
Generating Bounded
Counterexamples for

KeY Proof Obligations

Master Thesis of

Mihai Herda

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewer: JProf. Dr. Mana Taghdiri
Prof. Dr. Bernhard Beckert

Advisors: Aboubakr Achraf El Ghazi
Mattias Ulbrich
Christoph Gladisch

Time Period: 4th July 2013 – 3rd January 2014

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my
own work, unless otherwise acknowledged in the text.

Karlsruhe, 19th December 2013

iii

Acknowledgements

I would like to thank my supervisors, Aboubakr Achraf El Ghazi, Christoph Glad-
isch, Mana Taghdiri, and Mattias Ulbrich for the weekly meetings which helped me
better understand the tasks and problems at hand. I would also like to thank Daniel
Bruns for his opinions on the tool. Last but not least, I would like to thank my
family and my friends for their continuous and unconditional support.

v

Abstract

KeY is an interactive software verification system which can verify Java pro-
grams specified with JML. It uses a sequent calculus for a dynamic logic for
Java. KeY supports automation to a certain degree, but when user interaction
is required it is difficult to determine whether a proof obligation is invalid. For
this reason, we designed and implemented a tool for finding counterexamples
for KeY proof obligations. It works by translating the negation of a KeY proof
obligation to an SMT specification, with all SMT sorts bounded, thus ensuring
decidability. This translation is then handed over to an SMT solver. We make
sure that interpreted KeY functions and predicates, preserve their semantics in
order to avoid spurious counterexamples caused by the loss of their semantics.
We also preserve the KeY type hierarchy. Additionally we make sure that inte-
ger overflows are not used in the found counterexamples. Because the output
of the SMT solver is difficult to read, we extract the relevant information from
it and present it in a user friendly manner. We have evaluated our tool on
both faulty and fault free specified Java programs, and showed how the tool
can be used to understand why a proof obligation is not valid.

vi

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Project Goal . 1
1.3. Outline . 2

2. Preliminaries 3
2.1. JavaDL and KeY . 3

2.1.1. The Type System . 3
2.1.2. Syntax . 4
2.1.3. Semantics . 6
2.1.4. Sequent Calculus . 7
2.1.5. Heaps . 10
2.1.6. KeY . 12

2.2. SMT . 13
2.2.1. The SMT-LIB 2 Language . 13
2.2.2. SMT-LIB commands . 13
2.2.3. SMT Formulae . 14
2.2.4. Built in sorts and functions 15
2.2.5. Z3 . 15

3. Translation 17
3.1. The Type System . 17
3.2. Functions . 23

3.2.1. Boolean and Integer Functions 23
3.2.2. Cast Functions for Reference Types 24
3.2.3. Special Interpreted Constants 24
3.2.4. The Wellformed Predicate . 24

3.3. Preserving the Semantics of Interpreted Functions 25
3.3.1. Translating Rules . 26
3.3.2. Specifying Semantics only for Necessary Inputs 26

3.4. Fields and Arrays . 27
3.5. Class Invariants and Model Fields . 28
3.6. Preventing Integer Overflows . 29
3.7. Limitations of our approach . 30

3.7.1. Spurious counterexamples . 30
3.7.2. Increasing confidence in proof obligations 31
3.7.3. Deviations from the Current Implementation of KeY 31

vii

Contents

4. Implementation 33
4.1. Overview . 33
4.2. Semantic Blasting . 33
4.3. Counterexample Extraction . 34
4.4. Counterexample Presentation . 38

5. Evaluation 41
5.1. Proof Obligations Expected to be Valid 41
5.2. Proof Obligations Expected to be Invalid 41

5.2.1. Specifications with Unknown Faults 41
5.2.1.1. Method Cell::setX 43
5.2.1.2. Method Saddleback::search 43
5.2.1.3. Method SimplifiedLL::remove 43
5.2.1.4. Method ArrayList::indexof 44
5.2.1.5. Method ArrayList::clear 44

5.2.2. Specifications with Known Faults 44
5.2.2.1. Method BinarySearch::binarysearch 44
5.2.2.2. Method Anon::m . 45
5.2.2.3. Method Ringbuffer::push 45
5.2.2.4. Method Ringbuffer::pop 45

6. Conclusion 47
6.1. Summary . 47
6.2. Related Work . 48

6.2.1. The Previous Translation to SMT 48
6.2.2. Nitpick . 48
6.2.3. Dynamite . 49
6.2.4. Lightweight Verification Tools for Java 49

6.3. Future Work . 49

Bibliography 53

7. Appendix 55
A. Binary Search . 55

A.1. Specified Java Code . 55
A.2. Counterexample for BinarySearch::binarySearch 56

B. ArrayList . 59
B.1. Specified Java Code . 59
B.2. Counterexample for ArrayList::clear 64
B.3. Counterexample for ArrayList::indexOf 70

C. Anon . 80
C.1. Specified Java Code . 80
C.2. Counterexample for Anon::m 80

D. Cell . 85
D.1. Specified Java Code . 85
D.2. Counterexample for Cell::setX 86

E. SimplifiedLL . 91
E.1. Specified Java Code . 91
E.2. Counterexample for SimplifiedLL.remove 92

viii

Contents

F. SaddleBack . 94
F.1. Specified Java Code . 94
F.2. Counterexample for Saddleback::search 95

G. RingBuffer . 98
G.1. Specified Java Code . 98
G.2. Counterexample for RingBuffer::push 100
G.3. Counterexample for RingBuffer::pop 106

ix

List of Figures

2.1. The JavaDL Type System . 4
2.2. KeY . 13

3.1. The SMT sorts . 18
3.2. Example types for exactInstance specification 19
3.3. Type hierarchy example. I1 and I2 are interfaces, C1 to C5 are classes. 20
3.4. Concrete type hierarchy example . 21

4.1. The model data structure . 37
4.2. Communication between KeY and the SMT solver 37
4.3. The different query classes . 38

6.1. Representation of a mock counterexample as a UML object diagram . 50
6.2. Representation of a counterexample as a tree 51

xi

List of Tables

2.1. Built-in functions for bit-vectors . 16

3.1. Overview of the translation . 18
3.2. Mapping of KeY types to SMT sorts 18
3.3. Mapping of basic JavaDL operators to built in SMT operators 23

5.1. Results for closable proof obligations 42
5.2. Results for not closable proof obligations 42

xiii

1. Introduction

1.1. Motivation

KeY is a software verification system which can prove that Java programs fulfill their
specification. It uses JavaDL, a dynamical logic for reasoning about Java programs.
The reasoning is done with a sequent calculus for JavaDL, which works by applying
syntactic rules on proof obligations. Rules can generate new proof obligations or
close them. The objective is to close all proof obligations. If that is achieved, the
validity of the original JavaDL formula is proven. KeY can automatically apply
rules according to its own heuristics. If the automatic rule application fails, the
user is shown the proof obligations, where the proof got stuck. The automatic rule
application can fail because the initial proof obligation is not valid, or because user
interaction is required in order to advance the proof. It is often difficult for to user
to determine, which one of these two causes apply. This dilemma provides the main
motivation for our work.

An additional motivation is given by the fact that KeY can only prove the validity of
JavaDL formulae, but it is not able to provide counterexamples for invalid formulae.
This can make it hard for the user to understand why a formula is not valid.

1.2. Project Goal

The goal of this project is to design and implement a tool for finding counterexamples
for KeY proof obligations using an SMT solver.

The tool receives a proof obligation as an input, and will try to show that the proof
obligation is not valid by providing a counterexample. Should the tool succeed, the
user will know that the proof obligation, and thus the entire proof, is not closable.
Additionally, the counterexample can help him understand the reason for the failure.

The tool works by translating a proof obligation to the SMT-LIB language. Because
the specification for SMT solvers is written in typed first order logic with additional
theories, we can only support proof obligations written in KeY first order logic
(KeYFOL), which is a subset of JavaDL. However, KeY is able to automatically apply

1

1. Introduction

the necessary rules in order to obtain only proof obligations written in KeYFOL. The
translated proof obligation is negated and given to an SMT solver. A model for the
negated proof obligation is a counterexample for the original proof obligation.

All KeY types are translated as bounded SMT sorts. This means, that there are
finitely many instances of every SMT sort. As a result all SMT specifications we
obtain are decidable. It is possible, however, for the SMT solver to not have enough
physical resources at its disposal and time out. In this case, the user can try smaller
bounds.

KeY already can translate proof obligations to SMT, but this translation serves the
purpose of proving proof obligations. For proving it is not necessary to translate
the semantics of KeY predicates and functions and many are left underspecified.
However, for counterexample finding the KeY functions and predicates cannot be
underspecified, otherwise the SMT solever will wrongly define them, rendering the
found counterexample spurious.

Because unbounded KeY types are translated to bounded SMT sorts, there are proof
obligations for which our tool will always find spurious counterexamples. We accept
this fact as unavoidable, and try to minimize the causes of spurious counterexamples.
We achieve this by providing an accurate translation for KeY functions, predicates,
and type hierarchy, and by adding formulae which disallow integer overflows. The
only proof obligations which produce spurious counterexamples are those which re-
quire some types to be unbounded in order to be valid. In practice, however, such
proof obligations rarely result from proving properties of specified Java programs,
which is the main use case of KeY.

1.3. Outline

Chapter 2 presents JavaDL and a sequent calculus for JavaDL as well as the KeY
system. Furthermore it introduces SMT concepts that are needed to understand
the translation. Chapter 3 explains how a KeY proof obligation is translated to
SMT. Chapter 4 shows the most notable aspects of the implementation. Chapter
5 provides the experimental results for running our tool on valid and invalid proof
obligations. Finally, Chapter 6 provides a summary and presents related and future
work.

2

2. Preliminaries

2.1. JavaDL and KeY

In order to prove a certain property regarding a program, we need a logical framework
that allows the formulation of this property. Dynamic logics [HKT84] are logics
used to reason about properties of programs. Beckert [Bec01] introduced JavaDL, a
dynamic logic for a subset of the Java programming language, called Java CARD.
This logic allows us to express properties such as termination, non-termination, or
fulfillment of user specified method contracts and class invariants for Java programs.
The version of JavaDL presented in this section is the one introduced by Weiß
[Wei11] which was extended to provide support for heaps, and serves as the de facto
specification of the dynamic logic used by KeY.

2.1.1. The Type System

JavaDL has a hierarchical type system, shown in Figure 2.1, which contains the
type Any as a supertype for all other types, except Heap and Field. The default
semantics of the Integer type is that of the mathematical integers. Java integers,
with or without overflow checking represent the other two possible semantics, which
the user can choose. The Object type is the equivalent to the java.lang.Object Java
type, and all Java reference types defined by the user are contained as subtypes
of Object. The Java type hierarchy is preserved. The Sequence type is used for
modelling lists and the Heap and Field types are used for modelling the Java heap
memory. The type LocSet represents a set of locations on the heap. A location is a
pair (Object, F ield).

It is important to note that the type hierarchy is not considered to be final. The
rules of the sequent calculus do not depend on the number of subtypes of a cer-
tain type. For example, if there are no other Java reference types declared besides
java.lang.Object, we may not conclude that there are no objects of other, not yet
known, reference types. This way additions to the type hierarchy do not affect the
correctness of previous proofs. This property is called modularity.

3

2. Preliminaries

Any

Integer

Boolean

LocSet

Field

Heap

Sequence

Object

Object Subtypes

Null

Figure 2.1.: The JavaDL Type System

2.1.2. Syntax

JavaDL is a multimodal extension of a typed first order logic. In addition to the
variables, functions and predicates of first order logic, JavaDL provides the box [π],
diamond 〈π〉 and update U operators.

Definition 2.1 (JavaDL Signature). A JavaDL signature is a tuple: (τ,�, V, PV, F,
Fu, P, α, Prg) where:

• τ is the set of types

• � is a partial order on τ , the subtype relation

• V is the set of logical variable symbols

• PV is the set of program variable symbols

• F is the set of functions symbols

• Fu ⊆ F is the set of unique function symbols

• P is the set of predicates symbols

• α is a static typing function providing a type signature for every symbol: α(v) ∈
τ for all v ∈ V ∪ PV , and α(f) ∈ τ ∗ × τ for all f ∈ F , and α(p) ∈ τ ∗ for all
p ∈ P

• Prg is a Java Card program

Definition 2.2 (Terms). Given a JavaDL signature (τ,�, V, PV, F,
Fu, P, α, Prg), we define the set TermA of terms of type A as follows:

4

2.1. JavaDL and KeY

• x ∈ TermA for all x ∈ V ∪ PV such that α(x) = A

• f(t1, t2, . . . tn) ∈ TermA for all f ∈ F , and α(f) = (B1, B2 . . . , Bn, A), and
t1 ∈ TermB′

1
. . . tn ∈ TermB′

n
, and B′1 � B1 . . .B′n � Bn

• if φ then t1 else t2 for all t1, t2 ∈ TermA and φ ∈ Formula

• {U}t for all t ∈ TermA

The update operator {U} is used to model state transitions.

Definition 2.3 (Updates). Given a JavaDL signature (τ,�, V, PV, F,
Fu, P, α, Prg), we define the set Update which contains functional, parallel, and
updates applications:

• (v := t) ∈ Update for all v ∈ PV and t ∈ TermA such that α(v) = A

• (u1 ‖ u2) ∈ Update for all u1 and u2 ∈ Update

• ({u1}u2) ∈ Update for all u1 and u2 ∈ Update

The Java program Prg is composed of one or more sub-programs which we shall call
program fragments. For a program fragment pr we will use the notation pr ∈ Prg
meaning that pr is a program fragment of Prg.

Definition 2.4 (Formulae). Given a JavaDL signature (τ,�, V, PV, F,
Fu, P, α, Prg) we define the set Formula of JavaDL formulae as follows:

• true, false ∈ Formula

• p(t1, t2, . . . tn) ∈ Formula for all p ∈ P and t1 ∈ TermB′
1

. . . tn ∈ TermB′
n

and α(p) = (B1, B2 . . . , Bn) and B′1 � B1 . . .B′n � Bn

• ¬φ, φ ∧ ψ, φ ∨ ψ, φ→ ψ, φ↔ ψ ∈ Formula for all φ, ψ ∈ Formula

• ∃x;φ ∀x;φ ∈ Formula for all x ∈ V ar and φ ∈ Formula

• {u}φ ∈ Formula for all u ∈ Update and φ ∈ Formula

• [π]φ, 〈π〉φ ∈ Formula for all π ∈ Prg and φ ∈ Formula

The following functions and predicates will be in every JavaDL signature:

• instanceT (Any) ∈ P

• exactInstanceT (Any) ∈ P

• castT : Any → T

We shall refer to JavaDL formulae without modal operators or updates as KeY first
order logic (KeYFOL) formulae.

5

2. Preliminaries

2.1.3. Semantics

Java programs operate on states. A state s can be thought of as the contents of the
memory at a certain point in the execution of a Java program.

Given a beginning state and a Java program, running the program will change the
state of the system. The end state achieved after running a Java program depends,
of course, on the state the system had before the execution of a program.

Definition 2.5 (Kripke Structure). We define a Kripke structure as a tuple (D, δ,M, S, ρ)
where

• D is a set of semantic values

• δ is a dynamic typing function δ : D → τ generating subdomains DA = {x ∈
D|δ(x) � A} for all A ∈ τ

• M is a first order logic model, which assigns to every symbol in F ∪ P its
semantics.

• S is a set of states s which are functions mapping program variables v of type
A to values in DA

• ρ is a function which associates a transition relation to each program fragment
pr such that ρ(pr) ⊆ S × S and (s1, s2) ∈ ρ(pr) if pr starting from state s1
terminates in s2 and no exception is thrown. Because Java Card programs are
deterministic, for each starting state, there can be at most one end state.

The following functions and predicates have the same semantics in all Kripke struc-
tures:

• instanceT (x) = {x ∈ D|δ(x) � T}

• exactInstanceT (x) = {x ∈ D|δ(x) = T}

• castT (x) =


x if x ∈ DT

null if x 6∈ DT ∧ T � Object

empty if x 6∈ DT ∧ T = LocSet

false if x 6∈ DT ∧ T = Boolean

We will now present how the transition relation is defined for a selection of Java
program fragments.

Let us consider a variable assignment without side effects. (s, s′) ∈ ρ(x := t) iff the
state s′ contains all variable assignments from the state s except for x which will
now have the value of the term t, evaluated in state s, assigned.

Java programs can be sequentially combined. Let p1 and p2 be two Java programs.
(s, s′) ∈ ρ(p1; p2) iff there is a state r such that p1 beginning in state s will end in
state r and p2 beginning in state r will end in state s′.

For the program fragment pr consisting of the conditional statement if(φ) then p1
else p2, (s, s′) ∈ ρ(pr) iff either φ is true in s and s′ is the end state of p1 when
starting in s or φ is false in s and s′ is the end state of p2 when starting in s.

6

2.1. JavaDL and KeY

Finally,for the program fragment pr consisting of a loop statement while(φ) do p
(s, s′) ∈ ρ(pr) iff there exists a sequence s1, s2, . . . , sn of states, such that p starting
in state si will end in state si+1 and for all but the last state in the sequence the
formula φ must be true. In the last state it must be false.

Because each program determines a transition relation between states, JavaDL is
called a multi-modal logic, modal logic is similar, but has only one transition relation
for the entire system.

JavaDL provides for each program fragment pr two modal operators: The box oper-
ator [pr] and the diamond operator 〈pr〉. Formulae containing these operators have
the form [pr]φ or 〈pr〉φ. The formula [pr]φ is true in state s iff for the program
fragment pr starting in s the formula φ holds a state s′ where pr terminates, and pr
may also not terminate. The formula 〈pr〉φ is true in state s iff pr starting in s will
terminate in a state s′ and φ holds in that state.

Furthermore JavaDL provides the Update operator. Updates describe changes that
are to be applied to a state. They are similar to substitutions in purpose, but have
the advantage that they do not have to be immediately applied. Instead, they can
be accumulated with each transition to a new state, and after the program has ended
and has reached in the final state, they can be simplified before being applied to the
final state, thus simplifying the necessary substitutions.

2.1.4. Sequent Calculus

JavaDL allows us to express different properties for Java programs. We now need a
technique for proving such formulae. One such technique is a sequent calculus for
JavaDL which we will now present.

A calculus for a logic is a rule system with which the validity of a formula of that
logic can be proven. The rules that we apply on the formula are syntactic. Each rule
application brings the proof into a new state, where another rule can be applied.
The goal is to arrive in s final state, that closes the proof.

The sequent calculus for JavaDL operates on proof obligations, called sequents, that
contain two sets of formulae: the first one is called antecedent, the second one succe-
dent :

ψ1, . . . , ψn︸ ︷︷ ︸
antecedent

⇒ φ1, . . . , φn︸ ︷︷ ︸
succedent

The formulae in the antecedent are in conjunction, while the formulae in the succe-
dent are in disjunction, a sequent being thus equivalent to the following formula:

ψ1 ∧ . . . ∧ ψn → φ1 ∨ . . . ∨ φn

The starting sequent of a proof will always have an empty antecedent with the
formula that must be proven in the succedent. For a JavaDL formula φ the starting
sequent of a proof is:

⇒ φ

The sequent calculus proves the validity of a formula by showing that it can be
inferred from a set of axioms. The sequent calculus uses syntactic rules for searching

7

2. Preliminaries

the axioms from which the validity of the formula can be proven. There are two
kinds of rules. The first kind takes a sequent and generate new sequents. These
new sequents represent formulae from which the original sequent can be inferred.
Because a rule application can generate more than one sequent, we obtain a proof
tree. The second type of rules, called closing rules, do not generate any new sequents
and mark the sequent as closed. Applying a closing rule on a sequent means that
that sequent can be directly inferred from a set of axioms. When proving the validity
of a formula using the sequent calculus, the objective is to close all branches of the
proof tree. In this section we will present a selection of the rules, the rest can be
found in the official KeY book [BHS07] or in [Wei11]. In our notation the rule is
applied on the sequent on the bottom and generates the sequents on top.

An example of a basic rule of sequent calculus is AND-LEFT:

Γ, φ, ψ ⇒ ∆

Γ, φ ∧ ψ ⇒ ∆

This rule removes a conjunction from the antecedent and adds its two arguments as
separate formulae in the antecedent. A similar rule is OR-RIGHT.

The rules are applied until a sequent is reached on which a closing rule can be applied.
Closing rules are also called axioms. An example of an axiom is the TRUE-RIGHT
rule:

Γ⇒ true,∆

This rule states that if true is present among the formulae in the succedent, then the
entire sequent is valid. Because the succedent is a disjunction, one true sub-formula
is enough for it to evaluate to true. Because the sequent is in fact an implication, if
the succedent is valid, the entire sequent will also be valid. A similar closing rule is
FALSE-LEFT.

An additional rule of the sequent calculus, which we need to introduce, is the PULL-
OUT rule:

Γ, T = t, p(. . . , T, . . .)⇒ ∆

Γ, f(. . . , t, . . .)⇒ ∆

This rule replaces a (sub)term t of a formula in the antecedent with a constant T ,
and adds a new formula to the antecedent stating that T = t. Since formulae from
the succedent can be moved to the antecedent and negated, this rule can be applied
to (sub)terms of formulae in the succedent as well.

Because JavaDL may contain programs, special rules are needed for symbolically
executing these programs. Symbolic execution takes the execution path for all pos-
sible input values into account. This is why a program property is proven for all
possible inputs. The sequent calculus for JavaDL applies a rule for each statement
of the program. The new sequents that are thus obtained will no longer contain the
processed statement. In the process the formula is updated with information taken
from the discarded statement. At the end of the symbolic execution of the program,

8

2.1. JavaDL and KeY

the formula will contain an empty modal operator, that can be simply discarded
using the SKIP rule:

Γ⇒ {U}φ,∆
Γ⇒ {U}[]φ,∆

Assignments without side effects in the program are handled by the ASSIGN rule,
which removes the assignment and adds an additional update to the formula:

Γ⇒ {U}{v := t}[. . .]φ,∆
Γ⇒ {U}[v = t; . . .]φ,∆

Another rule for symbolic execution that is needed for the Java language is the IF
rule:

Γ ` {U} (ψ → [α1 ; . . .] φ), ∆ Γ ` {U} (¬ψ → [α2 ; . . .] φ), ∆

Γ ` {U}[if (ψ) α1 else α2; . . .] φ, ∆

This rule generates two sequents. The first sequent handles the case in which the
condition of the if statement evaluates to true. The if statement inside the box
operator is replaced in this case with the statements from the true case. Similarly in
the second generated sequent, the if statement is replaced with the statements from
the false case, which are executed if the condition evaluates to false.

Finally the last rule that we present for the symbolic execution is one that handles
while loop statements. Loops are processed using loop invariants. Loop invariants
are first order logical formulae that are true before the loop is entered and also after
each iteration. Loop invariants must be specified by the user. The WHILE rule uses
a loop invariant to generate three new sequents:

Γ⇒ {U}Inv,∆
Γ⇒ {U}{A1}(Inv ∧ ψ → [α]Inv),∆

Γ⇒ {U}{A2}(Inv ∧ ¬ψ → [. . .]φ),∆

Γ ` {U}[while (ψ) α; . . .] φ, ∆

These three new proof obligations are:

1. Invariant initially valid: It must be shown that the invariant was valid before
entering the loop. This fact must be shown by the sequent Γ⇒ {U}Inv,∆.

