. Binary Search Tree 71

Tree child;
if (v < n.value) {
child = n.left;

} else if (v > n.value) {
child = n.right;

} else {
return true;

}
if (child == null)
return false;

steps++;
n = child;

}
}

The loop invariant deals with both the path from this to the node n, and the path from n
to whichever node contains the value we are looking for. Consider what happens in a step
of the loop, as we change the variable n to point to one of its children: the path from this
to n gets extended by one step at its tail; while the path from n to obj gets reduced by
one step at the head. This proof was the primary motivation for why we need both head-
and tail-recursive definitions for the query method.

The previously shown add_assumption lemma only works for extending paths at the head.
For contains_loop, we also add equivalent tail-recursive lemmas:

(\forall Tree root, entry; (\forall int depth; query(root, depth, entry) &&
entry.left != null ==> query(root, depth+1, entry.left)));

(\forall Tree root, entry; (\forall int depth; query(root, depth, entry) &&
entry.right != null ==> query(root, depth+1, entry.right)));

The initial proof attempt with KeY leaves us with 10 open proof goals. All of these can
be solved automatically by Z3, although two of them required a long computation time of
more than one minute9.

8.2.3. add() method

Finally, we will consider the add()method that adds a value to the tree. We will implement
this by traversing the tree in the same way as the contains() method. If the value is
found to be already present, it cannot be added again as the isSorted definition prohibits
duplicate values. If this recursion ends without finding the value, a new node is created
and added as a child to the last node visited by the recursion.

The step of actually adding the new node is performed by the addLeftChild helper method:
//$ requires no this.left
//$ requires v < this.value
//$ requires isSorted[this]
//$ ensures all steps : Int, a : Tree - fresh | a.(pow[left+right, steps]) = a

.(pow[left’+right’, steps]) - fresh
//$ ensures this.left’ in fresh and this.left’.value’ = v and no this.left’.(

left’ + right’)
//$ ensures this.isSorted’
//$ modifies this.left, this.height
private void addLeftChild(int v) {
left = new Tree();
left.value = v;
if (height == 0)

9The default timeout for SMT invocations in KeY is 5 seconds.

71

72 8. Translated specifications in KeY

height = 1;
}

As with any method that changes the structure of the tree, it is important to have a
postcondition that relates the query method in the post-state with the pre-state. For
addLeftChild, the first postcondition has this purpose. It specifies that the results of the
query method are unchanged for any existing nodes, though newly added objects may be
added to the tree. Translated to JML, the first postcondition looks as follows:
//@ ensures (\forall int steps; (\forall Tree a; !\fresh(a) ==> (\forall Tree

obj80;
!\fresh(obj80) && \old(query(a, steps, obj80)) <==> query(a, steps, obj80) &&

!\fresh(obj80))));

This postcondition is shown by induction over the number of steps. In the induction step,
query expansion is necessary to reduce the n+1 case to the case for n steps. The remaining
proof goals complete automatically with Z3.
//$ requires isSorted[this]
//$ // returns false if the node already was present; true if it was added
//$ ensures result = False iff v in this.*(left + right).value
//$ // v is added to the set of values
//$ ensures this.*(left’ + right’).value’ = this.*(left + right).value + v
//$ ensures this.isSorted’
//$ // added nodes are newly created objects
//$ ensures (this.*(left’ + right’) - this.*(left + right)) in fresh
//$ modifies this.*(left+right).left, this.*(left+right).right, this.*(left+

right).height
//@ measured_by this.height;
public boolean add(int v) {
if (v < this.value) {
if (left != null) {
boolean result = left.add(v);
updateHeight();
return result;

} else {
addLeftChild(v);
return true;

}
}
if (v > this.value) {
...

