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Abstract. Constraint solving is a major source of cost in Symbolic Ex-
ecution (SE). This paper presents a study to assess the importance of
some sensible options for solving constraints in SE. The main observa-
tion is that stack-based approaches to incremental solving is often much
faster compared to cache-based approaches, which are more popular.
Considering all 96 C programs from the KLEE benchmark that we ana-
lyzed, the median speedup obtained with a (non-optimized) stack-based
approach was of 5x. Results suggest that tools should take advantage of
incremental solving support from modern SMT solvers and researchers
should look for ways to combine stack- and cache-based approaches to
reduce execution cost even further. Instructions to reproduce results are
available online: http://asa.iti.kit.edu/130_392.php

1 Introduction

Symbolic Execution (SE) [13,17,18,21,26] is a technique for systematic test-input
generation that has gained significant momentum in recent years. Unfortunately,
SE is expensive. It needs to explore many program paths and the execution of
each path is more expensive compared to a non-symbolic (i.e., concrete) execu-
tion. Improving both aspects – space and time – is therefore important and a
significant amount of research has been done in this direction recently [16]. The
focus of this paper is on time reduction.

SE tools heavily use constraint solvers to avoid the exploration of infeasible
paths and to generate test inputs; it comes with no surprise that constraint
solving is often reported as the execution time sink of the technique [12,15,32,35].

Incremental solving is an important feature to address this high cost; it lever-
ages the similarity across similar constraints to reduce overall solving cost. Intu-
itively, when using such feature, solving a set of similar constraints can be faster
compared to solving each constraint in the set separately. Considering the fact
that constraints that SE generates are similar by construction, existing SE tools
employ some form of incremental solving to speedup execution.

1.1 Incremental Constraint Solving Approaches

One simple alternative to incremental solving is to only solve the “changed
parts” of the constraint. For example, consider that SE produces the con-
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straint pc1 : a>b ∧ x<y for which the solver outputs the following solu-
tion [a=2,b=1,x=3,y=4]. To compute the solution to the next constraint
pc2 : a>b ∧ x≥ y this approach proceeds as follows: it invokes the solver to
solve only the changed part of the constraint, namely x≥ y, which is a simpler
problem, and combines the new solution [x=4,y=3] with the already-computed
solution [a=2,b=1]. The combined solution clearly satisfies pc2 . This idea works
under the assumption that SE explores similar paths in order (e.g., using depth-
first search) and that not all variables in a constraint are dependent (e.g., x and
y are mutually-dependent but do not depend on a and b).

The second alternative builds on the observation that the approach discussed
above could be generalized to build on the solutions of all previously visited
path constraints as opposed to only the last one visited. It caches solutions of
every independent expression observed in every path constraint: two expressions
are independent if they do not share any symbolic variables. Considering the
previous example, a global cache stores solutions to the expressions a>b, x<y,
and x≥ y which appeared independently in the two individual path constraints
pc1 and pc2. Despite the overhead in memory and time consumption related to
caching (to store, lookup, and combine solutions), it has been observed that this
optimization is beneficial. Popular symbolic execution tools, such as CREST [14],
KLEE [15], PEX [31] and SPF [25], use similar features.

Another alternative to incremental solving makes use of built-in SMT solver
support to solve similar constraints. It builds on the observation that as the
paths that a SE explores gets longer chances of merging independent expres-
sions increase since the number of input variables is limited. Unfortunately, the
approaches to incremental solving presented above cannot help in this scenario.
For example, the cached solution [x=3,y=2] to the constraint x>y will not help
to solve the constraint x>y ∧ x>3. In contrast, modern incremental SMT solvers,
such as CVC4 [4], MathSAT5 [6], Yices [9], and Z3 [10] can help in this case:
during constraint solving these tools learn lemmas, which can be later (re)used
to solve similar but not identical constraints. To the best of our knowledge no
existing SE tool uses such alternative for constraint solving.

