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Abstract

Path conditions are a static analysis tool for information flow control (IFC). They can be
used to produce witnesses for an illegal flow, which do not necessarily represent a concrete
execution of the program. This bachelor thesis will provide a detailed approach to eliminate
these false witnesses using counterexample guided abstraction refinement (CEGAR) and
thereby increase precision.

As not all values satisfying the PC need to occur simultaneously during a program execution,
a property is introduced which is true iff the values occur during the program execution.
Some values are always occurring simultaneously if a flow exists. This information can be
used to increase precision and is added to the described property, without using temporal
logic. Finally, the CEGAR approach is adopted to provide an algorithm for checking this
property.
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1. Introduction

Information flow control (IFC) is used to ensure an information flow policy. The most
basic information flow policy is non-interference introduced in [5]. It states that one realm
may not influence another realm. For example, we can divide the input parameters as
well as the output of a method into high and low security. If non-interference holds, no
information from the high input may reach the low output. There are a lot of approaches
for information flow control. An overview can be found in [6].

We will focus on path conditions (PC). They are based on program dependence graphs
(PDG), which show the influence of statements to the control flow and also where information
is used, which was stored by a statement. A path condition is a formula over program
variables which describes a necessary condition for a flow. As it is not sufficient, a solution
only indicates a potential flow. There are false positive results.

The solution for a PC assigns values to variables in the PC, which can be used as a
witness for a potential flow. This witness can then be verified. But the witnesses of
path conditions as described in [12, 14] do not necessarily conform to an execution of the
program. [15] describes a novel approach of using counter example guided abstraction
refinement (CEGAR) to increase the precision of path conditions, by ensuring that only
solutions are given, which conform to an actual execution of the program.

We will show how this can be done in detail and prove that the resulting values conform to
a program execution. Therefore, we will need to reduce the PC as it can constrain variables
too much, so that they cannot conform to a program execution. Using this modified PC
we will define a property that describes the meaning of a conform solution. We will then
follow the CEGAR approach as in [15], by introducing a more formal definition of a valid
execution and the refinement. Additionally, we will show that these definitions will result in
the defined property. On the way we will also notice that we can add temporal information
to the PC, such that the conforming solution respects these constraints without using
temporal logic. This is increasing the precision of the PC.

At the end, we will have a solution of the path condition, which conforms to an execution.
But this does not mean that we will get rid of false witnesses regarding information flow.
Nonetheless, we will have less false positive results as the experiments show.

A prototype implementation of the algorithm was used to perform some experiments. While
the approach works well for small examples it lags scalability, but potential optimisations
are identified.
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2. Basic Concepts

We need some existing transformations and analysis methods for the program. This section
gives the definitions used as well as an ongoing example for explanation.

2.1 Graph Basics

A graph is a tuple G = (V,E) with a set of vertices V and a set of edges E ⊂ V × V . A
path p ∈ V (+) is a list of vertices p = (p0, p1, ..., pn), such that for all i ∈ {0, . . . , n− 1} :
(pi, pi+1) ∈ E. |p| is the number of vertices in p so |p| − 1 is the length of a path. For
v ∈ V |p|v will be the number of times v occurs in p. Furthermore, we will use v ∈V p
for v being any vertex in p and e ∈E p for e being any edge in p. a→∗ b is a path from
a to b and a→ b is a path from a to b with length one. For p = a→∗ b and q = b→∗ c,
p ◦ q is the concatenation of path p and q. subpath(p) is the set of sub paths of p and
prefix(p) = {p′ | ∃q : p′ ◦ q = p} is the set of prefixes of p.

2.2 Static Single-Assignment Form

Static single assignment form (SSA) is an intermediate code representation, where each
variable is only assigned in one statement. Each assignment uses subscript enumeration of
variables to achieve this. If two different definitions reach the same statement, then phi
statements are inserted. For a construction of the SSA form, please refer to [3].

We will only use SSA variables from now on, so if we talk about a variable we mean an
SSA variable.

In figure 2.1 line 10 and 14 assign the variable sum, so in the SSA form both have different
subscripts. Line 15 shows a Phi statement.

2.3 Control Flow Graph

The control flow graph (CFG) is a graph that represents the code. Nodes are statements
and an edge between two nodes x, y indicates that the statement of y can be executed
directly after the statement represented by x. The granularity of the nodes can vary, for
example, one node per line or one node per assembler operation. We will use one line per
statement, for details, see section B.2. For the CFG we use the definition from [4]:
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4 2. Basic Concepts

Definition 1. A control flow graph is a directed graph G = (N,E) augmented with a
unique entry node “start” and a unique exit node “end” such that each node in the graph
has at most two successors. We assume that nodes with two successors have attributes “T”
(true) and “F” (false) associated with the outgoing edges in the usual way. We further
assume that for any node n in G there exists a path from start to n and a path from n to
end.

We will always use the control flow graph as representation of the code in SSA-form. This
allows us to show different properties.

In figure 2.1c you can see the CFG of the sum example. There is a node labelled i(·) for
each input parameter. Nodes for Phi statements of the SSA-form have a dashed border.
Edges labelled “F” are blue and dashed, all other edges are black and dotted. The nodes
are labelled with two numbers, the first number is the line number of the related statement.
As some lines contain more than one statement, for example line 12 in figure 2.1b, we also
use the second number to uniquely identify each node. For the meaning of the second
number see appendix B.

Definition 2. For each edge e = (x, y) ∈ E we define the function ĉ(e). If x has two
ancestors ĉ(e) is the condition for taking this edge. It is true otherwise.

For example in the CFG in figure 2.1c ĉ(13/27, 14/37) ≡ sum54 = 0, while ĉ(13/27, 16/52) ≡
sum54 6= 0.

2.3.1 Loops

As in standard compiler text books (p.a. [11] p. 191-197) we will use the concepts of
natural loops, loop heads and reducibility.

Given a control flow graph GCFG = (V,E). Let x, y ∈ V . Then x dominates y iff every
path from start to y contains x. A back edge is an edge (x, y) ∈ E such that x is dominated
by y. y is called loop head and x is called tail. The nodes of the natural loop are given by
NatLoop(x, y) = {v ∈ V | ∃p = v →∗ x ∧ y /∈V p ∨ y = v}.

Additionally, for v ∈ V we will define tails(v) = {x ∈ V | ∃y ∈ V : (x, y) ∈ E is a back edge ∧
v ∈ NatLoop(x, y) ∨ x = end}

In figure 2.1 there is only one back edge: e = (16/39, 12/54). Notice that the while
node 12/45 is not the head of the loop, as the phi nodes are always executed before it.
NatLoop(e) = {12/54, 12/56, 12/45, 13/27, 14/37, 16/52, 16/38}. For all of these nodes
tails(·) is {16/39, end}.

GCFG is reducible iff E = EF ∪ EB such that EF and EB are disjunct and (V,EF ) is a
directed acyclic graph and ∀(t, h) ∈ EB : (t, h) is a back edge.

2.4 Program Dependence Graph
The program dependence graph is based on the control flow graph. It contains control
dependencies that show if a node influences the execution of another node and data
dependencies which show where a defined variable is used.

We use again the definition of [4]:

Definition 3. A node x is post-dominated by a node y in GCFG if every directed path
from x to stop (not including x) contains y.

4



2.4. Program Dependence Graph 5

5 int [] a = new int [3];
6 a[0] = low1;
7 a[1] = high;
8 a[2] = low2;
9
10 int sum = 0;
11 int i = 0;
12 while (i < 3) {
13 if (sum == 0) {
14 sum = sum + a[i];
15 }
16 i++;
17 }
18
19 return sum;

(a) Source Code

5 a3 = new int [3];
6 a7 [0] = low1;
7 a11 [1] = high;
8 a15 [2] = low2;
9
10 sum17 = 0;
11 i20 = 0;
12 while (i56 = Φ(i20 , i39), sum54 = Φ(sum52 ,

sum17); i56 < 3) {
13 if (sum54 == 0) {
14 sum37 = sum54 + a15[i56 ];
15 } sum52 = Φ(sum54 , sum37);
16 i39 = i56 + 1;
17 }
18
19 return sum54;

(b) Source Code in SSA Form

START

i(low1)

12 / 22 12 / 54

12 / 56

i(high)

11 / 20

i(low2)

10 / 17

5 / 3

8 / 15

6 / 7

7 / 11

13 / 27

14 / 37

16 / 52

16 / 39

12 / 45

19 / 50

END

(c) Control Flow Graph

START

5 / 3

i(low1)

6 / 7

i(high)

7 / 11

i(low2)

8 / 15 12 / 56

11 / 20 12 / 22 12 / 45 10 / 17 19 / 50

12 / 54

14 / 37

16 / 39 13 / 27 16 / 52

(d) Program Dependence Graph

Figure 2.1: Example Sum, from [15]
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6 2. Basic Concepts

Definition 4. Let GCFG be a control flow graph. Let x and y be nodes in GCFG. y is
control dependent on x iff

• there exists a directed path p from x to y with any z ∈V p (excluding x and y)
post-dominated by y

• x is not post-dominated by y

In difference to [4] our CFG is based on the SSA form, therefore we will use another
definition of data dependence:

Definition 5. Let GCFG be a control flow graph. Let x and y be nodes in GCFG. y is
data dependent on x iff x defines a variable used in y.