}
return false;

}

For brevity, the case v > this.value is omitted. Its implementation and proof are ex-
actly analogous to the v < this.value case. The updateHeight() method is a helper that
recomputes the height field after changes to the subnodes.
Here is the contract of the add() method translated to JML:

//@ requires isSorted(this);
//@ // returns false if the node already was present; true if it was added
//@ ensures \result == false <==> \old((\exists Tree obj134; (\exists int num10

; num10 >= 0 && query(this, num10, obj134)) && obj134.value == v));
//@ // v is added to the set of values
//@ ensures (\forall int obj140; (\exists Tree obj141; (\exists int num11;

num11 >= 0 && query(this, num11, obj141)) && obj141.value == obj140) <==> \
old((\exists Tree obj147; (\exists int num12; num12 >= 0 && query(this,
num12, obj147)) && obj147.value == obj140)) || v == obj140);

72

8.2. Binary Search Tree 73

//@ ensures isSorted(this);
//@ // added nodes are newly created objects
//@ ensures (\forall Tree obj153; (\exists int num13; num13 >= 0 && query(this,

num13, obj153)) && (\fresh(obj153) || (\forall int num14; num14 >= 0 ==>
!\old(query(this, num14, obj153)))) ==> \fresh(obj153));

//@ // generated from modifies clause:
//@ ensures (\forall Tree obj164; !\fresh(obj164) && (\forall int num15; num15

>= 0 ==> !\old(query(this, num15, obj164))) ==> obj164.left == \old(obj164.
left));

//@ ensures (\forall Tree obj178; !\fresh(obj178) && (\forall int num16; num16
>= 0 ==> !\old(query(this, num16, obj178))) ==> obj178.right == \old(obj178
.right));

//@ ensures (\forall Tree obj192; !\fresh(obj192) && (\forall int num17; num17
>= 0 ==> !\old(query(this, num17, obj192))) ==> obj192.height == \old(
obj192.height));

//@ modifies \infinite_union(Tree obj; obj.left), \infinite_union(Tree obj; obj
.right), \infinite_union(Tree obj; obj.height);

The add() proof itself is quite complex, requiring 75 interactive steps, around 31000 auto-
matic steps in KeY, and numerous subgoals closed by Z3 invocations. We used a similar
approach as with the previous methods: we run the KeY on minimalist settings with the
addAssumption taclet; and use Z3 or continue the proof manually where the minimalist
proof search stops. Most of the interactive steps are providing instantiations for quan-
tifiers; a few steps are manually performing query expansion. After the updateHeight()
call, we use the dependency contract for the query method (using its accessible clause)
to show that the tree structure is not changed by a method call that modifies only the
height.

In conclusion, the hasNode-style query methods used for the general case of the transitive
closure are problematic for automatic proof search. Failures in automatic proof search
require the user to understand the generated JML and how it relates to the original Alloy
specification. This is a significant restriction on the usability of Alloy2JML. When looking
at the causes of failing proofs, this was mostly because KeY failed to instantiate quantifiers.
Especially the quantification over the number of steps caused trouble, as KeY did not try
instantiations with "steps+1" unless that term already occurs in the sequent. Lemmas in
the style of "add_assumption" would help with this, but send the automatic proof search
into a loop. Fortunately, we can side-step this issue by delegating most of the proof search
to the SMT solver Z3.

A different translation of transitive closures might have done better with the KeY proof
search (e.g. using the \reach predicate). However, as the example of the linked list
showed, our chosen approach works well in cases where the program also involves explicit
step counts.

73

9. Conclusion

We developed the Alloy2JML tool that is capable of translating Alloy formulas to JML.
Our tool uses a custom input format in which a Java program is annotated with specifica-
tions using Alloy formulas, similar to the TestEra and JForge tools. For the most part, the
translation works by converting relational operators into first-order logic by quantifying
over the elements of the relation. For the transitive closure, our translation introduces
recursively specified model methods. We then used Alloy2JML to specify the behavior of
two example programs, a linked list and an unbalanced binary search tree. We explored
the automatic verification of the example programs against the output of our translation
using the KeY theorem prover. We found techniques for automatically proving some meth-
ods; however the more complex methods still required substantial user interaction with
KeY.

Using Isabelle/HOL, we proved that our translation is correct for a subset of the Alloy
language.

In addition to the translation to JML, Alloy2JML provides an Alloy model as output.
This allows exploration of the space of behaviors allowed by the specification using the
Alloy Analyzer.

9.1. Related Work

JForge [DCJ06] allows the use of Alloy specifications in method contracts on Java pro-
grams, with syntax similar to ours. The tools transforms the Java program into a relational
logic formula that relates the pre-state of a method to its post-state. The transformation
unrolls loops for a bounded number of iterations. The resulting relational formula is then
verified against the Alloy specification using Kodkod [TJ07], the relational engine used by
the Alloy Analyzer. This will find any violations of the specification within the specified
bounds on the heap size and number of loop iterations.

