
Generating JML Specifications from Alloy
Expressions†

Daniel Grunwald, Christoph Gladisch, Tianhai Liu, Mana Taghdiri, and
Shmuel Tyszberowicz

Karlsruhe Institute of Technology, Germany
{christoph.gladisch,tianhai.liu,mana.taghdiri}@kit.edu,tyshbe@tau.ac.il

Abstract. Java Modeling Language (JML) is a specification language
for Java programs, that follows the design by contract paradigm. How-
ever, it is not always easy to use JML, for example when specifying prop-
erties of linked data structures. Alloy, on the other hand, is a relational
specification language with a built-in transitive closure operator, which
makes it particularly suitable for writing concise specifications of linked
data structures. This paper presents Alloy2JML, a tool that generates
JML specifications from Alloy expression, in order to support both Alloy
and JML specifications in the KeY verification engine. This translation
allows Java programs with Alloy specifications to be fully verified for
correctness. Moreover, Alloy2JML lets Alloy specifications be employed
in a variety of tools that accept only JML as their specification language.
Supporting Alloy has the additional advantage that users can validate
the specifications beforehand using the Alloy Analyzer.

Keywords: JML, Alloy, Java, Theorem proving, KeY, Relational logic

1 Introduction

The ability to write concise and readable specifications highly affects the effi-
ciency of program verification. Providing correct formal specifications can be
as difficult as implementing the code correctly. A suitable formalism for spec-
ifying program properties not only makes the task of providing specifications
easier, but also reduces the likelihood of making mistakes. However, no single
specification language is optimal for specifying all possible properties.

JML [21] is a behavioral interface specification language for Java, that adds
first-order logic constructs to Java expressions. JML integrates seamlessly into
Java and is supported by a wide range of tools for specification type-checking,
runtime debugging, static analysis, and verification [4]. JML provides a rich set of
specification facilities, yet JML specifications tend to be close to the implemen-
tation. Specifying and verifying operations on linked data structures are difficult
in JML. Such operations have been specified in JML, e.g. in [1, 24], but no de-
ductive verification of them has been reported. To enable verification, extensions
of JML have been used [3].
† This work has been partially supported by GIF (grant No. 1131-9.6/2011)

2 D. Grunwald, C. Gladisch, T. Liu, M. Taghdiri, S. Tyszberowicz

To our knowledge, in [15] we provided the first specification of list operations
in standard JML that was deductively verified. The approach is to use recur-
sively defined queries (also called observer methods) in specifications to express
reachability in linked lists. Consider, for example, a method add that inserts the
data d into a singly linked list starting from the entry this.head. Using the
approach in [15] we would write the following JML formula to specify that every
data x in the resulting list is either d or was already in the original list:

(\forall Data x;
(\exists Entry a, int i; i>0 && hasNext(this.head,i,a) && a.data==x)

<==> (x==d || (\exists Entry b, int j;
j>0 && \old(hasNext(this.head,j,b)) && \old(b.data==x)))) (1)

The query hasNext expresses that an object a can be reached from the object
head in i steps (by traversing the field next). This specification approach has
the following advantages: (a) it uses a basic subset of JML which enables com-
patibility with various tools (e.g., [6,8,22]); (b) it allows automatic construction
of proofs by induction over the integer provided to the query as the second ar-
gument (here i and j); (c) it does not require ghost-states or ghost-fields, thus
makes the specification easier to understand; and (d) the specifications can be
used both for deductive verification and for testing1. The query is similar to the
JML reach clause, yet it provides more flexibility; some tools do not support the
reach clause (e.g. [23, 26]), and those that do support it interpret it differently
(e.g., [8, 22]). However, writing such JML specifications is error-prone as they
contain technical details. For set-based specifications, it would be easier to use
a notation that hides those details and focuses only on the abstract properties.

Alloy [18] is a lightweight declarative specification language for expressing
structure-rich software systems. It is based on first-order relational logic, and has
built-in operators for transitive closure, set cardinality, integer arithmetic, and
set comprehension. Several tools (e.g., [7, 25]) support Alloy as a specification
language for Java programs. The transitive closure operator enables users to
write concise specifications of linked data structures. The relational override
operator allows compact specification of frame conditions. Furthermore, when
appropriate, relational specifications let users easily abstract away from the exact
order and connection of elements in a data structure by viewing it as a set. The
above example can be concisely expressed in Alloy as follows:

this.head’.ˆnext’.data’ = this.head.ˆnext.data + d; (2)

where ˆnext denotes the transitive closure over the field next (i.e., all nodes
reachable by traversing next), + denotes set union, and unprimed and primed
symbols refer to the pre- and post-state of the method, respectively. With this
notation we provide a succinct and intuitive representation of set-based specifi-
cations. This notation is shorter, easier to understand, and less error-prone than
its JML counterpart.

1 When used for testing the quantifiers have to be bound.

Generating JML Specifications from Alloy Expressions 3

Java program with
Alloy + JML annotations

Java program with
JML annotations

Correctness Proof

Alloy Model
Sanity-checked

Alloy specifications

KeY

Alloy Analyzer

Alloy2JML

Fig. 1. Alloy2JML

JML and Alloy offer complementary views. JML allows to provide detailed
Java-specific annotations and to utilize Java for that. It is also suitable for spec-
ifying arithmetic properties, and certain properties of data structures where the
position of elements is important. Other properties, e.g. those that constrain the
set of all the elements of a linked data structure, are easier to express in Alloy.

This paper describes Alloy2JML, a tool that translates Alloy specifications
of Java programs into JML. The automatic translation is particularly benefi-
cial for properties that are difficult or error-prone to express in JML directly.
It takes programs in which each property is specified in either JML or Alloy,
and translates Alloy specifications to JML to yield uniform JML specifications.
The translation lets Java programs with Alloy specifications be fully verified
for correctness using the KeY verification engine [2]. Alloy2JML’s output con-
forms to the format suggested in [15], thus offers all the advantages listed above.
For example, it generates the JML specification (1) from the Alloy formula (2).
The output is essentially in standard JML—minor differences exist to support
KeY, which can be eliminated by simple syntactic changes. We have proved the
correctness of our translation [16] for a subset of Alloy using Isabelle/HOL [20].