Note: A definition of an array field is considered to use the previously defined array, so
array definitions are treated as killing definitions.

Definition 6. Let GCFG = (V,E) be a control flow graph. Let Ecd = {(x, y) | x, y ∈ V
and y is control dependent on x} and Edd = {(x, y) | x, y ∈ V and y is data dependent on
x} The program dependence graph of GCFG is a directed graph GPDG = (V ′, E′) such that
V = V ′ and E′ = Ecd ∪ Edd.

Figure 2.1d shows the PDG for the CFG in 2.1c. Control dependencies are dashed blue or
dotted black, while data dependencies are continuous and red.

For paths in Edd we will write x →∗dd y and for paths in Ecd x →∗cd y. For (x, y) ∈ Ecd
there is exactly one edge (x, z) ∈ E such that z is post dominated by y or z = y. We define
c(x, y) := ĉ(x, z).

2.5 Path Conditions
Path conditions were originally introduced by [13] and are a necessary condition for a flow.
More formally this means: Let α, β ∈ V . A path condition is a formula F such that: There
is an information flow from α to β ⇒ there is a satisfying solution for F . They are built
upon the theorem that a flow can only happen along paths in the program dependence
graph:

Let CH(α, β) = {p | p is an acyclic path in the program dependence graph from α to β}.

PC(α, β) ≡ ∨
p∈CH(α,β)

( (
∧

n∈V p
E(n)

)
︸ ︷︷ ︸
execution condition

∧
(
∧

d∈D(p)
δ(d)

)
︸ ︷︷ ︸
data flow condition

)
∧ Φ︸︷︷︸

phi condition

In the presence of loop-carried dependencies some adaptations are necessary, which will
not be described here. For those refer to [8, 9, 12, 14] instead.

2.5.1 Execution Condition

For the flow to happen along a specific path it is necessary that all statements of this
path are executed. An execution condition is a necessary condition for a statement to be
executed. Let P (n) = {p | p = start→∗cd n ∧ p is acyclic} Given a statements node n the
execution condition is given by:

E(n) ≡ ∨
p∈P (n)

∧
e∈Ep

c(e).

6



2.5. Path Conditions 7

2.5.2 Data Flow Condition
In the presence of arrays we can add further constraints using the index expressions. There
is only a flow from a definition of an array value to a use if the indices are the same.
Additionally the relevant array entry must not be overwritten. We use the same concept
as in [14] for arrays. This requires that array definitions are treated as killing definitions in
the program dependence graph. Now we will look for chains of data dependencies from
the first definition to its use. In between, there can be further definitions, which are not
allowed to have the same index for a flow to occur.

Given a path p in the PDG CPDG. Let D(p) be the set of all paths q such that:

• q ∈ subpath(p)

• ∀e ∈E q : e ∈ Edd
• ∃v ∈ Var : v is an array

• ∀i ∈ {0, . . . , |q| − 2} : v[xi] ∈ defs(qi)

• v[x|p|−1] ∈ uses(q|q|−1)

• q is the maximal sub path of p which satisfies these conditions

For d ∈ D(p) we define δ(d) ≡ ∧
i∈{1..|p|−2}

x0 6= xi ∧ x0 = x|p|−1.

Notice: This definition requires that array values are not directly assigned to arrays. As 1:
a[i] = h; 2: a[k] = a[l]; 3: return a[m]; would need to state (i = m∧ i 6= k)∨ (i = l∧m = k)
but as it would be just one path, we would compute only the first part. This does not seem
to be considered in [14]. However we can bypass this problem by introducing a temporal
variable 1: a[i] = h; 2: tmp = a[l]; 3: a[k] = tmp; 4: return a[m]; now there are two paths
(1,3,4) and (1,2,3,4) and the condition is computed correctly.

2.5.3 Phi Condition
In SSA form each variable is assigned only once and phi statements were introduced. A
phi statement vi = Φ(vk, vl) in the code can be represented as vi = vk ∨ vi = vl. The phi
condition contains all such conditions conjunctively joined. Additionally equations are
added to relate different SSA forms of a variable along data dependence edges. Details can
be found in [14].

2.5.4 Example
Assume we want to know if a flow can occur from the input parameter high to the return
statement, in the program of figure 2.1. There is only one acyclic path p = [i(high)]→∗d
[19/50] = (i(high), 7/11, 8/15, 14/37, 16/52, 12/54, 19/50). The execution conditions are
true for all nodes but 14/37 and 16/52. E(14/37) ≡ i56 < 3∧sum54 = 0, E(16/52) ≡ i56 <
3. The only proper sub path for a data flow condition is d = (7/11, 8/15, 14/37) and δ(d) ≡
1 6= 2 ∧ 1 = i56 ≡ 1 = i56. And Φ ≡ (i56 = i20 ∨ i56 = i39) ∧ (sum54 = sum52 ∨ sum54 =
sum17)∧ (sum52 = sum54 ∨ sum52 = sum37)∧ sum37 = sum54 ∧ i20 = 0∧ sum17 = 0. For
details about the phi condition, please refer to [15].

PC(i(high), 19/50) ≡E(14/37) ∧ δ(d) ∧ Φ
≡i56 < 3 ∧ sum54 = 0 ∧ 1 = i56 ∧ (i56 = i20 ∨ i56 = i39)
∧ (sum54 = sum52 ∨ sum54 = sum17)
∧ (sum52 = sum54 ∨ sum52 = sum37)
∧ sum37 = sum54 ∧ i20 = 0 ∧ sum17 = 0
≡i20 = 0 ∧ i39 = i56 = 1 ∧ sum17 = sum37 = sum52 = sum54 = 0

7



8 2. Basic Concepts

As this equation is satisfiable it indicates that there may be a flow, which is indeed the
case, if the input parameters are not constrained further. If all input variables are asserted
to be greater than zero (PC(i(high), 19/50) ∧ low1 > 0 ∧ low2 > 0 ∧ high > 0) then the
formula is still satisfiable but no flow exists.

8



3. Environment

We need some definitions, lemmas and assumptions, which are provided in this chapter.

3.1 Formalized Program Execution
Let Var be the set of SSA-variables of the program. Values of input parameters are
represented by a substitution i, which substitutes each input parameter with a term that
does not contain free variables. Let I be the set of such substitutions. Let GCFG = (V,E)
be the control flow graph of a program.

• A trace t is a path in GCFG starting at the start node.

• A trace t is complete if t ends at the end node.

• For t trace and v ∈ Var we define val(t, v) as the last symbolic value assigned to v in
t or ⊥ if v was not assigned yet. The symbolic value only contains input parameters
as free variables.

• val(t, v, i) = i(val(t, v))

• valt is a substitution such that, any v ∈ Var : val(t, v) 6=⊥ is substituted by val(t, v)

• valt,i is a substitution such that, any v ∈ Var : val(t, v) 6=⊥ is substituted by
i(val(t, v))

• guard(t) = ∧
t′◦(x→y)∈prefix(t)

valt′(ĉ(x, y))

• guard(t)|A = ∧
t′◦(x→y)∈prefix(t):x∈A

valt′(ĉ(x, y))

• An execution is a tuple ξ = (t, i) where t is a complete trace and i ∈ I and
i(guard(t)) ≡ true (i.e. the path t corresponds to an execution of the program with
these input values).

Again, we will use the example from figure 2.1 for clarification: Let p be the acyclic path from
start to 12/45. val(p, i56) = 0, it does not depend on the input variables. val(p, a15[1]) =
high, given the input i = {low1/0, high/1, low2/2} val(p, a15[1], i) = i(val(p, a15[1])) =
i(high) = 1. ĉ(12/45, 19/50) = i56 ≥ 3, valp(ĉ(12/45, 19/50)) = 0 ≥ 3 = false. So
p ◦ (12/45 → 19/50) is never part of an execution, as a guard of a trace containing
p ◦ (12/45→ 19/50) would evaluate to false as well.

9



10 3. Environment

Lemma 1. Let ξ = (t, i), ξ′ = (t′, i′) be executions. If i(guard(t′)) ≡ TRUE ⇒ t = t′

Proof. Assume t 6= t′. Let p ∈ prefix(t) ∩ prefix(t′) be the longest path in this set and
(a, b) ∈ E such that p ◦ (a → b) ∈ prefix(t) and (a, c) such that p ◦ (a → c) ∈ prefix(t′).
b 6= c by construction and ĉ(a, b) = ¬ĉ(a, c). i(valp(ĉ(a, b))) ≡ TRUE as ξ is an execution.
This means false ≡ i(valp(¬ĉ(a, b))) ≡ i(valp(ĉ(a, c))), but valp(ĉ(a, c)) is part of guard(t′)
so this is a contradiction to i(guard(t′)) ≡ TRUE

Lemma 2. Let (t, h) be a back edge and x ∈ NatLoop(t, h) then h dominates x.

Proof. x ∈ NatLoop(t, h) ⇒ ∃p = (x →∗ t) as h dominates t it have to be h dominates
x as well or ∃q = start →∗ t such that h /∈V q as h /∈V p. Which is a contradiction to h
dominates t.

3.2 Set-Up
From now on we will have a program in its static single assignment form with its control
flow graph GCFG = (V,E) and the resulting program dependence graph GPDG = (N,Ed)
where Ed = Ecd ∪Edd. Furthermore, we will have two nodes α, β ∈ N and are interested if
a flow from α to β can occur.