Our work complements JForge: while JForge only performs bounded verification, our tool
can be used for a full correctness proof by translating the Alloy specification to JML, so
that the program can be proven correct using a theorem prover like KeY. However, the
minor differences in input syntax and the representation of Java types in Alloy (e.g. null
atom vs. empty set) prevent the re-use of the same specification with both JForge and
our translator.

75

76 9. Conclusion

JMLForge [DYJ08] allows bounded verification of JML contracts on Java programs. It
uses the same approach as JForge, and translates both JML and the Java program into
relational logic.

The Kelloy system presented in [Gei11] verifies Alloy models by translating them into KeY’s
first-order logic. The translation adds a relational theory to KeY by defining predicates
for set membership and the various Alloy operators; and then defines rules for reasoning
about these predicates by providing rules as KeY taclets. Kelloy does not use JML and is
not specific to the verification of Java programs.

Our translation of the transitive closure is based on the specification of the linked list by
Gladisch and Tyszberowicz [GT13]. This specification was designed to work with both
the KeY prover and the JET runtime testing tool. The latter tool requires specifications
to be executable. Unfortunately, our translation from Alloy generally does not produce
executable specifications. In our specification of the linked list, the Alloy code is explicitly
quantifying over the number of steps using the pow function. The resulting JML specifica-
tions here are executable with the exception of some clauses where we omitted an upper
bound on the number of steps. However, as soon as the Alloy specification makes use of
the transitive closure or other set operations (for example, in the removeAll() method),
the output JML specification will make use of unbounded quantifiers, both over the num-
ber of steps in the transitive closure, and over objects involved in set operations. This
means that the output of Alloy2JML is not suitable for JML tools like JET that depend
on runtime assertion checking.

The OpenJML [Cok13] toolchain can parse and typecheck the output of our translation
with minor modifications: the KeY-specific "strictly_pure" needs to be replaced with
"pure", and the use of "\infinite_union" needs to be replaced with a static data group.
The OpenJML runtime assertion compilers fails due to the reasons mentioned above.
Extended static checking in OpenJML fails for outputs involving the transitive closure, as
OpenJML currently does not support the use of recursively specified query methods.

9.2. Future Work
The Alloy2JML input format currently only supports a few contract clauses for lightweight
method specifications. It is missing support for exceptional behavior specifications, and
for multiple specification cases in general. A future version of the tool should support more
of the JML constructs. Ideally, we would adopt the JForge Specification Language[Yes09],
thus allowing the re-use of specifications written for JForge. Additionally, we should add
support for loop invariants, so that these too can specified using the Alloy language.

Moreover, Alloy2JML could be extended by supporting some of the Alloy languages fea-
tures that are currently restricted (chapter 3.4). In particular, the following language
constructs were left unsupported due to time constraints:

• User-defined Alloy functions

• disj keyword

• Built-in functions like max[]

For the use of the KeY prover, we have found custom taclets to be useful to prioritize query
expansion for the base cases of the recursively specified query methods. In the future, such
custom taclets could be automatically generated by Alloy2JML.

76

Appendix

A. Example Translations
The following table contains a list of example Alloy formulas and the resulting JML after
translation and simplification. In the examples, "this" refers to a non-nullable variable of
type Tree.

Alloy JML
some this.left this.left != null
some this.left.left this.left != null && this.left.left != null
this.left in this.right this.left != null ==> this.right == this.left
no (this.left & this.right) this.left == null || this.right != this.left
result < this.left.value \result < (this.left != null ?

this.left.value : 0)
no this.left.value this.left == null
this in {x : Tree | x.value > 0} this.value > 0
this.(left+right) in
{x : Tree | x.value > 0}

(\forall Tree obj; this.left == obj ||
this.right == obj ==> obj.value > 0)

#(this.left) = this.height (this.left != null ? 1 : 0) == this.height
#(Tree & fresh) = 5 (\num_of Tree obj1; \fresh(obj1)) == 5
no this.(~left) (\forall Tree obj1; obj1.left != this)
(x -> y) in iden x == y
no (Root <: parent) (\forall Root obj; obj.parent == null)
all o: FSObject - Root {
some o.parent