We aim at producing JML formulas that are both usable for verification and
human-readable. Readability is particularly important when using interactive
verification tools such as KeY. It is not only necessary for debugging failed proof
attempts, but also for providing additional lemmas in the proof process. To gen-
erate readable specifications, we use a translation function that tries to minimize
the syntactic scope of quantifiers by delaying the introduction of quantification
guards. A subsequent simplification step eliminates most of the redundant quan-
tifiers.

In [15] we showed only specification examples and did not provide a system-
atic way of defining the queries and how to write the specifications. Its applica-
bility to trees was also an open question. Here, we generalize and extend that
work. The translation provides a systematic way of deriving JML specifications
for arbitrary linked data structures from the more abstract Alloy specifications
and it eliminates the error-prone task of manually defining of queries. The queries
can be applied not only over a single field but also over an arbitrary relation
denoted by an Alloy expression.

As shown in Fig. 1, the input to Alloy2JML is a Java program annotated with
both JML and Alloy specifications, and the output is a Java program annotated
with JML specifications only. Alloy2JML also outputs an Alloy model that de-
clares Alloy signatures for the classes in the input program and Alloy predicates
for methods’ specifications (see [16]). Using this model, the Alloy Analyzer [18]—
an automatic tool that checks Alloy models within bounded domains—can be

4 D. Grunwald, C. Gladisch, T. Liu, M. Taghdiri, S. Tyszberowicz

exp ::= id | id’ | freshType
| none | exp + exp| exp & exp
| exp - exp | exp . exp
| exp -> exp | exp ++ exp | ˜exp
| ˆexp | {[id: expr]+ | form}
| number | #exp | (sum id: exp | exp)

form ::= exp in exp | exp = exp
| exp (> | >= | < | <=) exp
| form (and | or | implies | iff) form
| not form | (no | some | lone) exp
| (all | some) [id : exp]+ | form

Fig. 2. Abstract syntax for translated Alloy expressions (exp) and formulas (form)

used to sanity-check the Alloy specifications prior to performing the full (possibly
interactive) verification. For example, it can help detect under-specification and
errors by visualizing instances that satisfy the specifications, and detect over-
specification by showing the unsatisfiable core. This makes Alloy a particularly
attractive specification language compared to other languages that support sets
and relations.

2 Background

2.1 Alloy

Alloy is a specification language based on first-order logic [18]. Every Alloy ex-
pression evaluates to a relation. Unary relations are declared as signatures, and
represent sets of atoms. Relations with higher arities are declared as fields and
represent sets of tuples. The constant none denotes the empty set. Set opera-
tions union, intersection, and difference are denoted by +, &, and -, respectively.
For relations r and s, the relational join and Cartesian product are denoted by
r.s and r->s, respectively. The relational override r++s contains all tuples of
s, and those tuples of r whose first element does not appear as the first ele-
ment of any tuple in s. The expression ˜r denotes the transpose of r, and the
transitive closure ˆr defines the smallest transitive relation that contains r. Set
comprehensions make relations with all tuples for which a certain formula holds.
The Alloy integer type, Int, represents the set of integer atoms. All integers
(including numbers, the result of the set cardinality operator #, and the sum
quantifier) are treated as sets of integer atoms (Alloy 4.2). Arithmetic operators
are defined as functions in the Alloy integer library (add[a,b] and sub[a,b]).
The expression (sum x: S | e) computes the sum of the values that the integer
expression e can take for all distinct bindings of the variable x in S.

Basic formulas are constructed using the operators in (subset), = (equality),
and integer comparators. They are combined using the standard logical opera-
tors. The multiplicity formulas no r, some r, and lone r constrain r to have
zero, at least one, and at most one tuple, respectively. The quantifiers all and
some denote the universal and existential quantifiers. It should be noted that
the Alloy Analyzer supports higher-order quantification when the quantifier can
be eliminated through skolemization. We, however, do not support higher-order
quantifications at all as they cannot be translated to JML.

We let Java programs be annotated with legal Alloy formulas. We provide
special translation rules for the Alloy constructs of Fig. 2, and desugar all others

Generating JML Specifications from Alloy Expressions 5

to this subset. Figure 2 slightly deviates from Alloy by introducing extra iden-
tifiers that have special meanings in our translation: a primed identifier refers
to the post-state of a method, whereas an unprimed one refers to its pre-state.
freshT denotes the set of objects of type T that are allocated in the post-state,
but not in the pre-state2.

2.2 JML

Java Modeling Language (JML) [21] is a first-order, behavioral interface spec-
ification language for Java. Side-effect free Java expressions, standard logical
operators, universal and existential quantifiers are allowed in JML annotations.
JML also supports various clauses and keywords for better specifications. The
ones used by our translation are described below.

The requires clause denotes a method’s precondition, evaluated in the pre-
state of the method call. If a method terminates normally, i.e. without throwing
an exception, then the normal post-condition—given in the ensures clause—
must hold in the post-state. The normal behavior clause specifies that if a
method’s precondition holds, the method must return normally. The invariant
clause denotes an object invariant that must hold at the end of each constructor’s
execution, and at the beginning and end of all non-static methods that are not
marked as helper. The memory locations (represented by a set of fields) that are
listed in the modifies clause are the only pre-state locations that can be modified
by a method. The measured by e clause is used in a termination argument for a
recursive specification, where the integer expression e decreases on each iteration
and evaluates to zero when the method terminates.