1.2 Contribution

This paper reports the results of a study we conducted to assess how cache-
based approaches compare with stack-based approaches to solve constraints in-
crementally. We considered various options of incremental solving and a large
set of programs; both real (96 C programs from the KLEE [15] benchmark) and
artificially-generated (300 randomly-generated programs of various sizes: 5, 10,
and 20K). Overall, results indicate that stack-based approaches provide supe-
rior results. The median speedup obtained when using the support of a modern
incremental SMT solver is of ∼5x (min.:∼1x, avg.:∼4.8x, max.: ∼9x).

In the light of these results, we investigated how to further improve stack-
based approaches. We noticed that sharing of common expressions can facilitate
the search for solution in SMT solvers [11]. We investigated the alternative of
eliminating all common sub-expression from the constraint instead of of relying
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on the built-in heuristics from the solver. Results indicate that the speedup
obtained with this alternative was of ∼1.11x over the benefits obtained with the
basic stack-based incremental approach.

2 Background

Symbolic Execution is comprised of two parts: constraint generation and con-
straint solving. We briefly explain each part below. More details can be found
elsewhere [16,24,27].

2.1 Constraint Generation

When symbolic execution evaluates a branch instruction, it needs to decide which
branch of the control flow to select. In a regular concrete execution, the evalua-
tion of a boolean expression is either true or false. Thus only one branch of the
conditional can be taken. In contrast, in symbolic execution, the evaluation of a
boolean expression is a symbolic value, so both branches can be taken resulting
in different paths to be explored in the program. Symbolic execution character-
izes each path it explores with a path-condition over the input variables −→x . This
condition is defined with a conjunction of boolean expressions pc(−→x ) =

∧
bi.

Each boolean expression bi denotes a branching decision made during the execu-
tion of a distinct path in the program under test. Symbolic execution terminates
when it explores all such paths corresponding to the different combinations of
decisions. Programs with loops and recursion may result in an infinite number
of paths; in those cases, one needs to define a bound on the number of paths
that symbolic execution can explore.

2.2 Constraint Solving

Symbolic execution uses constraint solving (i) to check path feasibility and (ii)
to generate test inputs. In the first case, symbolic execution checks if the current
path is feasible by checking if the current (partial) path-condition is satisfiable.
Exploration of a path is interrupted as soon as the path-condition becomes un-
satisfiable. In the second case, symbolic execution uses a constraint solver to
solve constraints associated with complete paths. The solutions to these con-
straints correspond to test inputs. SMT-LIB3 is a popular format for describing
constraints in SMT solvers [2, 4, 8, 10]. The SMT-LIB syntax [28] uses a prefix
notation for expressions. For example, the user writes (assert F) to declare
that a logical formulas F must hold. One can combine multiple formulas with
logical operators. Symbolic names can be introduced as uninterpreted functions
without arguments. Incremental SMT solvers [4,6,10] provide an assertion stack
to solving similar constraints. The assertion stack is equipped with push and
pop operations to enable one to keep contextual information. Each stack frame

3See http://smtlib.cs.uiowa.edu
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int step(int a,int b){

if (a < 0) b = a + b;

if (b < 1) b = 2; else b = 3;

return a+b;}

(a) Original

int stepOpt(int a,int b){

if (a < 0) b1 = a+b; else b1 = b;

if (b1 < 1) b2 = 2; else b2 = 3;

return a+b2;}

(b) Transformed (for illustration)

Fig. 1. Sample code.

stores an assertion set, which includes locally-scoped declarations of functions,
sorts, and logical formulas. The command (check-sat) holds if the conjunction
of all assertion sets in the stack is satisfiable.

3 Techniques

We considered 5 techniques to evaluate effectiveness of cache-based and stack-
based approaches to incremental solving. All techniques have been implemented
in the same framework. We briefly describe them below.

– Baseline is the approach that does not use incremental solving. This ap-
proach conjoins all decisions reached along one path in a single constraint.
That is, each constraint generated with SE results in a different potentially-
long query to the solver.

– Caching refers to the technique that uses independent clauses optimization
to simplify constraints before querying the solver (see Section 1.1). It incurs
in overhead to partition constraints, lookup, and update the cache.