Assumption 1. GCFG is reducible.

We will let V|¬Φ ⊂ V be the set of nodes which are not phi nodes.

Assumption 2. Each node n ∈ V|¬Φ has a unique acyclic path p = start→∗cd n in GPDG.

Assumption 3. If v ∈ Var is an arrays than we assume ∀n ∈ N : v ∈ defs(n) → v /∈
uses(n)

Assumption 1 and 2 are covered by structured programs. By [1] all programs can be
represented as such. Assumption 3 can be reached by introducing temporal variables. So
this is not a limitation in a theoretical sense, as all programs can be transformed to conform
the assumptions.

10



4. Path-Conditions and Variable-Values

The path conditions described in section 2.5 are a necessary condition for a flow. We want
a solution that satisfies this necessary condition and represents an execution of the program.
So the solution should conform to an execution. Actually, that is not possible with the
standard path conditions as solutions can be misleading witnesses as described in [9]: It
can happen that the path condition implies a value that may never occur during a program
run. For example in section 2.5.4 we constructed and simplified the path condition for
figure 2.1. Simplification leads to sum37 = 0, but for the input low1 = 0 low2 = high = 1,
there is never a state of the program where sum37 takes the value 0.

What we need is a condition which does not have this behaviour, but preserves the basic
ideas of path conditions. Additionally, we need to consider, where and when the values
need to occur during the execution, so their occurrence do relate to the condition we are
checking.

4.1 Execution Conditions
Let us review the execution condition for a node n. It constrains the variables at branching
nodes, such that the constraint is necessary for the execution of n. So the variables at an
execution of such a branching node satisfies the branching condition (c(·)), which leads to
the execution of n. Due to the SSA form these values will not change until the execution
of n. So what we can prove is:

Theorem 1. Let GCFg = (V,E) be any CFG and GPDG its PDG. Let n ∈ V|¬Φ and
ξ = (t, i) execution. Let p ∈ prefix(t) be a path ending at an occurrence of n. Then
valp,i(E(n)) ≡ true.

That we are only talking about nodes in V|¬Φ, non phi nodes, has technical reasons: As we
can see in figure 2.1 the phi nodes (12/54, 12/56) before the while node (12/45) have two
ancestors in the program dependence graph. So we need to consider more than one control
dependence path from start to the node. But we do not need to care about the execution
of phi nodes along the analysed path of the PDG as SSA form guarantees its execution.

Before theorem 1 is proven some lemmas are needed:

Lemma 3. Let x, y ∈ V|¬Φ, x 6= y, y control dependent on x, p = START→∗ y, |p|y = 1.
Let q = getControlDependentPath(p) be the sub path of p constructed by using the algorithm
in figure 4.1. Then q = x→∗ y.

11



12 4. Path-Conditions and Variable-Values

1: procedure getControlDependentPath(p = start→+ y)
2: i← |p| − 2
3: while pi is post dominated by y do
4: i← i− 1
5: end while
6: q ← (pi, pi+1, . . . , p|p|−1)
7: . p|p|−1 = y, pi+1, . . . , p|p|−2 post dom by y, pi not post dom by y
8: return q
9: end procedure

Figure 4.1: Retrieving a control dependence showing path

Proof. By construction q is of the form q = z →∗ y such that y is control dependent on z.
As y ∈ V|¬Φ and x 6= y it is z = x, by assumption 2.

Lemma 4. Given a CFG GCFG = (V,E). Let x, y ∈ V|¬Φ, x 6= y such that y is control
dependent on x, and an execution ξ = (t, i) such that y ∈V t (y is executed). Let p ∈ prefix(t)
such that p ends at y and let q = getControlDependentPath(p) and p′ such that

p = (START→∗ x)︸ ︷︷ ︸
=p′

◦ (x→∗ y)︸ ︷︷ ︸
=q

Then valp′,i(c(x→cd y)) ≡ true.

Proof. As q1 is either y or post dominated by y it is ĉ(x, q1) = c(x, y) by definition of c(·).
As p′ is based on a valid execution, it is: true ≡ valp′,i(ĉ(x, q1)) ≡ valp′,i(c(x, y)).

Theorem 1. Let GCFg = (V,E) be any CFG and GPDG its PDG. Let n ∈ V|¬Φ and
ξ = (t, i) execution. Let p ∈ prefix(t) be a path ending at an occurrence of n. Then
valp,i(E(n)) ≡ true.

Proof. Let π = start→∗cd n be an acyclic path in GPDG. π is uniquely defined by assertion
2. Let k = |π| − 1 Gk = {0, . . . , k − 1}. Now we break down p into k parts such that each
part relates to one edge in π:

• p0 ◦ . . . ◦ pk−1 = p

• ∀l ∈ Gk : pl = (πl →∗ πl+1)

• ∀l ∈ Gk :
∣∣∣pl∣∣∣

πl

= 1

• ∀l, e ∈ Gk; l + 1 < e : πl+1 /∈ pe

Such a segmentation can always be achieved by using the algorithm from figure 4.1
repeatedly.

For l ∈ Gk tl := p0 ◦ . . . ◦ pl is the trace until the execution of πl+1. From lemma 4 we know
∀l ∈ {0, . . . , |p| − 2} : valtl,i(c(πl+1, πl+2)) ≡ true. Therefore, it is enough to show that the
values of the variables do not change from the point of use in c(·) to the execution of n:
Assume ∃l ∈ Gk∃v ∈ Var : val(tl, v, i) 6= val(p, v, i). Let s be the unique node, which assigns
that variable v. It exists e ∈ Gk; l ≤ e such that s ∈ pe, or the value of the variable could not
have changed since the execution of πl to the execution of n. By construction of the SSA-
form we know s dominates πl and therefore ∃q = start→∗ s : πl /∈ q. And as s ∈ pe there is
a path q′ = s→∗ πe+1 and πl /∈ q′ as πl /∈ pe by construction. πl /∈ q ◦ q′ = start→∗ πe+1.
It is a contradiction that such a path exists by using lemma 3 inductively.

12



4.2. Coeval Conditions 13

We now know that ∀l ∈ Gk : valp,i(c(πl+1 →cd πl+2)) ≡ true and therefore we have
true ≡ ∧

l∈Gk

valp,i(c(πl, πl+1)) ≡ valt,i(E(n)).

4.2 Coeval Conditions

Theorem 1 does not only state that values of the program do satisfy the execution condition,
but also provides a necessary condition for the execution of a node: There has to be a
single point during the execution where the values of that point do satisfy the execution
condition.

Using this information, we can make the PC more precise. For example, in figure 4.2 we
can see that it is not sufficient that a combination of occurred values satisfies the execution
condition: E(16) = (e38 = 1) ∧ (i40 = 0) ∧ (i40 < 2). During an execution i40 will be zero
and e38 will be one, but line 16 will never be executed. The variables i40 and e38 do not
take the necessary values during the same loop iteration.

If we have more than one execution condition, then we do also need more than a single
point during an execution to fulfill the conditions: In the example of figure 4.3 the path
condition is E(17) ∧ E(20) = (i51 = 0) ∧ (e49 = 1) ∧ (i51 < 2). There is not a single point
of execution, which satisfies the condition, as i51 = e49 = 0 during the first iteration and
i51 = e49 = 1 during the second iteration. But both nodes are executed in every execution.

We see that sometimes specific values of variables have to occur together and sometimes they
do not. To distinguish these cases we will tag each variable with an additional superscript.
If two variables have the same superscript it means they have to occur together:

Definition 7.

Ê(n) :≡

 ∧
e∈cdPath(n)

tagidx(n)(c(e)) for n ∈ V|¬Φ

true otherwise

where cdPath(n) = start →∗cd n is the unique acyclic control dependence path to n and
tagk(T ) is a substitution, which replaces each free variable in T with the same variable with
k as its superscript and idx returns a unique number for each node.

Note, that due to assumption 2 we have only one path from start to n left that we need to
consider.

For example 4.2 we get

Ê(16) ≡ (e19
38 = 1) ∧ (i19

40 = 0) ∧ (i19
40 < 2)

This can be interpreted as there is a single point during execution where all three equations
hold. For example 4.3 we get

Ê(17) ∧ Ê(20) ≡ (i18
51 = 0) ∧ (i18

51 < 2) ∧ (e25
49 = 1) ∧ (i25

51 < 2)

This can be interpreted as there is one point during execution where the first two equations
hold and another point where the last two equations hold.

The superscript ensures that the execution conditions for two different nodes do never
contradict each other.

