
JKelloy: A Proof Assistant for Relational
Specifications of Java Programs ?

Aboubakr Achraf El Ghazi, Mattias Ulbrich, Christoph Gladisch, Shmuel
Tyszberowicz, and Mana Taghdiri

Karlsruhe Institute of Technology, Germany
{elghazi,ulbrich,christoph.gladisch,tyshbe,mana.taghdiri}@kit.edu

Abstract. Alloy is a relational specification language with a built-in
transitive closure operator which makes it particularly suitable for writ-
ing concise specifications of linked data structures. Several tools support
Alloy specifications for Java programs. However, they can only check the
validity of those specifications with respect to a bounded domain, and
thus, in general, cannot provide correctness proofs. This paper presents
JKelloy, a tool for deductive verification of Java programs with Alloy
specifications. It includes automatically-generated coupling axioms that
bridge between specifications and Java states, and two sets of calcu-
lus rules that (1) generate verification conditions in relational logic and
(2) simplify reasoning about them. All rules have been proved correct.
To increase automation capabilities, proof strategies are introduced that
control the application of those rules. Our experiments on linked lists
and binary graphs show the feasibility of the approach.

Keywords: first-order relational logic, relational specification, Alloy,
Java, theorem proving, KeY

1 Introduction

The efficiency of specifying and verifying a linked data structure depends to
a large extent on both the level of abstraction of that data structure and the
conciseness of expressing a property over its reachable elements. A suitable for-
malism for expressing such properties that can also be utilized in the context
of theorem proving is relational logic with a transitive closure operator. In this
logic, the links of the data structures can be modeled as binary relations, and
thus reachability can be expressed using transitive closure. Furthermore, rela-
tional specifications allow the user to easily abstract away from the exact order
and connection of elements in a data structure by viewing it as a set. This re-
duction of precision, when applicable, pays off in simplification of proofs as well
as in better readability of the specifications and the intermediate verification
conditions, which is important for user interaction.

In this paper we describe JKelloy, our extension of the deductive Java verifica-
tion tool KeY [3], to support specifications written in the relational specification

? This work has been partially supported by GIF (grant No. 1131-9.6/2011)

2 A. A. El Ghazi, M. Ulbrich, C. Gladisch, S. Tyszberowicz, M. Taghdiri

language Alloy [10]—a first-order relational logic with built-in operators for tran-
sitive closure, set cardinality, integer arithmetic, and set comprehension. To the
best of our knowledge, this work is the first attempt in this direction; other re-
lated approaches either restrict the analysis to bounded domains (e.g. [1,7,19,21])
or focus only on the Alloy models of systems without considering their imple-
mentations (e.g. [2,15,18]). In our previous work [18] we formalized a translation
from Alloy specifications into the KeY first-order logic, with the aim of full (i.e.,
unbounded) verification of declarative models of systems that are specified in Al-
loy. This, however, is not sufficient for handling Alloy as a specification language
for Java programs since it has no explicit model of program state change.

JKelloy assumes a relational view of the Java heap: classes are modeled as
Alloy signatures and fields as binary relations. To evaluate Alloy expressions
in different program states, e.g. pre- and post-state of a method, we translate
Alloy relations into functions which take the heap (representing the program
state) as an argument. We define the relationship between Alloy relations and
Java program states using pre-defined coupling axioms. This eliminates the need
for the user to provide coupling invariants manually. Changes to program states
are aggregated as heap expressions. We introduce an automatic transformation
of those heap expressions to relational expressions using a set of heap resolu-
tion rules that normalize all intermediate heap expressions. The transformation
allows us to reason about verification conditions in the relational logic. To sim-
plify the reasoning process, we further introduce a set of override simplification
rules that exploit the specific shape of the resulting conditions. To increase the
degree of automation, we have developed two proof strategies that control the
application of our rules. We have proved the correctness of all rules using KeY.

Given a Java program, JKelloy can also generate an Alloy context that maps
the class hierarchy of the program to a semantically equivalent Alloy type hier-
archy. This allows the user to check the consistency of the specifications using
the automatic, lightweight Alloy Analyzer before starting the full, possibly in-
teractive verification process. Building on top of KeY enables the user to take
advantage of the supported SMT solvers to prove simpler subgoals. It also lets
the user provide additional lemmas. Complex lemmas, e.g. those that contain
transitive closure over update expressions, can be proved by using induction in
side-proofs, and then be reused to automatically prove non-trivial verification
conditions without requiring induction.

2 Overall Framework

Our verification tool JKelloy extends KeY [3], a deductive verification engine that
supports both automatic and interactive verification of Java programs. Figure 1
presents the general structure of JKelloy as well as the user’s workflow. The input
of the tool is a Java program together with its specification written in Alloy [10].
JKelloy follows the design-by-contract [14] paradigm in which every method is
specified individually with pre- and post-conditions. Verification is performed
method by method, in a modular way. For simpler programs and properties, the

JKelloy 3

Fig. 1. Overall Framework. Contributions highlighted in a boldface font.

verification may run through automatically. In other cases, some user interaction
may be required, in which the user guides the steps taken by the prover.