– CachingOpt optimizes caching by partitioning constraints incrementally.
It keeps in memory the set of partitions and corresponding variables for the
previously explored constraint. When reaching a control decision, it obtains
new partitions by merging all partitions that have variables in common,
considering the new variables involved in the decision. It incurs in additional
overhead to merge partitions.

– Stack refers to the technique that creates a new frame on the assertion stack
of an SMT solver when reaching a new control decision.

– StackOpt is as stack but builds constraints with new symbolic names so to
facilitate identification of expression sharing.

3.1 Illustrative Example

This section illustrates the techniques. Figure 1 shows the code of function step;
function stepOpt is obtained from code transformations on step. This function
helps to illustrate the effect of common-subexpression elimination; new variables
are introduced and each variable is defined only once. It is important to note
that similar effect can be obtained without applying this transformation, e.g.,
by hash consing over assignment statements.
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Figure 2 shows the SMT-LIB scripts produced by different techniques. In this
example, each query terminates with the sequence of commands check-sat and
get-value which indicate that the constraint was satisfiable and a solution could
be retrieved. The solver context, that maintains the lemmas learned in previous
computations, is destroyed with the command exit.

Figure 2(a) illustrates Caching . In this technique, each query starts with
the construction of variables and terminates with the destruction of the solver
context. For each query, only dependent constraints reach the solver; solutions
are cached to avoid redundant queries. We show in comments the state of the
cache and cache hit events. Figure 2(b) illustrates Stack . In this technique, the
solver context evolves as new assertions are added to the stack; the context
survives across the symbolic execution of different paths. To note that learned
lemmas created on a stack frame are destroyed upon a pop of that frame.

3.2 Common Sub-expression Elimination: StackOpt

It is well known that sharing of structurally equal expressions can reduce space
and time requirements in constraint solving, especially when dealing with large
constraints. Modern SMT solvers identify those sharings automatically but there
is cost associated with it and the mechanism to identify sharings is non-optimal.

Aware of that, we additionally evaluated the impact of translating the con-
straints to a representation that facilitates the identification of these sharings.
In short, we eliminate common-subexpressions from input constraints. We want
to evaluate how this feature works in conjunction with incremental SMT solv-
ing, which to the best of our knowledge is not used in these tools. We call the
technique that uses this optimization StackOpt .

Consider, for example, the code fragment if(.) a=x+y; if (a+z>10) {.}.
With traditional symbolic execution, the path corresponding to the traversal
of the true branches is denoted by the constraint ... x + y + z > 10. StackOpt ,
however, translates this constraint to ... a1 = x0+y0∧a1+z0 > 10 as it identifies
that the expression denoted by a1 can be reused in other contexts. The use of
such representation increases space requirements, i.e., it increases the number
of variables and conjuncts in the constraint. On the other hand, it helps the
constraint solver by letting it associate information with newly defined symbols
(in this case, a1).

Figure 2 shows side-by-side the scripts produced with this optimization dis-
abled (Stack) and enabled (StackOpt). In contrast to stack and caching , that
generate fresh constraints on decision points, stackOpt reuses expressions. For
example, in Figure 2(c), stackOpt renames variable b1 in query 1 to refer to a+b,
and uses it in queries 2 and 3. We evaluate in this paper how such transformation
can speedup stack-based constraint solving.