13



14 4. Path-Conditions and Variable-Values

4 int foo(int high) {
5 res1 = 0;
6 e3 = 0;
7 i5 = 0;
8
9 while (i40 = Φ(i5 , i23),
10 e38 = Φ(e20 , e3),
11 res36 = Φ(res34 , res1),
12 i40 < 2) {
13
14 if (i40 == 0)
15 if (e38 == 1)
16 res19 = high;
17 res34 = Φ(res19 , res36);
18 e20 = e38 + 1;
19 i23 = i40 + 1;
20 }
21 return res36;
22 }

(a) Source Code

i₄₀ < 2

i₄₀ = 0

e₂₀ = 1

return res₃₆

res₁₉ := high

foo(high)

(b) Shematic PDG

Figure 4.2: Example of coeval conditions

4 int foo(int high) {
5 res1 = 0;
6 tmp3 = 0;
7 e5 = 0;
8 i7 = 0;
9
10 while (i51 = Φ(i7 , i29),
11 e49 = Φ(e5 , e26),
12 tmp47 = Φ(tmp41 , tmp3),
13 res45 = Φ(res43 , res1),
14 (i51 < 2) {
15
16 if (i51 == 0)
17 tmp18 = high;
18 tmp41 = Φ(tmp18 , tmp47);
19 if (e49 == 1)
20 res25 = tmp41;
21 res43 = Φ(res25 , res45);
22 e26 = e49 + 1;
23 i29 = i51 + 1;
24 }
25
26 return res45;
27 }

(a) Source Code

i₅₁ < 2

i₅₁ = 0 e₄₉ = 1

return result₄₅

res₂₅ := tmp₄₁tmp₁₈ := high

foo(high)

(b) Shematic PDG

Figure 4.3: Example of non coeval conditions

14



4.3. Data Flow Conditions 15

4.3 Data Flow Conditions
We need to adopt the data flow conditions to the new concept as well. As they constrain
variables at the very execution of a specific node we just need to add the correct tag:

Definition 8. Let d = a →∗dd b such that a[y] ∈ uses(b) and ∀l ∈ {0..|d| − 2} : a[xl] ∈
defs(dl).

δ̂(d) ≡ ∧
l∈{1..|p|−2}

tagidx(a)(x0) 6= tagidx(dl)(xl)

∧ tagidx(a)(x0) = tagidx(b)(y)

4.4 Phi Conditions
Phi conditions were meant to relate the SSA variables, as they have to stay the same from
definition to use, if no loop-carried dependencies interfere. As we will ensure that only
values are used for a witness which also occur during the execution, this will be enforced
anyway.

If we drop phi conditions, we do not need to care about loop-carried dependencies as our
execution conditions are not related at all and the data flow conditions relate at most two
nodes, which never leads to a transitive relation by assumption 3.

4.5 Variable-Values Satisfying the Path-Condition
Our modified path condition now states:

Let CH(α, β) = {p | p is an acyclic path in the program dependence graph from α to β}.
And D(p) as in section 2.5.2.

PC ′(α, β) ≡ ∨
p∈CH(α,β)

( (
∧

n∈V p
Ê(n)

)
︸ ︷︷ ︸
execution condition

∧
(
∧

d∈D(p)
δ̂(d)

)
︸ ︷︷ ︸
data flow condition

)

For later use we will also define:

• N = {n ∈ N | ∃p ∈ CH(α, β) : n ∈V p} the set of relevant nodes for PC ′(α, β)

• For n ∈ N : V (n) = {v ∈ Var | such that tagidx(n)(v) occurs in PC ′(α, β)} the set of
relevant variables for n.

Now we can describe a property which holds iff variable values during the program execution
fulfill the new path condition. We will call this property existence of a fulfilling execution
(EFE).

Definition 9. Existence of a fulfilling execution (EFE) is true if and only if it exists an
execution ξ = (t, i) : ∃N ∈⊆ N : ∀n ∈ N : ∃tn ∈ prefix(t) such that:

• tn ends at n

• θ(PC ′(α, β)) ≡ true

Where θ = �
n∈N

(valtn,i � tag−1
idx(n)) and tag−1

k (T ) replaces in T each variable superscripted
with k with the variable not superscripted.

15



16 4. Path-Conditions and Variable-Values

EFE means there is a set of nodes and the values of variables at an execution of these
nodes satisfy PC ′. The subset of N is needed, as some nodes constrained in PC ′ may not
have been executed in execution ξ (For example see A.4).

If a program has a flow from α to β, then we know from [13] this flow can only occur along
a path in the program dependence graph and then all nodes along this path need to be
executed and the data flow conditions need to hold at these nodes. In conclusion, with
theorem 1 this means:

In a program exists a flow from α to β ⇒ EFE holds for PC ′(α, β).

4.6 Example
We will again look at figure 2.1 and analyse the same path as in section 2.5.4: p =
[i(high)] →∗d [19/50] = (i(high), 7/11, 8/15, 14/37, 16/52, 12/54, 19/50). The execution
conditions are still true for all nodes except 14/37 and 16/52, but this time we will not
take the execution condition from 16/52 into account, as it is a phi node. Ê(14/37) ≡
i37
56 < 3∧ sum37

54 = 0. The only proper sub path for a data dependency condition is still the
same d = (7/11, 8/15, 14/37) but δ̂(d) ≡ 1 6= 2 ∧ 1 = i37

56 ≡ 1 = i37
56.

PC ′(i(high), 19/50) ≡Ê(14/37) ∧ δ̂(d)
≡i37

56 < 3 ∧ sum37
54 = 0 ∧ 1 = i37

56

This can be read as: There has to be one point during execution, such that i56 < 3∧sum54 =
0 ∧ 1 = i56. Such a point does exist indeed. Let i = {low1/0,high/1, low2/2} and let t
be the trace such that ξ = (t, i) is an execution. This execution passes 14/37 once in the
second iteration. Let p be the prefix of t ending at 14/37.

valp,i(tag−1
idx(14/37)(PC

′(i(high), 19/50)))

≡valp,i(i56 < 3 ∧ sum54 = 0 ∧ 1 = i56)
≡1 < 3 ∧ 0 = 0 ∧ 1 = 1
≡true

We found a fulfilling execution and EFE is true, which is not astonishing as there is actually
a flow and we also got this result from the standard path condition. But if all input
parameters are larger than zero as in the Sum experiment (A.1), there is no flow and as
EFE is not true as well, it will be detected. The standard path condition was not able to
detect this.

16



5. CEGAR for EFE

Counterexample-guided abstraction (CEGAR) refinement was introduced in [2] to handle
the state explosion problem in symbolic model checking. In difference to [2] we do not have
a formula in linear temporal logic (LTL), but a formula over QF_AUFBV (quantifier-free
formulas over the theory of bitvectors, bitvector arrays, and uninterpreted functions), which
can be solved using an SMT solver.

We can use CEGAR to provide a sound method to check if EFE holds for a program
and two nodes α, β or not. We will first compute the modified path condition PC ′(α, β).
It serves as property for our code model. Our model of the code needs only to contain,
which values of variables can occur together at the execution of nodes in N . This could be
expressed in an SMT formula M . We would have cl∃(PC ′(α, β)∧M)⇔ EFE. Of course to
compute M is very inefficient. Instead, we will use an abstraction A of this model, starting
with the formula true, which means any values can occur together. CEGAR is now used to
refine this abstraction (see figure 5.1).

PC'

A = true

get solution sol

compute
execution xi(i,t)

EFE

A = A & R(t)

not EFE
PC' & A

satisfiable?

xi, sol
conform?

yes

no

no yes

Figure 5.1: CEGAR overview

5.1 Validation
We want a solution to be valid, iff the values of the solution occur during an execution of
the program with the input variables from the solution. This means the solution conforms

17



18 5. CEGAR for EFE

to an execution. Before we can state a formal definition of a valid execution, we need
to care about the location where the values of the solution and the execution need to be
equal. We must not only look if the value of a variable occurs during the program run, or
we might not detect coeval conditions (section 4.2). We do not know if a node n ∈ N is
executed as not all nodes in N are executed in an execution that shows EFE. So checking
the values of variables at the execution of nodes in N is not an option either.

For any n ∈ N and any trace t we can define P (t, n) = {p ∈ prefix(t) | ∃x ∈ tail(n): p
ends at x} the set of all sub paths that end at the tails of loops that contain n. This set is
interesting as there is one path for every loop that could have contained n. And variables,
which influence the execution of n do not change between their use and the end of the
most inner loop:

Theorem 2. Given a CFG GCFG = (V,E) let n ∈ V and t be a path in GCFG, which
contains n and let Varn be a set of variables such that their assigning nodes dominate n.

Let q ∈ prefix(t), such that q ends at n. Let p ∈ P (t, n) be the shortest path such that
q ∈ prefix(p). It holds:

∀v ∈ Varn : val(q, v) = val(p, v)

Proof. Assume there is a v ∈ Varn such that val(q, v) 6= val(p, v). Let s be the unique
node assigning v. Then p is of the form:

p =
=q︷ ︸︸ ︷ =:q′︷ ︸︸ ︷

(start→∗ s) ◦ (s→∗ n)︸ ︷︷ ︸
=:p̂

◦ (n→∗ s)︸ ︷︷ ︸
=:q̂︸ ︷︷ ︸

=:p′

◦(s→∗ x)

where |p′|s = 2. There has to be a back edge (t, h) ∈E p′ such that s ∈ NatLoop(t, h).

Assume (t, h) ∈E p̂ so p̂ = (s→∗ t) ◦ (t→ h) ◦ (h→∗ n). As |p̂|s = 1 and h dominates s by
lemma 2 there is a path p′′ = start→∗ h ◦ h→∗ n with s /∈E p′′, which is a contradiction
as s dominates n.

Assume (t, h) ∈E q̂ so q̂ = (n→∗ t) ◦ (t→ h) ◦ (h→∗ s). It holds h dominates s dominates
n, therefore we can construct a path from start over h to n, which does not contain a back
edge. We can append q̂ to this path, so we reach h again and have a loop. In this case
q̂ has to contain a back edge and n is in the natural loop of this back edge. This is a
contradiction to p being the shortest path in P (t, n) that contains q.