2. Invariant valid after each iteration: It must be shown that after each iter-
ation the formula Inv holds. The sequent that tries to prove this is: Γ ⇒
{U}{A1}(Inv ∧ ψ → [α]Inv),∆.

3. Use case: If the first two goals are proven, then we can remove the while state-
ment and use invariant formula for describing the initial state of the remaining
program. This is the purpose of the following sequent:
Γ⇒ {U}{A2}(Inv ∧ ¬ψ → [. . .]Inv),∆.

9

2. Preliminaries

Note that only the information encoded in the loop invariant can be used for the
rest of the proof. Anything else that is not contained in the loop invariant is lost.
However, some of this lost information may be needed for the remaining proof. One
solution would be to add this context information to the loop invariant. Another
solution is to use the anonymising updates A1 and A2 instead. The context {U} can
be used after the application of the WHILE rule, but the variables that are modified
by the loop are deleted using these anonymising updates. This way we will be able
to use any context information that we are allowed to use in the remaining proof.

After the end of the symbolic execution, the updates gathered during the process
are simplified and then applied to the remaining formula. The goal is then to prove
that the remaining formula is valid.

2.1.5. Heaps

An instance of the Heap type represents the Java heap memory in a certain point in
the execution of the program. Heaps can be viewed as two dimensional arrays, with
indexes of type Object and Field. The contents of the heap are of type Any. Java
programs can allocate memory by creating objects using the new operator. Because
we consider the domain for a type in a Kripke structure to be constant, the creation
of new objects is modelled using a special field, created, which points to a boolean
value inside a heap. An object o is considered created in a heap h if the location
(h, created) points to true. The created field is special, because once set to true for
an object in a heap, it can never be set to false again for that object in that heap.

The function select : (Heap,Object, F ield) → Any returns the value stored in the
location determined by the object and field arguments in the heap argument. In
JavaDL we can access any combination of object and field, even though in Java
we can access only fields from the class declaration or fields inherited from super-
types. We call a function which provides information regarding the stored values of
instances of the container types Heap, LocSet and Sequence observer functions.

In order to change the stored value of a location in a heap we have to use the
store : (Heap,Object, F ield, Any) → Heap function. This function returns a new
heap with the new value stored in the location determined by the object and field
parameters, and with all other values the same as in the parameter heap. However,
the store function cannot be used in order to change the created field. In order to
mark an object as created, the function create : (Heap,Object) → Heap is used,
which creates a new heap in which the given object is created, and all other values
remain unchanged. It is impossible to mark a created object as not-created.

Another function, which operates on heaps is the anon : (Heap, LocSet,Heap) →
Heap function, which sets locations of an original heap to anonymous values, but
does not change the other locations. This is useful when dealing with loops and
method calls, which may change the locations from a specified location set. The
first heap argument represents the original heap, the second location set argument
represents the locations which may change, and the third heap argument represents
the heap from which the anonymous values are taken. The heap h = anon(h1, ls, h2)
contains the values of h2 in all locations l ∈ ls and the values of h1 in all other
locations. Like the store function, the anon function does not allow to change the

10

2.1. JavaDL and KeY

value of locations determined by the created field from true to false. Additionally
values of locations of not created objects are also taken from from h2.

Arrays are modeled using array fields generated by the injective function arr :
Integer → Field. We access field i of an array a in a heap h by calling select(h, a, arr(i)).
The length of an array is modeled using the length : Object → Integer function,
which provides a length for each object, even for those which are not arrays. Using a
function instead of a field makes the length of an object independent from the heap.
The creation of an array can be viewed as choosing and array of the desired length
and creating it.

The sequent calculus contains rules describing the results of providing the heap
functions other than select as arguments to the select function. Examples of such
rules are selectOfStore, selectOfCreate and selectOfAnon. These three rules
substitute certain terms with other terms in the sequent, leaving the rest of the
sequent intact, and in order to keep the notation simple, we present only the term
substitution for these rules:

select(store(h, o, f, v)o1, f1) if(o = o1 ∧ f = f1 ∧ f 6= created)

then x

else select(h, o1, f1)

select(anon(h1, ls, h2)o, f) if(elementOf(o, f, ls) ∧ f 6= created ∧
elementOf(o, f, unusedLocs(h)))

then select(h2, o, f)

else select(h1, o, f)

select(create(h, o1)o2, f) if(o1 = o2 ∧ o1 6= null ∧ f = created)

then true

else select(h, o2, f)

Additionally, there is a predicate wellformed(Heap), which states for a heap h that:

1. All objects referenced in h are created in h or equal to null

2. All location sets inside h contain locations of object which are created or equal
to null

3. The heap contains finitely many created objects

4. The values stored in the heap are of the correct type, i.e. the type from the
Java class declaration

For specifying and reasoning about properties of a set of locations on a heap, the
LocSet type is used. The observer function for location sets is the elementOf :
Object × Field × LocSet predicate, which is true iff the given location is in the
location set. The standard set operations are also defined for the location sets.

Similarly to heaps, which were defined using the select function, the semantics of the
location set functions is defined using the elementOf observer function. Location
sets support set specific functions and predicates like singleton : Object× Field→

11

2. Preliminaries

LocSet, union : LocSet× LocSet→ LocSet and subset : LocSet× LocSet→ Bool
specified by the rules elementOfSingleton, elementOfUnion and subsetToElementOf
respectively:

elementOf(o, f, singleton(o1, f1)) o = o1 ∧ f = f1

elementOf(o, f, union(l1, l2)) elementOf(o, f, l1) ∨ elementOf(o, f, l2)

subset(l1, l2)) ∀o : Object ∀f : Field elementOf(o, f, l1)

→ elementOf(o, f, l2)

In order to reason about list data structures more easily, the Sequence type is
used. Sequences are one dimensional arrays with an index of type Integer and
contents of type Any. Sequences have two observer functions: the length function
seqLength : Sequence → Integer and the get function seqGet : Integer → Any.
The supported operations include defining new sequences using the seqDef function,
concatenating two sequences using the concat operation and getting the subsequence
using the sub function.

The sequent calculus rules for sequences define the semantics of the operation by
using the seqGet and seqLength functions.

For heaps, location sets and sequences extensionality rules define the equality of two
terms of one of these types by using the observer functions. The extensionality rules
are equalityToSelect, equalityToElementOf and equalityToSeqGetAnSeqLength:

h1 = h2 ∀o : Object ∀f : Field select(h1, o, f) = select(h2, o, f)

l1 = l2 ∀o : Object ∀f : Field elementOf(o, f, l1)↔ elementOf(o, f, l2)

s1 = s2 seqLength(s1) = seqLength(s2) ∀i : Int seqGet(s1, i) = seqGet(s2, i)

2.1.6. KeY

KeY is a deductive software verification system for programs written in Java. For
this purpose it uses JavaDL and a sequent calculus for JavaDL.

Given a starting sequent, KeY will try to automatically apply the rule it considers
most suited. It can do that in accordance with different strategies for applying rules.
These rule application strategies are implemented as so-called macros.

In many cases KeY is able to close all proof goals on its own. For more complex
problems user input is needed in order to continue the proof. The user may be
required to provide an instantiation for a universally quantified formula or to specify
an induction rule, among other things.

KeY can generate the initial sequent from the Java source code specified with JML.
The rules of the sequent calculus are written as so-called taclets using a special
language.

12

2.2. SMT

Figure 2.2.: KeY

2.2. SMT

Satisfiability modulo theories (SMT) solvers check the satisfiability of a set of first
order logic formulae. As opposed to automatic theorem provers (ATP), which only
support pure first order logic formulae, SMT-solvers provide support for background
theories. These background theories provide the interpretation for sorts, functions
and predicates, which can be used in the first order formulae given to the solver.

The user is not required to provide axioms for the background theories, the back-
ground theory does not even need to be first order axiomatizable, and SMT solvers
can use dedicated solvers for the supported theories. SMT solvers are fully auto-
matic. If the satisfiability of the formulae is proven, the solver can provide a model
which satisfies them.

2.2.1. The SMT-LIB 2 Language

The SMT-LIB 2 language is a standardized [BST12] specification language supported
by most SMT solvers. It is used for writing the formulae whose satisfiability needs
to be proven. We shall call the set of formulae written in the SMT-LIB language an
SMT specification and the SMT-LIB language, simply, SMT.

2.2.2. SMT-LIB commands

An SMT specification is a sequence of commands. We shall present the commands
which are used by our tool.

The declare-sort command is used to declare new sort symbols. Because SMT sorts
can be parametrized using other Sort symbols, the declare-sort function requires the

13

2. Preliminaries

arity of the sort, besides the name of the sort. Since we do not use parametrized sorts,
all sorts in the specifications we generate have arity 0. For example the declaration
of an SMT sort Heap would look like this: (declare-sort Heap 0). All declared sorts
have disjoint domains, and no built in interpreted subtype relation is provided. SMT
sorts declared like this are uninterpreted, meaning that the solver can come up with
any domain for it, as long as this domain is disjoint from the domains of all other
declared sorts. Sorts declared using this command have a domain of infinite size
and are called unbounded sorts. Not all sorts are declared by the users, there are
sorts provided by the background theories like Bool, Int and BitVec. The Bool and
BitVec sorts, representing boolean and bit-vector values have finite domains.

The define-sort command specifies an additional name for an existing sort. (declare-
sort Heap (BitVec 3)) assigns the bit-vector sort of bit-size 3 to the symbol Heap.
We say Heap is an alias of (BitVec 3). From the perspective of the solver, two
aliases of the same sort are treated as equal sorts. This can lead to unexpected
effects. If we define a sort Object as the bit-vector sort of size 3 we could provide
instances of the Object sort to functions expecting instances of the Heap sort.

The declare-fun command declares a function signature. For example (declare-fun
select (Heap Object Field) Any) declares a function with the name select which
expects a Heap, Object and Field parameter and return an instance of the Any sort.
In this example, the sorts Heap, Object, Field, and Any are declared or defined
by the user. Declared functions are uninterpreted, because they do not have any
semantics. The SMT solver is free to chose any semantics for a declared function,
as long as the chosen semantics satisfies the SMT specification.

The define-fun command defines a function. This command takes the function
name, a list of parameter names and sorts,the sort of the returned value and a term
representing the method body. For example (declare-fun addOne ((x Int)) Int (+ x
1)) defines a function addOne which return an Int equal to the incremented value
of the parameter x of type Int. Recursive functions cannot be defined using this
function.

The assert command adds a formula to the specification. It has the form (assert
F) where F is an SMT formula. We shall call a formula added this way to the
specification an assertion.

The check-sat command initiates the satisfiability check of the specification com-
posed by the previous commands. This command has no parameters.

The get-model command asks the SMT solver to provide a model in the case in
which the specification is satisfiable. A model provides a definition to all sorts and
functions that were only declared in the specification.

For specifications for which a model was found, terms can be evaluated using the
get-value command. The evaluation is done using the function definitions from the
model. The command takes a term as an argument.

2.2.3. SMT Formulae

In this section we will present a subset of the SMT-Lib language, which is used by
our tool. A complete reference can be found in the SMT-Lib standard [BST12].

14

2.2. SMT

Definition 2.6 (SMT Term). We define the set TermSMT of SMT Term as follows:

• v ∈ TermSMT for all variables v quantified by an enveloping quantifier

• (f t1 t2 . . . tn) inTermSMT for all SMT functions f and SMT term t1 to tn
such that the sorts of the terms t1 to tn correspond to the sorts of the expected
parameters of f .

• (ite cond t1 t2) such that cond ∈ FormulaSMT and t1, t2 ∈ TermSMT

Definition 2.7 (SMT Formula). We define the set FormulaSMT of SMT formulae
as follows:

• true, false ∈ FormulaSMT

• (and f1 f2), (or f1 f2), (=> f1 f2), (not f1), (= f1 f2) ∈ FormulaSMT for
all f1, . . . fn ∈ FormulaSMT

• (p t1 . . . tn) ∈ FormulaSMT for all functions returning Bool and t1 . . . tn ∈
TermSMT such that the sorts of t1 . . . tn match the sorts of the parameters of
p

• (forall ((v S)) f) ∈ FormulaSMT for all f ∈ FormulaSMT and v ∈ TermSMT

such that v has the sort S

• (exists ((v S)) f) ∈ FormulaSMT for all f ∈ FormulaSMT and v ∈ TermSMT

such that v has the sort S

Note that in the SMT-LIB standard [BST12] formulae are considered to be terms of
sort Bool. We distinguish between them in order to highlight the similarities between
SMT and JavaDL. The functions and, or, =>, not and the quantifiers exists and
and forall have the same semantics as in standard first order logic. The = symbol
is interpreted as the equivalence function, when used with formulae, and equality
otherwise.

2.2.4. Built in sorts and functions

In this section we present the built in functions which we used for our work. The
specifications generated by our tool use the built-in sorts Bool and BitVec. All KeY
sorts, except boolean are translated as aliases of bit-vectors of different lengths. The
SMT bit-vector sort, BitVec is a parametrized sort which takes an integer as an
argument, representing the bit-size. For example the bit-vector sort of bit-size 5 is
specified like this: (BitVec 5).

The background theory of the SMT soler provides the interpreted functions shown
in table 2.1.

Instance of the bit-vector sort have the form (bv{value} size). For example, (bv2
3) is the bit-vector value 2 of size 3: 010.

2.2.5. Z3

Z3 [DMB08] is an SMT solver developed by Microsoft. It is currently one of the
best performing SMT solvers for specifications containing uninterpreted functions
and quantified bit-vectors, which is the reason why we chose it for our tool.

15

2. Preliminaries

Function Description
bvadd Adds two bit-vectors
bvsub Subtracts two bit-vectors
bvmul Multiplies two bit-vectors
bvsdiv Divides two bit-vectors
bvslt Signed lower than
bvsle Signed lower than or equals
bvsgt Signed greater than
bvsge Signed greater than or equals
concat Concatenates two bit-vectors
extract Extracts a sub-range from a bit-vector

Table 2.1.: Built-in functions for bit-vectors

16

3. Translation

In order to search for a counterexample of a KeY proof obligation we translate
the negation of that proof obligation to SMT, and provide the translation to the
solver. Because SMT solvers only support first order logic, we can only support proof
obligations which do not contain modal operators or updates. The KeY system is
capable of automatically applying the rules for symbolically executing a program and
applying all updates. Before the translation, the proof obligation is preprocessed as
described in Sections 3.3.2 and 3.5. Table 3.1 shows an overview of the translation.
The function τ translates terms and formulae from KeYFOL, described in Section
2.1.2, to SMT, described in Section 2.2.3. The rest of this section handles the
translation of interpreted functions and predicates.

3.1. The Type System

The KeY type system is specified using 8 SMT sorts: Bool, IntB, Heap, Object,
Field, LocSet, SeqB, and Any. Except for the built in sort Bool, all SMT sorts are
aliases of bit-vector sorts of different lengths. All KeY reference types, are translated
to the Object sort. The mapping of KeY types to SMT sorts is presented in Table
3.2.

For some SMT sorts the bit size is specified by the user, for others it is calculated
automatically. The user can specify the bit size for the IntB, Object, LocSet and
SeqB sorts. The bit sizes for the Heap and Field sorts are calculated by taking the
logarithm of the number of constants of the respective type in the proof obligation.
The bit size of the Any sort is computed by taking the maximum bit size of all SMT
sorts, which are subtypes of Any, and adding three bits for type information in order
to distinguish between the five subtypes of Any.

Depending on the bit sizes chosen by the user, some SMT sorts may end up as aliases
of bit-vectors of the same length. This will not cause any errors, since we cast the
terms to Any when they appear in an equality. This way the equality between
the instance of IntB corresponding to the bit-vector 0 and the instance of Object
corresponding to the same value will evaluate to false because of the different type
bits of the two sorts. Additionally, all proof obligations that need to be translated

17

3. Translation

KeYFOL SMT
τ(v), where v is an integer value (bv{v (mod 2intsize) } intsize)
τ(x), where x is a JavaDL variable or constant X, where X is an SMT variable

or constant
τ(p(t1, t2, . . . tn)) (p τ(t1) τ(t2) . . . τ(tn)), also declares

a boolean function p of the appropriate
types if not already done

τ(f(t1, t2, . . . tn)) (f τ(t1) τ(t2) . . . τ(tn)), also declares
a function f of the appropriate types
if not already done

τ(if φ then t1 else t2) (ite τ(φ) τ(t1) τ(t2))
τ(∀x : T F) (forall ((x τ(T))) τ(F))
τ(∃x : T F) (exists ((x τ(T))) τ(F))

Table 3.1.: Overview of the translation

KeY Type SMT Sort
Boolean Bool
Integer IntB
Heap Heap
Object Object
Field Field
LocSet LocSet
Sequence SeqB
Any Any

Table 3.2.: Mapping of KeY types to SMT sorts

are correctly typed, meaning that all functions and predicates have terms of the
appropriate type as arguments, since this property is required by the the JavaDL
syntax itself.

type bits value Any

Object

BInt

LocSet

Seq

Bool

Figure 3.1.: The SMT sorts

For each SMT sort S except Any, Heap, and Field membership predicates and cast
functions are declared, which check if an instance of Any is of type S, and cast
between S and Any. We declare the following functions for an SMT sort S:

1. isS : Any → Bool

18

3.1. The Type System

2. Any2S : Any → S

3. S2Any : S → Any

Each SMT Sort except Any, Heap, and Field has a unique bit pattern associated
with it, which is used to encode the actual subtype of Any as shown in figure 3.1.
The membership function simply checks if the appropriate bit pattern is used as
type bits. When casting from Any to S we need to find out the type of the instance
by looking at the type bits and then extract the bit-vector of the according size
from the right part of the instance if the type its match. If the instance of Any is
of the wrong type, the function returns the null and empty constants when casting
to Object and LocSet respectively. For the other sorts the result is left unspecified.
When casting from an SMT sort S to an Any we concatenate the type bits and, if
necessary, some fill up bits to the left.

In order to specify the Java reference types we define the following two predicates
for each reference type T :

1. instanceT : Object→ Bool

2. exactInstanceT : Object→ Bool

For an Object o and a reference type T , instanceT (o) is true if o is of type T , and
exactInstanceT (o) is true if o is of type T but not of any subtype of T or null.

null

T1

T2

T3 T4

Figure 3.2.: Example types for exactInstance specification

Let T be a reference type and C1, and . . .Cn be the children of T . Then we add
the following assertion regarding the exactInstanceT predicate:

∀o : Object exactInstanceT (o)→ instanceT (o) ∧
¬(instanceC1(o) ∨ . . . ∨ instanceCn(o)) ∧ o 6= null

The assertion states that if o is an exact instance of T , then it is of type T and not
of the type of any child of T and different from null. In the example presented in
Figure 3.2, T1 is the supertype of T2, T3 and T4 while null is the subtype of all
other types. In this case an object o being an exact instance of T1 implies that it is
not type of T2, T3 or T4 and that it is not null. The reverse implication is not valid,
because it would violate the modularity property of KeY, as explained in Section

19

3. Translation

2.1.1. Thus, the existence of objects different from null of an unknown subtype of
T1 must be permitted.

We distinguish reference types resulting from interface declarations and reference
types resulting from class declarations. The difference between these two categories
is that multiple inheritance is allowed for interfaces, but not for classes. Additionally,
we distinguish between abstract and concrete reference types. Abstract reference
types result from interface and abstract class declarations in Java. There are no
objects, which are exact instances of the abstract reference types. Concrete reference
types result from concrete class declarations in Java, and allow for exact instances.
In order to specify the type hierarchy for the reference types, we add assertions
regarding the two predicates for each reference type T . For the different categories
of reference types, we need to specify the following:

• interfaces : multiple inheritance allowed, exact instances not allowed

• abstract classes : multiple inheritance not allowed, exact instances not allowed

• concrete classes : multiple inheritance not allowed, exact instances allowed

java.lang.Object

C1I1 I2 C4

C2 C3 C5 C6

Figure 3.3.: Type hierarchy example. I1 and I2 are interfaces, C1 to C5 are classes.

Let T be a reference type resulting from an interface declaration, P1, . . .Pn the
parents of T . We add the following assertion regarding the instanceT predicate:

∀o : Object instanceT (o)→ (instanceP1(o) ∧ . . . ∧ instancePn(o) ∧
¬exactInstanceT (o)) ∨ o = null

The assertion states that an object of an interface reference type T is type of all
parents of T and not an exact instance of T . For the example presented in figure
3.3, we assert that an object of type I2 is also type of its parent, java.lang.Object,
and not an exact instance of I2. By not allowing an object of an interface type to
be an exact instance of that type, we force it to be an exact instance of one of its
(indirect) subtypes. In order to respect the modularity property of KeY, we must
allow the existence of objects of an interface type I, which are not instances of one
of the known subtypes of I. In our example we cannot simply state that an object
of type I2 is either an object of type C2 or an object of type C3; we allow objects,

20

3.1. The Type System

different from null, of type I2 which are neither of type C2 nor of type C3. For the
same reason, in the case of the interface type I1 we allow for objects different from
null of that type to exist.

java.lang.Object

C1 C4

C2 C3 C5 C6

Figure 3.4.: Concrete type hierarchy example

For a reference type hierarchy we define the concrete type hierarchy as the type
hierarchy which is obtained when contracting all interface types, which means that
we remove all interface types from the type hierarchy. All non-interface types with
only interface types as parents, will become direct subtypes of the java.lang.Object
type. The concrete type hierarchy, which results from the type hierarchy shown in
figure 3.3 is shown in figure 3.4. The interface types I1 and I2 have been contracted.
The type C2 is now a direct subtype of java.lang.Object. Since the type C3 had a
concrete supertype, the contraction has o effect on it, other than the removal of its
interface parents.

Let T be a concrete class reference type, P1, . . .Pm the parents in the original type
hierarchy , and S1, . . .Sn the siblings of T in the concrete type hierarchy. We add
the following assertion regarding the instanceT predicate:

∀o : Object instanceT (o)→ (instanceP1(o) ∧ . . . ∧ instancePm(o) ∧
¬(instanceS1(o) ∨ . . . ∨ instanceSn(o))) ∨ o = null

The assertion states that a concrete class type T is also the type of all of its parents,
including interfaces, but not the type of its siblings with regard to the concrete
type hierarchy. While this assertions allow concrete types to have multiple interface
types as parents, it allows only for one non-interface parent, thus disallowing multiple
inheritance. Assuming there is a concrete type T with two concrete types as parents,
because all concrete types are descendants of the java.lang.Object type,it is obvious
that T must be subtype of two concrete types S1 and S2, such that S1 and S2 are
siblings, which we do not allow.

For example, in the type hierarchy from figure 3.3 we state that objects of type
C5 cannot be of type C6. Because we state that an object of a concrete type is
also the type of its parents, and because we add similar assertions to all its concrete
parents we ensure that an object of a concrete type is also type of only those concrete

21

3. Translation

types, which lie on the path to java.lang.Object. In our example, by adding similar
assertions to all concrete types, we ensure that an object of type C5 is not of type
C1, C2, C3, and C6. We cannot add this assertions for interface types, because
in their case, multiple inheritance is possible. In the previous example, we cannot
state that an object of type C5 is not of type I1, because a type could exist, which
has both C5 and I1 as its parents. However, we do wish to state that an object of
type C5 is not of type C2. By removing the interface types from the type hierarchy,
before adding these assertions we achieve this goal. In figure 3.4 we can observe that
C2 has become a sibling of C4, and thus a C4 object cannot be a C2 object, and,
since all C5 objects are C4 objects, a C5 object cannot be a C2 object.