Java expressions used in pre- and post-conditions are evaluated in the heap’s
pre-state and the post-state, respectively. To access the initial (pre-state) value
of an expression e in the post-condition, the expression \old(e) is used. The key-
word \result refers to the value returned by a non-void method. The \fresh(o)
operator constrains the object o not to exist in the pre-state and to be non-null
in the post-state. Member fields, formal parameters, and return values are con-
sidered to be non-null by default. The nullable modifier specifies that the null
value is also acceptable. The modifier pure denotes that a method has no side-
effects and thus can be used in the annotations. The model modifier denotes
those fields and methods that can be used only in the annotations.

KeY [2] accepts JML*, a modified version of JML, as the specification lan-
guage for Java programs. JML* implements most, but not all, JML features and
adds a few more. Most relevant to our work is a semantic difference in the inter-
pretation of quantifiers. The range of JML quantifiers extends over all objects
of the given type, including those that are not yet created [21]. In JML*, on the
other hand, the quantifier ranges over only those objects that have been created
in the current heap state. It is possible to obtain the JML* quantifier semantics
in JML by introducing predicates that explicitly distinguish between created
2 Fresh objects could be specified by T’ - T, but then the translation could not distin-

guish other set differences from fresh objects (for which it generates \fresh clauses).

6 D. Grunwald, C. Gladisch, T. Liu, M. Taghdiri, S. Tyszberowicz

1 class Entry {
2 /*@nullable*/ Entry next;
3 /*@nullable*/ Data data;
4

5 //$ensures this.data’ = d;
6 //$ensures no this.next’;
7 //$modifies this.data,this.next;
8 Entry(/*@nullable*/Data d)
9 { this.data = d; }

10 }
11 class LinkedList {
12 Entry head;
13 int length;
14

15 //$ensures this.head’.ˆnext’.data’
16 //$ = this.head.ˆnext.data + d;
17 //$ensures this.length’=add[this.length,1];
18 //$modifies this.head.next, this.length;
19 void add(Data d) {
20 Entry newEntry = new Entry(d);
21 newEntry.next = head.next;
22 head.next = newEntry;
23 length++;
24 }
25 }
26 class Data { .. }

1 class Entry {
2 /*@nullable*/ Entry next;
3 /*@nullable*/ Data data;
4

5 //@ensures this.data == d;
6 //@ensures this.next == null;
7 //@modifies this.data,this.next;
8 Entry(/*@nullable*/Data d){ .. }
9 }

10 class LinkedList {
11 Entry head;
12 int length;
13

14 //@ensures (\forall Data x;
15 //@ (\exists Entry a, int i;
16 //@ a.data == x && i > 0 &&
17 //@ hasNext(this.head,i,a))
18 //@ <==> (\exists Entry b, int j;
19 //@ \old(b.data == x) && j > 0 &&
20 //@ \old(hasNext(this.head,j,b)))
21 //@ || d == x);
22 //@ensures this.length ==
23 \old(this.length)+1;
24 //@modifies this.head.next, this.length;
25 void add(Data d) { ... }
26 }
27 class Data { .. }

(a) (b)

Fig. 3. Example: (a) original, (b) translated

and uncreated objects. Furthermore, the JML* construct \infinite union(C
o; o.f), where C is a class and f is a field, gives the set of memory locations
o.f for all objects o of class C. The construct can be replaced using the model
type JMLDataGroup in standard JML (cf. [15]) (not included in JML*).

3 Motivating Example

We assume that the Alloy specifications of Java programs are written at the
concrete representation level of the code, and follow a relational view of the
heap [25]. That is, Java types are viewed as Alloy signatures, fields as binary
relations, and local variables and parameters as singleton sets.

Figure 3 elaborates the example of Section 1, showing our translation of Alloy
to JML. Figure 3(a) gives an implementation of a singly linked list where the
head and the length fields (Lines 12-13) denote the first entry and the number
of entries of the list, respectively. The list’s first entry is dummy; it does not
contain any data, and exists even for an empty list. The length field ensures
that the list is finite, which is necessary for proving termination of methods that
traverse the list. The add method (Lines 19-24) inserts the given data d at the
beginning of the receiver list.

Generating JML Specifications from Alloy Expressions 7

Alloy and JML annotations are marked by //$ and //@ respectively. The
post-conditions of the Entry constructor ensure that the given data d is stored
in the data field of the created entry (Fig. 3(a), Line 5), and that the next field
of this entry is set to null (Line 6). We assume that Alloy specifications model
the Java null object as an empty set. The first post-condition of the add method
specifies that the set of data stored in this list in the post-state equals that set
in the pre-state, augmented with the added data d (Lines 15-16). This example
demonstrates that specifications can be arbitrarily partial. This post-condition,
for example, does not specify that the given data is inserted at the beginning of
the list. The second post-condition (Line 17) specifies that length is updated
properly. The invariants of the LinkedList class are omitted for space reasons.

JML specifications produced by Alloy2JML are shown in Fig. 3(b). To handle
Alloy’s transitive closure operator, we introduce pure Java methods that can be
used in JML annotations. For a field f of type T declared in a class S, we define
a pure Java method hasF(C x, int i, C y) that returns true if x is non-null
and y is reachable from x by i times following the field f, and false otherwise.
The type C is the first common type of S and T in the type hierarchy of the
analyzed method. In addition to simple relational joins which are translated to
field dereferences, the post-condition of add (Fig. 3(a), Lines 15-17) contains set
equality, set union, and transitive closure operators. Set equality is translated
using its definition: any object in the right-hand-side set must be in the left-hand-
side one, and vice versa. Set union is handled using disjunction. An expression
containing the transitive closure some o.ˆnext is translated using (\exists
Entry e, int i; hasNext(o, i, e)), where the integer i can be any positive
number. The resulting JML specification is shown in Lines 14-23 of Fig. 3(b).

As shown by this example, we translate Alloy annotations into a basic variant
of JML. Alloy annotations are particularly concise and readable when specifica-
tions involve reachability and set semantics. More examples can be found in [16].