JKelloy extends KeY with a translation front-end that converts Alloy spec-
ifications of Java methods to Java Dynamic Logic (JavaDL), the input logic
of KeY. Our previous work, Kelloy [18], embedded general Alloy expressions
into JavaDL (thus called relational JavaDL) and provided a basic relational
calculus. JKelloy augments Kelloy with heap-dependent relations for modeling
Java classes and fields. Furthermore, JKelloy introduces a set of calculus rules
that facilitates verification of relational specifications. Some of these rules are
program-dependent, and are generated for each program during the translation
by instantiating pre-defined templates. The verification process for a method
contract typically proceeds as follows:

1. The Alloy pre- and post-conditions are translated to relational JavaDL. The
relations in the conditions become relational symbols depending on a heap-
state. Their evaluation in a heap state is defined by coupling axioms.

2. The code of the Java method is symbolically executed, computing the post-
heap-state in relation to the pre-heap.

3. Heap resolution rules are applied to normalize the resulting heap-dependent
expressions so that all heap arguments become constant.

4. The resulting proof obligation is relational and can be discharged using the
relational calculus. Override simplification rules simplify this process by pro-
viding additional lemmas in relational logic.

3 Alloy Specifications for Java Programs

Alloy is a first-order relational logic, which is well-suited for concisely specifying
properties of linked data structures. Properties of object-oriented programs can
be specified in Alloy using the relational view of the heap. Given a Java program,
JKelloy automatically generates an Alloy context [6] which encodes the type
hierarchy of that program, and declares all the relations accessible to the user for
writing the specifications. The user can then add the specifications to this context
in order to check their consistency using the Alloy Analyzer before starting the

4 A. A. El Ghazi, M. Ulbrich, C. Gladisch, S. Tyszberowicz, M. Taghdiri

1 class List {
2 Entry head;
3

4 /*@ requires true;
5 @ ensures self.head’.*next’.data’
6 @ = self.head.*next.data + d;
7 @*/
8 void prepend(Data d) {
9 Entry oldHead = head;

10 head = new Entry();
11 head.next = oldHead;
12 head.data = d;
13 }
14 }
15

16 class Entry {
17 Data data;
18 Entry next;
19 }
20

21 interface Data {..}
22 class ID implements Data {..}
23 class Name implements Data {..}

1 one sig Null {}
2 sig Object’ {}
3 sig Object in Object’ {}
4 sig List’ extends Object’ {
5 head’: one (Entry’ + Null) }
6 sig List in Object {
7 head: one (Entry + Null) }
8 sig Entry’ extends Object’ {
9 data’: one (Data’ + Null),

10 next’: one (Entry’ + Null) }
11 sig Entry in Object {
12 data: one (Data + Null),
13 next’: one (Entry + Null) }
14 sig ID’ extends Object’ {� �}
15 sig ID in Object {� �}
16 sig Name’ extends Object’ {� �}
17 sig Name in Object {� �}
18 sig Data’ in Object’ {� �}
19 sig Data in Object {� �}
20 fact { List = List’ & Object
21 Entry = Entry’ & Object
22 ID = ID’ & Object
23 Name = Name’ & Object
24 Data’ = Name’ + ID’
25 Data = Name + ID }
26 pred pre[self: one List, d: one (Data + Null)] {}
27 pred post[self: one List, d: one (Data + Null)] {
28 self�head’�∗next’�data’ = self�head�∗next�data + d}

(a) (b)

Fig. 2. (a) Sample code (b) Alloy context along with pre- and post-conditions

verification process using JKelloy. Although the Alloy Analyzer checks Alloy
models only for bounded domains, it helps users detect flaws automatically.

Figure 2(a) provides a sample Java program and its Alloy specification. It im-
plements a singly linked list that stores Data objects. The method prepend adds
a Data object to the beginning of the list. Figure 2(b) presents the corresponding
Alloy context. A signature declaration sig A{} declares A as a top-level type (set
of atoms); sig B in A{} declares B as a subtype (subset) of A. The extends

keyword has the same effect as the keyword in with the additional constraint
that extensions of a type are mutually disjoint. An attribute f of type B declared
in signature A represents a relation f ⊆ A × B. The multiplicity keyword one,
when followed by a set, constrains that set to be a singleton, and when used as
a type qualifier of a relation, constrains that relation to be a total function.

The generated Alloy context always contains a singleton Null (Fig. 2(b)
Line 1) which represents the Java null element. Every Java class C is represented
by two signatures, C and C’, that give the set of atoms corresponding to the
allocated objects of type C in the pre- and post-state, respectively. Object is
constrained to be a subset1 of Object’ (Line 3)2 and any other signature C

is constrained to be the intersection of C’ and Object (e.g. Lines 20–23). If a
Java class B extends a class A (immediate parent), the signature B’ will be an

1 Object creation is possbile, but deallocation (garbage collection) is not considered.
2 The top-level class Object is always included.

JKelloy 5

extension of A’, and B a subset of A3. A Java field f of type T declared in a
class C is represented by two functional relations f: C → (T ∪ Null) for the
pre-state, and f’: C’ → (T’ ∪ Null) for the post-state (e.g. Lines 5, 7).