Let T be an abstract class reference type, P1, . . .Pm the parents in the original
type hierarchy , S1, . . .Sn the siblings of T in the concrete type hierarchy. We add
the following assertion regarding the instanceT predicate:

∀o : Object instanceT (o)→ (instanceP1(o) ∧ . . . ∧ instancePm(o) ∧
¬(instanceS1(o) ∨ . . . ∨ instanceSn(o)) ∧ ¬exactInstanceT (o)) ∨ o = null

The assertion states that an abstract class type T is also the type of all of its
parents, including interfaces, but not the type of its siblings with regard to the
concrete type hierarchy, and there cannot be any objects which are exact instances
of T . This assertion disallows multiple inheritance as well as exact instances for
abstract classes.

The assertions for the instance and exactInstance predicates are added only for
the types which occur in the proof obligation and for their supertypes up until
java.lang.Object. Ignoring the other types will have no effect on the correctness
of the translation. A model for the specification without the ignored types can be
transformed into a model for the specification with the ignored types, by adding
the missing instance and exactInstance predicates and interpreting them as false.
Since the assertions we add for the two predicates, when not ignoring them, are
implications with the predicates on the left hand side, these additional assertions
will be valid. Additionally the predicates may occur in the assertions regarding
the exactInstance predicate of other types, but since it appears in a disjunction, it
will also have no effect on the constraint. Unsatisfiable specifications without the
ignored types will remain unsatisfiable, because adding assertions cannot make them
satisfiable.

For concrete class reference types T we need to assert that if an object o is an exact
instance of T , then o is not type of any Interface I which is not a supertype of T .
Let T be a concrete class reference type and I1, . . . In the interfaces which are not
supertypes of T . We add the following assertion:

∀o : Object exactInstanceT (o)→ instanceT (o) ∧
¬(instanceI1(o) ∨ . . . ∨ instanceIn(o))

In the example shown in figure 3.3 we need to state for C3 objects that they are not
I1 objects.

22

3.2. Functions

Finally, we add an assertion stating that the null constant is of every known reference
type. Let T1, . . . Tn be all known reference types, we assert that:

instanceT1(null) ∧ . . . ∧ instanceTn(null)

3.2. Functions

In general, a JavsDL function or predicate f : (D1, D2, . . . Dn) → I is translated
using a declare-function command in SMT. Some functions, however, are translated
using built in SMT functions.

When the return type I is a reference type T , other than Object, an assertion is
added stating that for all inputs of the appropriate type, the result of the function
f is of type T .

3.2.1. Boolean and Integer Functions

For the translation of boolean and integer functions SMT built in functions are used
according to the table below:

JavaDL Function SMT Function
¬ not
∧ and
∨ or
→ =>
↔ =
= =
+ bvadd
− bvsub
∗ bvmul
/ bvsdiv
< bvslt
≤ bvsle
> bvsgt
≥ bvsge

Table 3.3.: Mapping of basic JavaDL operators to built in SMT operators

We interpret the bit-vectors values representing bounded integer as signed with

values ranging from −|IntB|
2

to
|IntB|

2
− 1. For this reason we use the signed SMT

comparison predicates.

Integer values are translated to bit-vector values. Should value v exceed the maxi-
mum or minimum integer value supported by the bound, the values are calculated
as (bv(v (mod 2intsize)) intsize), where intsize is the bit size of the IntB sort. The
result is equivalent to adding the bit-vector value 1 v times, if v is positive, and
subtracting 1 v times, if v is negative, starting in both cases from 0 and taking

23

3. Translation

overflows into consideration. For example if the bit size of IntB is 3, the value −5
will be translated as (−5 (mod 8)) = 3. The result is the same as subtracting 1
from −4, the minimum integer and obtaining 3, the maximum integer. On the other
hand, the value 6 will be translated as (6 (mod 8)) = 6, and since we use signed
bit-vectors it will be interpreted as −2, the result we would obtain when adding 1 6
times, starting from zero.

3.2.2. Cast Functions for Reference Types

We distinguish between two kind of cast functions. The first type performs casts be-
tween SMT sorts, and was covered in Section 3.1. The second type of cast functions
perform casts between reference types.

For a reference type T we declare the cast SMT function castT : Object → Object
and add the following assertion:

∀o : Object castT (o) = if(instanceT (o)) then o else null

3.2.3. Special Interpreted Constants

The constants null, empty, seqEmpty and seqOutside have the following semantics:

• null is defined as the Object with bit-vector value 0.

• empty is a LocSet constant for which the elementOf predicate always returns
false.

• seqEmpty is a constant of type SeqB for which the seqLength always returns
0.

• seqOutside is a constant of type Any which is returned when trying to access
a position outside the range of a SeqB.

3.2.4. The Wellformed Predicate

The wellformed property for heaps is modelled using the SMT function wellformed :
Heap→ Bool, which is defined as a conjunction of four assertions.

The first assertion states that all objects referenced in the heap are either null or
created:

∀o : Object ∀f : Field Any2Object(select(h, o, f)) = null ∨
Any2Bool(select(h,Any2Object(select(h, o, f)), created))

Because the Any2Object cast function returns a default value of null, in case when
the argument is not an object, we do not need to consider this cases.

The second assertion states that all location sets stored in the heap contain only
objects which are created or null:

24

3.3. Preserving the Semantics of Interpreted Functions

∀o : Object ∀f : Field ∀o1 : Object ∀f1 : Field

elementOf(o1, f1, Any2LocationSet(select(h, o, f)))

→ o1 = null ∨ Any2Bool(select(h, o1, created))

Similarly to the Any2Object function, the Any2LocSet function returns default
value of empty and we do not need to consider the cases in which the result of the
select function is not of type LocSet.

The third assertion states that all results of the select function are of the correct
type. For each field f of SMT sort S and, optionally, the Java reference type T we
assert that:

∀o : Object isS(select(h, o, f)) ∧ instanceT (Any2Object(select(h, o, f)))

Finally, the fourth assertion states that the contents of arrays stored in the Heap
are of the correct type. For each arrayType T[] of smt type S(Object, IntB, Bool
depending on T) and possible java reference type T we assert that:

∀i : IntB ∀o : Object instanceT [](o) ∧ o 6= null→ isS(select(h, o, arr(i))) ∧
instanceT (Any2Object(select(h, o, arr(i))))

In order to remain satisfiable, we make an exception for the null Object. Because
null is of every type it is of every array type, and, thus its contents would be of all
possible types including IntB and Object, which is impossible.

3.3. Preserving the Semantics of Interpreted Func-

tions

We need to preserve the semantics for all interpreted functions (e.g. the store
function) which appear in the proof obligation, otherwise the SMT solver will make
use of incorrect interpretations for such functions in order generate counterexamples.
For example if no semantics is specified for the store function, the solver could
generate a counterexample in which the store function returns the heap it received
as an input, which would be incorrect. Such counterexamples would be spurious,
and we must avoid them.

This can be achieved in two ways. We could translate the relevant rules to SMT
which would specify the semantics of these functions for all possible inputs, but
this approach has numerous disadvantages. As an alternative we could specify the
semantics of the functions only for inputs which appear in the proof obligation.

25

3. Translation

3.3.1. Translating Rules

Using existing functionality in KeY we can translate taclets from the taclet language
to KeY first order logic. Then we can perform the translation from KeY first order
logic to SMT. In order to specify the semantics of the store function the translation
of the selectOfStore rule is needed:

∀h : Heap ∀o : Object ∀f : Field

∀v : Any ∀o1 : Object ∀f1 : Field

select(store(h, o, f, v), o1, f1) =

if(o = o1 ∧ f = f1 ∧ f 6= java.lang.Object :: created)

then v else select(h, o, f)

Two problems arise from this approach. First, we need to introduce an assertion
containing 6 quantifiers, which affects the performance of the SMT solver. Second, in
order for this assertion to be satisfiable the size of the heap sort has to be carefully
set. It needs to be large enough to support all possible heaps which can result
from the store function. We can consider the heap sort a two dimensional array
of size |Object| × |Field| which contains values of type Any. The number of heaps
|Heap| which we need to support is |Any||Object|·|Field|. This number is huge, even
for examples with few objects and fields, and would severely affect the performance
of the SMT solver.

For these reasons we cannot use this approach and we are forced to look for alter-
natives.

3.3.2. Specifying Semantics only for Necessary Inputs

In order to obtain a correct counterexample it is not always necessary to specify
the semantics of interpreted functions for all possible inputs. We can provide a
specification for those inputs which appear in the proof obligation.

This is achieved by replacing all interpreted function calls with their semantics. We
call this approach semantic blasting.

The functions dealing with heaps, location sets, and sequences, however, do not have
a direct definition. Their semantics is specified using so called observer functions
like select, elementOf , get, and length.

For functions and predicates, which do not have to occur as argument of an observer
function, semantic blasting is straightforward: we apply the necessary rule. Such an
example is the replacement the subset predicate by using the subsetToElementOf
rule, as described in Section 2.1.5.

There are functions and predicates for which we can perform a straightforward re-
placement only if they appear as an argument of an observer function. For example
for the store function we can apply the selectOfStore rule only if we encounter a
term select(store(h, o, f, v), o1, f1) where the store function appears as an argument
of the select function.

For the cases in which the interpreted function call is not an argument of an observer
function we perform the semantic blasting in three steps:

26

3.4. Fields and Arrays

1. We use the pullout rule on the term to replace it with a constant and add an
equality to the antecedent

2. We use an extensionality rule on the equality added to the antecedent

3. On the right side of the equation the interpreted function call will appear as
an argument of the observer function, and we can apply the appropriate rule.

In the following example, the first sequent contains a function f , which has the union
of two location sets A and B as its parameter:

1. ⇒ f(union(A,B))

2. U = union(A,B)⇒ f(U)

3. ∀o : Object ∀f : Field elementOf(o, f, U)↔ elementOf(o, f, union(A,B))⇒
f(U)

4. ∀o : Object ∀f : Field elementOf(o, f, U)↔ elementOf(o, f, A)
∨elementOf(o, f, B)⇒ f(U)

We wish to replace the sequent with an equivalent sequent which does not contain
the union function symbol. We can achieve this by applying the elementOfUnion
rule, but we can only apply this rule when we have the union function call as an
argument of the elementOf function call. In the second step, we apply the pullout
rule on the union term, which replaces it with a constant U and adds an equality in
the antecedent, stating that U is equal to union(A,B). In the third step, we apply
the equalityToElementOf rule, which represents the extensionality property for sets
and get that all locations, which are element of U are also element of union(A,B).
On the right side of the equivalence we now have a term on which we can apply the
elementOfUnion rule, which we do in the last step. After completing the four steps
we have an equivalent proof obligation, which no longer contains the union symbol.

After semantically blasting a sequent we obtain an equivalent sequent, which no
longer contains function symbols for heaps, location sets and sequences other than
observer functions. Additionally the sizes can be lower than when translating taclets
and only the semantics of those functions, which are actually used in the proof
obligation, is translated. This technique cannot be applied to recursive functions and
the loss of the universally quantified axioms can lead to spurious counterexamples
as shown in Section 3.7.

3.4. Fields and Arrays
The bit size of the SMT sort Field is automatically calculated by taking the logarithm
of the number of Field constants encountered in the proof obligation and adding the
resulting bit size to the bit size of IntB. The bit size of IntB needs to be added
because of the way in which arrays are modelled. Arrays are instances of the SMT
sort Object. Their contents are accessed using array fields. These array fields are
produced by the arr function, which is declared as arr : IntB → Field.

The arr function is defined as a function, which simply increases the size of a bit-
vector value, by concatenating zeroes to the left, leaving the value intact.

For each named field constant encountered in the proof obligation, we define an SMT
constant function of an unique value, not in the image of the arr function. This way
we ensure that all fields are distinct.

27

3. Translation

3.5. Class Invariants and Model Fields

The class invariant is modelled using the SMT predicate
classInvariant : Heap×Object→ Bool. In order to avoid spurious counterexamples
we need to translate the semantics for this predicate. The semantics of this predicate
results from the invariant formula specified for each reference type T . Let invT [h, o]
be the invariant formula for the reference type T . We add the following formula to
the antecedent of the proof obligation for each reference T :

∀h : Heap ∀o : Object instanceT (o)→ (classInvariant(h, o)→ invT [h, o])

The formula states that for objects of reference type T the invariant implies the
invariant formula of T . The invariant formula invT [h, o] cannot imply the invariant
predicate in this case because o may be a subtype of T and its invariant formula
may be more specific, as shown in the following example:

Listing 3.1: Invariant Example

1 class C{

2 /*@ invariant x >= 5; */

3 protected int x;

4 }

5

6 class U extends C{

7 /*@ invariant x == 5; */

8 }

Listing 3.1 shows two Java classes C and U which both have an invariant specified
in the JML specification language. Suppose we have an object o of type C with
o.x = 6. The object o satisfies the invariant term of C, because o.x is larger or equal
to 5, however we cannot affirm that the invariant for o holds, since o may be of the
subtype U , and in this case the invariant would require o.x to equal 5. Even if a
class like U is not provided by the user, we still cannot use the reverse implication,
because it would violate the modularity property of KeY.

For the case in which it is known that an object o is an exact instance of a reference
type T we may replace the second implication with an equivalence and add the
following formula to the antecedent:

∀h : Heap ∀o : Object exactInstanceT (o)→ (classInvariant(h, o)↔ invT [h, o])

Similarly to the class invariants, each reference type T can have several specified
model fields, which have a definition term modelfield[h, o]. The model fields are
translated as functions modelfield : Heap × Object → Any. In order to preserve
the semantics of these functions we add the following formula to the antecedent of
the proof obligation:

∀h : Heap ∀o : Object exactInstanceT (o)→ (modelfield(h, o) = modelfield[h, o])

28

3.6. Preventing Integer Overflows

The formulae for class invariants and represents clauses are added to the antecedent
of the proof obligation in order to be able to semantically blast them, because they
may contain interpreted functions.

3.6. Preventing Integer Overflows

When dealing with integer constraints, the solver may find counterexamples using
integer overflows. Such a counterexample is spurious when the default KeY integer
semantics of mathematical integers is used. For this reason it is necessary to provide
additional assertions in order to prevent the solver from finding such a counterex-
ample.

Let us consider the formula ¬(a > 0∧a+1 > 0) where a is an integer constant. The
SMT solver will try to find a value larger than zero for a such that a+ 1 will not be
larger than zero. This formula is unsatisfiable in the default KeY integer semantics
with an infinite number of integers. However, we translate the KeY integer sort as
the IntB SMT sort which is an alias for a bit-vector sort. This is why the SMT
solver will be able to find a model for this formula: it will assign the largest positive
integer value (within the size of IntB) maxInt to a and the result of a + 1 will be
minInt. This model is spurious.

The general idea is to find all terms which can cause an overflow and increase the bit
size of these subterms and assert that the result of the same arithmetic operation on
the increased bit-vectors is not greater than maxInt or smaller than minInt. We
increase the bit-vectors using a function incr.

For addition and subtraction we increase the bit-vector size by 1, for multiplica-
tion we double the bit-vector size. The size of the bit-vectors increased by using
the concat function: for positive bit-vectors we concatenate zeroes to the left, for
negative bit-vectors we concatenate ones to the left.

For an arithmetic operation op which may overflow, and for each term of the form
op(x, y) occurring in the proof obligation we generate a guard stating that the result
of applying the operation on larger bit-vectors is lower than or equal to the maximum
integer:

op(incr(x), incr(y)) ≤ incr(maxInt)

Additionally we generate a guard stating that the the operation on larger bit-vectors
is larger than or equal to the minimum integer:

op(incr(x), incr(y)) ≥ incr(maxInt)

These guards are added to the formula of the outer most quantifier such that all
quantified variables remain quantified and guards for ground terms are added as
separate assertions. For universal quantifiers the guards imply the formula, for
existential quantifiers we use conjunction. The supported operations are addition,
subtraction and multiplication.

29

3. Translation

3.7. Limitations of our approach

3.7.1. Spurious counterexamples

The tool currently supports function symbols for the Boolean, Integer (partially),
Heap, Field, Object, LocSet, and Sequence (partially) types. Examples for not sup-
ported function symbols are bsum, bprod, and indexOf . Should the proof obligation
contain a not supported function symbol, it will translate the respective function as
an uninterpreted function, giving the SMT solver the liberty of choosing its seman-
tics, which can result in spurious counterexamples.

Even for proof obligations containing only supported functions, we can still obtain
spurious counterexamples. The first reason for obtaining a spurious counterexample
is the presence of integer values larger than the bound for the type integer. In this
case the translation applies the modulo function on those values and the resulting
value may cause a spurious counterexample. Assuming the bit-size for the IntB SMT
sort is 3 let us consider the following unsatisfiable formula:

a = 2 ∧ b = 8→ a > b

The maximum positive value for the IntB sort is 3. Because the formula contains
the value 8 > 3, the value will be interpreted as 8 (mod 8) = 0 . The formula that
is actually given to the solver is valid:

a = 2 ∧ b = 0→ a > b

For the same reason, the solver may claim a formula is unsatisfiable, when in fact
it is not. In order to avoid this kind of problems, the user should set the integer
bit-size high enough.

Another reason for obtaining spurious counterexamples is the translation of infinite
types as finite types. While in KeY the integer type is unbounded, we translate it to
the IntB SMT sort, which is bounded. In such cases, the implicit assertion stating
that the KeY type is infinite is lost in the translation. Let us consider the following
formula:

∀i : Int ∃j : Int i < j

This formula is obviously valid when using mathematical integers. However, when
using a bounded type for integers, there will always be a maximal value, no matter
what bit-size is used. This kind of spurious counterexamples cannot be avoided,
because they do not depend on the sizes of the SMT sorts.

A third cause for spurious counterexamples is the usage of semantic blasting instead
of translating the necessary rules for preserving the semantics of functions and pred-
icates. One of the reasons for using semantic blasting was the fact that many of

30

3.7. Limitations of our approach

these rules required the existence of a great number of instances of the Heap, LocSet
and Sequence sorts, thus requiring large bit-sizes for these sorts. The problem arises
when the existence of an instance of one of these sorts is required in order for the
specification to be satisfiable, and if this instance does not appear in the proof obli-
gation. For instance if the specification states that there is a sequence with length
1, the SMt solver may return a spurious counterexample, in which all sequences are
of length different than 1, because the semantics of functions needed to construct
such a sequence translated entirely.

3.7.2. Increasing confidence in proof obligations

Because all SMT sorts are bounded, the translation cannot be used for proving
formulae. If a specification turns out to be unsatisfiable for some SMT sort bounds,
we cannot conclude that it is unsatisfiable for all bounds. However, the fact that no
counterexample was found may increase the confidence of the user in the validity of
the proof obligation.

3.7.3. Deviations from the Current Implementation of KeY

The greatest deviation from KeY is the fact that we use bounded sorts, whereas in
KeY all types except Bool are unbounded.

In order for the semantic blasting procedure to work on heaps we had to introduce
an extensionality rule for heaps.

The default values null and empty for casting to Object and LocSet (the functions
Any2Object and Any2LocSet) are also deviations from the implementation of KeY,
which does not specify any value for the case in which the cast fails.

31

4. Implementation

4.1. Overview

Before verifying a proof obligation, the user can adjust the following settings:

• timeout: Specify for how long the SMT solver will search for a conclusion

• bit-sizes for the SMT-sorts.

Starting with a proof obligation in KeYFOL the user has to perform the following
steps:

1. Use the Add Class Axioms macro on the proof obligation for adding the asser-
tions described in Section 3.5.

2. Use the Semantic Blasting macro on the proof obligation for semantically
blasting the supported non-observer functions as described in Section 3.3.2.

3. Use an SMT solver to perform bounded verification.

There are three possible outcomes to the bounded verification.

1. valid : The resulting specification is not satisfiable for the chosen bounds.

2. timeout : The solver could not reach a conclusion in the given time.

3. counterexample: The solver was able to find a counterexample, the user can
analyse the counterexample.

4.2. Semantic Blasting

This section describes the implementation of the semantic blasting procedure pre-
sented in section 3.3.2.

Semantic blasting is implemented using a KeY macro. The macro controls the
application of three types of rules:

33

4. Implementation

1. Semantics rules

2. Extensionality rules

3. Pullout rules

Semantic rules replace a JavaDL formula containing a function symbol f with an
equivalent formula which no longer contains the function symbol. Examples for such
rules are the selectOfStore, selectOfCreate and elementOfUnion rules.

Extensionality rules replace the equality with the observer functions for the Heap,
LocSet and Sequence data types in KeY. The extensionality rules are equalityToSelect,
equalityToElementOf and equalityToSeqGetAndSeqLength.

Pullout rules are apply the pullout rule on certain terms. The only terms which
are allowed to be pulled out, are those having a functions symbol for which we can
apply a semantics rule.

The macro assigns the highest priority to semantics rules, lower priority to exten-
sionality rules and lowest priority to pullout rules.

4.3. Counterexample Extraction

If the translation of the negated proof obligation is satisfiable, the SMT solver will
also provide a model serving as counterexample for the proof obligation. In the case
of the Z3 solver, the counterexample consists of function definitions. However, these
function definitions are very hard for a human to read, because of the large number
of auxiliary functions, the solver uses in the function definitions. If we inline the
auxiliary definitions, we often get very large nested if-then-else statements, which
are also very difficult to read. We address this issue by extracting the values which
interest the user and present them in a human readable format.

If a counterexample has been successfully generated by the solver, we extract the
relevant values from it and put them in our own model data structure. This data
structure can be presented to the user in a various ways.

For the non-auxiliary functions, not all values are of interest to the user. For example,
the user will care about the values of the select function only for the heaps which
appear as constants in the proof obligation, and not for all heap values.

Listing 4.1: Specified Java Class

1 public class A {

2 private int x;

3 /*@

4 requires x == 2;

5 ensures x == 4;

6 @*/

7 public void f(){

8 x++;

9 }

10 }

34

4.3. Counterexample Extraction

In the Java program specified with JML shown in Listing 4.1 the class A contains
a field x of type int and a method f which increments the value of x. The method
contract of f states that if x is 2 in the initial state, it will be 4 in the post state.
This contract can obviously not be fulfilled, and we expect a counterexample in
which x is 2 in the initial state and 3 in the post state. The z3 SMT solver does find
a counterexample for this example, however the output of the z3 solver, shown in
Listing 4.2 is difficult for humans to read. The select function which is of interest
in this example is defined using the auxiliary functions select !38, k!35 and k!34
which do not appear in the proof obligation, and are meaningless to the user. In
order to make the counterexample more readable for the user, we need to extract
the information which is of interest to the user and present it in a user friendly way.