4 Translation from Alloy to JML

4.1 The Translation Function

We have experimented with several translations and evaluated the applicability
and readability of the resulting JML specifications for verification using KeY. In
the following, we describe two preliminary approaches (Approach 1, Approach 2)
to motivate and explain our solution (Approach 3). For brevity we often use the
term relation to refer to sets and relations.

Approach 1: Since Alloy expressions evaluate to relations, a direct translation of
Alloy to JML requires the notion of relations in JML. Such a translation could
be done using a translation function E(r)→ e that maps an Alloy expression r
to a JML expression e of a container (or array) type in Java. The translation of a
union operation, for instance, would then become E(r + s) = union(E(r),E(s))
where union is a Java method that operates on containers. KeY expands method

8 D. Grunwald, C. Gladisch, T. Liu, M. Taghdiri, S. Tyszberowicz

invocations to their contracts. Expanding complex expressions, however, leads
to very complex verification conditions which we found impractical.
Approach 2: The explicit representation of sets and relations in Java/JML can be
omitted by expanding relational operators to their semantic definitions during
the translation. For this, we modify the translation function to E(r‖t1, . . . , tn)→
e which now maps an Alloy expression r along with JML expressions t1, ..., tn

to a boolean JML expression e, such that e is true iff <t1, . . . , tn> corresponds
to a tuple in r. The double bars || are a visual aid separating the translated
expression (left-hand side) from the expressions that form the tuple (right-hand
side). For example, the translation of the union operation can be expressed as
E(u+v‖obj) := E(u‖obj)||E(v‖obj), where, for simplicity, u and v are unary rela-
tions denoting program variables. In isolation, this expression cannot be further
resolved to a JML expression as the meta variable obj needs to be instantiated.
However, it can be resolved in the context of the formula in which it is used. For
this, we introduce another translation function, B, which maps Alloy formulas to
boolean JML expressions. Consider, for example, the following translation rules:
B(no r) := !(\exists Object x; E(r‖x))
E(v‖val) := vc == val vc denotes name resolution

E(r + s‖objs) := E(r‖objs) || E(s‖objs)
E(ˆr‖obj1, obj2) := (\exists int i; 0 <= i; hasR(obj1, i, obj2))

Using the first three rules, the expression no u+v will be translated to the
JML expression !(\exists Object x; u==x || v==x) without explicitly using
Java containers. The last rule shows our basic idea for translating transitive
closure. We express the reachability of obj2 from obj1 via the relational expression
r, i.e. (obj1, obj2) ∈ ˆr, using a boolean query method hasR. The integer i stands
for the number of times that r is traversed in order to reach obj2 when starting
from obj1. This is used as the induction variable in induction proofs. However, to
generate hasR from r, the translation function E has to be generalized further.
Approach 3: In [15] we have described how a user can manually write a query
(such as hasR) for a list data structure. Here we describe a general method to au-
tomatically translate the transitive closure of an arbitrary expression r into a re-
cursive definition of the query. Rather than introducing another translation func-
tion for this purpose, we generalize the function E to the form E(r‖p1, . . . , pn)c

where r is the Alloy relational expression to be translated; p1, . . . , pn is a list
of translation predicates applicable to JML expressions; and c is a translation
context capturing various information. The context provides a mapping from
Alloy types, relations, and variables to their corresponding symbols in JML, and
tells whether the expression is evaluated in the pre- or post-state (the latter
generates expressions embedded in \old(...)). The number of predicates (n)
must match the arity of the relation r, and the predicates must be well-formed.
The semantics of the translation function is defined by:
E(r‖p1, .., pn)c evaluates to true ⇐⇒ ∃(t1, .., tn) ∈ r: p1(c(t1))∧..∧pn(c(tn))

The predicates are a generalization of the terms t1, ..., tn described in Approach 2.
While a term can represent only one element, a predicate can represent a set of

Generating JML Specifications from Alloy Expressions 9

R1: E(v‖p1)c := p1(c(v))

R2: E(T‖p1)c := (\exists c(T) obj; p1(obj))

R3: E(member‖p1, p2)c := (\exists T 1[member] obj; p1(obj) && p2(obj.c(member)))

R4: E(none‖p1)c := false

R5: E(n‖p1)c := p1(n)

R6: E(r.s‖p1, ..., pn+m)c := (\exists T 1[s] obj; E(r‖p1, ..., pn, lift(obj))c

&& E(s‖lift(obj), pn+1, ..., pn+m)c)
where n = arity(r)− 1 and m = arity(s)− 1

R7: E(r + s‖p1, ..., pn)c := (E(r‖p1, ..., pn)c || E(s‖p1, ..., pn)c)

R8: E(r & s‖p1, ..., pn)c := (\exists T 1[r&s] o1,..., T n[r&s] on;p1(o1) &&...&& pn(on) &&
&& E(r‖lift(o1), ..., lift(on))c && E(s‖lift(o1), ..., lift(on))c)

R9: E(r - s‖p1, ..., pn)c := (\exists T 1[r-s] o1,..., T n[r-s] on;p1(o1) &&...&& pn(on) &&
E(r‖lift(o1), ..., lift(on))c && !E(s‖lift(o1), ..., lift(on))c)

R10: E(r ++ s‖p1, ..., pn)c := (\exists T 1[r++s] obj; p1(obj) && (E(b‖lift(obj), p2, ..., pn)c||
(E(r‖lift(obj), p2, ..., pn)c && !E(s‖lift(obj), nonnull, ...︸ ︷︷ ︸

n − 1 times

)c)))

R11: E(r -> s‖p1, ..., pn+m)c := (E(r‖p1, ..., pn)c && E(s‖pn+1, ..., pn+m)c)
where n = arity(r) and m = arity(s)