Specifications must be legal Alloy formulas. Basic formulas are constructed
using subset (in) and equality (=) operators over Alloy expressions, and are
combined using the usual logical connectives as well as universal (all) and exis-
tential (some) quantifiers. Alloy expressions evaluate to relations. Sets are unary
relations and scalars are singleton unary relations. The operators +, -, and &

denote union, difference, and intersection, respectively. For relations r and s,
relational join (forward composition), Cartesian product, and transpose are de-
noted by r.s, r -> s, and ~r, respectively. The relational override r++s contains
all tuples in s, and any tuples of r whose first element is not the first element of a
tuple in s. The transitive closure ^r denotes the smallest transitive relation that
contains r, and *r denotes the reflexive transitive closure of r. The expressions
s<:r and r:>s give domain and range restriction of r to s, respectively.

Figure 2(a) gives the pre- and post-condition of prepend using the requires
and ensures clauses, respectively (Lines 4-7). Specifications can access receiver
object (self) and method arguments (Lines 26-28 of Fig. 2(b)). Post-conditions
can also access the method’s return value (ret) if any exists. The post-condition
of prepend specifies that the set of Data objects stored in the receiver list in the
post-state augments that of the pre-state with the prepended data4.

4 Relational Java Dynamic Logic

4.1 Background

JavaDL, the verification logic of KeY, extends typed first-order logic with dy-
namic logic [9] operators over Java program fragments. Besides propositional
connectives and first-order quantifiers, it introduces modal operators. The for-
mula {p := t}ϕ in which p is a constant symbol, t is a term whose type is
compatible with that of p, and ϕ is a JavaDL formula, is true iff ϕ is true after
the assignment of t to p. The modal operator {p := t} is called an update. The
formula [π]ϕ in which π is a sequence of Java statements and ϕ is a formula, is
true iff ϕ is true in the post-state (if any exists) of the program π. The formula
〈π〉ϕ additionally requires π to terminate.5

JavaDL is based on an explicit heap model [20]: a dedicated program variable
heap of type Heap stores the current heap state. A read access o.f in Java is
encoded as select(heap, o, f), abbreviated as heap[o.f]. Heap modifications are
modeled using heap constructors, as defined in Fig. 3. The store function is used
to encode changes to a field other than 〈created〉. The boolean field 〈created〉
is implicitly added to the class Object to distinguish between created and uncre-
ated objects. A Java assignment of a variable v to a field f of a non-null object o

3 It is easy to show that subclasses of a class are disjoint in the pre-state, too.
4 As shown by this example, the specifications can be arbitrarily partial.
5 [π]ϕ and 〈π〉ϕ correspond to wlp(π, ϕ) and wp(π, ϕ) in the wp-calculus [4].

6 A. A. El Ghazi, M. Ulbrich, C. Gladisch, S. Tyszberowicz, M. Taghdiri

store(h, p, g, v)[o.f] = (if o = p ∧ f = g ∧ g 6= 〈created〉 then v else h[o.f])

create(h, p)[o.f] = (if o = p ∧ f = 〈created〉 then true else h[o.f])

anon(h1, l, h2)[o.f] = (if (o, f)∈l ∧ f 6=〈created〉 ∨ o∈free(h1) then h2[o.f] else h1[o.f])

Fig. 3. Definitions of heap constructors

can be interpreted as an update:

[o.f = v;]ϕ ↔ {heap := store(heap, o, f, v)}ϕ (1)

The create function is used to set the 〈created〉 field of an object to true.
The anonymizing function anon modifies a set of locations rather than a single
location. The heap denoted by the term anon(h1, l, h2) coincides with h2 (the
anonymous heap) in all fresh locations and those in the location set l, and
coincides with h1 (the base heap) on the remaining ones.

JavaDL’s type system includes the hierarchy of Java reference types, with
the root type Object which denotes an infinite set of objects (including the
null object), whether or not created. The expression free(h) = {o : Object |
¬h[o.〈created〉] ∧ o 6= null} gives the set of all uncreated objects of h. The
types Boolean and Integer have their usual meanings, the type Field consists of
all Java fields declared in the verified program, and LocSet consists of sets of
locations, which are binary relations between Object and Field . For a type T ,
the type predicate x @− T evaluates to true iff x is of type T .

KeY performs symbolic execution [11] of the given Java code. The effects of
this execution on the program state are recorded as JavaDL updates. The equiv-
alence (1), for instance, is used to encode the effect of the Java assignment o.f=v.
Similar equivalences are used for other Java statements. Branching statements
cause the proof obligation to split into cases; corresponding path conditions are
assumed in each case. Consequently, symbolic execution resolves the original
proof obligation pre → [p]post of a program p into a conjunction of formulas of
the form pre ∧ path → {U}post , in which path stands for the accumulated path
condition, and U for the accumulated state updates in an execution path.

In [18] we presented an embedding of Alloy into JavaDL (thus called rela-
tional JavaDL). This included new JavaDL types, namely Atom for elements of
relations, and a Reln type for all n-ary relations (for each n). New function sym-
bols for Alloy operators were introduced and defined using axioms. The integers
in JavaDL were used to axiomatize transitive closure as it is not axiomatizable
in pure first-order logic. We use ∪, \, ⊕, ×, C, �, ∗, + (ascending precedence
order) to denote the symbols in relational JavaDL that correspond to the Alloy
operators +, -, ++, ->, <:, ., *, ^, respectively.