Listing 4.2: z3 output for 4.1

1 (model

2 (define-fun empty () (_ BitVec 1)

3 #b1)

4 (define-fun store_0 () (_ BitVec 1)

5 #b1)

6 (define-fun elem!28 () (_ BitVec 4)

7 #x8)

8 (define-fun seqGetOutside () (_ BitVec 6)

9 #b101010)

10 (define-fun seqEmpty () (_ BitVec 1)

11 #b0)

12 (define-fun heap () (_ BitVec 1)

13 #b0)

14 (define-fun self () (_ BitVec 1)

15 #b1)

16 (define-fun length ((x!1 (_ BitVec 1))) (_ BitVec 3)

17 #b000)

18 (define-fun seqGet ((x!1 (_ BitVec 1)) (x!2 (_ BitVec 3))) (_ BitVec 6)

19 #b101010)

20 (define-fun k!35 ((x!1 (_ BitVec 1))) (_ BitVec 1)

21 (ite (= x!1 #b1) #b1

22 #b0))

23 (define-fun k!29 ((x!1 (_ BitVec 1))) (_ BitVec 1)

24 (ite (= x!1 #b1) #b1

25 #b0))

26 (define-fun k!33 ((x!1 (_ BitVec 6))) (_ BitVec 6)

27 (ite (= x!1 #b000001) #b000001

28 #b000000))

29 (define-fun seqLen ((x!1 (_ BitVec 1))) (_ BitVec 3)

30 #b000)

31 (define-fun Any2IntB ((x!1 (_ BitVec 6))) (_ BitVec 3)

32 (ite (= x!1 #b101010) #b010

33 (ite (= x!1 #b101000) #b000

34 ((_ extract 2 0) x!1))))

35 (define-fun exactInstanceOf_A!36 ((x!1 (_ BitVec 1))) Bool

36 (ite (= x!1 #b0) false

37 true))

38 (define-fun exactInstanceOf_A ((x!1 (_ BitVec 1))) Bool

35

4. Implementation

39 (exactInstanceOf_A!36 (k!29 x!1)))

40 (define-fun Any2Bool!37 ((x!1 (_ BitVec 6))) Bool

41 (ite (= x!1 #b000000) false

42 true))

43 (define-fun Any2Bool ((x!1 (_ BitVec 6))) Bool

44 (Any2Bool!37 (k!33 x!1)))

45 (define-fun classInvariant ((x!1 (_ BitVec 1)) (x!2 (_ BitVec 1))) Bool

46 true)

47 (define-fun k!34 ((x!1 (_ BitVec 4))) (_ BitVec 4)

48 (ite (= x!1 #x8) #x8

49 #x9))

50 (define-fun select_!38 ((x!1 (_ BitVec 1))

51 (x!2 (_ BitVec 1))

52 (x!3 (_ BitVec 4))) (_ BitVec 6)

53 (ite (and (= x!1 #b0) (= x!2 #b1) (= x!3 #x8)) #b101010

54 (ite (and (= x!1 #b1) (= x!2 #b1) (= x!3 #x8)) #b101011

55 (ite (and (= x!1 #b0) (= x!2 #b0) (= x!3 #x9)) #b000000

56 (ite (and (= x!1 #b1) (= x!2 #b0) (= x!3 #x8)) #b101000

57 (ite (and (= x!1 #b0) (= x!2 #b0) (= x!3 #x8)) #b101000

58 (ite (and (= x!1 #b1) (= x!2 #b0) (= x!3 #x9)) #b000000

59 #b000001)))))))

60 (define-fun select_ ((x!1 (_ BitVec 1)) (x!2 (_ BitVec 1)) (x!3 (_

BitVec 4))) (_ BitVec

61 6)

62 (select_!38 x!1 (k!35 x!2) (k!34 x!3)))

63 (define-fun typeof_A ((x!1 (_ BitVec 1))) Bool

64 true)

65 (define-fun elementOf ((x!1 (_ BitVec 1)) (x!2 (_ BitVec 4)) (x!3 (_

BitVec 1))) Bool

66 false)

67)

We represent the model internally using the Model Java class. A model contains
constant values, heaps, location sets and sequences. Heaps contain objects, which
contain field values. Additionally, the objects contain information regarding their
reference type, their length and their status as exact instance.

There are two ways in which we can extract the necessary data from the gener-
ated counterexample. First, we can parse the function definitions provided by the
SMT solver in the SMT-LIB 2 language and then evaluate them for the values we
are interested in. The main disadvantage in this case is the fact that we need to
ensure that our implementation of the evaluation function has the same semantics
like the one used by the SMT solver. We also need to offer support for all built
in SMT operators, which may appear in the function definitions. A second way to
extract the required data is to use the get− value command. This command takes
a (ground)term as an argument and returns the result of its evaluation. The main
advantage is that we can be sure that the value we get is correct, but we need to
manage the communication between KeY and Z3 processes, which is more compli-
cated than the first solution. We have opted for the second solution, because we do
not need to support the evaluation of all built in SMT functions.

36

4.3. Counterexample Extraction

Model

Constant
+id: String
+value: String

Object
+length: int
+type: Sort
+exactInstance: boolean

LocationSet
+id: String

Sequence
+id: String
+length: int

NamedField
+id: String
+value: String

ArrayField
+id: String
+value: String

Location
+id: String

SequenceField
+id: String
+value: String

Figure 4.1.: The model data structure

KeY Z3

get object types

object types

get field values, locsets, lengths, exactInstance , invariants, sequence lengths

field values, locsets, lengths, exactInstance , invariants, sequence lengths

array contents

sequence contents

get array contents

get sequence contents

Figure 4.2.: Communication between KeY and the SMT solver

As shown in figure 4.2, for the case in which a counterexample has been found, the
data is extracted in the following steps:

1. Extract the type of each object

2. Extract the values for constants, named location sets, and relevant named
fields for object, the lengths for all objects, and the lengths for all sequences

3. Extract the values for array fields for objects with length greater than or equal
to 1

4. Extract the values for for sequences with length larger than 1

In order to communicate with the solver we use the class AbstractQuery, shown
in Figure 4.3, which has two methods: getQuery(), which returns the get − value
command that we wish to send to the solver and the setResult(String) method,
which is used to parse and store the response we get from the solver. For each step
the necessary Query Objects are created and added to a queue. The queue is then

37

4. Implementation

processed and for each element the get− value command is sent to the solver, and
the response is then parsed and stored to the element. When all queries have been
processed, the parsed responses are then used to add the relevant data to the model.

AbstractQuery

+getQuery(): String
+setResult(Query:String): void

ObjectLengthQuery

ConstantQuery

ExactInstanceQuery

ObjectTypeQuery

FieldQuery

LocSetQuery

SeqFieldQuery

SeqLengthQuery

ArrayFieldQueryObjectInvQuery

Figure 4.3.: The different query classes

4.4. Counterexample Presentation

The model class can be represented in different ways to the user. The most basic
solution, which is currently implemented is to generate a human readable text and
show it the the user.

After all the relevant data has been extracted, we format all values v, depending on
their type:

• heaps: #hv

• objects: #ov

• fields: #fv

• sequences: #sv

• boolean: true/false

• integers: signed decimal format

For example, #h1 represents the heap corresponding to the bit-vector value 1 and
#o4 represents the object corresponding to the bit-vector value 5. Additionally, for
all object fields, if the value of that fields is equal to a constant than the name of
that constant is written next to the value.

For example the text generated by the tool for the example shown in Listing 4.1 we
present listing 4.3.

Listing 4.3: A counterexample in text form for 4.1

1 Constants

2 -----------

3 heap = #h0

38

4.4. Counterexample Presentation

4 store_0 = #h1

5 seqEmpty = #s0

6 |A::x| = #f8

7 |java.lang.Object::<created>| = #f9

8 empty = #l1

9 seqGetOutside = #a42

10 self = #o1

11 null = #o0

12

13 Heaps

14 -----------

15 Heap heap

16 Object #o0/null

17

18 Object #o1/self

19 length = 0

20 type =A

21 exactInstance =true

22 |A::x| = 2

23 |java.lang.Object::<created>| = true

24 classInvariant = true

25

26 Heap store_0

27 Object #o0/null

28

29 Object #o1/self

30 length = 0

31 type =A

32 exactInstance =true

33 |A::x| = 3

34 |java.lang.Object::<created>| = true

35 classInvariant = true

36

37 Location Sets

38 -----------

39 #l0 = {}

40 #l1 = {}

41

42 Sequences

43 -----------

44 Seq: #s0/seqEmpty

45 Length: 0

46

47 Seq: #s1

48 Length: 0

The text form comprises four sections:

1. Constants

2. Heaps

3. Location Sets

39

4. Implementation

4. Sequences

The Constants section shows the value for each constant.

The Heaps section shows for each heap occurring in the proof obligation the relevant
information for all objects in that heap. For each object the length and type are
shown. The type shown is the most specific type that could be determined. Addi-
tionally for each object we show if it is an exact instance of its type. By determining
the type of the object we also find out what fields are declared in its class. The
values of those fields are shown next. Furthermore, for each object in each heap
we show the result of all functions, which take a heap and an object as arguments.
One such function is the classInvariant function, and for model fields other such
functions may be generated. Finally, for objects with length greater than 0 and of
an array type, the values of the array fields are shown.

The Location Sets section displays all location sets with the locations they contain.

The Sequences section displays the length and contents of all sequences.

40

5. Evaluation

We evaluate the correctness of our application and the feasibility of our approach,
by running it on proof obligations which can be automatically closed by KeY, as well
as on proof obligations which cannot be automatically closed.

5.1. Proof Obligations Expected to be Valid

Since we consider the sequent calculus and KeY to be correct, our tool should not
generate any counterexamples for proof obligations which can be closed by KeY,
except for the cases mentioned in section 3.7.

We tested our tool using a bit size of 3 for each sort. The proof obligation we tested
are the ones which remain after running the symbolic execution macro. We used a
timeout of 5 minutes. The proof obligations presented in Table 5.1 originate from
the specification of the Java program B.1. The proof obligations from the table were
obtained after symbolically executing the methods and then applying all updates.
All methods contracts could be automatically proven by KeY. For the two proof
obligations, where we got timeout, we have tried to lower the bit sizes for the integer
and object sorts and we got the expected result.

5.2. Proof Obligations Expected to be Invalid

In this section we present the results our tool achieved when processing not auto-
matically closable KeY proof obligations. Besides the bit size of 3, which we also
used in the previous section, we also tried increasing it to 4. Again, the timeout was
set to 5 minutes.

5.2.1. Specifications with Unknown Faults

In this section we will present the counterexamples for specifications containing faults
not known to us when testing the tool. It is important to note, that the this object
is called self , internally, in KeY.

41

5. Evaluation

Method Contract Proof Obligation Bit-size 3 Bit-size 2
Normal Execution timeout valid

Null Reference valid valid
add IndexOutOfBounds valid valid

ArrayStoreException valid valid
Pre valid valid

NullReference valid valid
IndexOutOfBounds valid valid
Normal Execution valid valid

get(Normal) NullReference valid valid
IndexOutOfBounds valid valid
Normal Execution1 valid valid

ClassCastException1 valid valid
NullReference1 valid valid

set(Exceptional) IndexOutOfBounds1 valid valid
Normal Execution2 valid valid

ClassCastException2 valid valid
NullReference2 valid valid

Normal Execution valid valid
NullReference1 valid valid

set(Normal) IndexOutOfBounds1 valid valid
ArrayStoreException valid valid

NullReference2 valid valid
IndexOutOfBounds2 valid valid

Post timeout valid
trimToSize(Normal) 0 Pre valid valid

NullReference1 valid valid
NullREference2 valid valid

trimToSize(Normal) 1 NormalExecution valid valid
NullReference valid valid

Table 5.1.: Results for closable proof obligations

Method Contract Bit-size 3 Bit-size 4
Cell::setX counterexample counterexample

Saddleback::search counterexample counterexample
SimplifiedLL::remove counterexample counterexample

ArrayList::indexof counterexample timeout
ArrayList::clear counterexample timeout

BinarySearch::binarysearch counterexample counterexample
Anon::m counterexample counterexample

RingBuffer::push counterexample counterexample
RingBuffer::pop counterexample counterexample

Table 5.2.: Results for not closable proof obligations

42

5.2. Proof Obligations Expected to be Invalid

5.2.1.1. Method Cell::setX

When running our tool on the open proof obligation of the Cell::setX method de-
scribed in listing D.1, we obtained the counterexample shown in listing D.2.

The method is a setter for the field x. However, in its contract an assignable clause
states, that the method may only modify values from the footprint location set,
which is a model field. The footprint of a Cell object contains only the field y
and thus a violation of the assignable clause occurs. The counterexample shows the
location set footprint for the self object, containing only y.

5.2.1.2. Method Saddleback::search

When running our tool on the open proof obligation of the Saddleback::search
method described in listing F.1, we obtained the counterexample shown in listing
F.2.

The Saddleback::search method searches for a value inside an two dimensional integer
array. The open proof obligation lies on the branch trying to prove the initial validity
of the loop invariant. For this reason, when analysing the generated counterexample,
we will check for the given array and value if the invariant is true when entering
the loop. From the counterexample we can see that the array is {{1, 1, 2}} and
the searched value is 0. Before reaching the invariant we observe that the values
for the local variables x and y are 0 and 2 respectively. We notice that the loop
invariant contains a decreases statement. When evaluating the term of the decreases
statement, we realize that it is equal to −1. For this reason the loop invariant is
violated, since decreases terms are required to be larger than or equal to zero at all
times.

5.2.1.3. Method SimplifiedLL::remove

When running our tool on the open proof obligation of the SimplifiedLL::remove
method described in listing E.1, we obtained the counterexample shown in listing
E.2.

The SimplifiedLL::remove method removes the ith Node from a linked list. The
SimplifiedLL class has a field first, which points to the first node of the list, and
a field size, giving the number of nodes in the list. Additionally a model field
nodeseq of the type Sequence has been added in order to reason about the list.
The SimplifiedLL class contains an invariant stating, among other things, that all
elements of the sequence are of type Node. In the method contract of the Simpli-
fiedLL::remove method it is stated that after the call, the nodeseq in the new list
will be the concatenation of the subsequences from 0 to i − 1 and from i + 1 to
nodeseq.length− 1.

Looking at the self object inside the initial heap we see that both the list and
the sequence contain the following nodes: {#o4,#o1,#o2} and the field size has
the value of 3. After removing the element with index 2, in the store 0 heap the
list contains as expected the following nodes: {#o4,#o1}, the sequence, however,
contains only one node: {#o4}. The field size has the expected values of 2. Since
the class invariants states that all elements of the sequence with indexes from 0
to size − 1 are of type Node, we can observe that the method violates the class
invariant. The reason for the disappearance of the Node #o1 from the sequence lies
in the seqSub function definition.

43

5. Evaluation

5.2.1.4. Method ArrayList::indexof

When running our tool on the open proof obligation of the ArrayList::indexof method
described in listing B.1, we obtained the counterexample shown in listing B.3.

The ArrayList::indexof method returns the first position where the parameter object
o can be found, or−1 if the object is not in the list. In the generated counterexample,
the self object is the empty Arraylist, and thus the result would always be −1. The
reason why this is a counterexample is because it violates the second ensures clause in
the method contract. This clause makes the outrageous claim, among other things,
that if the object o is not found in the list, then the result must be greater than
zero.

5.2.1.5. Method ArrayList::clear

When running our tool on the open proof obligation of the ArrayList::clear method
described in listing B.1, we obtained the counterexample shown in listing B.2.

The ArrayList::clear method sets all elements of the elementData field of type
Object[] to null, and sets the size field to 0. The ArrayList class also contains
a model field, repr, of type sequence, and the ArrayList::clear method sets this
sequence to seqEmpty.

When we look at the generated counterexample, we see, that the self object has
the empty sequence as the repr field, that the elementData field points to an array
{null, null}, and that the size field has the value 0. It would seem that the ArrayList
is already ”cleared”, yet the specification is violated despite this. Since the size at-
tribute is 0, the first while loop has no effect. The loop invariant, however, states that
the loop can modify all contents of the elementData array. Because the locations
which can be modified by the loop are anonymized, we can observe in the store 0
heap, that this has actually happened, and the contents of the elementData array
are now {#o2, null}. We can now see that the method violates its contract, which
claims that all elements of the elementData array will be null after the method
returns.

5.2.2. Specifications with Known Faults

In this section we will present the obtained counterexamples for specifications with
faults which we injected.

5.2.2.1. Method BinarySearch::binarysearch

When running our tool on the open proof obligation of the BinarySearch::binarysearch
method described in listing A.1, we obtained the counterexample shown in listing
A.2.

The code is an iterative implementation of the binary search algorithm. A value v is
searched for in a sorted array a. The value is searched in a range starting from index
l to r which at the beginning is the entire array. The searched value v is compared
with the middle of this range, and, depending on the result of this comparison, either
the index of the middle range is returned, or the middle index is set as the left or
right margin of the range. This way if the value is not found, the length of the range

44

5.2. Proof Obligations Expected to be Invalid

is halved after each iteration. We changed the way the middle index of the range is
calculated in line 21 by dividing through 4 instead of 2. This way the mid variable
will no longer point to the middle of the range, but right after the first quarter of
the range.

The counterexample found by the tool has the input values a = {0, 0, 1} and v = −4.
The values for l and r before entering the loop will be 0 and 2 respectively, and the
loop invariant is initially valid. In the first iteration mid has the value of 0 and
because a[0] is greater than the searched value, mid is assigned to r and at the end
of the first iteration we will have l = 0 and r = 0. This violates the loop invariant,
which states that l < r.

5.2.2.2. Method Anon::m

When running our tool on the open proof obligation of the Anon::m method de-
scribed in listing C.1, we obtained the counterexample shown in listing C.2.

The Anon class has two fields, the next field points to another object of the Anon
type, and the x field of type int. The class has an additional method, modx, which
has no code, but its specification states that it can modify x. The contract which
needs to be proven asks that if the value of this.x = 0 in the initial state, it will also
be 0 after calling the method modx on the next object of the next object.

In the counterexample we can observe that in the initial heap, heap, the self (KeY
name for ”this”) object is #o1, which points to #o4, which points back to #o1.
Thus the method modx is actually called on the self object. We can see that in the
initial heap the value of x for the self object is 0 and in the heap heap after modx
the value of x for the self object is 2, thus violating the method contract.

5.2.2.3. Method Ringbuffer::push

When running our tool on the open proof obligation of the Ringbuffer::push method
described in listing G.1, we obtained the counterexample shown in listing G.2.

The Ringbuffer class is an implementation of a circular list using an array. We have
modified the push method by increasing the length of the Ringbuffer by 2 instead
of 1 at line 55.

In the counterexample we can see that in the initial heap, heap, the value of the
len field of the self object is 0. In the heap store 0, however, this value changes to
2, as expected. Because in both heaps the length of the data object is 1 the class
invariant is violated since it requires 0 ≤ len ≤ data.length.

5.2.2.4. Method Ringbuffer::pop

When running our tool on the open proof obligation of the Ringbuffer::pop method
described in listing G.1, we obtained the counterexample shown in listing G.3.

The Ringbuffer class is an implementation of a circular list using an array. We have
modified the pop method by decreasing the length of the Ringbuffer by 2 instead of
1 at line 55.

In the counterexample we can see that in the initial heap, heap, the value of the
len field of the self object is 1. In the heap store 1, however, this value changes
to −1, as expected. Thus, the class invariant is violated since it requires 0 ≤ len ≤
data.length.

45

6. Conclusion

6.1. Summary

In this thesis we have designed and implemented a counterexample finder for the
KeY verification system. It translates a KeY proof obligations to SMT and hands the
resulting SMT specifications to the z3 SMT solver. Only proof obligations written
in KeY first order logic(KeYFOL) are supported, meaning that we require proof
obligations not to contain modal operators or updates. All KeY types are translated
to bounded SMT sorts, thus ensuring decidability.

The top level KeY types Any, Object, Heap, Field, LocSet Sequence, Int and Bool
are translated to SMT sorts which are aliases of bit-vectors of various sizes. The
user can set the bit-sizes of all SMT sorts except Any, Field and Heap which are
computed automatically by taking the logarithm of the number of occurrences of
the constants of those types. Because the KeY type system is hierarchical, and the
SMT one is not, the type hierarchy needs to be encoded. The type Any extends
its subtypes with additional type bits, and functions for type checking and casting
are specified. The type hierarchy of reference types is modelled using the predicates
instance and exactInstance.

In order to avoid spurious counterexamples, the semantics of KeYFOL interpreted
functions and predicates must be preserved. We cannot simply translate the neces-
sary axioms which provide the semantics for these functions, because many axioms
imply the existence of certain instances of KeY types, and in order for the SMT spec-
ification to remain satisfiable, the bit-sizes of the corresponding SMT sorts would
have to be very large and would affect performance. Instead we provide the seman-
tics of the interpreted functions only for the terms on which these functions and
predicates are applied. We achieve this using a technique called semantic blasting.

Because we translate KeY integers as bit-vectors the SMT solver may use overflows
and generate spurious counterexamples. We provide additional formulae which make
sure that a counterexample satisfying the specification will not use overflows.

Because we translate all KeY types to bounded SMT sorts, there are situations in
which spurious counterexamples can occur.

47

6. Conclusion

We process the counterexample found by the SMT solver and present it in a user
friendly way. Currently counterexamples are presented in text form, but, as part of
future work, they may be represented in a graphical way.

We have evaluated our tool on several examples in order to see if we get spurious
counterexamples when running on valid proof obligations, and if we get counterex-
amples when running on invalid proof obligations. We have also shown how the
found counterexamples can help the user identify the fault.

6.2. Related Work

6.2.1. The Previous Translation to SMT

KeY already provides a translation to the SMT-LIB format. This old translation,
however, serves the purpose of proving proof obligations. For this reason the used
sorts are unbounded. The type system is modelled using a single SMT-Sort u with
typeOf and exatInstanceOf predicates for each KeY sort. Compared to our trans-
lation, the type hierarchy is underspecified, it is only stated that an object of a type
T is also type of the parents of T . The underspecification renders this translation of
little use when searching for counterexamples, because it does not assert what types
an object cannot be. Thus we can get counterexamples with each objects being of
all types.

The previous translation does not provide a semantic blasting mechanism, the only
way to preserve the semantics of KeY functions and predicates is to translate the
taclets which specify their semantics. The user can choose which taclets to translate,
and he must know which taclets are actually needed, otherwise unneeded formulae
will be added to the specification. On the other hand, if the user does not choose
the necessary taclets, the functions and predicates are left uninterpreted, which
can cause spurious counterexamples. Semantic blasting automatically specifies the
semantics only for the functions and predicates needed for the arguments occurring
in the proof obligation, thus simplifying the complexity of the specification.

Although our translation is currently better suited for counterexample finding, we
could adapt it to fulfill the goal of proving proof obligations as well. Having a more
exact specification, we would be able to prove more proof obligations than the old
translation, because we restrict the space in which counterexamples may be found.

6.2.2. Nitpick

Nitpick [BN10] is a counterexample generator for the Isabelle [NPW02] proof as-
sistant, serving a similar purpose as our tool. It translates an Isabelle conjecture
from higher order logic (HOL) to relational first order logic (RFOL), which is then
checked with Alloy’s [Jac02] backend, Kodkod [TJ07]. Kodkod translates the prob-
lem to SAT using sophisticated simplification techniques like symmetry breaking.

Nitpick translates Isabelle’s functions to the corresponding built in Kodkod functions
when possible, avoiding the translation of the semantics of the HOL functions. This
is similar to how our tool uses the built in SMT functions for the boolean and bit-
vector types. Since Kodkod uses SAT and our tool uses an SMT solver, we have

48

6.3. Future Work

real decision procedures for some of the SMT built-in functions, which can improve
performance.

Another similarity to our tool is that all types are given bounds. For infinite types,
like integers, only a finite subdomain is considered.

A difference, however, results from the purposes of the KeY and Isabelle tools. While
KeY specializes in proving properties of Java programs, Isabelle is a more general
prover. As such, the counterexamples found by our tool present the state before and
after executing a Java program in a user friendly way. We treat constant functions
differently than the select functions when presenting the counterexample to the user.
Because of the more general purpose of Isabelle, Nitpick treats all functions equally,
making counterexamples for proof obligations similar to ours more difficult for the
user to read.