Using this property we can check the values of the solution at the end of the loops:

Definition 10. Given a substitution sol, replacing each tagged variable such that sol(A ∧
PC ′(α, β)) ≡ true, sol represents a satisfying solution. Given the execution ξ(t, i) such
that for each input parameter v is i(v) = sol(v). ξ is valid with respect to sol iff

∀n ∈ N∃p ∈ P (t, n) : ∧
v∈V (n):val(p,v,i)6=⊥

: val(p, v, i) = sol(tagidx(n)(v))

Notice, that we do not need a solver to check validity but can check it programmatically
(see figure 5.2).

This definition can reject executions which have a flow or are showing EFE. That is not a
problem as the refinement will ensure that valid executions are not permitted, so we will
get this execution again with conforming values. So an invalid execution only states that
our abstraction of the code is not good enough. But for a valid execution, we want EFE to
hold:
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5.2. Refinement 19

1: procedure isValid(ξ = (t, i), sol)
2: M ← N
3: for n ∈M do
4: for p ∈ P (t, n) do
5: allMatched ← true
6:
7: for v ∈ V (n) : val(p, v, i) 6=⊥ do
8: if val(p, v, i) 6= sol(tagidx(n)(v)) then
9: allMatched ← false

10: end if
11: end for
12:
13: if allMatched then
14: M ←M \ {n}
15: end if
16:
17: end for
18: end for
19: return (M = ∅)
20: end procedure

Figure 5.2: Checking Validity

Theorem 3. If ξ = (t, i) is valid then EFE holds.

Proof. For n ∈ N let pn ∈ P (t, n) be the path which showed validity for n in the definition
of a valid execution (definition 10). Let N ⊂ N be such that ∀n ∈ N : valpn,i(Ê(n)) ≡ true.

As the execution condition of n is true at the end of the loop n was executed in this loop
iteration. So we have ∀n ∈ N : n ∈V pn. For any n ∈ N let tn be the longest prefix of pn
that ends at n. It is ∀v ∈ V (n) : val(tn, v) = val(pn, v) by theorem 2.

We can now construct θ as in the definition of EFE (definition 9). It is ∀n ∈ N : ∀v ∈
V (n) : val(tn, v) = val(pn, v) = sol(tagidx(n)(v)). And therefore ∀n ∈ N : ∀v ∈ V (n) :
θ(tagidx(n)(v)) = sol(tagidx(n)(v)). As sol(PC ′(α, β)) ≡ true it is also θ(PC ′(α, β)) ≡ true.
This is because the variables of nodes not in N cannot be part of the solution as ∀n ∈
N \N : sol(E(n)) ≡ false, so these variables are absorbed anyway.

5.2 Refinement

During the refinement we want to collect and add the information why the previous solution
was not a valid one, to prevent this solution from occuring again.

5.2.1 Refining Single Variables

The basic idea is as in [15]: We will collect the values of a variable that occur and constrain
them, such that the refinements of different executions do not contradict each other:

Given a node s which assigns the variable v. Given an execution ξ = (p, i) let P̂ be the set
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20 5. CEGAR for EFE

of all prefixes of p ending at s.

∨
p̂∈P̂

v = if guard(p̂) then val(p̂, v) else ANY

⇔ ∨
p̂∈P̂

guard(p̂)⇒ (v = val(p̂, v))

⇔ ∨
p̂∈P̂
¬guard(p̂) ∨ (v = val(p̂, v))

⇔
(
∨
p̂∈P̂
¬guard(p̂)

)
∨
(
∨
p̂∈P̂

(v = val(p̂, v))
)

⇔ ¬guard(max(P̂ )) ∨
(
∨
p̂∈P̂

(v = val(p̂, v))
)

The last transformation is correct as the guard of a longer path only conjuncts additional
restraints and therefore the conditions from the shorter paths can be absorbed: ¬a∨¬(a∧
b)⇔ ¬(a ∧ b).

Given the program from figure 5.3 and an execution ξ = (p, i) with i = {a/1} and
p = 2 → 3 → 4 → 3 → 6 we would get 0 < a ⇒ i2 = 1. But if we are executing the
program with i = {a/2} we will also get the value i2 = 2. The values a = i2 = 2 are not
satisfying the generated formula. So the refinement of the first execution would contradict
the second execution. To prevent this, we need to add a guard to prevent further loop
iterations that is we add ¬C disjunctive where C contains all constraints after the last
execution of s:

¬guard(max(P̂ )) ∨
(
∨
p̂∈P̂

(v = val(p̂, v))
)
∨ ¬C

⇔ ¬guard(p) ∨
(
∨
p̂∈P̂

(v = val(p̂, v))
)

⇔ guard(p)⇒
(
∨
p̂∈P̂

(v = val(p̂, v))
)

So what the formula is basically saying is if we have exactly this execution path, then we
will get the following symbolic values for v. This seems straight forward but can cause the
process to explore all paths through the program as we will see in section 6.

1 int f oo ( int a ) {
2 i0 = 0 ;
3 while ( i1 = Φ(i0, i2); i1 < a ) {
4 i2 = i1 + 1;
5 }
6 return i1 ;
7 }

Figure 5.3: simple refine
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5.2. Refinement 21

5.2.2 Refining Variable Sets

The above formula only tracks single variables, but as we saw in section 4.2 we need to
collect information about which values occur together as well. For a specific execution
point given by a trace p and a node n ∈ N

ϕ(n, p) := ∧
v∈V (n):val(p,v) 6=⊥

tag(v, idx(n)) = val(p, v)

is a formula describing the symbolic values at p of relevant variables for n.

As in section 5.1 we will collect values at the end of each loop iteration, which could have
contained a specific node: For n ∈ N let P (t, n) = {p ∈ prefix(t) | ∃x ∈ tail(n): p ends at
x}

R(t) := ∧
n∈N

guard(t)⇒ ∨
p∈P (t,n)

ϕ(n, p)

We need to ensure that an invalid solution is never found again:

Theorem 4. Let sol be a solution and let ξ = (t, i) be the corresponding execution as in
definition 10. It is: sol(R(t)) ≡ false

Proof. As the execution is not valid with respect to sol we know:

¬∀n ∈ N∃p ∈ P (t, n) : ∧
v∈V (n):val(p,v,i)6=⊥

: val(p, v, i) = sol(tagidx(n)(v)) (5.1)

⇔∃n ∈ N : ∀p ∈ P (t, n) : ¬ ∧
v∈V (n):val(p,v,i)6=⊥

: val(p, v, i) = sol(tagidx(n)(v)) (5.2)

⇔∃n ∈ N : ∀p ∈ P (t, n) : ∃v ∈ V (n) : val(p, v, i) 6=⊥ ∧val(p, v, i) 6= sol(tagidx(n)(v))
(5.3)

Let n be this one. We only need to show:

sol
(
guard(t)⇒ ∨

p∈P (t,n)
ϕ(n, p)

)
≡ false

⇔sol(guard(t)) ≡ true ∧ sol
(
∨

p∈P (t,n)
ϕ(n, p)

)
≡ false

⇔sol(guard(t)) ≡ true ∧ ∀p ∈ P (t, n) : sol(ϕ(n, p)) ≡ false

sol(guard(t)) ≡ true holds as the input of ξ is based on sol and by the properties of ξ being
an execution. Given any p ∈ P (t, n).

sol(ϕ(n, p)) (5.4)

≡sol( ∧
v∈V (n):val(p,v)6=⊥

tag(v, idx(n)) = val(p, v)) (5.5)

≡ ∧
v∈V (n):val(p,v)6=⊥

sol(tag(v, idx(n))) = sol(val(p, v)) (5.6)

≡ ∧
v∈V (n):val(p,v)6=⊥

sol(tag(v, idx(n))) = val(p, v, i) (5.7)

≡false (5.8)

(5.6) ≡ (5.7) as val(p, v) does only contain input variables and the substitution sol and
i are identical for these. (5.7) ≡ (5.8) as we know from (5.3) there is a v such that the
equality does not hold and therefore the whole formula is false.
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22 5. CEGAR for EFE

We also need to show that an execution which shows EFE provides a solution for the
refinement. This solution is provided by the values and execution points that also satisfied
the PC.

Theorem 5. Given a program for which EFE holds. Let ξ′ = (t′, i′), θ as in the definition
of EFE (definition 9) and ξ = (t, i) the refined execution. It holds: θ(R(t)) ≡ true.

Proof.

true ≡ θ(R(t)) ≡ ∧
n∈N

θ(guard(t))⇒ ∨
p∈P (t,n)

θ(ϕ(n, p)) (5.9)

⇔∀n ∈ N : true ≡ θ(guard(t))⇒ ∨
p∈P (t,n)

θ(ϕ(n, p)) (5.10)

Let n any n ∈ N . Case 1: θ(guard(t)) ≡ false then the formula is true.

Case 2: θ(guard(t)) ≡ true⇔ i′(guard(t)) ≡ true, as guard(t) only contains parameters
as free variables. So we know t = t′ by lemma 1.

We have to show ∃p ∈ P (t, n) : θ(ϕ(n, p)) ≡ true. We will use tn, the sub path of t′ ending
at n, which is used in the definition of θ. Let p be as in theorem 2 for tn, the path ending
at the tail of the loop, which contained n. We know p ∈ P (t′, n) = P (t, n).