R12: E(˜r‖p1, ..., pn)c := E(r‖pn, ..., p1)c

R13: E({v1 : r1, ..., vn : rn | F }‖p1, ..., pn)c :=
(\exists T 1[v1] o1, ..., T 1[vn] on; p1(o1) && ... && pn(on)
&& E(r1‖lift(o1))c1 && ... && E(rn‖lift(on))cn && B(F)cn+1)

R14: E(#r‖p1)c := p1(\num of T 1[r] o1, ..., T n[r] on; E(r‖lift(o1), ..., lift(on))c)
R15: E(sum v: r | i‖p1)c := p1(\sum T 1[r] obj; E(r‖lift(obj))c; I(i)c′)

R16: B(F and G)c := (B(F)c && B(G)c) R17: B(F or G)c := (B(F)c || B(G)c)

R18: B(!F)c := (!B(F)c) R19: B(F iff G)c := (B(F)c <==> B(G)c)

R20: B(F implies G)c := (B(F)c ==> B(G)c)

R21: B(i op j)c := (I(i)c op I(j)c) where op ∈ {<, >, <=, >=}

R22: B(r in s)c := (\forall T 1[r+s] o1, ..., T n[r+s] on;
E(r‖lift(o1), ..., lift(on))c ==> E(s‖lift(o1), ..., lift(on))c)

R23: B(r = s)c := (\forall T 1[r+s] o1, ..., T n[r+s] on;
E(r‖lift(o1), ..., lift(on))c <==> E(s‖lift(o1), ..., lift(on))c)

R24: B(no r)c := (!E(r‖ nonnull︸ ︷︷ ︸
arity(r) times

)c) R25: B(some r)c := E(r‖ nonnull︸ ︷︷ ︸
arity(r) times

)c

R26: B(lone r)c := (\forall T 1[r] o1, ..., T n[r] on, T 1[r] w1, ..., T n[r] wn;
(E(r‖lift(o1), ..., lift(on))c && E(r‖lift(w1), ..., lift(wn))c)
==> (o1 == w1 && ... && on == wn))

R27: B(all v : r | F)c := (\forall T 1[r] obj; E(r‖lift(obj))c ==> B(F)c∗)

R28: B(some v : r | F)c := (\exists T 1[r] obj; E(r‖lift(obj))c && B(F)c∗)

R29: (\exists T obj; f1 && x==obj && f2(obj)) ↪→ (f1 && x instanceof T && f2((T)x))

R30: (\forall T obj; f1 && x==obj ==> f2(obj)) ↪→ (f1 && x instanceof T ==> f2((T)x))

R31: (\forall T obj; f1 && x==obj <==> f2 && y==obj) ↪→ ((f1 ? x : null) == (f2 ? y : null))

R32: (x instanceof T) ↪→ (x != null) if the type of x is a subtype of T

R33: ((T)x) ↪→ (x) if the type of x is equal to T

R34: (x != null) ↪→ true if x is statically known to be non-null

Table 1. The translation functions E and B, and simplification rules R29 – R34. v is an
Alloy variable, T is a type signature, member is an Alloy relation for a Java field, n is an
integer literal, r, s are relational Alloy expressions, i, j are integer Alloy expressions,
F, G are Alloy formulas, Ti gives the JML type corresponding to the type of the ith

column of the given relation, the translation contexts ci, c′, c∗ are extensions of c with
the mappings from the Alloy variables to the JML variables.

10 D. Grunwald, C. Gladisch, T. Liu, M. Taghdiri, S. Tyszberowicz

elements. This generalization allows a concise and unified translation of simple
expressions as well as expressions with transitive closure. It also improves the
readability of the resulting JML expressions, because the predicates are used
as quantification guards and are propagated to subexpressions where they are
needed, thus quantifiers can be introduced locally near the subexpression. The
translation uses the predicates lift(obj), nonnull, headrecr, and tailrecr. The
latter two are used for transitive closure, and are defined recursively over r as
described in Section 4.2. The semantics of the former predicates is defined by:

R35: lift(obj)(e) := e==obj R36: nonnull(e) := e!=null

For relations of arity 1, using the lift(obj) predicate with the E function corre-
sponds to membership semantics3: E(r‖lift(obj))c ⇐⇒ ∃e ∈ r: lift(obj)(e) ⇐⇒
∃e ∈ r : (e==obj) ⇐⇒ obj ∈ r. The usage of the nonnull predicate with the
E function checks whether an Alloy relation is non-empty: E(r‖nonnull)c ⇐⇒
∃e ∈ r : nonnull(e) ⇐⇒ ∃e ∈ r : (e! = null) ⇐⇒ r 6= ∅. Note that if the
value of a dereferenced field, say o.f, is non-null, then o.f represents a singleton
set containing this value. However, if o.f is null, we treat o.f as the empty set
(as in [25]), rather than a set containing null as an element (as in [27]). Using
null as a marker for empty sets is convenient since it is the only value that can
be assigned to any field of any reference type.

The first two sections of Table 1 define E , for relational expressions, and
B, for formulas. An additional third function I is used for integer expressions.
Due to space issues, some rules are omitted. We have proved the correctness of
the rules with respect to the semantics of the E function as given above using
Isabelle/HOL [20]. These proofs allowed us to discover and fix subtle problems
related to Java heap-states and handling of null references. The complete list of
rules, correctness proofs, and further details can be found in [16].