6.2.3. Dynamite

Dynamite [FPM07, MLPF10] is a tool for proving Alloy [Jac02] specifications using
the PVS [ORS92] theorem prover. PVS uses a sequent calculus for a higher order
logic. In order to support Alloy specifications, PVS was extended with a complete
calculus for Alloy. Similarly to our tool, Dynamite uses a bounded verification
tool,the Alloy Analizer, in order to check hypotheses and lemmas introduced by
the user, thus lowering the chances of introducing an invalid formula. A difference
between our tool and Dynamite lies in the bounded verification technique used.
While we use an SMT solver, which provides decision procedures for some built in
functions, Dynamite uses the Alloy Analizer which is based on a SAT solver. A
further difference lies in the logics used by the two approaches. Dynamite uses a
higher order logic, while our tool, in combination with KeY, uses JavaDL. Thus, as
in the case of Nitpick, our tool is adapted for the context of verifying specified Java
programs, while Dynamite has a more general purpose.

6.2.4. Lightweight Verification Tools for Java

Other verification tools which employ SMT solvers for specified Java programs have
been developed. Whereas our tool serves as an assistant to a larger verification
system, KeY, these tools run independently. One such tool is Esc/Java 2 [CK05],
which can generates an SMT specification from a Java program specified with JML.
It uses unbounded sorts, thus being undecidable. Additionally, because the purpose
of Esc/Java 2 is to be a lightweight verification tool, soundness is sometimes sacrificed
for comfort. For example, loops are not specified using loop invariants, but they are
unwinded only once.

Another static verification tool for specified Java programs is InspectJ [LNT12],
which also generates an SMT specification. The specification uses only bounded
sorts, which makes it decidable. InspectJ offers a more limited support of Java lan-
guage constructs, and JML statements. For example, it does not support interfaces
and abstract classes, loop invariants or arithmetic overflow checking.

6.3. Future Work
There are several ways in which this project could be improved. We can implement
better ways for showing the counterexample to the user. A possible improvement of

49

6. Conclusion

the current way of presenting counterexample would be to find out which objects,
location sets, and sequences are actually needed for the counterexample, and display
only those.

An additional way to present counterexamples would be to generate a UML object
diagram based on the model. This diagram would have to differ from a standard
UML object diagram, because it would need to display the contents of heaps, lo-
cation sets and sequences, which are not supported by standard UML. A possible
representation of a mock counterexample as a UML object diagram is shown in figure
6.1.

o2:ArrayList

length = 2
size = 2
created = true

o4:Object[]

length = 2
[0] = o2
[1] = null

heap:Heap

null:Object

elementData

s1:Sequence

length = 2
[0] = o2
[1] = null

l1:LocSet

repr

(o2,size):Location

(o2,modCount):Location

(o2,elementData):Location

footprint

o2:ArrayList

length = 2
size = 0
created = true

o4:Object[]

length = 2
[0] = null
[1] = null

store_0:Heap

null:Object

elementData

s0:Sequence

length = 0

l0:LocSet

repr

footprint

Figure 6.1.: Representation of a mock counterexample as a UML object diagram

A third way to present the counterexample is through a tree representation. All
constants, heaps, objects, locations sets and sequences would be nodes in the tree.
When the user clicks on a node, the attributes of that node will be shown to the
user. Clicking on an attribute node would show the attributes of the clicked node.
A possible representation of a counterexample as a tree is shown in figure 6.2.

A further way to improve the translation to SMT would be to provide support
for unbounded sorts. The only thing preventing an unbounded translation is the
SMT type system, which uses type bits and bit-vector extraction and concatenation
operations to cast between the sorts Any and its subsorts. In order to support
unbounded sorts, we need to provide a special specification in the unbounded case
for the functions Any2S, S2Any and isS for each SMT sort S, subtype of Any.
The advantage towards the previous translation to SMT would be the fact that
by using semantic blasting we get rid of a large number of unnecessary quantifiers.
Furthermore because our type hierarchy is more precisely specified we further restrict
the search space of the SMT solver.

50

6.3. Future Work

Figure 6.2.: Representation of a counterexample as a tree

An additional improvement would be the possibility of combining semantic blasting
with the translation of rules. The user could then chose which rules to translate and
for which to use semantic blasting. This way we could support recursive functions
and avoid spurious counterexamples caused by the lack of certain rules as described
in Section 3.7. However, translating rules may affect performance as described in
Section 3.3.

Last but not least we could use the tool to generate test cases from our counterexam-
ples. It is fairly easy to determine the input of the program from the counterexample,
and we can use that input to generate a test case which will fail if the counterexample
is correct.

51

Bibliography

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of Java
Card programs. In I. Attali and T. Jensen, editors, Java on Smart Cards:
Programming and Security. Revised Papers, Java Card 2000, Interna-
tional Workshop, Cannes, France, LNCS 2041, pages 6–24. Springer,
2001.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of
Object-Oriented Software - The KeY Approach. Springer-Verlag, 2007.

[BN10] Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterex-
ample generator for higher-order logic based on a relational model finder.
In Proceedings of the First International Conference on Interactive Theo-
rem Proving, ITP’10, pages 131–146, Berlin, Heidelberg, 2010. Springer-
Verlag.

[BST12] Clark Barrett, Aaron Stump, and Cesare Tinelli. The smt-
lib standard version 2.0. http://smtlib.cs.uiowa.edu/papers/

smt-lib-reference-v2.0-r12.09.09.pdf, 2012. Accessed: 2013-12-
16.

[CK05] DavidR. Cok and JosephR. Kiniry. Esc/java2: Uniting esc/java and jml.
In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and
Traian Muntean, editors, Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, volume 3362 of Lecture Notes in Computer
Science, pages 108–128. Springer Berlin Heidelberg, 2005.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[FPM07] Marcelo F. Frias, Carlos G. Lopez Pombo, and Mariano M. Moscato. Al-
loy analyzer+pvs in the analysis and verification of alloy specifications.
In Proceedings of the 13th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, TACAS’07, pages
587–601, Berlin, Heidelberg, 2007. Springer-Verlag.

[HKT84] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. In Hand-
book of Philosophical Logic, pages 497–604. MIT Press, 1984.

[Jac02] Daniel Jackson. Alloy: A lightweight object modelling notation. ACM
Trans. Softw. Eng. Methodol., 11(2):256–290, April 2002.

53

http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf

Bibliography

[LNT12] Tianhai Liu, Michael Nagel, and Mana Taghdiri. Bounded program verifi-
cation using an smt solver: A case study. In 5th International Conference
on Software Testing, Verification and Validation (ICST), pages 101–110,
April 2012.

[MLPF10] Mariano Moscato, Carlos Lopez Pombo, and Marcelo Frias. Dynamite
2.0: New features based on unsat-core extraction to improve verification
of software requirements, 2010. 7th International Colloquium, Natal, Rio
Grande do Norte, Brazil, September 1-3, 2010.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.
Springer, 2002.

[ORS92] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verifica-
tion system. In Deepak Kapur, editor, 11th International Conference on
Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748–752, Saratoga, NY, jun 1992. Springer-Verlag.

[TJ07] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder.
In In Tools and Algorithms for Construction and Analysis of Systems
(TACAS, pages 632–647. Wiley, 2007.

[Wei11] Benjamin Weiß. Deductive verification of object-oriented software : dy-
namic frames, dynamic Logic and predicate abstraction. PhD thesis,
Karlsruhe, 2011.

54

7. Appendix

A. Binary Search

A.1. Specified Java Code

1 class BinarySearch {

2

3 /*@ public normal_behaviour

4 @ requires (\forall int x; (\forall int y; 0 <= x && x < y && y <

a.length; a[x] <= a[y]));

5 @ ensures ((\exists int x; 0 <= x && x < a.length; a[x] == v) ?

a[\result] == v : \result == -1);

6 @*/

7 static /*@pure@*/ int search(int[] a, int v) {

8 int l = 0;

9 int r = a.length - 1;

10

11 if(a.length == 0) return -1;

12 if(a.length == 1) return a[0] == v ? 0 : -1;

13

14 /*@ loop_invariant 0 <= l && l < r && r < a.length

15 @ && (\forall int x; 0 <= x && x < l; a[x] < v)

16 @ && (\forall int x; r < x && x < a.length; v <

a[x]);

17 @ assignable \nothing;

18 @ decreases r - l;

19 @*/

20 while(r > l + 1) {

21 int mid = l + (r - l) / 4;

22 if(a[mid] == v) {

23 return mid;

24 } else if(a[mid] > v) {

25 r = mid;

26 } else {

27 l = mid;

55

7. Appendix

28 }

29 }

30 if(a[l] == v) return l;

31 if(a[r] == v) return r;

32 return -1;

33 }

34 }

A.2. Counterexample for BinarySearch::binarySearch

1 Constants

2 -----------

3 heap = #h0

4 v = -4

5 seqEmpty = #s0

6 l_0 = 0

7 |java.lang.Object::<created>| = #f8

8 a = #o2

9 anon_heap_loop = #h0

10 empty = #l6

11 seqGetOutside = #a40

12 r_0 = 2

13 null = #o0

14

15

16 Heaps

17 -----------

18 Heap heap

19 Object #o0/null

20

21 Object #o1

22 length = 0

23 type =java.util.ListIterator

24 exactInstance =false

25 |java.lang.Object::<created>| = true

26 classInvariant = false

27

28 Object #o2/a

29 length = 3

30 type =int[]

31 exactInstance =true

32 |java.lang.Object::<created>| = true

33 classInvariant = false

34 [0] = 0

35 [1] = 0

36 [2] = 1

37

38 Object #o3

39 length = 0

40 type =int[]

41 exactInstance =true

56

A. Binary Search

42 |java.lang.Object::<created>| = true

43 classInvariant = false

44

45 Object #o4

46 length = 0

47 type =java.util.ListIterator

48 exactInstance =false

49 |java.lang.Object::<created>| = false

50 classInvariant = false

51

52 Object #o5

53 length = 0

54 type =java.util.ListIterator

55 exactInstance =false

56 |java.lang.Object::<created>| = false

57 classInvariant = false

58

59 Object #o6

60 length = 0

61 type =int[]

62 exactInstance =true

63 |java.lang.Object::<created>| = true

64 classInvariant = false

65

66 Object #o7

67 length = 0

68 type =int[]

69 exactInstance =true

70 |java.lang.Object::<created>| = true

71 classInvariant = false

72

73

74 Heap anon_heap_loop

75 Object #o0/null

76

77 Object #o1

78 length = 0

79 type =java.util.ListIterator

80 exactInstance =false

81 |java.lang.Object::<created>| = true

82 classInvariant = false

83

84 Object #o2/a

85 length = 3

86 type =int[]

87 exactInstance =true

88 |java.lang.Object::<created>| = true

89 classInvariant = false

90 [0] = 0

91 [1] = 0

92 [2] = 1

93

57

7. Appendix

94 Object #o3

95 length = 0

96 type =int[]

97 exactInstance =true

98 |java.lang.Object::<created>| = true

99 classInvariant = false

100

101 Object #o4

102 length = 0

103 type =java.util.ListIterator

104 exactInstance =false

105 |java.lang.Object::<created>| = false

106 classInvariant = false

107

108 Object #o5

109 length = 0

110 type =java.util.ListIterator

111 exactInstance =false

112 |java.lang.Object::<created>| = false

113 classInvariant = false

114

115 Object #o6

116 length = 0

117 type =int[]

118 exactInstance =true

119 |java.lang.Object::<created>| = true

120 classInvariant = false

121

122 Object #o7

123 length = 0

124 type =int[]

125 exactInstance =true

126 |java.lang.Object::<created>| = true

127 classInvariant = false

128

129

130

131 Location Sets

132 -----------

133 #l0 = {}

134 #l1 = {}

135 #l2 = {}

136 #l3 = {}

137 #l4 = {}

138 #l5 = {}

139 #l6 = {}

140 #l7 = {}

141

142 Sequences

143 -----------

144 Seq: #s0/seqEmpty

145 Length: 0

58

B. ArrayList

146

147 Seq: #s1

148 Length: 0

149

150 Seq: #s2

151 Length: 0

152

153 Seq: #s3

154 Length: 0

155

156 Seq: #s4

157 Length: 0

158

159 Seq: #s5

160 Length: 0

161

162 Seq: #s6

163 Length: 0

164

165 Seq: #s7

166 Length: 0

B. ArrayList

B.1. Specified Java Code

1

2 class SelfArrays {

3

4 /*@ public normal_behavior

5 @ requires original != null;

6 @ requires newLength >= 0;

7 @ requires \typeof(original) == \type(java.lang.Object[]);

8 @ ensures \typeof(original) == \typeof(\result);

9 @ ensures \typeof(\result) == \type(java.lang.Object[]);

10 @ ensures newLength < original.length ==>

11 (\forall int i; 0 <= i && i < newLength; \result[i] ==

original[i]);

12 @ ensures newLength >= original.length ==>

13 (\forall int i; 0 <= i && i < original.length; \result[i] ==

original[i]);

14 @ ensures newLength > original.length ==>

15 (\forall int i; original.length <= i && i < newLength;

\result[i] == null);

16 @ ensures \result.length == newLength;

17 @ ensures \fresh(\result);

18 @ ensures \result != null;

19 @ assignable \nothing;

20 @ also

21 @ public exceptional_behavior

22 @ requires (newLength < 0) || (original == null);

59

7. Appendix

23 @ signals (NegativeArraySizeException) newLength < 0;

24 @ signals (NullPointerException) original == null;

25 @ signals_only NegativeArraySizeException, NullPointerException;

26 @ assignable \nothing;

27 @*/

28 native public /*@ helper nullable @*/ Object[] copyOf(/*@ nullable @*/

Object[] original, int newLength);

29 }

30

31 public class ArrayList {

32

33 /*@ public model instance \locset footprint;

34 @ public accessible \inv: footprint;

35 @ public accessible footprint: footprint;

36 @

37 @ public nullable ghost instance \seq repr;

38 @ public model instance int seqLength;

39 @ public accessible seqLength: footprint;

40 @

41 @ represents footprint = elementData, elementData[*], size, modCount,

repr;

42 @

43 @ public instance invariant (\forall int i; 0 <= i && i < repr.length;

44 repr[i] == elementData[i]);

45 @ public represents seqLength = size;

46 @

47 @ public instance invariant size == repr.length;

48 @ public instance invariant seqLength <= elementData.length;

49 @ public instance invariant \typeof(elementData) ==

\type(java.lang.Object[]);

50 @ public instance invariant modCount >= 0;

51 @ public instance invariant size >= 0;

52 @*/

53

54 private Object[] /*@ spec_public nullable @*/ elementData;

55 //@ public instance invariant elementData != null;

56

57 private SelfArrays selfArrays;

58

59 protected int /*@ spec_public @*/ modCount = 0;

60 /*@ spec_public @*/ protected int size;

61

62 //////////////

63 /* Method 1 */

64 //////////////

65

66 /*@ public normal_behavior

67 @ requires initialCapacity >= 0;

68 @ ensures elementData.length == initialCapacity;

69 @ ensures (\forall int i; 0 <= i && i < seqLength; elementData[i] ==

null);

70 @ ensures repr == \seq_empty;

60

B. ArrayList

71 @ ensures \fresh(footprint);

72 @ assignable footprint;

73 @*/

74 public ArrayList(int initialCapacity) {

75 if (initialCapacity < 0)

76 throw new IllegalArgumentException();

77

78 this.elementData = new Object[initialCapacity];

79 //@ set repr = \seq_empty;

80 {}

81 }

82

83 //////////////

84 /* Method 2 */

85 //////////////

86

87 /*@ public normal_behavior

88 @ requires index >= 0 && index < seqLength;

89 @ ensures \result == repr[index];

90 @ assignable \strictly_nothing;

91 @ also

92 @ public exceptional_behavior

93 @ requires index < 0 || index >= seqLength;

94 @ signals (IndexOutOfBoundsException) true;

95 @ assignable \nothing;

96 @*/

97 /*@ nullable @*/ public Object get(int index) {

98 if (index >= size || index < 0)

99 throw new IndexOutOfBoundsException();

100

101 return elementData[index];

102 }

103

104 //////////////

105 /* Method 3 */

106 //////////////

107

108 /*@ public normal_behavior

109 @ requires size < elementData.length;

110 @ ensures modCount == \old(modCount) + 1;

111 @ ensures elementData.length == size;

112 @ ensures repr == \old(repr);

113 @ assignable elementData, modCount;

114 @ also

115 @ public normal_behavior

116 @ requires size >= elementData.length;

117 @ ensures modCount == \old(modCount) + 1;

118 @ ensures repr == \old(repr);

119 @ assignable modCount;

120 @*/

121 public void trimToSize() {

122 modCount++;

61

7. Appendix

123 int oldCapacity = elementData.length;

124 if (size < oldCapacity) {

125 elementData = selfArrays.copyOf(elementData, size);

126 }

127 }

128

129 //////////////

130 /* Method 4 */

131 //////////////

132

133 /*@ public normal_behavior

134 @ ensures modCount == \old(modCount) + 1;

135 @ ensures size == 0;

136 @ ensures repr == \seq_empty;

137 @ ensures (\forall int i; 0 <= i && i < elementData.length;

elementData[i] == null);

138 @ assignable elementData[*], repr, size, modCount;

139 @*/

140 public void clear() {

141 modCount++;

142

143 int i = 0;

144 /*@ loop_invariant 0 <= i && i <= size;

145 @ loop_invariant (\forall int j; 0 < j && j < i; elementData[j] ==

null);

146 @ assignable elementData[*];

147 @ decreasing size - i;

148 @*/

149 while(i < size) {

150 elementData[i] = null;

151 i++;

152 }

153

154 //@ set repr = \seq_empty;

155 size = 0;

156 }

157

158 //////////////

159 /* Method 5 */

160 //////////////

161

162 /*@ public normal_behavior

163 @ requires \typeof(element) == \type(Object);

164 @ requires index >= 0 && index < seqLength;

165 @ ensures repr[index] == element;

166 @ ensures \result == \old(repr[index]);

167 @ ensures \new_elems_fresh(footprint);

168 @ assignable footprint;

169 @ also

170 @ public exceptional_behavior

171 @ requires index < 0 || index >= seqLength;

62

B. ArrayList

172 @ signals (IndexOutOfBoundsException) index < 0 || index >=

seqLength;

173 @ signals_only IndexOutOfBoundsException;

174 @ assignable \nothing;

175 @*/

176 public /*@ nullable @*/ Object set(int index, /*@ nullable @*/ Object

element) {

177 if (index >= size || index < 0)

178 throw new IndexOutOfBoundsException();

179

180 Object oldValue = elementData[index];

181 elementData[index] = element;

182

183 /*@ set repr = \seq_concat(

184 \seq_concat(\seq_sub(repr, 0, index), \seq_singleton(element)),

185 \seq_sub(repr, index + 1, seqLength)

186);

187 @*/

188

189 return oldValue;

190 }

191

192 //////////////

193 /* Method 6 */

194 //////////////

195

196 /*@ public normal_behavior

197 @ requires \typeof(e) == \type(java.lang.Object) && e.\inv;

198 @ ensures seqLength == \old(seqLength) + 1;

199 @ ensures (\forall int i; 0 <= i && i < seqLength-1;

200 repr[i] == \old(repr[i]));

201 @ ensures repr[seqLength-1] == e;

202 @ ensures \result;

203 @ assignable footprint;

204 @*/

205 boolean add(/*@ nullable @*/ Object e) {

206 elementData = selfArrays.copyOf(elementData, size + 1);

207 elementData[size++] = e;

208 //@ set repr = \seq_concat(repr, \seq_singleton(e));

209 {}

210 return true;

211 }

212

213 //////////////

214 /* Method 7 */

215 //////////////

216

217 /*@ public normal_behavior

218 @ requires \typeof(o) == \type(Object) && o.\inv;

219 @ ensures (\forall int k; 0 <= k && k <= seqLength-1; repr[k] != o)

220 ==> \result == -1;

221 @ ensures !(\exists int k; 0 <= k && k <= seqLength-1; repr[k] == o)

63

7. Appendix

222 ==> (\result >= 0 && \result < seqLength && repr[\result] == o);

223 @ ensures !(\exists int k; 0 <= k && k < \result; repr[k] == o);

224 @ assignable \nothing;

225 @*/

226 public int indexOf(/*@ nullable @*/ Object o) {

227

228 if (o == null) {

229

230 /*@ loop_invariant 0 <= i && i <= size;

231 @ loop_invariant (\forall int j; 0 <= j && j < i; repr[j] != o);

232 @ assignable \strictly_nothing;

233 @ decreasing size - i;

234 @*/

235 for(int i = 0; i < size; i++)

236 if(elementData[i] == null)

237 return i;

238 } else {

239 /*@ loop_invariant 0 <= i && i <= size;

240 @ loop_invariant (\forall int j; 0 <= j && j < i; repr[j] != o);

241 @ assignable \nothing;

242 @ decreasing size - i;

243 @*/

244 for (int i = 0; i < size; i++)

245 if(o == elementData[i])

246 return i;

247 }

248 return -1;

249 }

250

251 }

B.2. Counterexample for ArrayList::clear

1 Constants

2 -----------

3 |arrlist.ArrayList::size| = #f10

4 heap = #h2

5 store_0 = #h0

6 seqEmpty = #s0

7 |arrlist.ArrayList::modCount| = #f11

8 |arrlist.ArrayList::elementData| = #f13

9 i_0 = 0

10 |arrlist.ArrayList::repr| = #f8

11 |arrlist.ArrayList::selfArrays| = #f9

12 |java.lang.Object::<created>| = #f12

13 anon_heap_loop = #h0

14 empty = #l0

15 seqGetOutside = #a0

16 self = #o2

17 null = #o0

18 allFields_0 = #l2

64

B. ArrayList

19

20

21 Heaps

22 -----------

23 Heap heap

24 Object #o0/null

25

26 Object #o1

27 length = 2

28 type =arrlist.SelfArrays

29 exactInstance =false

30 |java.lang.Object::<created>| = false

31 classInvariant = true

32 |arrlist.ArrayList::$footprint| = #l0

33 |arrlist.ArrayList::$seqLength| = 0

34

35 Object #o2/self

36 length = 2

37 type =arrlist.ArrayList

38 exactInstance =true

39 |arrlist.ArrayList::elementData| = #o4

40 |arrlist.ArrayList::modCount| = 0

41 |arrlist.ArrayList::repr| = #s0

42 |arrlist.ArrayList::selfArrays| = #o5

43 |arrlist.ArrayList::size| = 0

44 |java.lang.Object::<created>| = true

45 classInvariant = true

46 |arrlist.ArrayList::$footprint| = #l1

47 |arrlist.ArrayList::$seqLength| = 0

48

49 Object #o3

50 length = 2

51 type =java.lang.Object

52 exactInstance =false

53 |java.lang.Object::<created>| = false

54 classInvariant = true

55 |arrlist.ArrayList::$footprint| = #l0

56 |arrlist.ArrayList::$seqLength| = 0

57

58 Object #o4

59 length = 2

60 type =java.lang.Object[]

