
1

A Comparison of Object Modelling Notations:
Alloy, UML and Z

Daniel Jackson
MIT Lab for Computer Science

August 11, 1999

Abstract

An example of an object model is given in full in three languages: Alloy, a new notation; Z, a
formal specification language; and UML, a modelling notation popular in industry. Basic
features of Alloy are explained informally, and briefly justified by comparison of the Alloy
version to the UML and Z versions.

Introduction

Our example is a description of relationships amongst family members. It was chosen
because the domain is familiar to readers, and thus has a rather contrived flavour. A real
object model prepared in the development of a genealogical database would have rather
different concerns, such as lack of information about relationships.

We show the example in each of the three notations: Alloy, Z [Spi92] and UML [RJB99].
Although we hope that some of the good and bad points of each notation will be evident
from the examples and our discussion, this paper is not intended to be a complete
description of Alloy, nor a justification of its design. A separate report [Jac99] gives a syntax
and semantics for Alloy and explains its rationale in detail.

1 Alloy Version

The Alloy model has two parts. The graphical part (Figure 1a) is equivalent to the
declarations of the textual part (Figure 1b): that is, to the paragraphs marked domain and
state.



2

Figure 1a: Partial object model for a family tree

Person

Man Woman

Married

wife(~husband)

? ?

Namename
!

siblingsparents



3

model Family {

domain {Person, Name}

state {

    partition Man, Woman : static Person

    Married : Person

    parents : Person -> static Person

    siblings : Person -> Person

    wife (~husband) : Man ? -> Woman ?

    name : Person -> Name !

    }

def siblings {

    all a, b | a in b.siblings <-> (a.parents = b.parents)

    }

 inv Basics {

    all p | some p.wife <-> p in Man & Married

    no p | p.wife / in p.siblings

    all p | (sole p.parents & Man) && (sole p.parents & Woman)

    no p | p in p.+parents

    all p, q | p.name = q.name -> no (p.parents & q.parents)

    }

op Marry (m: Man!, w: Woman!) {

    m not in Married && w not in Married

    m.wife’ = w

    all p: Man - m | p.wife’ = p.wife

    all p | p.name’ = p.name

    all p | p.parents’ = p.parents

    Person’ = Person

    }

 assert HusbandsWife {

    all p : Married & Woman | p.husband.wife = p

    }

}

Figure 1b: Alloy model for a family tree

Sets, Domains, Types and Relations

Each box in the diagram denotes a set of objects. An object is an abstract, atomic and
unchanging entity; the state of the model resides in the relations between objects, and in the
membership of objects in sets. There are two kinds of arrow connecting boxes. An arrow
with a closed head denotes subset: Man, Woman and Married are subsets of Person. Subsets
that share an arrow are disjoint; if the arrowhead is filled, the subsets are exclusive. So Man



4

and Woman partition Person: every Person is either a Man or a Woman. An arrow with an
open head denotes a relation: name, for example, is a relation that maps Person to Name.

Sets without supersets, such as Name and Person, are called domains, and are implicitly
disjoint. A type ty (D)

 is implicitly associated with each domain D. The expression (Man +
Woman), denoting the union of the two sets Man and Woman, is legal because both Man and
Woman have the type ty (Person); but the expression (Man + Name) is not, because Man has
the type ty (Person) and Name has the type ty (Name).

Markings at the ends of relation arrows denote multiplicity constraints: ! for exactly one,
? for zero or one, * for zero or more and + for one or more. Omission of a marking is
equivalent to *. So name, for example, maps each Person to exactly one Name (by the mark at
the Name end), and maps zero or more members of Person to each Name (by the mark at the
Person end). The composite label wife(~husband) declares a relation and its transpose: wife

maps Man to Woman, husband maps Woman to Man, and whenever one maps object p to
object q, the other maps q to p.

Mutability Constraints

Alloy includes some basic temporal constraints. Although very limited in expressiveness,
these turn out to be invaluable in practice–-and also more subtle than they might at first
appear. The stripes down the sides of the boxes labelled Man and Woman say that those sets
are static. The members of a static set may not migrate to other sets. So a Person may not at
one point in time be a Man and at another point not be a Man, but since the set Married is
not static, a Person may be Married at one point and not Married at another. Domains are
implicitly static, so a Person may not become a Name.

The hatch mark behind the arrowhead of the parents relation declares the relation to be
right-static. For any Person, the set of objects it is mapped to by the parents relation is fixed
during its lifetime: in other words, a Person may not change parents. This relation is not left-
static, however, a parent may give birth to more children. The model thus expresses a
‘family tree’ view of existence: birth causes an addition to the state, but death does not cause
a deletion.