To illustrate the details of the translation rules, consider the translation of
the expression “no this.next” (using the declarations from Fig. 3).
B(no this.next)c

R24= (!E(this.next‖nonnull)c)
R6= (!(\exists Entry t; E(this‖lift(t))c && E(next‖lift(t), nonnull)c))

R1,R3= (!(\exists Entry t; lift(t)(this)
&& (\exists Entry obj; lift(t)(obj) && nonnull(obj.next))))

R35,R36= (!(\exists Entry t; this == t
&& (\exists Entry obj; obj == t && obj.next != null)))

Both quantifiers are redundant due to the equalities this==t and obj==t. The
translation is followed by a simplification step. The third section of Table 1
shows a subset of our simplification rules (cf. [16] for complete details). This
step dramatically increases the readability and analyzability of the resulting
JML formulas. Applying the simplifications to the example yields:

B(no this.next)c
R29= (!(\exists Entry t; this == t

&& (t instanceof Entry && ((Entry)t).next != null)))

3 The application of the context c is omitted to improve readability.

Generating JML Specifications from Alloy Expressions 11

R32,R33= (!(\exists Entry t; this == t

&& (t != null && t.next != null)))
R34= (!(\exists Entry t; this == t && t.next != null))
R29= (!(this instanceof Entry && ((Entry)this).next != null))

R32,R33= !(this != null && this.next != null)
R34= this.next == null

Note that although Java null value is assumed to be represented as empty set
in Alloy specifications, an empty set in Alloy specifications does not always
represent null. E.g., our rules translate the formula “no left & right” to:

(\forall Tree obj; obj.left != null ==> obj.right != obj.left)

where left and right denote the two pointers of a binary tree.

4.2 Transitive Closure

In [15] we have explored how to specify methods of a linked list using a query
(i.e., an observer method) getNext(o,i) that returns the i’th element of the list
starting from o. Here we generalize that approach to arbitrary data structures,
and support the use of complex Alloy expressions with the transitive closure
operator. Given an Alloy relational expression r, we define the query method
hasR such that it evaluates to true iff a given object node is reachable from
object root via the relation r in steps number of steps:4

/*@ public normal behavior
ensures steps < 0 ==> \result == false;
ensures steps == 0 ==> (\result <==> root==node && root != null);
ensures steps > 0 ==> (\result <==> root!=null && E(r‖lift(root), headrecr)c);
ensures steps > 0 ==> (\result <==> node!=null && E(r‖tailrecr, lift(node))c);
measured by steps;
static model helper pure
boolean hasR(nullable T root, int steps, nullable T node); */

In this definition, T × T is the JML type corresponding to the type of ˆr as
determined by Alloy’s type inference. The translation predicates headrecr and
tailrecr recursively call the method hasR and are defined as:

headrecr(e) := (e instanceof T && hasR((T)e, steps-1, node))

tailrecr(e) := (e instanceof T && hasR(root, steps-1, (T)e))

In the head-recursive ensures clause, the E function is used to produce a JML
expression that evaluates to true if the relation r contains a pair (root, e), i.e. e
is reachable from root in one step, and node is reachable from e in steps-1 steps.
4 R is always a unique name for r, e.g. left + right gets the name LeftUnionRight.

12 D. Grunwald, C. Gladisch, T. Liu, M. Taghdiri, S. Tyszberowicz

Similarly, the tail-recursive postcondition uses E to produce a JML expression
that evaluates to true if the relation r contains a pair (e, node) and e is reachable
from root in steps-1 steps. For specification, it is sufficient to use either head-
or tail-recursion, but having both sometimes simplifies the verification. Using
the hasR query definition, we can translate the transitive closure as follows:

R37: E(ˆr‖p1, p2)c := (\exists T 1[ˆr] obj1, obj2; p1(obj1) && p2(obj2) &&
(\exists int steps; steps>0; hasR(obj1, steps, obj2)))

The query method, as declared above, does not have access to the variables
in the context of its call. To solve this problem, we pass such variables to the
query method as additional parameters. For example, consider the expression
ˆ(left + right + (a->b)), where left and right are fields of a binary tree,
and a->b denotes an added edge from node a to b (both program variables).
When translated to JML, the parameters list of the query becomes: Tree root,
int steps, Tree node, Tree a, Tree b.

We disallow taking the transitive closure of a relation that accesses both
the pre- and post-state. This is because it is impossible to pass heap states
to a JML model method. If the transitive closure relation accesses only the
pre-state, we use the \old operator around the call to the query (see Fig. 3).
Reflexive transitive closure is translated similarly and is described in [16]. Our
Isabelle/HOL proofs do not cover rule R37 because, unlike the rules of Table 1,
R37 requires a more elaborated formalization of JML and Java in order to express
the semantics of the query method. Such a formalization could not be done as
part of this work. Correctness of this rule has been manually validated instead.

4.3 The Modifies Clause

Each location in a modifies clause is given by the syntax r.member, where r
is an Alloy expression that specifies the set of objects whose member field may
be modified. Simple expressions (e.g. “this.length”) can be directly translated
into JML. In general, however, the object set cannot be expressed as a JML
expression. In this case, Alloy2JML will generate a less specific JML modifies
clause which allows modification of the member field of all objects rather than the
ones specified by the expression r. In JML*, this is done using \infinite union:

//@ modifies \infinite union(Type obj; obj.member);
Furthermore, the translation generates an Alloy post-condition which specifies
that the member field of any object not included in r remains unchanged:

//$ ensures all v:Type - freshType - r | v.member’=v.member
This post-condition is translated to JML as usual using the B function.

5 Evaluation

As a proof of concept that the generated JML specifications indeed are amend-
able to verification, we have applied Alloy2JML to 6 methods of two Java data
structures: constructor, add, and removeAt of LinkedList and constructor,

Generating JML Specifications from Alloy Expressions 13

(a) Alloy

1 /*$ensures this.*(left’ + right’).value’ = (this.*(left + right).value) + v;
2 ensures (this.*(left’ + right’) - this.*(left + right)) in freshTree;
3 modifies this.*(left+right).left, this.*(left+right).right; */

(b) JML Translation

1 /*@ensures (\forall int o1;(\exists Tree o2,int i; i>=0 && hasLR(this,i,o2) && o2.value==o1)
2 <==> \old((\exists Tree o3,int j; j>=0 && hasLR(this,j,o3) && o3.value==o1)) || v == o1);
3 ensures (\forall Tree o1; (\exists int i; i>=0 && hasLR(this,i,o1)) &&
4 (\fresh(o1) || (\forall int j; j>=0 ==> !\old(hasLR(this,j,o1)))) ==> \fresh(o1));
5 ensures (\forall Tree o,int i;!\fresh(o)&&(i>=0==>!\old(hasLR(this,i,o)))==>o.left==\old(o.left));
6 ensures (\forall Tree o,int i;!\fresh(o)&&(i>=0==>!\old(hasLR(this,i,o)))==>o.right==\old(o.right));
7 modifies \infinite_union(Tree o;o.left), \infinite_union(Tree o;o.right); */

Fig. 4. Specification of the add method

contains, and add of BinarySearchTree. We have manually written the Alloy
specifications, then automatically translated them to JML using Alloy2JML,
and proved the resulting JML specifications using the KeY verification engine.
The complete experiments are explained in [16] and can be found in http:
//asa.iti.kit.edu/402.php.