4.2 Coupling Axioms

The embedding of Alloy into relational JavaDL is not sufficient for verifying Java
programs as it lacks a model of program state. To encode a relational view of the

JKelloy 7

requires true

ensures self.head’.*next’.data’ = self.head.*next.data + d

pre := true

post :=
{self} � headrel(postheap) � (nextrel(postheap))∗ � datarel(postheap)

= {self} � headrel(preheap) � (nextrel(preheap))∗ � datarel(preheap) ∪ {d}

pre → {preheap := heap}[self.prepend(d);]{postheap := heap}post

pre ∧ path → {U}post

Embedding into relational JavaDL

Building the proof obligation

symbolic execution (one per path)

(a)

(b)

(c)

(d)

Fig. 4. The verification process for the method List.prepend as running example

heap, we translate relations for Java classes and fields as heap-dependent function
symbols. A Java class C is translated to a function symbol Crel : Heap → Rel1
such that the expression Crel(h) gives the set of all created objects of type C in
the heap h, as given by the first coupling axiom:

Crel(h) := {o | h[o.〈created〉] ∧ o @− C ∧ o 6= null} (2)

It should be noted that, without loss of generality, we make Atom a supertype of
Object to let Java objects be elements of relations as in Axiom 2. A Java field f of
type R declared in a class C is translated to a function symbol frel : Heap → Rel2
where frel(h) gives the set of all pairs (o1, o2) such that, in heap h, the created
object o1 points to the object o2 via f, as given by the second coupling axiom:

frel(h) := {(o1, o2) | o1 ∈ Crel(h)∧(o2 = null∨o2 ∈ Rrel(h))∧o2 = h[o1.f]} (3)

Following the design-by-contract paradigm, Alloy specifications can access only
the pre- and post-state. Thus we provide two sets of relations (unprimed for pre-
and primed for post-state) instead of introducing an explicit notion of state.
Heap arguments are introduced when Alloy specifications are translated into
JavaDL: references to C and f are translated to Crel(preheap) and frel(preheap),
respectively, referring to the heap in the pre-state; references to C’ and f’ are
translated to Crel(postheap) and frel(postheap), referring to the heap in the post-
state. Null signature is translated as Null rel(h) := {null} for every heap h.

Figure 4 shows how JKelloy processes the example of Fig. 2. Figure 4(a) is the
original Alloy specification, Fig. 4(b) gives its translation into relational JavaDL,
and Fig. 4(c) the relational JavaDL proof obligation for List.prepend. In ad-
dition to the program modality [self.prepend(d);], two updates {preheap :=
heap} and {postheap := heap} are used to store the respective current heap.
Symbolic execution then resolves the code of the method. Several formulas of
the form shown in Fig. 4(d) are produced for various execution paths of the code.
The example is continued in Section 5.

8 A. A. El Ghazi, M. Ulbrich, C. Gladisch, S. Tyszberowicz, M. Taghdiri

The above coupling axioms are defined such that they preserve the meaning
of the Alloy relations used in the specifications. For instance, relation head’ in
the example of Fig. 2 is a total binary relation containing the references from all
created List objects to Entry objects (or null) after the method call. Axiom (3)
ensures that headrel(postheap) contains precisely those elements.

5 Calculus

The coupling axioms (2) and (3) fix the semantics of the relation function sym-
bols. Together with the relational calculus previously developed in Kelloy, they
suffice to conduct proofs for relational JavaDL formulas. In practice, however,
this axiomatization is inefficient since it requires to always expand the defini-
tions of the relations. In order to both lift proofs to the higher abstraction level
of relations and to automate them, we introduce two sets of rules described in
the following subsections.

5.1 Heap Resolution Rules

Figure 5 lists the rules for resolving heap constructor occurrences as argument
of field relations (R1–R3) and class relations (R4–R6). All rules reduce relational
expressions over composed heaps to expressions over their heap argument. They
are applied to the verification conditions after symbolic execution and eliminate
all heap constructors from arguments of relational function symbols. Rules R1,
R2 and R5, for instance, make case distinctions between the cases when the
relation needs to be updated and when it remains untouched. R3 is special since
it updates a set of elements and not only one element in the relation. See [6] for
an extensive explanation of the rules. All rules were proved correct with respect
to the coupling axioms.