4 Evaluation

Our goal is to understand the extent to which constraint solving can be optimized
for symbolic execution. We focused our attention to incremental solving, which
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(a) Caching(Opt)
; query 1
(declare-fun a () Int)
(assert (< a 0))
(check-sat) ; sat
(get-value (a)) ; [a]:=[-1]
(exit)
; query 2
(declare-fun a () Int)
(declare-fun b () Int)
(assert (< a 0))
(assert (< (+ a b) 1))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [-1, 0]
(exit)
; query 3
(declare-fun a () Int)
(declare-fun b () Int)
(assert (< a 0))
(assert (not(<(+ a b) 1)))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [-1, 2]
(exit)
; query 4
(declare-fun a () Int)
(assert (not (< a 0)))
(check-sat) ; sat
(get-value (a)) ; [a]:=[0]
(exit)
; query 5
(declare-fun b () Int)
(assert (< b 1))
(check-sat) ; sat
(get-value (b)) ; [b]:=[0]
; cache hit : [!(a<0)]
; query 6
(declare-fun b () Int)
(assert (not (< b 1)))
(check-sat) ; sat
(get-value (b)) ; [b]:=[1]
; cache hit : [!(a<0)]
; cache: [a<0:[SAT,a:=-1],
; a+b<1:[SAT,a:=-1,b:=0],
; !(a+b<1):[SAT,a:=0,b:=2],
; !(a<0):[SAT,a:=0],
; b<1):[SAT,b:=0]]

(b) Stack
(declare-fun a () Int)
(declare-fun b () Int)
; query 1
(push)
(assert (< a 0))
(check-sat) ; sat
; query 2
(push)
(assert (< (+ a b) 1))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [-1, 0]
(pop)
; query 3
(push)
(assert(not(<(+ a b) 1)))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [-1, 2]
(pop)
(pop)
; query 4
(push)
(assert (not (< a 0)))
(check-sat) ; sat
;query 5
(push)
(assert (< b 1))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [0, 0]
(pop)
;query 6
(push)
(assert (not (< b 1)))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [0, 1]
(pop)
(pop)
(exit)

(c) StackOpt
(declare-fun a () Int)
(declare-fun b () Int)
; query 1
(push)
(assert (< a 0))
(check-sat) ; sat
(define-fun b1 () Int (+ a b))
; query 2
(push)
(assert (< b1 1))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [-1, 0]
(pop)
; query 3
(push)
(assert (not (< b1 1)))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [-1, 2]
(pop)
(pop)
; query 4
(push)
(assert (not (< a 0)))
(check-sat) ; sat
(define-fun b1 () Int b)
;query 5
(push)
(assert (< b1 1))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [0, 0]
(pop)
;query 6
(push)
(assert (not (< b1 1)))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [0, 1]
(pop)
(pop)
(exit)

Fig. 2. SMT-LIB scripts produced with various techniques. Comments indicate what
happens during exploration.

is the basic principle to solve large sets of similar constraints. We describe in the
following the experiment we conducted to evaluate the techniques from Section 3.

4.1 Research Questions

We pose the following research questions.

RQ1. How cache-based and stack-based approaches compare?
RQ2. What is the benefit of using common sub-expressions elimination?
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RQ3. Where each technique spends most time?

4.2 Objects of Analysis

We used two sets of programs in our evaluation. The first set includes programs
automatically generated with RUGRAT [7]. The second set includes programs
collected from the benchmark of KLEE [5], an open-source symbolic execution
tool for C programs.

RUGRAT is a grammar-based program generator that has been proposed
to support empirical evaluation of testing and analysis techniques. It produces
programs based on weights associated to grammar production rules. A prac-
tical challenge for these kinds of generators is to construct realistic programs.
However, an empirical study indicates that it is statistically impossible for a pro-
gram analysis technique to differentiate a program written by a human from one
that the tool generates [19]. The study compared real and generated programs
with 78 existing software metrics. We considered three options of program size:
programs of 5, 10, and 20 KLOC. We generated a total of 300 programs, 100
programs for each program size and only considered programs whose symbolic
execution produces integer linear constraints.

The KLEE Coreutils benchmark [15] contains 96 Unix core programs
(4.5 KLOC together). As the tool handles C programs we could not use our
infrastructure (see Section 4.7). Instead, we ran KLEE, collected constraints
produced by the tool, and analyzed them in order, i.e., consecutive constraints
in the list reflect exploration order and are similar. For this reason we could not
evaluate the combination stackOpt on this program set.