θ(ϕ(n, p)) ≡ true ⇔ ∀v ∈ V (n) : val(p, v) 6=⊥: θ(tagidx(n)(v) = val(p, v)) Let v be any
v ∈ V (n) : val(p, v) 6=⊥.

θ(tagidx(n)(v) = val(p, v)) (5.11)
≡ θ(tagidx(n)(v)) = θ(val(p, v)) (5.12)
≡ θ(tagidx(n)(v)) = val(p, v, i′) (5.13)
≡ valtn,i′(tag−1

idx(n)(tagidx(n)(v))) = val(p, v, i′) (5.14)

≡ valtn,i′(v) = val(p, v, i′) (5.15)
≡ val(tn, v, i′) = val(p, v, i′) (5.16)

(5.13) ≡ (5.14) as tagidx(n)(v) does only contain variables tagged with n. (5.16) is true by
theorem 2.

As there is only a finite number of solutions and an invalid solution does not show up again,
we know the process is terminating. As solutions that show EFE are not permitted, the
CEGAR loop will produce such a solution, if one exists.
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6. Experiments

The examples are unified to analyse if a flow can occur from the high input parameter to
the return statement. Of course we could analyse the flow between two arbitrary nodes.

In figure 6.1 is a table with the experiments and some additional information. For the
formula length each variable and each operation counts.

6.1 Sum
This example was introduced by [15] and shows that refinement can be used to increase
the precision of path conditions. The input parameters for this example are constrained by
low1 > 0 ∧ high > 0 ∧ low2 > 0. Therefore line 14 will only be executed once in the first
iteration of the loop, where the data flow condition will not hold.

6.2 Coeval
This example shows that it is not enough that the variable values occur, but they need to
occur together. (See section 4.2)

6.3 NonCoeval
This example shows how variables are distinguished over different loop iterations. (See
section 4.2)

exists false time formula
name flow positive itterations in s length
Sum no no 2 <1 63

Coeval no no 2 <1 31
NonCoeval yes / 2 <1 43
TwoFlows yes / 1 <1 23
ExpRun no no 9 <1 221
LoopRun no no ≈ 231 >60 years

ExecutionOrder no yes 2 <1 67
Min no yes 129 160 125023

Figure 6.1: Overview of Experiments
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24 6. Experiments

6.4 TwoFlows
TwoFlows contains two paths for a flow, which exclude each other. Additionally variables
from one path do not occur if the other path is taken.

6.5 ExpRun
In section 5.2.1 we noticed that including the whole guard can lead to brute forcing all
possible paths, which happens in this example. The number of possible paths is exponential
in the number of branches.

6.6 LoopRun
If the number of iterations in a loop depends on an input parameter, the approach becomes
absolutely impracticable. In LoopRun this is the case. For an execution path p, guard(p)
contains ∧

l∈0..k−1
l < low ∧ k ≥ low where k is the greatest number i takes. As ¬guard(p)

is part of the refinement a new solution can be found by increasing low by 1. If MaxInt is
the largest integer, then LoopRun would need about MaxInt refinement iterations. For
Java MaxInt = 231 − 1 = 2147483647 this would take way too long.

6.7 ExecutionOrder
We can have still false positives, as this example from [9] shows. There is a possible flow
along the nodes (i(high), 10/18, 7/37, 7/41, 12/23, 7/35, 7/39, 14/33). All of these nodes
are executed and no data flow conditions exist, so the refinement reaches a valid state.
However the node (10/18) is only executed after (12/23) but would need to be executed
before for a flow.

6.8 Min
A basic method returning the minimum of all input values. There is no flow with an
additional assertion: High is the largest value. But our approach provides a false positive,
so lets have a look what is happening.

result104
108 = 4 is the PC for the second path found. As result104

108 = 8 6= 4 the solution must
satisfy the PC of the first path. The first path basically consists of the array assignment
(12/35) the if-statement (21/82), the assignment of result (22/87) and the return statement
(27/104). If this path contains a flow, it does not necessarily mean that the high value is
returned, but that result is influenced by high.

The path condition for the first path contains the execution condition for the if statement
E(21/82) and its data flow condition (all conditions containing variables superscripted
with 82) as well as the execution condition for the assignment of result E(22/87) (all
conditions containing variables superscripted with 87). The solution provides i82

110 = 4, so
the variables satisfying the conditions for the if-statement are from the fourth iteration of
the loop, where of course the statement is executed and a comparison to the array field
containing the high variable is done. However, this comparison will always be wrong as
high = x[4] ≥ x[result], no matter which value result has. This also means in this iteration
the flow from (21/82) to (22/87) does never happen.

Why did we still get this false positive solution? (22/87) is executed, but in the first
iteration (i87

110 = 1). Our construction of the PC did not contain the information that
the if-statement and the assignment of result need to happen in the same iteration. This
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6.8. Min 25

provides another idea how to increase the precision of the PC: A flow along a control
dependency edge indicates that both nodes need to be executed in the same iteration of a
loop.

But for the moment we can also add our analysis to the constraint: We know the flow can
not happen in the fourth iteration so we can safely assert i82

110 6= 4. Given this additional
assertion the CEGAR-loop is terminated with no more satisfying solutions. We know now
that there is no flow.

25





7. Conclusion

We provided a detailed method to ensure that we generate witnesses that fulfill the path
condition and are representing a concrete execution. As data shows this approach lags
scalability as the number of iterations corresponds to the number of possible execution
paths. This is due to using the full guard in the refinement. In future work this problem
should be tackled for example by reducing the guard to the conditions of statements that
can influence the analysed variables. Also we do not need to track all variables, if a subset
of variables of a node is enough to prevent the invalid solution to occur again.

∧
n∈N

∧
V ′∈P(V (n))

guard|V ′(t)⇒ ∨
p∈P(t,n)

∧
v∈V ′

v = val(p, v)

This would reduce the number of needed iterations. To reduce the time needed by the
solver to produce a satisfying solution, incremental solving should be used instead of always
passing the whole formula. Also unsatcore and automatic procedures to reduce the length
of the refinement can help to reduce the solvers runtime.

It is also possible to add more timing information in a similar way as for coeval conditions.
For example a higher superscript could indicate that values need to occur after other values,
earlier occurrences would be ignored in the refinement. This would increase precision
further.

The original PC as in [12, 13, 14] is less precise but more scalable, as it did not contain the
refinement loop. The approach on temporal path conditions from [9] is even more precise,
but lags scalability as well and some cases considered in the LTL approach can be added
to this approach, too.

Compared to other approaches for IFC as type systems, dynamical approaches which
monitor the program execution to detect flows or hybrid solutions (an overview can be
found in [6]) the described algorithm is not practicable, yet. If the problem of scalability
gets solved, then it allows a very fine grained declassification (i.e. allowing flows to happen
under certain circumstances) while having view false positives and a witness for each
possible flow.

The witnesses produced by the described approach could also be used for other problem
domains as test case generation [7] or checking if a node is executable similar to [10].
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Appendix

A Examples

A.1 Sum

Listing A.1: Java Code of Sum
4 public static int foo(int low1 , int high , int low2) {
5 int [] a = new int [3];
6 a[0] = low1;
7 a[1] = high;
8 a[2] = low2;
9
10 int sum = 0;
11 int i = 0;
12 while (i < 3) {
13 if (sum == 0) {
14 sum = sum + a[i];
15 }
16 i++;
17 }
18
19 return sum;
20 }

Listing A.2: SSA Code of Sum
3 a3 = new int [3];
7 a7 [0] = low1;

11 a11 [1] = high;
15 a15 [2] = low2;
17 sum17 = 0;
20 i20 = 0;
22 goto 45;
27 if (sum54 6= 0) goto 39;
37 sum37 = sum54 + a15[i56 ];
39 sum52 = Φ(sum54 , sum37);

i39 = i56 + 1;
45 i56 = Φ(i20 , i39);

sum54 = Φ(sum52 , sum17);
if (i56 < 3) goto 27;

50 return sum54;

Listing A.3: Program Output of Sum
found 1 paths from i(high) to 19 / 50:
[i(high), 7 / 11, 8 / 15, 14 / 37, 16 / 52, 12 / 54, 19 / 50]

path condition with constraints :
(sum37

54 = 0) & (i37
56 < 3) & (1 = i37

56) & (low1 > 0) & (high > 0) & (low2 > 0)

= iteration 1 =
solution : {high = 2147483647 , i37

56 = 1, low1 = 2147483647 , low2 = 2147483647 , sum37
54 =

0}
refinement : (low1 = 0) | (( sum37

54 = 0) & (i37
56 = 0)) | (( sum37

54 = low1) & (i37
56 = 1)) |

(( sum37
54 = low1) & (i37

56 = 2))
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32 Appendix

= iteration 2 =
No more satisfying solutions . No flow.