We explain the idea of heap resolution using the example in Fig. 4. The
update U in Fig. 4(d) encodes the successive heap modifications performed by
the program. After some simplifications, the heap modification of the method
body is encoded as

postheap :=

h5
↓

store (

h4
↓

store (

h3
↓

store (

h2
↓

create (

h1
↓

preheap , e),
self , head, e),

e, next, preheap[self .head]),
e, data, d)

where h1, . . . , h5 are abbreviations for the intermediate heap expressions and e
is a reference to the freshly created Entry object. In Fig. 4(b), some of the field
relations take postheap as argument (like headrel(postheap)) in which, under the
influence of U , postheap is replaced by the nested term h5. Heap modifications
in h5 affect the value of headrel(h5) only if they are related to the field head.
Rule R1, which is responsible for the resolution of this term, translates the store
expression into an if-then-else term resulting either in an overridden relation
(frel(h)⊕{o1}×{o2}) or in the original relation frel(h). The relations headrel(h5),

JKelloy 9

R1: frel(store(h, o1, g, o2)) if g = f ∧ h[o1.created] ∧ o1 @− C ∧ o1 6= null

then frel(h)⊕ {o1}×{o2} else frel(h)

assuming wellformed(store(h, o1, g, o2))

R2: frel(create(h, o)) if o 6= null ∧ o @− C then frel(h)⊕ {o}×{h[o.f]} else frel(h)

R3: frel(anon(h1, l, h2)) frel(h1)⊕ (((l � {f}) ∪ free(h1)) C frel(h2))

R4: Crel(store(h, o1, g, o2)) Crel(h)

R5: Crel(create(h, o)) if o 6= null ∧ o @− C then Crel(h) ∪ {o} else Crel(h)

R6: Crel(anon(h1, ls, h2)) Crel(h1) ∪ Crel(h2)

Fig. 5. Heap Resolution Calculus. The term rewrite relation “ ” represents an equiv-
alence transformation. In R1 and R2 the field f is defined in class C.

headrel(h4) and headrel(h3), for instance, are equivalent as the modified Java
fields data and next are different from head. But the store expression of h3
modifies the field head; hence, the relation headrel must be updated for the
arguments of store and we obtain

headrel(h3) = headrel(store(h2, self , head, e)) = headrel(h2)⊕ {self}×{e} . (4)

Relation headrel(h2) is finally simplified to headrel(h1) by rule R2 since the cre-
ation of the Entry element e does not affect the relation headrel for the field head

declared in class List. Equation (4) shows the main idea of the heap resolution
calculus: the heap state changes are transformed into relational operations. In
particular, an assignment o1.f=o2 in Java resolves into a relational override of
the form frel(heap)⊕ {o1}×{o2}.

Applying these rules exhaustively leads to a normal form where all heap ar-
guments are constants. JKelloy extends KeY with a proving strategy that always
achieves this task automatically. The final result of applying the heap resolution
rules to the post-condition of the running example (Fig. 4(b)) is the following
relational verification condition:

{self} � (headrel(h1)⊕ {self}×{e})
� (nextrel(h1)⊕ {e}×{self} � headrel(h1))∗ � (datarel(h1)⊕ {e}×{d})

= {self} � headrel(h1) � nextrel(h1)∗ � datarel(h1) ∪ {d} (5)

After all heap terms have been resolved, further reasoning can proceed on the
relational level.

5.2 Override Simplification Rules

The normalized proof obligations that result from applying heap resolution rules
can be proved on the relational level using our previous Kelloy tool. However,
Kelloy only provides definition axioms for relational operators and a set of lem-
mas for general relational expressions. To make proofs easier and to increase

10 A. A. El Ghazi, M. Ulbrich, C. Gladisch, S. Tyszberowicz, M. Taghdiri

R7: {a} � (R⊕ {a} × {b}) {b}

R8: S1 � (R⊕ S2 × S3) if S2 = ∅ then S1 �R else S1 � (S2 × S3) ∪ (S1 \ S2) �R

R9: S1 � (R⊕ {a} × S2)+ if S2 = ∅ ∨ a /∈ S1 then S1 �R
else S2 ∪ ((S2 \ {a}) �R+) ∪ (S1 �R+)

assuming R � {a} = ∅

R10: {a} � (R⊕ {b} × {c})+ if b ∈ {c}�R+ ∨ b = c then ({a} �R+ ∪ {c} ∪ {c} �R+) \ {b} �R+

else ({a} �R+ \ {b} �R+) ∪ {c} ∪ {c} �R+

assuming parFun(R), acyc(R) and b ∈ a �R+

R11: S1 � frel(h) � (R1 ⊕ S2 C R2) S1 � frel(h) �R1 assuming S2 ⊆ free(h)

R12: S1 � frel(h) � (grel(h)⊕ S2 C R)+ S1 � frel(h) � grel(h)
+ assuming S2 ⊆ free(h)

R13: (frel(h)⊕ S2 C R)+ frel(h)
+ ⊕ S2 C R assuming S2 ⊆ free(h)

Fig. 6. A sampling of our override driven calculus rules

the automation level, we introduce a set of lemma rules which exploit the shape
of the relational expressions that result from verifying Java programs. These
lemmas do not increase the power of the calculus but ease the verification by
reducing the need for expanding the definitions of relational operators. That is
particularly costly for the transitive closure as it leads to quantified integer for-
mulas that generally require user interaction in form of manual induction. Out
of more than 220 new lemmas we have introduced, we present the subset that is
most relevant to the examples of Fig. 2 and Section 6; not all of them are used
in the presented examples. All lemmas have been proved correct using KeY.