4.3 Experimental Variables

The independent variables of our experiment are the exploration time, size of
the program, and exploration bounds. The control variables (i.e., constants) of
our experiment are the choice of constraint solver and the exploration order.
We used Microsoft’s Z3 [10] for solving constraints and bounded depth first
search for exploring paths. Even though results are deterministic we ran our
scripts multiple times to confirm environmental changes did not introduce noise
in our measurements. We used an Intel Xeon E5-2670 CPU with 2.60GHz clock
running on a 64-bit openSUSE, and set 8GB as the max heap size for a symbolic
execution.

4.4 RQ1. How cache-based and stack-based approaches compare?

To answer this research question we compared the effectiveness of techniques
on the RUGRAT and KLEE benchmarks. We only considered variants without
applying common sub-expression elimination in this experiment.
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5K 10K 20K
Solving Time (ms) per constraint
baseline 8.100 16.750 25.565
caching 35.123 89.537 96.983
cachingOpt 17.547 45.624 47.630
stack 0.321 0.843 1.401
stackOpt 0.309 0.752 1.258

5K 10K 20K
Number of queries answered

baseline 29,154 9,115 5,856
caching 34,870 4,875 3,416
cachingOpt 58,988 10,097 5,047
stack 441,353 185,236 101,408
stackOpt 1177,907 448,545 256,345

Fig. 3. Cost metrics.
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Fig. 4. Average number of complete paths explored (i.e., tests generated) using Z3.
Time budget set to 10 minutes.

The RUGRAT benchmark. Figures 3 and 4 show results of various tech-
niques for program generated with RUGRAT. We fixed the time budget for
exploring paths in bounded depth-first order to 10 minutes.
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Figure 3 shows the average cost for solving a constraint for each technique and
the total number of queries answered. The average cost of solving one constraint
is the total constraint solving time divided by the number of queries issued to
the solver within a 10m time slot.

Each datapoint in the plots from Figure 4 indicates the number of explored
complete paths (/tests generated) for a pair of technique and point in time.
These plots show progress of different solving approaches. All plots indicate that
the use of incremental SMT solving is beneficial. Note from the y-axis that as
the size of programs grows the number of explored complete paths decreases.
However, note that the speedups remain relatively similar. We observed that as
size of programs grow constraint solving also become much more expensive; this
justifies the decrease in number of complete paths explored on longer programs.
Note from Figure 3 that the number of queries answered by the constraint solver
in fact increase for longer programs compared to other techniques.

All plots from Figure 4 show a linear x-y relationship, indicating that the cost
of exploring one path remains nearly the same during state-space exploration.
Note that results are averaged across several programs. This linear behavior was
a surprise. In principle, it would be justified only when feasible complete paths
are uniformly distributed across the exploration tree and the cost of exploring one
path is constant. A close inspection on results revealed that this indeed occurs
many times although not always. However, as many subjects are considered a
linear behavior emerged in the averaged plots.

The KLEE benchmark. We compared the techniques also using the bench-
mark of the SE tool KLEE [5, 15]. We analyzed the constraints it generates for
96 programs from KLEE’s own benchmark. We set the time budget for SE to
30 seconds and used the default configuration for running KLEE. We confirmed
as expected that KLEE spends most of its time budget (90%=∼27s/30s) in
constraint solving4

Figure 5 shows the speedup that the best technique, stack , obtains compared
to the second best technique, cachingOpt . The table in the right-top corner shows
the time cost of solving each constraint. We did not evaluate stackOpt in this
experiment as that would require post-processing KLEE-generated constraints.
Considering the 96 programs analyzed the median speedup of stackOpt over
cachingOpt was ∼5x. In absolute terms stack analyzed all constraint in 0.14s
in the best case and 72.36s in the worst case, with a median cost of 6.3s and
an average cost of 7.53s. For 91 of the 96 programs stackOpt was solved all
constraints under 10s. 2 programs were solved under 30s and for only 2 programs
it required more time: 54.9s and 72.36s.

It should be noted that the constraints from the KLEE benchmark build on
the theory of bit-vectors whereas the constraints from the RUGRAT benchmark
build on the theory of integers. We compared the techniques using different the-
ories and obtained some evidence that the techniques we presented are effective
for two relevant theories.