=======
formula length : 63
iterations : 2
time used: 0.051 s
thereof time for SMT solver : 0.035 s

Figure A.1: Control Flow Graph of Sum

START

i(low1)

12 / 22 12 / 54

12 / 56

i(high)

11 / 20

i(low2)

10 / 17

5 / 3

8 / 15

6 / 7

7 / 11

13 / 27

14 / 37

16 / 52

16 / 39

12 / 45

19 / 50

END
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Figure A.2: Program Dependence Graph of Sum

ST
A

R
T

5 
/ 3

i(l
ow

1)

6 
/ 7

i(h
ig

h)

7 
/ 1

1

i(l
ow

2)

8 
/ 1

5
12

 / 
56

11
 / 

20
12

 / 
22

12
 / 

45
10

 / 
17

19
 / 

50

12
 / 

54

14
 / 

37

16
 / 

39
13

 / 
27

16
 / 

52

33
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A.2 Coeval

Listing A.4: Java Code of Coeval
4 public static int foo(int high) {
5 int result = 0;
6 int e = 0;
7 int i = 0;
8 while (i < 2) {
9 if ((i == 0) && (e == 1))
10 result = high;
11 e++;
12 i++;
13 }
14
15 return result ;
16 }

Listing A.5: SSA Code of Coeval
1 result1 = 0;
3 e3 = 0;
5 i5 = 0;
6 goto 28;

10 if (i40 6= 0) goto 20;
15 if (e38 6= 1) goto 20;
19 result19 = high;
20 result34 = Φ( result19 , result36);

e20 = e38 + 1;
23 i23 = i40 + 1;
28 i40 = Φ(i5 , i23);

e38 = Φ(e20 , e3);
result36 = Φ( result34 , result1);
if (i40 < 2) goto 10;

32 return result36;

Listing A.6: Program Output of Coeval
found 1 paths from i(high) to 15 / 32:
[i(high), 10 / 19, 11 / 34, 8 / 36, 15 / 32]

path condition with constraints :
(e19

38 = 1) & (i19
40 = 0) & (i19

40 < 2)

= iteration 1 =
solution : {e19

38 = 1, high = -1, i19
40 = 0}

refinement : ((e19
38 = 0) & (i19

40 = 0)) | ((e19
38 = 1) & (i19

40 = 1))
= iteration 2 =

No more satisfying solutions . No flow.

=======
formula length : 31
iterations : 2
time used: 0.017 s
thereof time for SMT solver : 0.011 s
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Figure A.3: Control Flow Graph of Coeval
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Figure A.4: Program Dependence Graph of Coeval
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A.3 NonCoeval

Listing A.7: Java Code of NonCoeval
4 public static int foo(int high) {
5 int result = 0;
6 int tmp = 0;
7 int e = 0;
8 int i = 0;
9 while (i < 2) {
10 if (i == 0)
11 tmp = high;
12
13 if (e == 1)
14 result = tmp;
15 e++;
16 i++;
17 }
18
19 return result ;
20 }

Listing A.8: SSA Code of NonCoeval
1 result1 = 0;
3 tmp3 = 0;
5 e5 = 0;
7 i7 = 0;
9 goto 35;

14 if (i51 6= 0) goto 21;
18 tmp18 = high;
21 tmp41 = Φ(tmp18 , tmp47);

if (e49 6= 1) goto 26;
25 result25 = tmp41;
26 result43 = Φ( result25 , result45);

e26 = e49 + 1;
29 i29 = i51 + 1;
35 i51 = Φ(i7 , i29);

e49 = Φ(e5 , e26);
tmp47 = Φ(tmp41 , tmp3);
result45 = Φ( result43 , result1);
if (i51 < 2) goto 14;

39 return result45;

Listing A.9: Program Output of NonCoeval
found 1 paths from i(high) to 19 / 39:
[i(high), 11 / 18, 13 / 41, 14 / 25, 15 / 43, 9 / 45, 19 / 39]

path condition with constraints :
(i18

51 = 0) & (i18
51 < 2) & (e25

49 = 1) & (i25
51 < 2)

= iteration 1 =
solution : {e25

49 = 1, high = -1, i18
51 = 0, i25

51 = -1}
refinement : ((i18

51 = 0) | (i18
51 = 1)) & (((i25

51 = 0) & (e25
49 = 0)) | ((i25

51 = 1) & (e25
49 =

1)))
= iteration 2 =

solution : {e25
49 = 1, high = -1, i18

51 = 0, i25
51 = 1}

Valid solution found !

=======
formula length : 43
iterations : 2
time used: 0.051 s
thereof time for SMT solver : 0.011 s
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Figure A.5: Control Flow Graph of NonCoeval
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Figure A.6: Program Dependence Graph of NonCoeval
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A.4 TwoFlows

Listing A.10: Java Code of TwoFlows
4 public static int foo(int low , int high) {
5 int result = 0;
6 int i = 0;
7 if (low == 0) {
8 i = 1;
9 if (i == 1)
10 result = high;
11 } else {
12 i = 2;
13 if (i == 2)
14 result = high;
15 }
16 return result ;
17 }

Listing A.11: SSA Code of TwoFlows
1 result1 = 0;
3 i3 = 0;
5 if (low 6= 0) goto 21;
9 i9 = 1;

12 if (i9 6= 1) goto 30;
16 result16 = high;
17 goto 30;
21 i21 = 2;
24 if (i21 6= 2) goto 30;
28 result28 = high;
30 i34 = Φ(i21 , i9);

result32 = Φ( result28 , result16 , result1);
return result32;

Listing A.12: Program Output of TwoFlows
found 2 paths from i(high) to 16 / 30:
[i(high), 14 / 28, 16 / 32, 16 / 30]
[i(high), 10 / 16, 16 / 32, 16 / 30]

path condition with constraints :
((i28

21 = 2) & (low28 6= 0)) | ((i16
9 = 1) & (low16 = 0))

= iteration 1 =
solution : {high = -1, i28

21 = 2, i16
9 = -1, low = -1}

Valid solution found !

=======
formula length : 23
iterations : 1
time used: 0.015 s
thereof time for SMT solver : 0.013 s
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Figure A.7: Control Flow Graph of TwoFlows
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A.5 ExpRun

Listing A.13: Java Code of ExpRun
4 public static int foo(int a, int b, int c, int high) {
5 int i = 0;
6 if (a == 0) {
7 i++;
8 }
9 if (b == 0) {
10 i++;
11 }
12 if (c == 0) {
13 i++;
14 }
15
16 int result = a;
17 if ( result != a) {
18 result = high;
19 }
20
21 return result ;
22 }

Listing A.14: SSA Code of ExpRun
1 i1 = 0;
4 if (a 6= 0) goto 11;
7 i7 = i1 + 1;

11 i40 = Φ(i7 , i1);
if (b 6= 0) goto 18;

14 i14 = i40 + 1;
18 i42 = Φ(i40 , i14);

if (c 6= 0) goto 25;
21 i21 = i42 + 1;
25 i44 = Φ(i21 , i42);

result25 = a;
30 if ( result25 = a) goto 38;
34 result34 = high;
38 result46 = Φ( result25 , result34);

return result46;

Listing A.15: Program Output of ExpRun
found 1 paths from i(high) to 21 / 38:
[i(high), 18 / 34, 21 / 46, 21 / 38]

path condition with constraints :
( result34

25 6= a34)

= iteration 1 =
solution : {a = -1, b = -1, c = -1, high = -1, result34

25 = -2}
refinement : (a = 0) | (b = 0) | (c = 0) | (a 6= a) | (( result34

25 = a) & (a34 = a))
= iteration 2 =

solution : {a = 0, b = -1, c = -1, high = -1, result34
25 = -1}

refinement : (a 6= 0) | (b = 0) | (c = 0) | (a 6= a) | (( result34
25 = a) & (a34 = a))

= iteration 3 =
solution : {a = 0, b = 0, c = -1, high = -1, result34

25 = -1}
refinement : (a 6= 0) | (b 6= 0) | (c = 0) | (a 6= a) | (( result34

25 = a) & (a34 = a))
= iteration 4 =

solution : {a = 0, b = 0, c = 0, high = -1, result34
25 = -1}

refinement : (a 6= 0) | (b 6= 0) | (c 6= 0) | (a 6= a) | (( result34
25 = a) & (a34 = a))

= iteration 5 =
solution : {a = 0, b = -1, c = 0, high = -1, result34

25 = -1}
refinement : (a 6= 0) | (b = 0) | (c 6= 0) | (a 6= a) | (( result34

25 = a) & (a34 = a))
= iteration 6 =

solution : {a = -1, b = 0, c = 0, high = -1, result34
25 = -2}

refinement : (a = 0) | (b 6= 0) | (c 6= 0) | (a 6= a) | (( result34
25 = a) & (a34 = a))

= iteration 7 =
solution : {a = -1, b = 0, c = -1, high = -1, result34

25 = -2}
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refinement : (a = 0) | (b 6= 0) | (c = 0) | (a 6= a) | (( result34
25 = a) & (a34 = a))

= iteration 8 =
solution : {a = -1, b = -1, c = 0, high = -1, result34

25 = -2}
refinement : (a = 0) | (b = 0) | (c 6= 0) | (a 6= a) | (( result34

25 = a) & (a34 = a))
= iteration 9 =

No more satisfying solutions . No flow.