Equation (5) is typical for our approach: its right-hand side (RHS) refers to
the base relations of the pre-state, whereas its left-hand side (LHS) refers to the
post-state and thus includes override-updates on the field relations. To prove
such formulas, we bring the LHS closer to the shape of the RHS by resolving
or pulling out the override operations that occur below other operators such as
join and transitive closure.

Figure 6 lists a number of lemmas dealing with this override resolution to
give an idea of the process. The most simple case is R7 which says that retrieving
a value a from a relation which has been overridden at the very same a results
precisely in the updated value b. In other, more composed cases, the resolution
is not as simple. Rules R9 and R10, e.g., allow us to resolve the override beneath
a transitive-closure operation under certain conditions at the cost of larger re-
placement expressions without override. Rules R11–R13 resolve override opera-
tions which only modify objects not yet created in the base heap (S2 ⊆ free(h)).
For a more detailed account on the presented rules, see the extended version [6].

In the example, the subexpression {self} � (headrel(h1) ⊕ {self}×{e}) in (5)
can be simplified to {e} using R7 as the left argument {self} of the join equals
the domain of the overriding relation {self}×{e}. After this simplification, the
LHS contains the subexpression

{e} � (nextrel(h1)⊕ {e}×{self} � headrel(h1))∗ .

JKelloy 11

R14: ` parFun(frel(h))
R15: ` parFun(R)→ parFun(R⊕ {a} × {b})
R16: ` parFun(R1) ∧ parFun(R2)→ parFun(R1 ⊕R2)

R17: ` acyc(R) ∧R � {a} = ∅ ∧ a 6= b→ acyc(R⊕ {a} × {b})
R18: ` acyc(R) ∧ {b} �R = ∅ ∧ a 6= b→ acyc(R⊕ {a} × {b})
R19: ` acyc(R) ∧ a /∈ {b} �R+ ∧ a 6= b→ acyc(R⊕ {a} × {b})

R20: S2 ∈ S1 �R+ false assuming S1 �R = ∅
R21: {a} ∈ R � {b} true assuming {a} �R = {b}
R22: {a} ∈ R � {b} false assuming parFun(R) and {a} �R 6= {b}

Fig. 7. A selection of auxiliary rules for the override simplification

To resolve the override operation in this expression, we first transform reflexive
transitive closure to transitive closure using the equality S.R∗ = S ∪ S.R+, and
then apply rule R9. Further simplifications result in:

{e} ∪ {self} � headrel(h1) ∪ {self} � headrel(h1) � nextrel(h1)+

The underlined subexpression is equivalent to {self} � headrel(h1) � nextrel(h1)∗

which also appears on the RHS of (5). We have thus reached our goal of resolving
the override and bringing the LHS closer to the RHS.

The simplification rules focus on resolving override operations, yet further
rules are required to reason about expressions that occur in the rules’ assump-
tions, if-conditions, and results. Fig. 7 shows such rules divided into three cat-
egories. The first involves partial functionality of relations: every relation cor-
responding to a field is a partial function by construction (R14); R15 and R16

allow the propagation of this property over the override operator. Similarly, the
second propagates the acyclicity of relations over the override operator. The last
category lists some rules for handling reachability between objects effectively.

6 Evaluation

Proofs in KeY are conducted by applying calculus rules either manually or au-
tomatically, using KeY’s proof search strategy. We extend the existing strat-
egy by incorporating two new strategies that assign priorities to heap resolu-
tion rules and override simplification rules, and apply them consecutively. The
List.prepend example6 verifies fully automatically within 5.4 seconds7 using
1546 rule applications although its post-condition involves transitive closure.

We have also verified a slightly different example (List.append) where the
Data argument is added to the end of the list. The proof contains a total of 2850
rule applications out of which 28 are interactive. These include 6 applications of
proof-branching rules, and 6 rule applications to establish the assumptions for

6 All examples and proofs can be found at http://i12www.ira.uka.de/~elghazi/jkelloy/
7 On an Intel Core2Quad, 2.8GHz with 8GB memory

12 A. A. El Ghazi, M. Ulbrich, C. Gladisch, S. Tyszberowicz, M. Taghdiri

1 public class Graph {
2 NodeList nodes;
3 /*@ requires acyc(next);
4 @ requires not n = null;
5 @ ensures self.nodes’.first’.*next’ = self.nodes.first.*next - n;
6 @ ensures Object <: left’ = left ++ ((left.n & self.nodes.first.*next) -> null);
7 @ ensures Object <: right’ = right ++ ((right.n & self.nodes.first.*next) -> null); @*/
8 void remove(Node n) {
9 if (nodes != null) {

10 Node curr = nodes.first;
11 /*@ loop_invariant
12 @ curr in self.nodes.first.*next and
13 @ Object<:left’ = left ++ ((left.n & (self.nodes.first.*next - curr.*next)) -> null) and
14 @ Object<:right’ = right ++ ((right.n & (self.nodes.first.*next - curr.*next)) -> null)
15 @ assignable
16 @ (self.nodes.first.*next -> left) + (self.nodes.first.*next -> right); @*/
17 while (curr != null) {
18 if (curr.left == n) { curr.left = null; }
19 if (curr.right == n) { curr.right = null; }
20 curr = curr.next;
21 }
22 nodes.remove(n);
23 } } }
24 class NodeList { Node first; void remove(Node n) { ... } }
25 class Node { Node next, left, right; }

Fig. 8. Specification and implementation of the graph remove example

rule R10. Automatic rule applications take 20.3 seconds. The append method is
more complex than prepend as it contains a loop that traverses the list to the
end, thus requires handling loop invariants. The proof requires the more complex
transitive closure rule R10 since the code updates already-created objects.