}

(\forall FSObject o; !(o instanceof Root) ==>
o.parent != null)

head.(pow[succ, index]) =
head.(pow[succ, sub[index, 1]])
.succ

getSucc(head, index) == (getSucc(head, index
- 1) != null ? getSucc(head, index - 1).succ
: null)

v in this.*(left+right).value (\exists Tree obj; (\exists int num; num >= 0
&& query(this, num, obj)) && obj.value == v)

77

78 9. Conclusion

B. Implementation Notes
The Alloy2JML tool is implemented in Java. It uses OpenJML[Cok13] as a library for
parsing the input Java source code into an abstract syntax tree. OpenJML is used instead
of a simple Java parser so that JML annotations like pure and helper can be detected
easily.

The Alloy annotations in the input file are discovered using a small hand-written lexer.
Multiple successive //$-style comments are concatenated together. Using the Alloy Ana-
lyzer (version 4.2) as a library, we parse the annotations and run Alloy’s semantic analysis
on them in the context of a module generated from the Java classes. The translation
functions B and E recursively traverse and translate the Alloy syntax tree using the
visitor pattern. B is implemented in FormulaConvertVisitor.java; E is implemented in
RelationConvertVisitor.java.

A custom JML syntax tree is used for the generated output expressions. Simplifications
are performed as the output JML syntax tree is constructed.

We use JUnit for testing the translator. The tests can be found in ConversionTests.java.

The source code for Alloy2JML is provided on the CD as an Eclipse project. The referenced
OpenJML and Alloy libraries are included. To run Alloy2JML, pass the file name of the
Java input file on the command line:
cd Implementation
java -cp bin;lib/alloy4.2.jar;lib/openjml.jar

alloy2jml.Main ../BinaryTree/Tree.java

The output file will be placed in the directory "BinaryTree/out".

78

Bibliography

[BHS07] B. Beckert, R. Hähnle, and P. H. Schmitt, Verification of object-oriented soft-
ware: The KeY approach. Berlin, Heidelberg: Springer-Verlag, 2007.

[Bru09] D. Bruns, “Formal Semantics for the Java Modeling Language,” Diplomarbeit,
Karlsruhe Institute of Technology, 2009.

[Cha07] P. Chalin, “A sound assertion semantics for the dependable systems evolution
verifying compiler,” in In International Conference on Software Engineering,
2007, pp. 23–33.

[Cok13] D. Cok, “OpenJML - formal methods tool for Java and the Java Modeling
Language,” 2013. [Online]. Available: http://openjml.org/

[Dar11] J. D. Darcy, “JEP 120: Repeating Annotations,” 2011. [Online]. Available:
http://openjdk.java.net/jeps/120

[DCJ06] G. Dennis, F. S.-H. Chang, and D. Jackson, “Modular verification of code with
SAT,” in Proceedings of the 2006 international symposium on Software testing
and analysis, ser. ISSTA ’06. New York, NY, USA: ACM, 2006, pp. 109–120.

[DGT13] F. Damiani, C. Gladisch, and S. Tyszberowicz, “Refinement-based testing of
delta-oriented product lines,” in Proceedings of the 2013 International Confer-
ence on Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, ser. PPPJ ’13. New York, NY, USA: ACM,
2013, pp. 135–140.

[DMB08] L. De Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Proceed-
ings of the Theory and practice of software, 14th international conference
on Tools and algorithms for the construction and analysis of systems, ser.
TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 337–
340.

[DYJ08] G. Dennis, K. Yessenov, and D. Jackson, “Bounded verification of voting soft-
ware.” in VSTTE, vol. 5295. Springer, 2008, pp. 130–145.

[Gei11] U. Geilmann, “Verifying Alloy Models Using KeY,” Diplomarbeit, Karlsruhe
Institute of Technology, 2011.

[GT13] C. Gladisch and S. Tyszberowicz, “Specifying a linked data structure in jml for
formal verification and runtime checking,” in Brazilian Symposium on Formal
Methods (SBMF), ser. LNCS, L. de Moura and J. Iyoda, Eds. Springer, 2013.

[Jac06] D. Jackson, Software Abstractions: Logic, Language, and Analysis. The MIT
Press, 2006.