61 exactInstance =true

62 |java.lang.Object::<created>| = true

63 classInvariant = true

64 |arrlist.ArrayList::$footprint| = #l0

65 |arrlist.ArrayList::$seqLength| = 0

66 [0] = #o0/null

67 [1] = #o0/null

68

69 Object #o5

70 length = 2

65

7. Appendix

71 type =arrlist.SelfArrays

72 exactInstance =false

73 |java.lang.Object::<created>| = true

74 classInvariant = true

75 |arrlist.ArrayList::$footprint| = #l0

76 |arrlist.ArrayList::$seqLength| = 0

77

78 Object #o6

79 length = 2

80 type =java.util.Set

81 exactInstance =false

82 |java.lang.Object::<created>| = false

83 classInvariant = true

84 |arrlist.ArrayList::$footprint| = #l0

85 |arrlist.ArrayList::$seqLength| = 0

86

87 Object #o7

88 length = 2

89 type =java.lang.Object

90 exactInstance =false

91 |java.lang.Object::<created>| = false

92 classInvariant = true

93 |arrlist.ArrayList::$footprint| = #l0

94 |arrlist.ArrayList::$seqLength| = 0

95

96

97 Heap anon_heap_loop

98 Object #o0/null

99

100 Object #o1

101 length = 2

102 type =arrlist.SelfArrays

103 exactInstance =false

104 |java.lang.Object::<created>| = true

105 classInvariant = true

106 |arrlist.ArrayList::$footprint| = #l0

107 |arrlist.ArrayList::$seqLength| = 0

108

109 Object #o2/self

110 length = 2

111 type =arrlist.ArrayList

112 exactInstance =true

113 |arrlist.ArrayList::elementData| = #o4

114 |arrlist.ArrayList::modCount| = 1

115 |arrlist.ArrayList::repr| = #s0

116 |arrlist.ArrayList::selfArrays| = #o5

117 |arrlist.ArrayList::size| = 0

118 |java.lang.Object::<created>| = true

119 classInvariant = true

120 |arrlist.ArrayList::$footprint| = #l4

121 |arrlist.ArrayList::$seqLength| = 0

122

66

B. ArrayList

123 Object #o3

124 length = 2

125 type =java.lang.Object

126 exactInstance =false

127 |java.lang.Object::<created>| = false

128 classInvariant = true

129 |arrlist.ArrayList::$footprint| = #l0

130 |arrlist.ArrayList::$seqLength| = 0

131

132 Object #o4

133 length = 2

134 type =java.lang.Object[]

135 exactInstance =true

136 |java.lang.Object::<created>| = true

137 classInvariant = true

138 |arrlist.ArrayList::$footprint| = #l0

139 |arrlist.ArrayList::$seqLength| = 0

140 [0] = #o4

141 [1] = #o4

142

143 Object #o5

144 length = 2

145 type =arrlist.SelfArrays

146 exactInstance =false

147 |java.lang.Object::<created>| = true

148 classInvariant = true

149 |arrlist.ArrayList::$footprint| = #l0

150 |arrlist.ArrayList::$seqLength| = 0

151

152 Object #o6

153 length = 2

154 type =java.util.Set

155 exactInstance =false

156 |java.lang.Object::<created>| = false

157 classInvariant = true

158 |arrlist.ArrayList::$footprint| = #l0

159 |arrlist.ArrayList::$seqLength| = 0

160

161 Object #o7

162 length = 2

163 type =java.lang.Object

164 exactInstance =false

165 |java.lang.Object::<created>| = false

166 classInvariant = true

167 |arrlist.ArrayList::$footprint| = #l0

168 |arrlist.ArrayList::$seqLength| = 0

169

170

171 Heap store_0

172 Object #o0/null

173

174 Object #o1

67

7. Appendix

175 length = 2

176 type =arrlist.SelfArrays

177 exactInstance =false

178 |java.lang.Object::<created>| = true

179 classInvariant = true

180 |arrlist.ArrayList::$footprint| = #l0

181 |arrlist.ArrayList::$seqLength| = 0

182

183 Object #o2/self

184 length = 2

185 type =arrlist.ArrayList

186 exactInstance =true

187 |arrlist.ArrayList::elementData| = #o4

188 |arrlist.ArrayList::modCount| = 1

189 |arrlist.ArrayList::repr| = #s0

190 |arrlist.ArrayList::selfArrays| = #o5

191 |arrlist.ArrayList::size| = 0

192 |java.lang.Object::<created>| = true

193 classInvariant = true

194 |arrlist.ArrayList::$footprint| = #l4

195 |arrlist.ArrayList::$seqLength| = 0

196

197 Object #o3

198 length = 2

199 type =java.lang.Object

200 exactInstance =false

201 |java.lang.Object::<created>| = false

202 classInvariant = true

203 |arrlist.ArrayList::$footprint| = #l0

204 |arrlist.ArrayList::$seqLength| = 0

205

206 Object #o4

207 length = 2

208 type =java.lang.Object[]

209 exactInstance =true

210 |java.lang.Object::<created>| = true

211 classInvariant = true

212 |arrlist.ArrayList::$footprint| = #l0

213 |arrlist.ArrayList::$seqLength| = 0

214 [0] = #o4

215 [1] = #o4

216

217 Object #o5

218 length = 2

219 type =arrlist.SelfArrays

220 exactInstance =false

221 |java.lang.Object::<created>| = true

222 classInvariant = true

223 |arrlist.ArrayList::$footprint| = #l0

224 |arrlist.ArrayList::$seqLength| = 0

225

226 Object #o6

68

B. ArrayList

227 length = 2

228 type =java.util.Set

229 exactInstance =false

230 |java.lang.Object::<created>| = false

231 classInvariant = true

232 |arrlist.ArrayList::$footprint| = #l0

233 |arrlist.ArrayList::$seqLength| = 0

234

235 Object #o7

236 length = 2

237 type =java.lang.Object

238 exactInstance =false

239 |java.lang.Object::<created>| = false

240 classInvariant = true

241 |arrlist.ArrayList::$footprint| = #l0

242 |arrlist.ArrayList::$seqLength| = 0

243

244

245

246 Location Sets

247 -----------

248 #l0 = {}

249 #l1 = {(#o2/self, |arrlist.ArrayList::repr|), (#o2/self,

|arrlist.ArrayList::size|), (#o2/self, |arrlist.ArrayList::modCount|),

(#o2/self, |arrlist.ArrayList::elementData|), (#o4, [0]), (#o4, [1]),

(#o4, [2]), (#o4, [3]), (#o4, |arrlist.ArrayList::repr|), (#o4,

|arrlist.ArrayList::selfArrays|), (#o4, |arrlist.ArrayList::size|),

(#o4, |arrlist.ArrayList::modCount|), (#o4,

|java.lang.Object::<created>|), (#o4,

|arrlist.ArrayList::elementData|)}

250 #l2 = {(#o4, [0]), (#o4, [1]), (#o4, [2]), (#o4, [3]), (#o4,

|arrlist.ArrayList::repr|), (#o4, |arrlist.ArrayList::selfArrays|),

(#o4, |arrlist.ArrayList::size|), (#o4,

|arrlist.ArrayList::modCount|), (#o4, |java.lang.Object::<created>|),

(#o4, |arrlist.ArrayList::elementData|)}

251 #l3 = {(#o0/null, [0]), (#o0/null, [1]), (#o0/null, [2]), (#o0/null,

[3]), (#o0/null, |arrlist.ArrayList::repr|), (#o0/null,

|arrlist.ArrayList::selfArrays|), (#o0/null,

|arrlist.ArrayList::size|), (#o0/null, |arrlist.ArrayList::modCount|),

(#o0/null, |java.lang.Object::<created>|), (#o0/null,

|arrlist.ArrayList::elementData|)}

252 #l4 = {(#o2/self, |arrlist.ArrayList::repr|), (#o2/self,

|arrlist.ArrayList::size|), (#o2/self, |arrlist.ArrayList::modCount|),

(#o2/self, |arrlist.ArrayList::elementData|), (#o4, [0]), (#o4, [1]),

(#o4, [2]), (#o4, [3]), (#o4, |arrlist.ArrayList::repr|), (#o4,

|arrlist.ArrayList::selfArrays|), (#o4, |arrlist.ArrayList::size|),

(#o4, |arrlist.ArrayList::modCount|), (#o4,

|java.lang.Object::<created>|), (#o4,

|arrlist.ArrayList::elementData|)}

253 #l5 = {}

254 #l6 = {(#o0/null, [0]), (#o0/null, [1]), (#o0/null, [2]), (#o0/null,

[3]), (#o0/null, |arrlist.ArrayList::repr|), (#o0/null,

69

7. Appendix

|arrlist.ArrayList::selfArrays|), (#o0/null,

|arrlist.ArrayList::size|), (#o0/null, |arrlist.ArrayList::modCount|),

(#o0/null, |java.lang.Object::<created>|), (#o0/null,

|arrlist.ArrayList::elementData|)}

255 #l7 = {}

256

257 Sequences

258 -----------

259 Seq: #s0/seqEmpty

260 Length: 0

261

262 Seq: #s1

263 Length: 0

264

265 Seq: #s2

266 Length: 0

267

268 Seq: #s3

269 Length: 0

270

271 Seq: #s4

272 Length: 0

273

274 Seq: #s5

275 Length: 0

276

277 Seq: #s6

278 Length: 0

279

280 Seq: #s7

281 Length: 0

B.3. Counterexample for ArrayList::indexOf

1 Constants

2 -----------

3 seqEmpty = #s0

4 |java.lang.Object::<created>| = #f12

5 anon_1 = #h0

6 anon_2 = #h0

7 o = #o2

8 anon_0 = #h0

9 empty_0 = #l0

10 empty_1 = #l0

11 heap = #h0

12 |arrlist.ArrayList::size| = #f10

13 self_0 = #o1

14 |arrlist.ArrayList::modCount| = #f11

15 |arrlist.ArrayList::elementData| = #f13

16 i_0 = 0

17 |arrlist.ArrayList::repr| = #f8

70

B. ArrayList

18 |arrlist.ArrayList::selfArrays| = #f9

19 empty_2 = #l0

20 anon_heap_loop = #h0

21 empty = #l6

22 anon_3 = #h0

23 seqGetOutside = #a40

24 null = #o0

25

26

27 Heaps

28 -----------

29 Heap heap

30 Object #o0/null

31

32 Object #o1/self_0

33 length = 0

34 type =arrlist.ArrayList

35 exactInstance =true

36 |arrlist.ArrayList::elementData| = #o4

37 |arrlist.ArrayList::modCount| = 1

38 |arrlist.ArrayList::repr| = #s0

39 |arrlist.ArrayList::selfArrays| = #o6

40 |arrlist.ArrayList::size| = 0

41 |java.lang.Object::<created>| = true

42 classInvariant = true

43 |arrlist.ArrayList::$footprint| = #l2

44 |arrlist.ArrayList::$seqLength| = 0

45

46 Object #o2/o

47 length = 0

48 type =java.lang.Object

49 exactInstance =false

50 |java.lang.Object::<created>| = true

51 classInvariant = true

52 |arrlist.ArrayList::$footprint| = #l2

53 |arrlist.ArrayList::$seqLength| = 0

54

55 Object #o3

56 length = 0

57 type =java.lang.Object

58 exactInstance =false

59 |java.lang.Object::<created>| = true

60 classInvariant = true

61 |arrlist.ArrayList::$footprint| = #l2

62 |arrlist.ArrayList::$seqLength| = 0

63

64 Object #o4

65 length = 0

66 type =java.lang.Object[]

67 exactInstance =true

68 |java.lang.Object::<created>| = true

69 classInvariant = true

71

7. Appendix

70 |arrlist.ArrayList::$footprint| = #l2

71 |arrlist.ArrayList::$seqLength| = 0

72

73 Object #o5

74 length = 0

75 type =java.lang.Object

76 exactInstance =false

77 |java.lang.Object::<created>| = true

78 classInvariant = true

79 |arrlist.ArrayList::$footprint| = #l2

80 |arrlist.ArrayList::$seqLength| = 0

81

82 Object #o6

83 length = 0

84 type =arrlist.SelfArrays

85 exactInstance =false

86 |java.lang.Object::<created>| = true

87 classInvariant = true

88 |arrlist.ArrayList::$footprint| = #l2

89 |arrlist.ArrayList::$seqLength| = 0

90

91 Object #o7

92 length = 0

93 type =java.lang.Object

94 exactInstance =false

95 |java.lang.Object::<created>| = true

96 classInvariant = true

97 |arrlist.ArrayList::$footprint| = #l2

98 |arrlist.ArrayList::$seqLength| = 0

99

100

101 Heap anon_heap_loop

102 Object #o0/null

103

104 Object #o1/self_0

105 length = 0

106 type =arrlist.ArrayList

107 exactInstance =true

108 |arrlist.ArrayList::elementData| = #o4

109 |arrlist.ArrayList::modCount| = 1

110 |arrlist.ArrayList::repr| = #s0

111 |arrlist.ArrayList::selfArrays| = #o6

112 |arrlist.ArrayList::size| = 0

113 |java.lang.Object::<created>| = true

114 classInvariant = true

115 |arrlist.ArrayList::$footprint| = #l2

116 |arrlist.ArrayList::$seqLength| = 0

117

118 Object #o2/o

119 length = 0

120 type =java.lang.Object

121 exactInstance =false

72

B. ArrayList

122 |java.lang.Object::<created>| = true

123 classInvariant = true

124 |arrlist.ArrayList::$footprint| = #l2

125 |arrlist.ArrayList::$seqLength| = 0

126

127 Object #o3

128 length = 0

129 type =java.lang.Object

130 exactInstance =false

131 |java.lang.Object::<created>| = true

132 classInvariant = true

133 |arrlist.ArrayList::$footprint| = #l2

134 |arrlist.ArrayList::$seqLength| = 0

135

136 Object #o4

137 length = 0

138 type =java.lang.Object[]

139 exactInstance =true

140 |java.lang.Object::<created>| = true

141 classInvariant = true

142 |arrlist.ArrayList::$footprint| = #l2

143 |arrlist.ArrayList::$seqLength| = 0

144

145 Object #o5

146 length = 0

147 type =java.lang.Object

148 exactInstance =false

149 |java.lang.Object::<created>| = true

150 classInvariant = true

151 |arrlist.ArrayList::$footprint| = #l2

152 |arrlist.ArrayList::$seqLength| = 0

153

154 Object #o6

155 length = 0

156 type =arrlist.SelfArrays

157 exactInstance =false

158 |java.lang.Object::<created>| = true

159 classInvariant = true

160 |arrlist.ArrayList::$footprint| = #l2

161 |arrlist.ArrayList::$seqLength| = 0

162

163 Object #o7

164 length = 0

165 type =java.lang.Object

166 exactInstance =false

167 |java.lang.Object::<created>| = true

168 classInvariant = true

169 |arrlist.ArrayList::$footprint| = #l2

170 |arrlist.ArrayList::$seqLength| = 0

171

172

173 Heap anon_3

73

7. Appendix

174 Object #o0/null

175

176 Object #o1/self_0

177 length = 0

178 type =arrlist.ArrayList

179 exactInstance =true

180 |arrlist.ArrayList::elementData| = #o4

181 |arrlist.ArrayList::modCount| = 1

182 |arrlist.ArrayList::repr| = #s0

183 |arrlist.ArrayList::selfArrays| = #o6

184 |arrlist.ArrayList::size| = 0

185 |java.lang.Object::<created>| = true

186 classInvariant = true

187 |arrlist.ArrayList::$footprint| = #l2

188 |arrlist.ArrayList::$seqLength| = 0

189

190 Object #o2/o

191 length = 0

192 type =java.lang.Object

193 exactInstance =false

194 |java.lang.Object::<created>| = true

195 classInvariant = true

196 |arrlist.ArrayList::$footprint| = #l2

197 |arrlist.ArrayList::$seqLength| = 0

198

199 Object #o3

200 length = 0

201 type =java.lang.Object

202 exactInstance =false

203 |java.lang.Object::<created>| = true

204 classInvariant = true

205 |arrlist.ArrayList::$footprint| = #l2

206 |arrlist.ArrayList::$seqLength| = 0

207

208 Object #o4

209 length = 0

210 type =java.lang.Object[]

211 exactInstance =true

212 |java.lang.Object::<created>| = true

213 classInvariant = true

214 |arrlist.ArrayList::$footprint| = #l2

215 |arrlist.ArrayList::$seqLength| = 0

216

217 Object #o5

218 length = 0

219 type =java.lang.Object

220 exactInstance =false

221 |java.lang.Object::<created>| = true

222 classInvariant = true

223 |arrlist.ArrayList::$footprint| = #l2

224 |arrlist.ArrayList::$seqLength| = 0

225

74

B. ArrayList

226 Object #o6

227 length = 0

228 type =arrlist.SelfArrays

229 exactInstance =false

230 |java.lang.Object::<created>| = true

231 classInvariant = true

232 |arrlist.ArrayList::$footprint| = #l2

233 |arrlist.ArrayList::$seqLength| = 0

234

235 Object #o7

236 length = 0

237 type =java.lang.Object

238 exactInstance =false

239 |java.lang.Object::<created>| = true

240 classInvariant = true

241 |arrlist.ArrayList::$footprint| = #l2

242 |arrlist.ArrayList::$seqLength| = 0

243

244

245 Heap anon_1

246 Object #o0/null

247

248 Object #o1/self_0

249 length = 0

250 type =arrlist.ArrayList

251 exactInstance =true

252 |arrlist.ArrayList::elementData| = #o4

253 |arrlist.ArrayList::modCount| = 1

254 |arrlist.ArrayList::repr| = #s0

255 |arrlist.ArrayList::selfArrays| = #o6

256 |arrlist.ArrayList::size| = 0

257 |java.lang.Object::<created>| = true

258 classInvariant = true

259 |arrlist.ArrayList::$footprint| = #l2

260 |arrlist.ArrayList::$seqLength| = 0

261

262 Object #o2/o

263 length = 0

264 type =java.lang.Object

265 exactInstance =false

266 |java.lang.Object::<created>| = true

267 classInvariant = true

268 |arrlist.ArrayList::$footprint| = #l2

269 |arrlist.ArrayList::$seqLength| = 0

270

271 Object #o3

272 length = 0

273 type =java.lang.Object

274 exactInstance =false

275 |java.lang.Object::<created>| = true

276 classInvariant = true

277 |arrlist.ArrayList::$footprint| = #l2

75

7. Appendix

278 |arrlist.ArrayList::$seqLength| = 0

279

280 Object #o4

281 length = 0

282 type =java.lang.Object[]

283 exactInstance =true

284 |java.lang.Object::<created>| = true

285 classInvariant = true

286 |arrlist.ArrayList::$footprint| = #l2

287 |arrlist.ArrayList::$seqLength| = 0

288

289 Object #o5

290 length = 0

291 type =java.lang.Object

292 exactInstance =false

293 |java.lang.Object::<created>| = true

294 classInvariant = true

295 |arrlist.ArrayList::$footprint| = #l2

296 |arrlist.ArrayList::$seqLength| = 0

297

298 Object #o6

299 length = 0

300 type =arrlist.SelfArrays

301 exactInstance =false

302 |java.lang.Object::<created>| = true

303 classInvariant = true

304 |arrlist.ArrayList::$footprint| = #l2

305 |arrlist.ArrayList::$seqLength| = 0

306

307 Object #o7

308 length = 0

309 type =java.lang.Object

310 exactInstance =false

311 |java.lang.Object::<created>| = true

312 classInvariant = true

313 |arrlist.ArrayList::$footprint| = #l2

314 |arrlist.ArrayList::$seqLength| = 0

315

316

317 Heap anon_2

318 Object #o0/null

319

320 Object #o1/self_0

321 length = 0

322 type =arrlist.ArrayList

323 exactInstance =true

324 |arrlist.ArrayList::elementData| = #o4

325 |arrlist.ArrayList::modCount| = 1

326 |arrlist.ArrayList::repr| = #s0

327 |arrlist.ArrayList::selfArrays| = #o6

328 |arrlist.ArrayList::size| = 0

329 |java.lang.Object::<created>| = true

76

B. ArrayList

330 classInvariant = true

331 |arrlist.ArrayList::$footprint| = #l2

332 |arrlist.ArrayList::$seqLength| = 0

333

334 Object #o2/o

335 length = 0

336 type =java.lang.Object

337 exactInstance =false

338 |java.lang.Object::<created>| = true

339 classInvariant = true

340 |arrlist.ArrayList::$footprint| = #l2

341 |arrlist.ArrayList::$seqLength| = 0

342

343 Object #o3

344 length = 0

345 type =java.lang.Object

346 exactInstance =false

347 |java.lang.Object::<created>| = true

348 classInvariant = true

349 |arrlist.ArrayList::$footprint| = #l2

350 |arrlist.ArrayList::$seqLength| = 0

351

352 Object #o4

353 length = 0

354 type =java.lang.Object[]

355 exactInstance =true

356 |java.lang.Object::<created>| = true

357 classInvariant = true

358 |arrlist.ArrayList::$footprint| = #l2

359 |arrlist.ArrayList::$seqLength| = 0

360

361 Object #o5

362 length = 0

363 type =java.lang.Object

364 exactInstance =false

365 |java.lang.Object::<created>| = true

366 classInvariant = true

367 |arrlist.ArrayList::$footprint| = #l2

368 |arrlist.ArrayList::$seqLength| = 0

369

370 Object #o6

371 length = 0

372 type =arrlist.SelfArrays

373 exactInstance =false

374 |java.lang.Object::<created>| = true

375 classInvariant = true

376 |arrlist.ArrayList::$footprint| = #l2

377 |arrlist.ArrayList::$seqLength| = 0

378

379 Object #o7

380 length = 0

381 type =java.lang.Object

77

7. Appendix

382 exactInstance =false

383 |java.lang.Object::<created>| = true

384 classInvariant = true

385 |arrlist.ArrayList::$footprint| = #l2

386 |arrlist.ArrayList::$seqLength| = 0

387

388

389 Heap anon_0

390 Object #o0/null

391

392 Object #o1/self_0

393 length = 0

394 type =arrlist.ArrayList

395 exactInstance =true

396 |arrlist.ArrayList::elementData| = #o4

397 |arrlist.ArrayList::modCount| = 1

398 |arrlist.ArrayList::repr| = #s0

399 |arrlist.ArrayList::selfArrays| = #o6

400 |arrlist.ArrayList::size| = 0

401 |java.lang.Object::<created>| = true

402 classInvariant = true

403 |arrlist.ArrayList::$footprint| = #l2

404 |arrlist.ArrayList::$seqLength| = 0

405

406 Object #o2/o

407 length = 0

408 type =java.lang.Object

409 exactInstance =false

410 |java.lang.Object::<created>| = true

411 classInvariant = true

412 |arrlist.ArrayList::$footprint| = #l2

413 |arrlist.ArrayList::$seqLength| = 0

414

415 Object #o3

416 length = 0

417 type =java.lang.Object

418 exactInstance =false

419 |java.lang.Object::<created>| = true

420 classInvariant = true

421 |arrlist.ArrayList::$footprint| = #l2

422 |arrlist.ArrayList::$seqLength| = 0

423

424 Object #o4

425 length = 0

426 type =java.lang.Object[]