We illustrate that JKelloy can be used to verify programs which manipu-
late rich heap data structures using the example of Fig. 8. This example also
illustrates that structurally complex specifications can be concisely expressed by
exploiting combinations of relational operators in Alloy. The Graph class imple-
ments a binary graph8 where each node stores its two (possibly null) successors
(left and right, Line 25). The graph keeps a linked list of its nodes (Line 2)
using the next field (Line 25). The method Graph.remove removes a node n

from the receiver graph by removing all of its incoming edges (Lines 17–21), and
then removing n (and thus its outgoing edges) from the node list (Line 22).

The method requires the node list to be acyclic (Line 3) and the argument
node n to be non-null (Line 4). It ensures that n is removed from the graph’s
node list (Line 5), and that the left and right fields of all nodes in this list
that used to point to n, point to null at the end of the method (Lines 6 and 7).
This example also illustrates that structurally complex specifications can be
concisely expressed by exploiting combinations of relational operators in Alloy.
In particular, sets of nodes with a particular property can be easily expressed
using Alloy operators. For example, using the join operator from the right side of
a field relation, the expression left.n concisely gives the set of all nodes whose
left field points to n. The domain restriction to Object restricts the relation in

8 A directed graph with an outgoing degree of at most two for every node

JKelloy 13

the post-state to those objects already existing in the pre-state. The relational
override operator denotes exactly what locations are modified and how, thus also
implicitly specifies which locations do not change.

The example requires additional intermediate specifications which are not
part of the contract. This includes a loop specification (Lines 11–16) describing
the state after the execution up to the current loop iteration. Primed relations in
the loop invariant refer to the state of the heap after the current loop iteration,
whereas unprimed relations refer to the pre-state of the method. The assignable
clause specifies the set of heap locations which may be modified by the loop.
Graph.remove calls NodeList.remove which removes n from the linked list; the
call is abstracted by the callee’s contract which is omitted here for space reasons.

Though the specification in the example is concise, it extensively combines
relational operators including, in particular, transitive closure. In the code, the
nested method call and the loop result in complex composed heap expressions
after symbolic execution. Brought together, these two technical points make this
example difficult to verify. The proof required 6973 rule applications distributed
over 157 subgoals, where 1201 of the rule applications were interactive. Amongst
them, 309 apply override simplification rules and 224 general relational rules.
Our rules for handling transitive closure proved to be very effective; they were
applied 43 times, and allowed us to conduct the proof without any explicit induc-
tion. Induction was needed only to prove the soundness of the rules themselves.
Relational operations were never expanded to their definitions. Thus the proof
was completely conducted in the abstraction level of relations. The rules intro-
duced with JKelloy made up 37% of all rule applications; the rest were default
KeY rules. The whole proof, including specification adjustments, was conducted
by an Alloy and KeY expert in one week; the total time spent by the automatic
rule applications was 6.3 minutes. Other comparable examples in KeY (using the
JML specification language) require 50k to 100k proof steps (see e.g. [8]).

7 Related Work

Several approaches (e.g. [5,17,19]) support Alloy as a specification language for
Java programs. To check the specifications, however, they bound the analysis
domain by unrolling loops and limiting the number of elements of each type. Thus
although they find non-spurious counterexamples automatically, they cannot, in
general, provide correctness proofs. JForge specification language [21] is another
lightweight language for specifying object-oriented programs. It is a behavioral
interface specification language with a relational view of the heap, that allows
some Alloy operators. So far it has been used only for bounded program checking.

Galeotti [7] introduced a bounded, automatic technique for the SAT-based
analysis of JML-annotated Java sequential programs dealing with linked data
structures. It incorporates (i) DynAlloy [1], an extension of Alloy to better de-
scribe dynamic properties of systems using actions, in the style of dynamic logic;
(ii) DynJML, an intermediate object-oriented specification language; and (iii)
TACO, a prototype tool which implements the entire tool-chain.

14 A. A. El Ghazi, M. Ulbrich, C. Gladisch, S. Tyszberowicz, M. Taghdiri

A few approaches [2, 15, 18] support full verification of Alloy models. Since
they do not model program states, they cannot be readily applied for verifying
code with Alloy specifications. DYNAMITE [15], for example, extends PVS to prove
Alloy assertions, and incorporates Alloy Analyzer for checking hypotheses.

Other approaches (e.g. [8, 16,22]) also verify properties of linked data struc-
ture implementations. In contrast to ours, in [22], for example, specifications are
written in classical higher-order logic (including set comprehension, λ-expressions,
transitive closure, set cardinality) and are verified using Jahob which integrates
several provers. A decision procedure based on inference rules for a quantifier-free
specification language with transitive closure is presented in [16]. In [8] the focus
is to write specifications in JML so that they can be used for both deductive
program verification and runtime checking.