[KYZ+11] S. A. Khalek, G. Yang, L. Zhang, D. Marinov, and S. Khurshid, “TestEra:
A tool for testing Java programs using alloy specifications.” in International
Conference on Automated Software Engineering, P. Alexander, C. S. Pasareanu,
and J. G. Hosking, Eds. IEEE, 2011, pp. 608–611.

79

http://openjml.org/
http://openjdk.java.net/jeps/120

80 Bibliography

[LPC+11] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller,
J. Kiniry, P. Chalin, D. M. Zimmerman, and W. Dietl, “JML Reference
Manual,” 2011. [Online]. Available: http://www.jmlspecs.org

[TJ07] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in In Tools
and Algorithms for Construction and Analysis of Systems (TACAS. Wiley,
2007, pp. 632–647.

[Wei11] B. Weiß, “Deductive verification of object-oriented software: Dynamic frames,
dynamic logic and predicate abstraction,” Ph.D. dissertation, Karlsruhe Insti-
tute of Technology, 2011.

[Yes09] K. T. Yessenov, “A Lightweight Specification Language for Bounded Program
Verification,” Master’s thesis, Massachusetts Institute of Technology, 2009.

[Zav12] P. Zave, “Using lightweight modeling to understand chord,” SIGCOMM Com-
put. Commun. Rev., vol. 42, no. 2, pp. 49–57, Mar. 2012.

80

http://www.jmlspecs.org

	Contents
	1 Introduction
	2 Background
	2.1 Alloy
	2.2 JML
	2.2.1 JML expression syntax
	2.2.2 JML contracts
	2.2.3 Query Methods
	2.2.4 JML*

	3 Alloy Specification Input Format
	3.1 Alloy signatures for Java classes
	3.2 Object creation
	3.3 Contract Clauses
	3.3.1 Preconditions
	3.3.2 Postconditions
	3.3.3 Modifies clause
	3.3.4 Invariants
	3.3.5 Predicates

	3.4 Restrictions on the allowable Alloy expressions

	4 Output Alloy model
	5 Translation Function
	5.1 Translation Context
	5.2 Translation Predicates
	5.3 Translation of relational expressions
	5.3.1 Type function
	5.3.2 Variables
	5.3.3 Type signatures
	5.3.4 Field signatures
	5.3.5 Built-in relations and literals
	5.3.6 Set Union
	5.3.7 Set Intersection
	5.3.8 Set Difference
	5.3.9 Relational Join
	5.3.10 Relational Override
	5.3.11 Cartesian Product
	5.3.12 Transpose
	5.3.13 Domain and Range Restriction
	5.3.14 Set comprehensions
	5.3.15 Conditional expression
	5.3.16 Cardinality
	5.3.17 Sum quantifier

	5.4 Translation of formulas
	5.4.1 Logical operators
	5.4.2 Binary relational operators
	5.4.3 Quantified expressions
	5.4.4 Multiplicity Constraints
	5.4.5 Quantified formulas
	5.4.6 Integer comparisons

	5.5 Simplifications
	5.5.1 Eliminating existential quantifiers
	5.5.2 Eliminating redundant casts
	5.5.3 Eliminating redundant quantifiers

	5.6 Translation of Contract clauses
	5.6.1 Modifies clause
	5.6.2 Predicates

	6 Translation of transitive closure
	6.1 Linked lists
	6.2 Generalizing the transitive closure
	6.3 Query method definition
	6.4 Reflexive closure
	6.5 pow[] function

	7 Correctness proof of the translation
	7.1 Type System Formalization
	7.2 Alloy Formalization
	7.2.1 Alloy dynamic state
	7.2.2 Alloy syntax and semantics

	7.3 JML
	7.3.1 JML dynamic state
	7.3.2 JML semantics

	7.4 Formalization of the translation function
	7.5 Concepts for the proof
	7.6 The translation proof

	8 Translated specifications in KeY
	8.1 Linked List
	8.1.1 Constructor
	8.1.2 Query method expansion
	8.1.3 Lemma methods
	8.1.4 add() method
	8.1.5 getEntry() helper method
	8.1.6 removeAt() method

	8.2 Binary Search Tree
	8.2.1 contains() method
	8.2.2 contains_loop
	8.2.3 add() method

	9 Conclusion
	9.1 Related Work
	9.2 Future Work

	Appendix
	A Example Translations
	B Implementation Notes

	Bibliography