=======
formula length : 211
iterations : 9
time used: 0.15s
thereof time for SMT solver : 0.111 s

Figure A.9: Control Flow Graph of ExpRun
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Figure A.10: Program Dependence Graph of ExpRun
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A.6 LoopRun

Listing A.16: Java Code of LoopRun
4 public static int foo(int low , int high) {
5 int i = 0;
6 int result = 0;
7
8 if (low > 0)
9 while (i < low) {
10 i++;
11 }
12
13 int e = 0;
14 if (e == 1 && i == 1) {
15 result = high;
16 }
17
18 return result ;
19 }

Listing A.17: SSA Code of LoopRun
1 i1 = 0;
3 result3 = 0;
5 if (low ≤ 0) goto 20;
8 goto 16;

11 i11 = i38 + 1;
16 i38 = Φ(i11 , i1);

if (i38 < low) goto 11;
20 i40 = Φ(i38 , i1);

e20 = 0;
25 if (e20 6= 1) goto 36;
30 if (i40 6= 1) goto 36;
34 result34 = high;
36 result42 = Φ( result3 , result34);

return result42;

Listing A.18: Program Output of LoopRun
found 1 paths from i(high) to 18 / 36:
[i(high), 15 / 34, 18 / 42, 18 / 36]

path condition with constraints :
(i34

40 = 1) & (e34
20 = 1)

[ Further outputs are not generated , as the second iteration executes the loop with
MaxInt iterations , which takes too long .]

44



A. Examples 45

Figure A.11: Control Flow Graph of LoopRun
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Figure A.12: Program Dependence Graph of LoopRun
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A.7 ExecutionOrder

Listing A.19: Java Code of ExecutionOrder
4 public static int foo(int high) {
5 int y = 0;
6 int x = 0;
7 for (int i = 0; i < 5; i++) {
8 i = i + 1;
9 if (i > 4)
10 x = high;
11 else
12 y = x;
13 }
14 return y;
15 }

Listing A.20: SSA Code of ExecutionOrder
1 y1 = 0;
3 x3 = 0;
5 i5 = 0;
6 goto 29;
9 i9 = i43 + 1;

14 if (i9 ≤ 4) goto 23;
18 x18 = high;
19 goto 24;
23 y23 = x41;
24 x37 = Φ(x41 , x18);

y35 = Φ(y39 , y23);
i24 = i9 + 1;

29 i43 = Φ(i5 , i24);
x41 = Φ(x3 , x37);
y39 = Φ(y35 , y1);
if (i43 < 5) goto 9;

33 return y39;

Listing A.21: Program Output of ExecutionOrder
found 1 paths from i(high) to 14 / 33:
[i(high), 10 / 18, 7 / 37, 7 / 41, 12 / 23, 7 / 35, 7 / 39, 14 / 33]

path condition with constraints :
(i18

9 > 4) & (i18
43 < 5) & (i23

9 ≤ 4) & (i23
43 < 5)

= iteration 1 =
solution : {high = -1, i18

43 = -1, i23
43 = -1, i18

9 = 2147483647 , i23
9 = -1}

refinement : (((i18
43 = 0) & (i18

9 = 1)) | ((i18
43 = 2) & (i18

9 = 3)) | ((i18
43 = 4) & (i18

9 =
5))) & (((i23

9 = 1) & (i23
43 = 0)) | ((i23

9 = 3) & (i23
43 = 2)) | ((i23

9 = 5) & (i23
43 = 4)

))
= iteration 2 =

solution : {high = -1, i18
43 = 4, i23

43 = 0, i18
9 = 5, i23

9 = 1}

Valid solution found !

=======
formula length : 67
iterations : 2
time used: 0.046 s
thereof time for SMT solver : 0.035 s
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Figure A.13: Control Flow Graph of ExecutionOrder
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Figure A.14: Program Dependence Graph of ExecutionOrder
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A.8 Min

Listing A.22: Java Code of Min
4 public static int foo(int a, int b, int c, int d, int e, int f, int g,
5 int h, int high) {
6 int len = 9;
7 int [] x = new int[len ];
8 x[0] = a;
9 x[1] = b;
10 x[2] = c;
11 x[3] = d;
12 x[4] = high;
13 x[5] = e;
14 x[6] = f;
15 x[7] = g;
16 x[8] = h;
17
18 int result = 0;
19 int i = 0;
20 while (i < len) {
21 if (x[i] < x[ result ]) {
22 result = i;
23 }
24 i++;
25 }
26
27 return x[ result ];
28 }

Listing A.23: SSA Code of Min
2 len2 = 9;
8 x8 = new int[ len_2 ];

14 x14 [0] = a;
19 x19 [1] = b;
24 x24 [2] = c;
29 x29 [3] = d;
35 x35 [4] = high;
41 x41 [5] = e;
48 x48 [6] = f;
55 x55 [7] = g;
62 x62 [8] = h;
64 result64 = 0;
67 i67 = 0;
69 goto 96;
82 if (x62[i110] ≥ x62[ result108 ]) goto 89;
87 result87 = i110;
89 result106 = Φ( result108 , result87);

i89 = i110 + 1;
96 i110 = Φ(i67 , i89);

result108 = Φ( result106 , result64);
if (i110 < len2) goto 82;

104 return x62[ result108 ];

Listing A.24: Program Output of Min
found 2 paths from i(high) to 27 / 104:
[i(high), 12 / 35, 13 / 41, 14 / 48, 15 / 55, 16 / 62, 21 / 82, 22 / 87, 24 / 106 ,

20 / 108 , 27 / 104]
[i(high), 12 / 35, 13 / 41, 14 / 48, 15 / 55, 16 / 62, 27 / 104]

path condition with constraints :
(((i82

110 < len82
2 ) & (x87

62[i87
110] < x87

62[ result87
108 ]) & (i87

110 < len87
2 ) & ((4 = i82

110) | (4 =
result82

108))) | (4 = result104
108)) & (a < high) & (b < high) & (c < high) & (d <

high) & (e < high) & (f < high) & (g < high) & (h < high)

solution : {a = 1073741823 , b = -1, c = -134217729 , d = -268435457 , e = -536870913 ,
f = -1073741825 , g = -1342177281 , h = -1610612737 , high = 2147483647 , i82

110 = 4,
i87

110 = 1, len82
2 = 9, len87

2 = 9, result104
108 = 8, result82

108 = 3, result87
108 = 0, x87

62 [0]
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= 1073741823 , x87
62 [1] = -1, x87

62 [2] = -134217729 , x87
62 [3] = -268435457 , x87

62 [4] =
2147483647 , x87

62 [5] = -536870913 , x87
62 [6] = -1073741825 , x87

62 [7] = -1342177281 , x87
62

[8] = -1610612737}

Valid solution found !

=======
formula length : 125023
iterations : 129
time used: 161.213 s
thereof time for SMT solver : 156.192 s

Figure A.15: Control Flow Graph of Min
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Listing A.25: Program Output of Min with additional Constraint
found 2 paths from i(high) to 27 / 104:
[i(high), 12 / 35, 13 / 41, 14 / 48, 15 / 55, 16 / 62, 21 / 82, 22 / 87, 24 / 106 ,

20 / 108 , 27 / 104]
[i(high), 12 / 35, 13 / 41, 14 / 48, 15 / 55, 16 / 62, 27 / 104]

path condition with constraints :
(((i82

110 < len82
2 ) & (x87

62[i87
110] < x87

62[ result87
108 ]) & (i87

110 < len87
2 ) & ((4 = i82

110) | (4 =
result82

108))) | (4 = result104
108)) & (a < high) & (b < high) & (c < high) & (d <

high) & (e < high) & (f < high) & (g < high) & (h < high) & (i82
110 6= 4)

= iteration 129 =
No more satisfying solutions . No flow.

=======
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Figure A.16: Program Dependence Graph of Min
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formula length : 125027
iterations : 129
time used: 158.971 s
thereof time for SMT solver : 153.996 s
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B Used Intermediate Representation

B.1 Used Language

In our descriptions we use an imperative subset of Java containing integers, while loops
and arrays. To avoid parsing the Java source code by our self we use Java bytecode with
debug information and make some assumptions:

Assumption 4. 1. Array references are final and only assigned to new arrays. This
prevents ambiguities and aliasing, therefore we don’t need to perform a point to
analysis and arrays can be referred by their variable names.

2. Only a subset of bytecode operations is used.

B.2 Basic Blocks

For the further assumptions we need the concept of basic blocks. Basic blocks are blocks of
code, which have a single entry and a single exit point. They are used in compilers. (P.a.
see [11])

We call a basic block closed over the stack iff for all valid executions of the Java bytecode
the stack size at the beginning and the end of the basic block is zero.

A basic block is closed and minimal over the stack iff it is closed and after each operation
without the last the stack size is not zero.

From now on, if we use basic block we mean a basic block, which is minimal and closed
over the stack.

Assumption 5. The code can be divided into basic blocks.

Let B be the set of basic blocks.

Assumption 6. 1. ∀b ∈ B : the last operation of b is either an assignment, an uncon-
ditional jump, a conditional jump or a return statement.

2. ∀b ∈ B : each operation of b without the last is not an assignment.

Given assumption 6 we can categorize basic blocks by their task: assigning, branching,
jumping and returning basic blocks. For a branching basic block b ∈ B we can compute
the branch condition c(b).

From assumption 5 and 6 follows that the only information that can leave a basic block is
either an influence to the control flow or a unique variable which is set.

This intermediate representation of the code allows a simple construction of SSA form:
The number of the last byte code operation provides the SSA subscript, as it is unique.
The same scheme is used for the unique number identifying a CFG node.
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