Similar to our approach, [12,13] handle reachability of linked data structures
using a first-order axiomatization of transitive closure. Their general idea, how-
ever, is to use a specialized induction schema for transitive closure, to provide
useful lemmas for common situations. [12] focuses on establishing a relatively
complete axiomatization of reachability, whereas [13] focuses on introducing as
complete schema lemmas as possible and adding their instantiations to the orig-
inal formula. The main difficulty of schema rules is to find the right instantiation
(analogous to induction hypothesis).

8 Conclusions

We have presented an approach for verifying Java programs annotated with
Alloy specifications. Alloy operators (e.g. relational join, transitive closure, set
comprehension, and set cardinality) let users specify properties of linked data
structures concisely. Our tool, JKelloy, translates Alloy specifications into rela-
tional Java Dynamic Logic and proves them using KeY. It introduces coupling
axioms to bridge between specifications and Java states, and two sets of cal-
culus rules and strategies that facilitate interactive and automatic reasoning in
relational logic. Verification is done on the level of abstraction of the relational
specifications. JKelloy lets relational lemmas be proved beforehand, and reused
to gain more automation. Our calculus rules are proved lemmas that exploit the
shape of the relational expressions that occur in proof obligations.

Although our automatic proof strategies can still be improved, our examples
show the advantages of the approach. They illustrate how the liberal combina-
tions of transitive closure and relational operators in Alloy can be exploited for
concise specifications of linked data structures. The sizes of proofs are an order
of magnitude smaller compared to other similar proofs using standard KeY.

KeY supports JML, a behavioral specification language for Java. A combina-
tion of the specification concepts of JML and Alloy has the potential to bring
together the best of both paradigms. Furthermore, the symbolic execution en-
gine of KeY along with our calculus rules can produce relational summaries of
Java methods which can be checked for bugs using the Alloy Analyzer before
starting a proof attempt. Investigating these ideas is left for future work.

JKelloy 15

References

1. N. Aguirre, M. F. Frias, P. Ponzio, B. J. Cardiff, J. P. Galeotti, and G. Regis.
Towards abstraction for DynAlloy specifications. In ICFEM, pages 207–225, 2008.

2. K. Arkoudas, S. Khurshid, D. Marinov, and M. Rinard. Integrating model checking
and theorem proving for relational reasoning. In RelMiCS, pages 21–33, 2003.

3. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. Springer-Verlag, 2007.

4. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, Aug. 1975.

5. J. Dolby, M. Vaziri, and F. Tip. Finding bugs efficiently with a SAT solver. In
FSE, pages 195–204, 2007.

6. A. A. El Ghazi, M. Ulbrich, C. Gladisch, S. Tyszberowicz, and M. Taghdiri. On
verifying relational specifications of Java programs with JKelloy. Technical Report
2014-03, KIT, Department of Informatics, 2014.

7. J. P. Galeotti. Software Verification using Alloy. PhD thesis, Universidad de
Buenos Aires, 2010.

8. C. Gladisch and S. S. Tyszberowicz. Specifying a linked data structure in JML for
formal verification and runtime checking. In SBMF, pages 99–114, 2013.

9. D. Harel, J. Tiuryn, and D. Kozen. Dynamic Logic. MIT Press, 2000.
10. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,

2012.
11. J. C. King. Symbolic execution and program testing. Communications of the ACM,

19(7):385–394, 1976.
12. S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. In

Proceedings of POPL, pages 115–126. ACM, 2006.
13. T. Lev-Ami, N. Immerman, T. W. Reps, M. Sagiv, S. Srivastava, and G. Yorsh.

Simulating reachability using first-order logic with applications to verification of
linked data structures. Logical Methods in Computer Science, 5(2), 2009.

14. B. Meyer. Applying “design by contract”. IEEE Computer, 25(10):40–51, 1992.
15. M. Moscato, C. Lopez Pombo, and M. Frias. Dynamite 2.0: New features based

on UnSAT-core extraction to improve verification of software requirements. In
ICTAC, pages 275–289, 2010.

16. Z. Rakamarić, J. Bingham, and A. J. Hu. An inference-rule-based decision proce-
dure for verification of heap-manipulating programs with mutable data and cyclic
data structures. In VMCAI, pages 106–121, 2006.

17. M. Taghdiri. Automating Modular Program Verification by Refining Specifications.
PhD thesis, MIT, 2008.

18. M. Ulbrich, U. Geilmann, A. A. El Ghazi, and M. Taghdiri. A proof assistant for
Alloy specifications. In TACAS, pages 422–436, 2012.

19. M. Vaziri. Finding Bugs in Software with Constraint Solver. PhD thesis, MIT,
2004.

20. B. Weiß. Deductive Verification of Object-Oriented Software: Dynamic Frames,
Dynamic Logic and Predicate Abstraction. PhD thesis, KIT, 2010.

21. K. T. Yessenov. A Lightweight Specification Language for Bounded Program Ver-
ification. Master’s thesis, MIT, 2009.

22. K. Zee, V. Kuncak, and M. Rinard. Full functional verification of linked data
structures. In PLDI, pages 349–361, 2008.