427 exactInstance =true

428 |java.lang.Object::<created>| = true

429 classInvariant = true

430 |arrlist.ArrayList::$footprint| = #l2

431 |arrlist.ArrayList::$seqLength| = 0

432

433 Object #o5

78

B. ArrayList

434 length = 0

435 type =java.lang.Object

436 exactInstance =false

437 |java.lang.Object::<created>| = true

438 classInvariant = true

439 |arrlist.ArrayList::$footprint| = #l2

440 |arrlist.ArrayList::$seqLength| = 0

441

442 Object #o6

443 length = 0

444 type =arrlist.SelfArrays

445 exactInstance =false

446 |java.lang.Object::<created>| = true

447 classInvariant = true

448 |arrlist.ArrayList::$footprint| = #l2

449 |arrlist.ArrayList::$seqLength| = 0

450

451 Object #o7

452 length = 0

453 type =java.lang.Object

454 exactInstance =false

455 |java.lang.Object::<created>| = true

456 classInvariant = true

457 |arrlist.ArrayList::$footprint| = #l2

458 |arrlist.ArrayList::$seqLength| = 0

459

460

461

462 Location Sets

463 -----------

464 #l0 = {}

465 #l1 = {}

466 #l2 = {(#o1/self_0, |arrlist.ArrayList::repr|), (#o1/self_0,

|arrlist.ArrayList::size|), (#o1/self_0,

|arrlist.ArrayList::modCount|), (#o1/self_0,

|arrlist.ArrayList::elementData|), (#o4, [0]), (#o4, [1]), (#o4, [2]),

(#o4, [3]), (#o4, |arrlist.ArrayList::repr|), (#o4,

|arrlist.ArrayList::selfArrays|), (#o4, |arrlist.ArrayList::size|),

(#o4, |arrlist.ArrayList::modCount|), (#o4,

|java.lang.Object::<created>|), (#o4,

|arrlist.ArrayList::elementData|)}

467 #l3 = {}

468 #l4 = {(#o0/null, [0]), (#o0/null, [1]), (#o0/null, [2]), (#o0/null,

[3]), (#o0/null, |arrlist.ArrayList::repr|), (#o0/null,

|arrlist.ArrayList::selfArrays|), (#o0/null,

|arrlist.ArrayList::size|), (#o0/null, |arrlist.ArrayList::modCount|),

(#o0/null, |java.lang.Object::<created>|), (#o0/null,

|arrlist.ArrayList::elementData|)}

469 #l5 = {}

470 #l6 = {}

471 #l7 = {}

472

79

7. Appendix

473 Sequences

474 -----------

475 Seq: #s0/seqEmpty

476 Length: 0

477

478 Seq: #s1

479 Length: 0

480

481 Seq: #s2

482 Length: 0

483

484 Seq: #s3

485 Length: 0

486

487 Seq: #s4

488 Length: 0

489

490 Seq: #s5

491 Length: 0

492

493 Seq: #s6

494 Length: 0

495

496 Seq: #s7

497 Length: 0

C. Anon

C.1. Specified Java Code

1 public class A2 {

2

3 int x;

4 A2 next;

5

6 /*@ requires x == 0;

7 @ ensures x == 0;

8 @*/

9 void m() {

10 this.next.next.modx();

11 }

12

13 /*@ assignable x;

14 @*/

15 void modx() {

16 }

17 }

C.2. Counterexample for Anon::m

80

C. Anon

1 Constants

2 -----------

3 heap = #h1

4 |anon.A2::x| = #f8

5 seqEmpty = #s0

6 |anon.A2::next| = #f9

7 |java.lang.Object::<created>| = #f10

8 anon_heap_modx = #h2

9 empty = #l1

10 seqGetOutside = #a28

11 self = #o1

12 heapAfter_modx = #h0

13 exc_0 = #o0

14 null = #o0

15

16

17 Heaps

18 -----------

19 Heap heap

20 Object #o0/exc_0/null

21

22 Object #o1/self

23 length = 0

24 type =anon.A2

25 exactInstance =true

26 |anon.A2::next| = #o4

27 |anon.A2::x| = 0

28 |java.lang.Object::<created>| = true

29 classInvariant = true

30

31 Object #o2

32 length = 0

33 type =anon.A2

34 exactInstance =false

35 |anon.A2::next| = #o0/exc_0/null

36 |anon.A2::x| = 0

37 |java.lang.Object::<created>| = true

38 classInvariant = false

39

40 Object #o3

41 length = 0

42 type =anon.A2

43 exactInstance =false

44 |anon.A2::next| = #o0/exc_0/null

45 |anon.A2::x| = 0

46 |java.lang.Object::<created>| = false

47 classInvariant = false

48

49 Object #o4

50 length = 0

51 type =anon.A2

81

7. Appendix

52 exactInstance =false

53 |anon.A2::next| = #o1/self

54 |anon.A2::x| = 0

55 |java.lang.Object::<created>| = true

56 classInvariant = false

57

58 Object #o5

59 length = 0

60 type =java.lang.Object

61 exactInstance =false

62 |java.lang.Object::<created>| = false

63 classInvariant = false

64

65 Object #o6

66 length = 0

67 type =java.lang.Object

68 exactInstance =false

69 |java.lang.Object::<created>| = false

70 classInvariant = false

71

72 Object #o7

73 length = 0

74 type =java.lang.Object

75 exactInstance =false

76 |java.lang.Object::<created>| = false

77 classInvariant = false

78

79

80 Heap heapAfter_modx

81 Object #o0/exc_0/null

82

83 Object #o1/self

84 length = 0

85 type =anon.A2

86 exactInstance =true

87 |anon.A2::next| = #o4

88 |anon.A2::x| = 2

89 |java.lang.Object::<created>| = true

90 classInvariant = true

91

92 Object #o2

93 length = 0

94 type =anon.A2

95 exactInstance =false

96 |anon.A2::next| = #o0/exc_0/null

97 |anon.A2::x| = 0

98 |java.lang.Object::<created>| = true

99 classInvariant = false

100

101 Object #o3

102 length = 0

103 type =anon.A2

82

C. Anon

104 exactInstance =false

105 |anon.A2::next| = #o0/exc_0/null

106 |anon.A2::x| = 2

107 |java.lang.Object::<created>| = false

108 classInvariant = false

109

110 Object #o4

111 length = 0

112 type =anon.A2

113 exactInstance =false

114 |anon.A2::next| = #o1/self

115 |anon.A2::x| = 0

116 |java.lang.Object::<created>| = true

117 classInvariant = false

118

119 Object #o5

120 length = 0

121 type =java.lang.Object

122 exactInstance =false

123 |java.lang.Object::<created>| = true

124 classInvariant = false

125

126 Object #o6

127 length = 0

128 type =java.lang.Object

129 exactInstance =false

130 |java.lang.Object::<created>| = true

131 classInvariant = false

132

133 Object #o7

134 length = 0

135 type =java.lang.Object

136 exactInstance =false

137 |java.lang.Object::<created>| = true

138 classInvariant = false

139

140

141 Heap anon_heap_modx

142 Object #o0/exc_0/null

143

144 Object #o1/self

145 length = 0

146 type =anon.A2

147 exactInstance =true

148 |anon.A2::next| = #o0/exc_0/null

149 |anon.A2::x| = 2

150 |java.lang.Object::<created>| = false

151 classInvariant = false

152

153 Object #o2

154 length = 0

155 type =anon.A2

83

7. Appendix

156 exactInstance =false

157 |anon.A2::next| = #o2

158 |anon.A2::x| = 0

159 |java.lang.Object::<created>| = true

160 classInvariant = false

161

162 Object #o3

163 length = 0

164 type =anon.A2

165 exactInstance =false

166 |anon.A2::next| = #o0/exc_0/null

167 |anon.A2::x| = 2

168 |java.lang.Object::<created>| = false

169 classInvariant = false

170

171 Object #o4

172 length = 0

173 type =anon.A2

174 exactInstance =false

175 |anon.A2::next| = #o0/exc_0/null

176 |anon.A2::x| = 0

177 |java.lang.Object::<created>| = true

178 classInvariant = false

179

180 Object #o5

181 length = 0

182 type =java.lang.Object

183 exactInstance =false

184 |java.lang.Object::<created>| = true

185 classInvariant = false

186

187 Object #o6

188 length = 0

189 type =java.lang.Object

190 exactInstance =false

191 |java.lang.Object::<created>| = true

192 classInvariant = false

193

194 Object #o7

195 length = 0

196 type =java.lang.Object

197 exactInstance =false

198 |java.lang.Object::<created>| = true

199 classInvariant = false

200

201

202

203 Location Sets

204 -----------

205 #l0 = {}

206 #l1 = {}

207 #l2 = {}

84

D. Cell

208 #l3 = {}

209 #l4 = {}

210 #l5 = {}

211 #l6 = {}

212 #l7 = {}

213

214 Sequences

215 -----------

216 Seq: #s0/seqEmpty

217 Length: 0

218

219 Seq: #s1

220 Length: 0

221

222 Seq: #s2

223 Length: 0

224

225 Seq: #s3

226 Length: 0

227

228 Seq: #s4

229 Length: 0

230

231 Seq: #s5

232 Length: 0

233

234 Seq: #s6

235 Length: 0

236

237 Seq: #s7

238 Length: 0

D. Cell

D.1. Specified Java Code

1 class Cell {

2 private int x;

3 private int y;

4

5

6 /*@ normal_behavior

7 @ assignable \nothing;

8 @ ensures getX() == 0;

9 @ ensures \fresh(footprint);

10 @*/

11 Cell() {

12 }

13

14

15 /*@ normal_behavior

85

7. Appendix

16 @ assignable \nothing;

17 @ accessible footprint;

18 @ ensures \result == getX();

19 @*/

20 int getX() {

21 return x;

22 }

23

24

25 /*@ normal_behavior

26 @ assignable footprint;

27 @ ensures getX() == value;

28 @ ensures \new_elems_fresh(footprint);

29 @*/

30 void setX(int value) {

31 x = value;

32 }

33

34 /*@ model \locset footprint;

35 @ accessible footprint: footprint;

36 @ represents footprint = y;

37 @*/

38

39 //@ accessible \inv: \nothing;

40 }

D.2. Counterexample for Cell::setX

1

2 Constants

3 -----------

4 store_1 = #h2

5 heap = #h0

6 store_0 = #h1

7 getX_sk_0 = 0

8 seqEmpty = #s0

9 |cell.Cell::x| = #f9

10 |cell.Cell::y| = #f8

11 |java.lang.Object::<created>| = #f10

12 value = 0

13 empty = #l2

14 seqGetOutside = #a41

15 self = #o1

16 null = #o0

17

18

19 Heaps

20 -----------

21 Heap heap

22 Object #o0/null

23

86

D. Cell

24 Object #o1/self

25 length = 0

26 type =cell.Cell

27 exactInstance =true

28 |cell.Cell::x| = -4

29 |cell.Cell::y| = -4

30 |java.lang.Object::<created>| = true

31 |cell.Cell::$footprint| = #l0

32 classInvariant = true

33

34 Object #o2

35 length = 0

36 type =java.lang.Object

37 exactInstance =false

38 |java.lang.Object::<created>| = false

39 |cell.Cell::$footprint| = #l0

40 classInvariant = true

41

42 Object #o3

43 length = 0

44 type =java.lang.Object

45 exactInstance =false

46 |java.lang.Object::<created>| = false

47 |cell.Cell::$footprint| = #l0

48 classInvariant = true

49

50 Object #o4

51 length = 0

52 type =java.lang.Object

53 exactInstance =false

54 |java.lang.Object::<created>| = false

55 |cell.Cell::$footprint| = #l0

56 classInvariant = true

57

58 Object #o5

59 length = 0

60 type =java.lang.Object

61 exactInstance =false

62 |java.lang.Object::<created>| = false

63 |cell.Cell::$footprint| = #l0

64 classInvariant = true

65

66 Object #o6

67 length = 0

68 type =java.lang.Object

69 exactInstance =false

70 |java.lang.Object::<created>| = false

71 |cell.Cell::$footprint| = #l0

72 classInvariant = true

73

74 Object #o7

75 length = 0

87

7. Appendix

76 type =java.lang.Object

77 exactInstance =false

78 |java.lang.Object::<created>| = false

79 |cell.Cell::$footprint| = #l0

80 classInvariant = true

81

82

83 Heap store_1

84 Object #o0/null

85

86 Object #o1/self

87 length = 0

88 type =cell.Cell

89 exactInstance =true

90 |cell.Cell::x| = 0

91 |cell.Cell::y| = -4

92 |java.lang.Object::<created>| = true

93 |cell.Cell::$footprint| = #l0

94 classInvariant = true

95

96 Object #o2

97 length = 0

98 type =java.lang.Object

99 exactInstance =false

100 |java.lang.Object::<created>| = false

101 |cell.Cell::$footprint| = #l0

102 classInvariant = true

103

104 Object #o3

105 length = 0

106 type =java.lang.Object

107 exactInstance =false

108 |java.lang.Object::<created>| = false

109 |cell.Cell::$footprint| = #l0

110 classInvariant = true

111

112 Object #o4

113 length = 0

114 type =java.lang.Object

115 exactInstance =false

116 |java.lang.Object::<created>| = false

117 |cell.Cell::$footprint| = #l0

118 classInvariant = true

119

120 Object #o5

121 length = 0

122 type =java.lang.Object

123 exactInstance =false

124 |java.lang.Object::<created>| = false

125 |cell.Cell::$footprint| = #l0

126 classInvariant = true

127

88

D. Cell

128 Object #o6

129 length = 0

130 type =java.lang.Object

131 exactInstance =false

132 |java.lang.Object::<created>| = false

133 |cell.Cell::$footprint| = #l0

134 classInvariant = true

135

136 Object #o7

137 length = 0

138 type =java.lang.Object

139 exactInstance =false

140 |java.lang.Object::<created>| = false

141 |cell.Cell::$footprint| = #l0

142 classInvariant = true

143

144

145 Heap store_0

146 Object #o0/null

147

148 Object #o1/self

149 length = 0

150 type =cell.Cell

151 exactInstance =true

152 |cell.Cell::x| = 0

153 |cell.Cell::y| = -4

154 |java.lang.Object::<created>| = true

155 |cell.Cell::$footprint| = #l0

156 classInvariant = true

157

158 Object #o2

159 length = 0

160 type =java.lang.Object

161 exactInstance =false

162 |java.lang.Object::<created>| = false

163 |cell.Cell::$footprint| = #l0

164 classInvariant = true

165

166 Object #o3

167 length = 0

168 type =java.lang.Object

169 exactInstance =false

170 |java.lang.Object::<created>| = false

171 |cell.Cell::$footprint| = #l0

172 classInvariant = true

173

174 Object #o4

175 length = 0

176 type =java.lang.Object

177 exactInstance =false

178 |java.lang.Object::<created>| = false

179 |cell.Cell::$footprint| = #l0

89

7. Appendix

180 classInvariant = true

181

182 Object #o5

183 length = 0

184 type =java.lang.Object

185 exactInstance =false

186 |java.lang.Object::<created>| = false

187 |cell.Cell::$footprint| = #l0

188 classInvariant = true

189

190 Object #o6

191 length = 0

192 type =java.lang.Object

193 exactInstance =false

194 |java.lang.Object::<created>| = false

195 |cell.Cell::$footprint| = #l0

196 classInvariant = true

197

198 Object #o7

199 length = 0

200 type =java.lang.Object

201 exactInstance =false

202 |java.lang.Object::<created>| = false

203 |cell.Cell::$footprint| = #l0

204 classInvariant = true

205

206

207

208 Location Sets

209 -----------

210 #l0 = {(#o1/self, |cell.Cell::y|)}

211 #l1 = {(#o0/null, |cell.Cell::y|)}

212 #l2 = {}

213 #l3 = {}

214 #l4 = {}

215 #l5 = {}

216 #l6 = {}

217 #l7 = {}

218

219 Sequences

220 -----------

221 Seq: #s0/seqEmpty

222 Length: 0

223

224 Seq: #s1

225 Length: 0

226

227 Seq: #s2

228 Length: 0

229

230 Seq: #s3

231 Length: 0

90

E. SimplifiedLL

232

233 Seq: #s4

234 Length: 0

235

236 Seq: #s5

237 Length: 0

238

239 Seq: #s6

240 Length: 0

241

242 Seq: #s7

243 Length: 0

E. SimplifiedLL

E.1. Specified Java Code

1 final class SimplifiedLinkedList {

2

3 private /*@nullable@*/ Node first;

4 private int size;

5

6 /*@ private ghost \seq nodeseq; */

7

8 /*@

9 @ private invariant (\forall int i; 0<=i && i<size;

10 @ ((Node)nodeseq[i]) != null // this implies

\typeof(nodeseq[i]) == \type(Node)

11 @ && (\forall int j; 0<=j && j<size; (Node)nodeseq[i] ==

(Node)nodeseq[j] ==> i == j)

12 @ && ((Node)nodeseq[i]).next == (i==size-1 ? null :

(Node)nodeseq[i+1]));

13 @

14 @ private invariant size > 0;

15 @ private invariant first == (Node)nodeseq[0];

16 @*/

17

18

19 /*@ normal_behaviour

20 @ requires n >= 0 && n < size && \invariant_for(this);

21 @ ensures \result == (Node)nodeseq[n];

22 @ assignable \strictly_nothing;

23 @ helper */

24 private Node getNext(int n) {

25 Node result = first;

26 /*@ loop_invariant

27 @ 0<=i && i <=n && result == (Node)nodeseq[i];

28 @ decreases n-i;

29 @ assignable \strictly_nothing;

30 @*/

31 for(int i = 0; i < n; i++) {

91

7. Appendix

32 result = result.next;

33 }

34 return result;

35 }

36

37 /*@ normal_behaviour

38 @ requires i > 0 && i < size;

39 @ ensures nodeseq == \old(\seq_concat(nodeseq[0..i-1],

nodeseq[i+1..nodeseq.length-1]));

40 @*/

41 public void remove(int i) {

42 Node node = getNext(i-1);

43 Node node2 = getNext(i);

44 node.next = node2.next;

45 //@ set nodeseq = (\seq_concat(\seq_sub(nodeseq,0,i-1),

\seq_sub(nodeseq,i+1,\seq_length(nodeseq)-1)));

46 size --;

47 }

48 }

49

50 final class Node {

51 public /*@nullable@*/ Node next;

52 public Object data;

53 }

E.2. Counterexample for SimplifiedLL.remove

1

2 Constants

3 -----------

4 heap = #h0

5 seqEmpty = #s0

6 |java.lang.Object::<created>| = #f8

7 empty = #l6

8 value = 0

9 seqGetOutside = #a24

10 self = #o4

11 null = #o0

12 array = #o1

13

14

15 Heaps

16 -----------

17 Heap heap

18 Object #o0/null

19

20 Object #o1/array

21 length = 1

22 type =int[][]

23 exactInstance =true

24 |java.lang.Object::<created>| = true

92

E. SimplifiedLL

25 classInvariant = true

26 [0] = #o2

27

28 Object #o2

29 length = 3

30 type =int[]

31 exactInstance =true

32 |java.lang.Object::<created>| = true

33 classInvariant = true

34 [0] = 1

35 [1] = 1

36 [2] = 2

37

38 Object #o3

39 length = 3

40 type =java.lang.Object

41 exactInstance =false

42 |java.lang.Object::<created>| = false

43 classInvariant = true

44

45 Object #o4/self

46 length = 3

47 type =saddleback.Saddleback

48 exactInstance =true

49 |java.lang.Object::<created>| = true

50 classInvariant = true

51

52 Object #o5

53 length = 3

54 type =java.lang.Cloneable

55 exactInstance =false

56 |java.lang.Object::<created>| = false

57 classInvariant = true

58

59 Object #o6

60 length = 3

61 type =java.lang.Object

62 exactInstance =false

63 |java.lang.Object::<created>| = false

64 classInvariant = true

65

66 Object #o7

67 length = 3

68 type =java.lang.Cloneable

69 exactInstance =false

70 |java.lang.Object::<created>| = false

71 classInvariant = true

72

73

74

75 Location Sets

76 -----------

93

7. Appendix

77 #l0 = {}

78 #l1 = {}

79 #l2 = {}

80 #l3 = {}

81 #l4 = {}

82 #l5 = {}

83 #l6 = {}

84 #l7 = {}

85

86 Sequences

87 -----------

88 Seq: #s0/seqEmpty

89 Length: 0

90

91 Seq: #s1

92 Length: 0

93

94 Seq: #s2

95 Length: 0

96

97 Seq: #s3

98 Length: 0

99

100 Seq: #s4

101 Length: 0

102

103 Seq: #s5

104 Length: 0

105

106 Seq: #s6

107 Length: 0

108

109 Seq: #s7

110 Length: 0

F. SaddleBack

F.1. Specified Java Code

1 class Saddleback {

2

3 /*@ public normal_behaviour

4 @ requires (\forall int i; 0<=i && i<array.length;

5 @ array[i].length == array[0].length);

6 @

7 @ requires array.length > 0;

8 @ requires array[0].length > 0;

9 @

10 @ requires (\forall int k,i,j;

11 @ 0<=k && k < i && i < array.length && 0<=j && j <

array[0].length;

94

F. SaddleBack

12 @ array[k][j] <= array[i][j]);

13 @

14 @ requires (\forall int k,j,i;

15 @ 0<=i && i < array.length && 0<=k && k<j && j < array[i].length;

16 @ array[i][k] <= array[i][j]);

17 @

18 @ ensures \result == null ==>

19 @ (\forall int i; 0<=i && i<array.length;

20 @ (\forall int j; 0<=j && j<array[i].length;

21 @ array[i][j] != value));

22 @

23 @ ensures \result != null ==>

24 @ \result.length == 2 &&

25 @ array[\result[0]][\result[1]] == value;

26 @

27 @ modifies \nothing;

28 @*/

29 public /*@nullable*/ int[] search(int[][] array, int value) {

30 int x = 0;

31 int y = array[0].length - 1;

32

33 /*@

34 @ loop_invariant

35 @ 0 <= x && x <= array.length &&

36 @ -1 <= y && y < array[0].length &&

37 @ (\forall int j,i; 0<=i && i < array.length &&

38 @ 0<=j && j < array[0].length ;

39 @ (i < x || j > y) ==> array[i][j] != value);

40 @

41 @ decreases array.length - x - y;

42 @ modifies \nothing;

43 @*/

44 while(x < array.length && y >= 0) {

45

46 if(array[x][y] == value) {

47 return new int[] { x, y };

48 }

49

50 if(array[x][y] < value) {

51 x++;

52 } else {

53 y--;

54 }

55

56 }

57

58 return null;

59 }

60 }

F.2. Counterexample for Saddleback::search

95

7. Appendix

1 Constants

2 -----------

3 heap = #h0

4 seqEmpty = #s0

5 |java.lang.Object::<created>| = #f8

6 empty = #l6

7 value = 0

8 seqGetOutside = #a24

9 self = #o4

10 null = #o0

11 array = #o1

12

13

14 Heaps

15 -----------

16 Heap heap

17 Object #o0/null

18

19 Object #o1/array

20 length = 1

21 type =int[][]

22 exactInstance =true

23 |java.lang.Object::<created>| = true

24 classInvariant = true

25 [0] = #o2

26

27 Object #o2

28 length = 3

29 type =int[]