4http://klee.github.io/klee/klee-tools.html#klee-stats

9



shredpathchktsortcatarchjointestrunconechosplitshufseqnlfalsesha224sumstatpastesha256sumchowndirnametacsha512sumfmtcutsumvdircomm[readlinkln
odwhofoldsumktempusersgroupstailbase64pwdcpsyncexpandchgrpchrootbasenamermdirheaddircolorsmkfifofactorsha1sumtouchuptimelinkkilltr
ddmkdirsetuidgidunamenicemd5sumsleepunlinkduprpinkyteesha384sumhostidchconyeswhoamidfprintfdatemknodmvlognamenohuprmsortginstallsttytrueenvchmodid

hostnameprintenvttyexprsplituniqcksum

Speedup (x times quicker than best other)
C

 p
ro

gr
am

s 
(K

LE
E

 b
en

ch
m

ar
k)

0 2 4 6 8 10

<1x mark (slowdown) median

Solving Time (ms) per constraint

baseline 34.559
caching 26.231
cachingOpt 25.860
stack 7.260

Fig. 5. Speedup of stack-based incremental SMT solving over best alternative solving
approach using Z3 (KLEE benchmark). The table in the right-top shows the solving
time per constraint in various approaches.

4.5 RQ2. What is the benefit of using common sub-expression
elimination?

Figure 4 shows that the stackOpt performs remarkably well. In contrast to stack
this approach does not appear to degrade performance as the size of programs
and constraints increase. The reason for the gain is justified: 1) On reaching
each branch decision, stackOpt reuses the constraints constructed before path
exploration while stack constructs new constraints when the variables involved
in the branch condition were updated in the path leading to this branch. This is
evidenced in Figure 4, in which stack has a notable overhead in path exploration.
2) To save search space and time, most modern SMT solvers (e.g., [1,2,4,6,9,10])
map structure-equal expressions to a singleton to construct a compact problem.
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Exploration Expression Construction
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Fig. 6. Average time breakdown of different techniques using Z3 in 10 minutes.

While modern solvers detect shared expressions at the syntactical level, stackOpt
introduces intermediate variables as macros to shared expressions at the semantic
level.

4.6 RQ3. Where techniques spend most time?

Figure 6 shows the time breakdown of the techniques considering 4 sources of
runtime cost: path exploration, expression construction, constraint solving, and
rest. Path exploration time includes the cost of exploring paths (e.g., storing and
restoring states), expression construction time includes the cost of creating Z3
expressions (we used Z3’s programmatic interface for that), constraint solving
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time includes solving and and caching time, and rest includes the remaining
parts, for example, the time of performing code transforms.

We make the following observations:

– Baseline spends more time in expression construction compared to other
techniques. This happens because baseline needs reconstruct all Z3 expres-
sions for a new query, while caching reduces the amount of constraints issued
to the solver and consequently also reduces this cost.

– Stack spends more time in path exploration compared to other techniques.
This happens because stack needs to update states on assignment statements
and load states on decision points to generate fresh constraints, while stack-
Opt has constraints constructed before path exploration. That is even worse
for those paths traversed multiple times; stack will reload the states and re-
compute the constraints for each traversing, while stackOpt has constraints
constructed prior to the path exploration.

– All caching techniques and stackOpt spent most time on solving constraints
and at least 70% of the time is spent in constraint solving.

– stack spent less time in constraint solving compared to other techniques,
while it can solve more constraints than any other technique except stackOpt .

– stackOpt spent more time in rest than other techniques. This happens is
because stackOpt has a code transformation to rename variables.

4.7 Infrastructure

We developed a SE tool prototype to support our experiments. The motivation
was to evaluate the influence of SSA. The infrastructure has been implemented
in Java in ∼19.7KLOC, being∼1.5KLOC from InspectJ [23]. We computed non-
blank non-comment lines of source code with the CLOC tool [3]. We used the
Soot optimization framework [29] to process Java bytecodes, the Jung graph
framework [20] to construct and explore decision graphs, and InspectJ to unroll
loops and inline methods. The infrastructure generates constraints in SMTLIB
v2 so it can interface with any compliant solver. For example, Z3 [10] is called
directly through its programmatic interface to create corresponding Z3 expres-
sions.The infrastructure supports both integers and bit-vectors to assess the
impact of various options of incremental solving to speedup symbolic execution.
The infrastructure reuses the created objects to reduce the cost of time and
memory allocation in constraint generation.