As an example, Fig. 4 shows the specifications of the add method of the class
BinarySearchTree5. The method adds a node to a tree which is defined using
its left, right, and value fields. BinarySearchTree also includes invariants to
preserve sortedness and acyclicity of the tree. These invariants are omitted here
due to lack of space. Given a value v, add recursively traverses the receiver tree,
and inserts a new tree node containing v to the appropriate place if v is not
already stored in the tree. The Alloy expression this.*(left+right) provides
the set of all nodes reachable from the current node. Alloy’s relational logic
allows us to elegantly express the addition to the set of values in the tree nodes.
In Fig. 4(a), Line 1 specifies that the values of the tree nodes in the post-state are
the union of the nodes’ values in the pre-state and the input argument v; Line 2
specifies that the nodes added to the tree are newly allocated objects. These
two lines are translated respectively to Lines 1–2 and 3–4 of Fig. 4(b). Line 3 of
Fig. 4(a) indicates that the memory locations referred to by the left and right
fields (hereafter locs) of any node of the current tree can be changed by the
method. Various translations of this modifies clause are possible. Alloy2JML
translates this to Lines 5–7 of Fig. 4(b), which we found more amenable to
verification. Lines 5–6 specify that the locs of any node that is not in the current
tree stay unchanged. Line 7 specifies that the locs of any tree node can be
changed by the method.

We used an experimental KeY version that has improved support for recur-
sively specified query methods (e.g. hasLR). The query expansion and quantifier
instantiation can be performed automatically in KeY. However, KeY may not
always automatically find proofs. For any incomplete branch of the proof, we
transformed the problem into first-order SMT logic that contains unbounded
integers, uninterpreted functions and quantifiers, and tried to prove it using the

5 In the interest of space, BinarySearchTree is named Tree in the figure.

14 D. Grunwald, C. Gladisch, T. Liu, M. Taghdiri, S. Tyszberowicz

Z3 SMT solver. If neither KeY nor Z3 could find an automatic proof, we manu-
ally performed explicit instantiations or query expansions, and provided several
lemmas to assist KeY. In the case of add, the proof required 75 interactive steps,
around 31000 automatic steps, and 40 subgoals were closed by Z3 invocations.

For the data structures that we analyzed, the Alloy specifications are concise
(e.g. reachability via arbitrary combinations of fields is expressed easily, and
frame conditions are implied elegantly). The generated JML specifications are
readable, which is crucial for providing additional lemmas, and are provable
using KeY.

To our knowledge, this is the first successful deductive verification of the
operations on a tree data structure specified in standard JML. In [3], for example,
a much bigger subset of JML* (including abstract data types and other features)
is used to verify a remove operation of a tree. This subset, however, cannot be
reduced to standard JML.

In order to check the compatibility of our generated JML specifications with
JML tools other than KeY, we translated some of our JML* specifications to
standard JML as explained in Section 2.2. All of our target JML tools, namely
ESC/Java2 [6], JMLForge [8], InspectJ [22], TACO [12], and Krakatoa [10],
accepted the resulting JML specifications.

6 Related Work

Several approaches, e.g. [5,17,19], translate the specification languages contain-
ing relations into JML. B2JML [5] presents a translation from B machines to
JML specifications; in [19] a translation strategy from VDM-SL to JML is pre-
sented; and [17] provides a translation technique between OCL and JML. Unlike
our approach, these approaches translate the relations of the source language to
JML mathematical collections and the relational operators to JML model meth-
ods of those collections. We, on the other hand, translate relations to a basic
variant of JML which can generally be used in other contexts after making the
minor modifications described in Section 2.

JKelloy [14] translates Java programs annotated with Alloy specifications
into the first order logic of KeY by defining a special relational theory in KeY.
Similar to our approach, it enables full verification of Alloy specifications for
Java programs. Alloy2JML, however, does not require any special background
theory in the underlying verification engine, but provides a translation that can
be used in other contexts as well.

TACO [11] and JMLForge [8] provide fully automated, bounded analysis
of JML-annotated Java programs. These tools perform the reverse translation
of what we do: they translate JML to a variant of Alloy by introducing the
concept of method behavior of JML into Alloy. The resulting Alloy formula is
then translated to a SAT problem, and solved using an off-the-shelf SAT solver.

A model transformation from a subset of Alloy to UML class diagrams anno-
tated with OCL is presented in [13]. Their translation and simplifications have
ideas common with ours, but their target domain is very different. In [9], we

Generating JML Specifications from Alloy Expressions 15

proposed a translation of Alloy to an SMT first-order logic by translating Al-
loy relations to membership predicates with set semantics. Here, on the other
hand, we target Alloy expressions used as specifications of Java programs, and
produce well-defined JML expressions (e.g. no null pointer dereferences) that re-
spect the semantics of Java heap. Moreover, specializing the translation enables
us to substantially improve the readability of the resulting JML expressions.

In [15], the JML query method Node getNext(Node o, int n) is manually
specified to verify linked list data structure. The query provides access to the n’th
node of the list starting from node o, following the field next. It complements
the JML reach clause by additionally identifying the position of list nodes. Here
we generalize that work by automatically generating the query method hasR
(Section 4.2), which allows us to reason about arbitrary data structures.