30 exactInstance =true

31 |java.lang.Object::<created>| = true

32 classInvariant = true

33 [0] = 1

34 [1] = 1

35 [2] = 2

36

37 Object #o3

38 length = 3

39 type =java.lang.Object

40 exactInstance =false

41 |java.lang.Object::<created>| = false

42 classInvariant = true

43

44 Object #o4/self

45 length = 3

46 type =saddleback.Saddleback

47 exactInstance =true

48 |java.lang.Object::<created>| = true

49 classInvariant = true

50

51 Object #o5

96

F. SaddleBack

52 length = 3

53 type =java.lang.Cloneable

54 exactInstance =false

55 |java.lang.Object::<created>| = false

56 classInvariant = true

57

58 Object #o6

59 length = 3

60 type =java.lang.Object

61 exactInstance =false

62 |java.lang.Object::<created>| = false

63 classInvariant = true

64

65 Object #o7

66 length = 3

67 type =java.lang.Cloneable

68 exactInstance =false

69 |java.lang.Object::<created>| = false

70 classInvariant = true

71

72

73

74 Location Sets

75 -----------

76 #l0 = {}

77 #l1 = {}

78 #l2 = {}

79 #l3 = {}

80 #l4 = {}

81 #l5 = {}

82 #l6 = {}

83 #l7 = {}

84

85 Sequences

86 -----------

87 Seq: #s0/seqEmpty

88 Length: 0

89

90 Seq: #s1

91 Length: 0

92

93 Seq: #s2

94 Length: 0

95

96 Seq: #s3

97 Length: 0

98

99 Seq: #s4

100 Length: 0

101

102 Seq: #s5

103 Length: 0

97

7. Appendix

104

105 Seq: #s6

106 Length: 0

107

108 Seq: #s7

109 Length: 0

G. RingBuffer

G.1. Specified Java Code

1 public class RingBuffer {

2

3 int[] data;

4 int first;

5 int len;

6

7 //@ ghost \seq list;

8 //@ invariant list.length == len;

9 //@ invariant data.length > 0;

10 //@ invariant 0 <= first && first < data.length;

11 //@ invariant 0 <= len && len <= data.length;

12 //@ invariant (\forall int i; 0 <= i && i < len; list[i] ==

data[modulo(first+i)]);

13

14 /*@ normal_behavior

15 @ requires n >= 1;

16 @ assignable this.*;

17 @ ensures list == \seq_empty;

18 @ ensures first == 0;

19 @ ensures data.length == n;

20 */

21 RingBuffer(int n){

22 //@ set list = \seq_empty;

23 data = new int[n];

24 }

25

26 /*@ normal_behavior

27 @ ensures list == \seq_empty;

28 @ ensures first == \old(first);

29 @ assignable len,list;

30 @*/

31 void clear(){

32 //@ set list = \seq_empty;

33 len = 0;

34 }

35

36 /*@ normal_behavior

37 @ requires !isEmpty();

38 @ ensures \result == list[0];

39 @ pure

98

G. RingBuffer

40 @*/

41 int head() {

42 return data[first];

43 }

44

45 /*@ normal_behavior

46 @ requires !isFull();

47 @ ensures list == \seq_concat(\old(list),\seq_singleton(x));

48 @ assignable len,list,data[modulo(first+len)];

49 @*/

50 void push(int x){

51 int pos = modulo(first+len);

52

53 data[pos] = x;

54 //@ set list = \seq_concat(list,\seq_singleton(x));

55 len = len + 2;

56 }

57

58 /*@ normal_behavior

59 @ requires !isEmpty();

60 @ ensures list == \seq_sub(\old(list),1,\old(list.length)-1);

61 @ ensures first == modulo(\old(first)+1);

62 @ ensures \result == \old(data[first]);

63 @ assignable first,len,list;

64 @*/

65 int pop(){

66 int r = data[first];

67 first = modulo(first+1);

68

69 len = len -2;

70 //@ set list = \seq_sub(list,1,\seq_length(list)-1);

71 return r;

72 }

73

74

75 // helper methods

76 /*@ normal_behavior

77 @ ensures \result == (len == 0);

78 @ pure helper

79 @*/

80 boolean isEmpty() {

81 return len == 0;

82 }

83

84 /*@ normal_behavior

85 @ ensures \result == (len == data.length);

86 @ pure

87 @*/

88 boolean isFull() {

89 return len == data.length;

90 }

91

99

7. Appendix

92 /*@ public normal_behaviour

93 @ ensures x >= 0 && x < data.length ==> \result == x;

94 @ ensures x >= data.length && x < data.length + data.length ==>

95 @ \result == x - data.length;

96 @ pure

97 @*/

98 int modulo(int x) {

99 return x < data.length ? x : x - data.length;

100 }

101

102 // Harness

103

104 //@ ensures true;

105 //@ signals (Exception) false;

106 static void test (int x, int y, int z){

107 RingBuffer b = new RingBuffer(2);

108 b.push(x);

109 b.push(y);

110 int h = b.pop();

111 assert h == x;

112 b.push(z);

113 h = b.pop();

114 assert h == y;

115 h = b.pop();

116 assert h == z;

117 }

118

119 }

G.2. Counterexample for RingBuffer::push

1 Constants

2 -----------

3 seqEmpty = #s0

4 result = 0

5 |java.lang.Object::<created>| = #f12

6 |ringbuffer.RingBuffer::first| = #f8

7 self = #o1

8 |ringbuffer.RingBuffer::len| = #f9

9 anon_heap_modulo = #h2

10 heap = #h0

11 seqSingleton_4 = #s1

12 store_0 = #h4

13 seqSingleton_3 = #s2

14 heapAfter_modulo = #h0

15 empty = #l1

16 |ringbuffer.RingBuffer::list| = #f10

17 null = #o0

18 seqConcat_4 = #s1

19 |ringbuffer.RingBuffer::data| = #f11

20 seqSingleton_1 = #s2

100

G. RingBuffer

21 seqConcat_1 = #s1

22 seqSingleton_2 = #s4

23 exc_0 = #o0

24 seqConcat_0 = #s1

25 seqConcat_3 = #s4

26 seqConcat_2 = #s4

27 seqSingleton_0 = #s2

28 modulo_sk_1 = 0

29 isFull_sk_3 = false

30 seqGetOutside = #a0

31 x = 0

32

33

34 Heaps

35 -----------

36 Heap anon_heap_modulo

37 Object #o0/null/exc_0

38

39 Object #o1/self

40 length = 1

41 type =ringbuffer.RingBuffer

42 exactInstance =true

43 |java.lang.Object::<created>| = false

44 |ringbuffer.RingBuffer::data| = #o0/null/exc_0

45 |ringbuffer.RingBuffer::first| = -4

46 |ringbuffer.RingBuffer::len| = 2

47 |ringbuffer.RingBuffer::list| = #s4

48 classInvariant = false

49

50 Object #o2

51 length = 1

52 type =java.util.List

53 exactInstance =false

54 |java.lang.Object::<created>| = false

55 classInvariant = false

56

57 Object #o3

58 length = 1

59 type =java.util.List

60 exactInstance =false

61 |java.lang.Object::<created>| = false

62 classInvariant = false

63

64 Object #o4

65 length = 1

66 type =int[]

67 exactInstance =true

68 |java.lang.Object::<created>| = false

69 classInvariant = false

70 [0] = 0

71

72 Object #o5

101

7. Appendix

73 length = 1

74 type =java.util.List

75 exactInstance =false

76 |java.lang.Object::<created>| = false

77 classInvariant = false

78

79 Object #o6

80 length = 1

81 type =java.util.List

82 exactInstance =false

83 |java.lang.Object::<created>| = false

84 classInvariant = false

85

86 Object #o7

87 length = 1

88 type =java.util.List

89 exactInstance =false

90 |java.lang.Object::<created>| = false

91 classInvariant = false

92

93

94 Heap heap

95 Object #o0/null/exc_0

96

97 Object #o1/self

98 length = 1

99 type =ringbuffer.RingBuffer

100 exactInstance =true

101 |java.lang.Object::<created>| = true

102 |ringbuffer.RingBuffer::data| = #o4

103 |ringbuffer.RingBuffer::first| = 0

104 |ringbuffer.RingBuffer::len| = 0

105 |ringbuffer.RingBuffer::list| = #s0

106 classInvariant = true

107

108 Object #o2

109 length = 1

110 type =java.util.List

111 exactInstance =false

112 |java.lang.Object::<created>| = true

113 classInvariant = false

114

115 Object #o3

116 length = 1

117 type =java.util.List

118 exactInstance =false

119 |java.lang.Object::<created>| = true

120 classInvariant = false

121

122 Object #o4

123 length = 1

124 type =int[]

102

G. RingBuffer

125 exactInstance =true

126 |java.lang.Object::<created>| = true

127 classInvariant = false

128 [0] = 0

129

130 Object #o5

131 length = 1

132 type =java.util.List

133 exactInstance =false

134 |java.lang.Object::<created>| = true

135 classInvariant = false

136

137 Object #o6

138 length = 1

139 type =java.util.List

140 exactInstance =false

141 |java.lang.Object::<created>| = true

142 classInvariant = false

143

144 Object #o7

145 length = 1

146 type =java.util.List

147 exactInstance =false

148 |java.lang.Object::<created>| = true

149 classInvariant = false

150

151

152 Heap store_0

153 Object #o0/null/exc_0

154

155 Object #o1/self

156 length = 1

157 type =ringbuffer.RingBuffer

158 exactInstance =true

159 |java.lang.Object::<created>| = true

160 |ringbuffer.RingBuffer::data| = #o4

161 |ringbuffer.RingBuffer::first| = 0

162 |ringbuffer.RingBuffer::len| = 2

163 |ringbuffer.RingBuffer::list| = #s1

164 classInvariant = false

165

166 Object #o2

167 length = 1

168 type =java.util.List

169 exactInstance =false

170 |java.lang.Object::<created>| = true

171 classInvariant = false

172

173 Object #o3

174 length = 1

175 type =java.util.List

176 exactInstance =false

103

7. Appendix

177 |java.lang.Object::<created>| = true

178 classInvariant = false

179

180 Object #o4

181 length = 1

182 type =int[]

183 exactInstance =true

184 |java.lang.Object::<created>| = true

185 classInvariant = false

186 [0] = 0

187

188 Object #o5

189 length = 1

190 type =java.util.List

191 exactInstance =false

192 |java.lang.Object::<created>| = true

193 classInvariant = false

194

195 Object #o6

196 length = 1

197 type =java.util.List

198 exactInstance =false

199 |java.lang.Object::<created>| = true

200 classInvariant = false

201

202 Object #o7

203 length = 1

204 type =java.util.List

205 exactInstance =false

206 |java.lang.Object::<created>| = true

207 classInvariant = false

208

209

210 Heap heapAfter_modulo

211 Object #o0/null/exc_0

212

213 Object #o1/self

214 length = 1

215 type =ringbuffer.RingBuffer

216 exactInstance =true

217 |java.lang.Object::<created>| = true

218 |ringbuffer.RingBuffer::data| = #o4

219 |ringbuffer.RingBuffer::first| = 0

220 |ringbuffer.RingBuffer::len| = 0

221 |ringbuffer.RingBuffer::list| = #s0

222 classInvariant = true

223

224 Object #o2

225 length = 1

226 type =java.util.List

227 exactInstance =false

228 |java.lang.Object::<created>| = true

104

G. RingBuffer

229 classInvariant = false

230

231 Object #o3

232 length = 1

233 type =java.util.List

234 exactInstance =false

235 |java.lang.Object::<created>| = true

236 classInvariant = false

237

238 Object #o4

239 length = 1

240 type =int[]

241 exactInstance =true

242 |java.lang.Object::<created>| = true

243 classInvariant = false

244 [0] = 0

245

246 Object #o5

247 length = 1

248 type =java.util.List

249 exactInstance =false

250 |java.lang.Object::<created>| = true

251 classInvariant = false

252

253 Object #o6

254 length = 1

255 type =java.util.List

256 exactInstance =false

257 |java.lang.Object::<created>| = true

258 classInvariant = false

259

260 Object #o7

261 length = 1

262 type =java.util.List

263 exactInstance =false

264 |java.lang.Object::<created>| = true

265 classInvariant = false

266

267

268

269 Location Sets

270 -----------

271 #l0 = {}

272 #l1 = {}

273 #l2 = {}

274 #l3 = {}

275 #l4 = {}

276 #l5 = {}

277 #l6 = {}

278 #l7 = {}

279

280 Sequences

105

7. Appendix

281 -----------

282 Seq: #s0/seqEmpty

283 Length: 0

284

285 Seq: #s1/seqSingleton_4/seqConcat_4/seqConcat_1/seqConcat_0

286 Length: 1

287 [0] = 0

288

289 Seq: #s2/seqSingleton_3/seqSingleton_1/seqSingleton_0

290 Length: 1

291 [0] = 0

292

293 Seq: #s3

294 Length: 0

295

296 Seq: #s4/seqSingleton_2/seqConcat_3/seqConcat_2

297 Length: 1

298 [0] = 0

299

300 Seq: #s5

301 Length: 0

302

303 Seq: #s6

304 Length: 0

305

306 Seq: #s7

307 Length: 0

G.3. Counterexample for RingBuffer::pop

1 Constants

2 -----------

3 seqEmpty = #s0

4 isEmpty_sk_3 = false

5 |java.lang.Object::<created>| = #f12

6 |ringbuffer.RingBuffer::first| = #f8

7 |ringbuffer.RingBuffer::data| = #f11

8 result_0 = 0

9 self = #o7

10 |ringbuffer.RingBuffer::len| = #f9

11 exc_0 = #o0

12 anon_heap_modulo = #h0

13 store_1 = #h0

14 heap = #h1

15 modulo_sk_11 = 0

16 heapAfter_modulo = #h2

17 seqSub_8 = #s0

18 seqSub_9 = #s0

19 seqSub_6 = #s4

20 seqSub_7 = #s1

21 empty = #l6

106

G. RingBuffer

22 seqGetOutside = #a0

23 seqSub_5 = #s0

24 |ringbuffer.RingBuffer::list| = #f10

25 null = #o0

26

27

28 Heaps

29 -----------

30 Heap anon_heap_modulo

31 Object #o0/exc_0/null

32

33 Object #o1

34 length = 0

35 type =java.util.Set

36 exactInstance =false

37 |java.lang.Object::<created>| = false

38 classInvariant = false

39

40 Object #o2

41 length = 0

42 type =java.util.Set

43 exactInstance =false

44 |java.lang.Object::<created>| = false

45 classInvariant = false

46

47 Object #o3

48 length = 0

49 type =java.util.Set

50 exactInstance =false

51 |java.lang.Object::<created>| = false

52 classInvariant = false

53

54 Object #o4

55 length = 1

56 type =int[]

57 exactInstance =true

58 |java.lang.Object::<created>| = true

59 classInvariant = false

60 [0] = 2

61

62 Object #o5

63 length = 0

64 type =java.util.Set

65 exactInstance =false

66 |java.lang.Object::<created>| = false

67 classInvariant = false

68

69 Object #o6

70 length = 0

71 type =java.util.Set

72 exactInstance =false

73 |java.lang.Object::<created>| = false

107

7. Appendix

74 classInvariant = false

75

76 Object #o7/self

77 length = 0

78 type =ringbuffer.RingBuffer

79 exactInstance =true

80 |java.lang.Object::<created>| = true

81 |ringbuffer.RingBuffer::data| = #o4

82 |ringbuffer.RingBuffer::first| = 0

83 |ringbuffer.RingBuffer::len| = -1

84 |ringbuffer.RingBuffer::list| = #s4

85 classInvariant = false

86

87

88 Heap heap

89 Object #o0/exc_0/null

90

91 Object #o1

92 length = 0

93 type =java.util.Set

94 exactInstance =false

95 |java.lang.Object::<created>| = false

96 classInvariant = false

97

98 Object #o2

99 length = 0

100 type =java.util.Set

101 exactInstance =false

102 |java.lang.Object::<created>| = false

103 classInvariant = false

104

105 Object #o3

106 length = 0

107 type =java.util.Set

108 exactInstance =false

109 |java.lang.Object::<created>| = false

110 classInvariant = false

111

112 Object #o4

113 length = 1

114 type =int[]

115 exactInstance =true

116 |java.lang.Object::<created>| = true

117 classInvariant = false

118 [0] = 2

119

120 Object #o5

121 length = 0

122 type =java.util.Set

123 exactInstance =false

124 |java.lang.Object::<created>| = false

125 classInvariant = false

108

G. RingBuffer

126

127 Object #o6

128 length = 0

129 type =java.util.Set

130 exactInstance =false

131 |java.lang.Object::<created>| = false

132 classInvariant = false

133

134 Object #o7/self

135 length = 0

136 type =ringbuffer.RingBuffer

137 exactInstance =true

138 |java.lang.Object::<created>| = true

139 |ringbuffer.RingBuffer::data| = #o4

140 |ringbuffer.RingBuffer::first| = 0

141 |ringbuffer.RingBuffer::len| = 1

142 |ringbuffer.RingBuffer::list| = #s2

143 classInvariant = true

144

145

146 Heap store_1

147 Object #o0/exc_0/null

148

149 Object #o1

150 length = 0

151 type =java.util.Set

152 exactInstance =false

153 |java.lang.Object::<created>| = false

154 classInvariant = false

155

156 Object #o2

157 length = 0

158 type =java.util.Set

159 exactInstance =false

160 |java.lang.Object::<created>| = false

161 classInvariant = false

162

163 Object #o3

164 length = 0

165 type =java.util.Set

166 exactInstance =false

167 |java.lang.Object::<created>| = false

168 classInvariant = false

169

170 Object #o4

171 length = 1

172 type =int[]

173 exactInstance =true

174 |java.lang.Object::<created>| = true

175 classInvariant = false

176 [0] = 2

177

109

7. Appendix

178 Object #o5

179 length = 0

180 type =java.util.Set

181 exactInstance =false

182 |java.lang.Object::<created>| = false

183 classInvariant = false

184

185 Object #o6

186 length = 0

187 type =java.util.Set

188 exactInstance =false

189 |java.lang.Object::<created>| = false

190 classInvariant = false

191

192 Object #o7/self

193 length = 0

194 type =ringbuffer.RingBuffer

195 exactInstance =true

196 |java.lang.Object::<created>| = true

197 |ringbuffer.RingBuffer::data| = #o4

198 |ringbuffer.RingBuffer::first| = 0

199 |ringbuffer.RingBuffer::len| = -1

200 |ringbuffer.RingBuffer::list| = #s4

201 classInvariant = false

202

203

204 Heap heapAfter_modulo

205 Object #o0/exc_0/null

206

207 Object #o1

208 length = 0

209 type =java.util.Set

210 exactInstance =false

211 |java.lang.Object::<created>| = false

212 classInvariant = false

213

214 Object #o2

215 length = 0

216 type =java.util.Set

217 exactInstance =false

218 |java.lang.Object::<created>| = false

219 classInvariant = false

220

221 Object #o3

222 length = 0

223 type =java.util.Set

224 exactInstance =false

225 |java.lang.Object::<created>| = false

226 classInvariant = false

227

228 Object #o4

229 length = 1

110

G. RingBuffer

230 type =int[]

231 exactInstance =true

232 |java.lang.Object::<created>| = true

233 classInvariant = false

234 [0] = 2

235

236 Object #o5

237 length = 0

238 type =java.util.Set

239 exactInstance =false

240 |java.lang.Object::<created>| = false

241 classInvariant = false

242

243 Object #o6

244 length = 0

245 type =java.util.Set

246 exactInstance =false

247 |java.lang.Object::<created>| = false

248 classInvariant = false

249

250 Object #o7/self

251 length = 0

252 type =ringbuffer.RingBuffer

253 exactInstance =true

254 |java.lang.Object::<created>| = true

255 |ringbuffer.RingBuffer::data| = #o4

256 |ringbuffer.RingBuffer::first| = 0

257 |ringbuffer.RingBuffer::len| = 1

258 |ringbuffer.RingBuffer::list| = #s2

259 classInvariant = true

260

261

262

263 Location Sets

264 -----------

265 #l0 = {}

266 #l1 = {}

267 #l2 = {}

268 #l3 = {}

269 #l4 = {}

270 #l5 = {}

271 #l6 = {}

272 #l7 = {}

273

274 Sequences

275 -----------

276 Seq: #s0/seqEmpty/seqSub_8/seqSub_9/seqSub_5

277 Length: 0

278

279 Seq: #s1/seqSub_7

280 Length: 0

281

111

7. Appendix

282 Seq: #s2

283 Length: 1

284 [0] = 2

285

286 Seq: #s3

287 Length: 0

288

289 Seq: #s4/seqSub_6

290 Length: 0

291

292 Seq: #s5

293 Length: 0

294

295 Seq: #s6

296 Length: 0

297

298 Seq: #s7

299 Length: 0

112

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Project Goal
	1.3 Outline

	2 Preliminaries
	2.1 JavaDL and KeY
	2.1.1 The Type System
	2.1.2 Syntax
	2.1.3 Semantics
	2.1.4 Sequent Calculus
	2.1.5 Heaps
	2.1.6 KeY

	2.2 SMT
	2.2.1 The SMT-LIB 2 Language
	2.2.2 SMT-LIB commands
	2.2.3 SMT Formulae
	2.2.4 Built in sorts and functions
	2.2.5 Z3

	3 Translation
	3.1 The Type System
	3.2 Functions
	3.2.1 Boolean and Integer Functions
	3.2.2 Cast Functions for Reference Types
	3.2.3 Special Interpreted Constants
	3.2.4 The Wellformed Predicate

	3.3 Preserving the Semantics of Interpreted Functions
	3.3.1 Translating Rules
	3.3.2 Specifying Semantics only for Necessary Inputs

	3.4 Fields and Arrays
	3.5 Class Invariants and Model Fields
	3.6 Preventing Integer Overflows
	3.7 Limitations of our approach
	3.7.1 Spurious counterexamples
	3.7.2 Increasing confidence in proof obligations
	3.7.3 Deviations from the Current Implementation of KeY

	4 Implementation
	4.1 Overview
	4.2 Semantic Blasting
	4.3 Counterexample Extraction
	4.4 Counterexample Presentation

	5 Evaluation
	5.1 Proof Obligations Expected to be Valid
	5.2 Proof Obligations Expected to be Invalid
	5.2.1 Specifications with Unknown Faults
	5.2.1.1 Method Cell::setX
	5.2.1.2 Method Saddleback::search
	5.2.1.3 Method SimplifiedLL::remove
	5.2.1.4 Method ArrayList::indexof
	5.2.1.5 Method ArrayList::clear

	5.2.2 Specifications with Known Faults
	5.2.2.1 Method BinarySearch::binarysearch
	5.2.2.2 Method Anon::m
	5.2.2.3 Method Ringbuffer::push
	5.2.2.4 Method Ringbuffer::pop

	6 Conclusion
	6.1 Summary
	6.2 Related Work
	6.2.1 The Previous Translation to SMT
	6.2.2 Nitpick
	6.2.3 Dynamite
	6.2.4 Lightweight Verification Tools for Java

	6.3 Future Work

	Bibliography
	7 Appendix
	A Binary Search
	A.1 Specified Java Code
	A.2 Counterexample for BinarySearch::binarySearch

	B ArrayList
	B.1 Specified Java Code
	B.2 Counterexample for ArrayList::clear
	B.3 Counterexample for ArrayList::indexOf

	C Anon
	C.1 Specified Java Code
	C.2 Counterexample for Anon::m

	D Cell
	D.1 Specified Java Code
	D.2 Counterexample for Cell::setX

	E SimplifiedLL
	E.1 Specified Java Code
	E.2 Counterexample for SimplifiedLL.remove

	F SaddleBack
	F.1 Specified Java Code
	F.2 Counterexample for Saddleback::search

	G RingBuffer
	G.1 Specified Java Code
	G.2 Counterexample for RingBuffer::push
	G.3 Counterexample for RingBuffer::pop