Static Transformations. We implemented a sequence of static code trans-
formations before the construction of decision graph. For example, unroll loops
according to the configurations, model the program in Static Single Assignment
(SSA) representation and inline methods on each call site. Finally, we obtained
a directed acyclic graph with unique variable names. We evaluated how costly
code transformation can be relative to the other costs. We observed that the lin-
earization (i.e., inlining methods and unrolling loops) procedure is significantly
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Fig. 7. Average percentage of static cost. For example, the average cost of lineariza-
tion for a 20K program configured to unroll loops at most 3 times is approximately
34s(=(1.9/100)*30*60s)

more expensive compared to SSA, which is applied within each procedure prior
to linearizing the code. But still linearization is relatively low cost. Figure 7
shows how each of these operations scale with program size and bound of loop
unrollings. 60 subjects have been checked with a timeout 30m. The scale of the
y-axis is the percentage of a 30m time budget. Results are averaged across all
subjects considered for that size. In the worst case, linearization on 20K pro-
grams with 20 loop unrollings takes roughly 2m24s (=144s=8% of 30m).

4.8 Threats to Validity

As usual it is possible that results do not generalize much beyond our subject
set. To mitigate this threat we used a set of 300 automatically-generated Java
programs and a set of 96 real C programs from the GNU operating system.

Another threat to validity is the possibility of errors in our implementation.
We carefully inspected our code and the consistency of our results. In summary,
additional experiments are necessary to assess generality of our results.

5 Related Work

Symbolic Execution (SE) is expensive in time and space. We discuss below most-
related recent work to reduce the high cost in constraint solving during SE.

5.1 Caching schemes

Cadar et al. [15] proposed several optimizations to simplify constraints prior
to calling the solver during SE. The SE tool KLEE implements caching as we
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described. In addition, KLEE implements constraint checking with a potential
solution. It is based on the assumption that a solution of subset often satisfy
extra constraints. We remain to investigate how this additional optimization
compares with those we considered.

Visser et al. [33] proposed GREEN, an infrastructure to share results of
symbolic executions across different environments. GREEN proposes canonical
representations of path conditions to enable caching across different programs.
The intuition is that after partitioning constraints w.r.t. dependent clauses the
chance of finding structurally equal symbolic constraints increases. For example,
solutions to constraints produced in the symbolic execution of one program could
be used to solve constraints produced from SE for another program. Results of
GREEN are encouraging. Although the goal of GREEN is the same (to speedup
constraint solving), our contributions are complementary.

5.2 Incremental SMT Solving

Incremental SMT solving is an active field of research with the goal of optimizing
problems that can be characterized by many similar sub-problems. For example,
detecting the program execution trace which maximizes execution cost [22], solv-
ing scheduling problems [30]. As a basic decision procedure, incremental SMT
solving searches for a satisfying assignment by performing various operations
(e.g. unit propagation). When internal conflicts occur incremental SMT solvers
extract and store conflict clause to prune exploration search space. More specif-
ically, incremental solvers store learned and conflicting clauses in the assertion
stack so that they can be reused upon backtracking. Recently, Wieringa [34] pro-
posed a technique to strengthen the clauses learned by the solver by extending
an incremental SMT solver to execute in multiple threads. We observed that this
development can directly improve symbolic execution.

6 Conclusions

This paper reports on a study to assess the impact of various options of in-
cremental solving to speedup Symbolic Execution (SE). Results suggest that
incremental solving is very important and that stack-based approaches provide
superior results when compared to cache-based approaches for the benchmarks
used in our experiments. Note that results are restricted to the use bounded
depth-first search. More research is needed to find ways to combine caching- and
stack-based approaches to improve results even further.
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