7 Conclusion

JML is a popular specification language. Yet, manually specifying certain prop-
erties, e.g. those of linked data structures, can be complicated and error-prone
when using a basic subset that is supported by most JML tools. On the other
hand, Alloy operators (e.g., relational join, transitive closure, set comprehension,
and set cardinality) let users concisely specify such properties. Hence we have
built Alloy2JML, a tool that translates Alloy specifications to a basic subset
of JML without the use of mathematical sets and containers. In most cases, we
convert relational operators into JML first-order logic by quantifying over the el-
ements of relations. For the transitive closure, we introduce recursively specified
model methods. The outcome of the translation is suitable for verification and
enabled us, among others, to verify methods of a tree class. Using Isabelle/HOL,
we proved that our translation is correct for a subset of Alloy.

Alloy2JML also provides an Alloy model as output, thus the Alloy specifi-
cations of the code can also be validated using the Alloy Analyzer. Moreover,
translating Alloy specifications into JML enables the use of Alloy specifications
in a larger set of tools that accept only JML specifications.

Alloy2JML allows both Alloy and JML annotations to be used together,
thus enabling to specify each property in the more appropriate language. Each
annotation, however, must be written completely either in Alloy or in JML. We
plan to design a uniform language that allows Alloy and JML subexpressions
to be mixed in a wellformed manner. Such a combination has the potential to
bring together the best of both paradigms. We also plan to add support for loop
invariants, so that those too can be specified using the Alloy language.

References

1. K. Becker and G. T. Leavens. Class LinkedList. http://www.eecs.ucf.edu/
˜leavens/JML-release/javadocs/java/util/LinkedList.html.

2. B. Beckert, R. Hähnle, and P. H. Schmitt. Verification of object-oriented software:
The KeY approach. Springer, 2007.

16 D. Grunwald, C. Gladisch, T. Liu, M. Taghdiri, S. Tyszberowicz

3. D. Bruns, W. Mostowski, and M. Ulbrich. Implementation-level verification of
algorithms with KeY. STTT, pages 1–16, 2013.

4. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, R. Leino, and E. Poll.
An overview of JML tools and applications. STTT, 7(3):212–232, 2005.

5. N. Cataño, T. Wahls, C. Rueda, V. Rivera, and D. Yu. Translating B Machines to
JML Specifications. In 27th ACM Symp. on App. Comp., pages 1271–1277, 2012.

6. D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In CASSIS,
volume 3362 of LNCS, pages 108–128, 2005.

7. G. Dennis, F. S.-H. Chang, and D. Jackson. Modular verification of code with
SAT. In ISSTA , pages 109–120. ACM, 2006.

8. G. Dennis, K. Yessenov, and D. Jackson. Bounded verification of voting software.
In VSTTE, volume 5295, pages 130–145. Springer, 2008.

9. A. A. El Ghazi and M. Taghdiri. Relational reasoning via SMT solving. In FM,
pages 133–148, 2011.

10. J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In CAV, pages 173–177. Springer, 2007.

11. J. P. Galeotti, N. Rosner, C. Lopez Pombo, and M. Frias. Analysis of invariants
for efficient bounded verification. In ISSTA, pages 25–36. ACM, 2010.

12. J. P. Galeotti, N. Rosner, C. G. L. Pombo, and M. F. Frias. TACO: Efficient SAT-
based bounded verification using symmetry breaking and tight bounds. IEEE
Transactions on Software Engineering, 39(9):1283–1307, Sept 2013.

13. A. G. Garis, A. Cunha, and D. Riesco. Translating Alloy specifications to UML
class diagrams annotated with OCL. SoSyM, pages 1–21, 2013.

14. A. E. Ghazi, M. Ulbrich, C. Gladisch, S. Tyszberowicz, and M. Taghdiri. JKelloy:
A proof assistant for relational specifications of Java programs. In NFM, 2014.

15. C. Gladisch and S. Tyszberowicz. Specifying a linked data structure in JML for
formal verification and runtime checking. In SBMF, pages 99–114, 2013.

16. D. Grunwald. Translating Alloy specifications to JML. Master’s thesis, Karlsruhe
Institute of Technology, December 2013. http://asa.iti.kit.edu/410.php.

17. K. Hanada et al. Implementation of a prototype bi-directional translation tool
between OCL and JML. J. Informatics Society, 5(2):89–95, 2013.

18. D. Jackson. Software Abstractions (revised edition). MIT Press, 2012.
19. D. Jin and Z. Yang. Strategies of Modeling from VDM-SL to JML. In Advanced

Language Processing and Web Information Technology, pages 320–323, 2008.
20. G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual

machine, and compiler. ACM Trans. Program. Lang. Syst., pages 619–695, 2006.
21. G. T. Leavens et al. JML Reference Manual (draft, revision 1.235), June 2008.

http://www.jmlspecs.org/.
22. T. Liu, M. Nagel, and M. Taghdiri. Bounded program verification using an SMT

solver: A case study. In ICST, pages 101–110, April 2012.
23. C. Marché et al. The KRAKATOA tool for certification of JAVA/JAVACARD

programs annotated in JML. J. Log. Algebr. Program., 58(1–2):89–106, 2004.
24. P. Müller et al. Modular specification of frame properties in JML. Concurrency

and Computation: Practice and Experience, 15(2):117–154, 2003.
25. M. Vaziri. Finding Bugs in Software with a Constraint Solver. PhD thesis, Mas-

sachusetts Institute of Technology, 2004.
26. B. Weiß. Deductive Verification of Object-Oriented Software. PhD thesis, Karlsruhe

Institute of Technology, 2011.
27. K. T. Yessenov. A Lightweight Specification Language for Bounded Program Ver-

ification. Master’s thesis, Massachusetts Institute of Technology, 2009.