These temporal constraints have fundamental consequences for implementation. If
Person were implemented as a class with a field representing the parents relation, the static
property of the relation indicates that the set of objects pointed to by the field is fixed and
that an immutable datatype would be appropriate. In Java, for example, we could then use
an array rather than a Vector. Similarly, the fact that Man and Woman are static sets would
allow us to represent them as subclasses of Person; Married on the other hand, must be
represented as object state.

Textual Declarations

The domain and state paragraphs of the textual version correspond exactly to the diagram.
The domain paragraph lists the sets that are to be regarded as domains, in this case Person

and Name. The state paragraph declares the remaining sets, and the relations. A declaration
of the form

S : T



5

declares S to be a subset of the set T; a declaration of the form

r : S  T

declares r to be a relation from S to T. The types are implicit; since Man, for example, is
declared to be a subset of the domain Person, which has implicit type Person, we can infer
that the left-hand type of the wife relation is Person. Multiplicity is indicated with the same
markings used in the diagram; mutability constraints are indicated with the keyword static.

Organization of Constraints

Only the most basic constraints can be expressed graphically. The remaining constraints are
expressed textually. These are divided according to their function. Definitions, namely
constraints that establish the values of extra components introduced for convenience,
appear in paragraphs marked by the keyword def; here, there is just one, for the relation
siblings. Invariants, namely indicative properties of the domain, appear in paragraphs
marked by the keyword inv; in this case, there is only one, and it has the name Basics.
Assertions are constraints that are expected to follow from the invariants and definitions,
and appear in paragraphs marked by the keyword assert. Assertions about operations are
also possible, but none is shown here.

Navigation and Quantification

The definition of siblings consists of a single constraint: that, for all a and b that are
members of Person, a is a sibling of b if a and b have the same parents. The expression
b.siblings is called a navigation: intuitively, evaluation starts at some b, and the siblings

relation is ‘navigated’ to the set of members of Person that the relation maps b to. No
quantifier bounds need be declared; they are automatically inferred. In this case, since
parents is a relation whose left type is Person, a and b are inferred to have type ty (Person).

Expressions

All expressions in Alloy denote sets of objects. Expressions are formed with the
conventional set operators, and with navigation expressions. The expression (Man &

Married), for example, denotes the intersection of the sets Man and Married. The result of a
navigation is always a set; functions are treated as relations with a special property, so the
expression p.wife either evaluates to the empty set (when p is not mapped by wife) or to a
singleton set (containing the wife of p). The term some e is true when the expression e is not
the empty set. So the first constraint in Basics says that every person who has a wife is a
married man.

Even variables take on set values, although these are implicitly constrained always to be
singleton sets. The term e1 in e2 is true when the set denoted by e1 is a subset of that
denoted by e2, so the term (p in Man & Married) has the same meaning it would have were p

to denote an element and in to denote set membership. Encoding scalars as sets is a useful
trick that allows functions and relations to be treated uniformly (since there is no function
application distinct from relational image), and resolves the problem of partial functions
applied outside their domain in a simple and pragmatic fashion. If f is a function that does



6

not map x, the expression x.f denotes the empty set, so if y is a scalar (and thus a singleton
set), x.f = y is false.

It is often convenient to state, as a side-condition, that a navigation expression yields a
non-empty set. The second constraint of Basics, for example, says that there is no person
whose wife is also a sibling. For a person p with no wife, the expression p.wife would evaluate
to the empty set, and the term p.wife in p.siblings would be true. The term

e1 /in e2

is like e1 in e2 but adds the condition that e1 is non-empty.

Qualifiers and Relational Operators

There are no operators for combining relations; all expressions denote sets. However, in a
navigation expression, the transpose or closure of a relation may be used. In the constraint

no p | p in p.+parents

for example, p.+parents is the image of p under the transitive closure of the parents

relation—the set of objects obtained by following parents once, then again, and again, and
so on until no further objects are added—in other words, p’s ancestors. The constraint thus
states that no person is his or her own ancestor.

2 Z Version

A Z specification for our problem could be written in many different ways. So as not to be
accused of comparing with a strawman, I have written two versions that typify extremes of
Z usage. The basic declarations (in the schema FamilyDecls) are shared, but the constraints
appear twice, once in the schema FamilyInv1, and again in FamilyInv2. In both cases, the
constraints match the Alloy constraints of Figure 1b, although the third Alloy constraint is
given, for readability, as two separate constraints in Z.

FamilyInv1 uses relational operators in place of quantifiers. The formulas that result–-
once called “Sorensen shorties”–-are terse and elegant, but rarely natural. This style has
been used effectively in many published Z specifications; see, for example, the Simple
Assembler example in [Hay93]. NP supported only this style, and I found that many
readers, especially novices and programmers without mathematical background, are
uncomfortable with it. The first constraint can also be expressed with relational operators
alone, but Z’s lack of either a complementation operator or a universal relation constant
with implicit type makes it rather unwieldy. FamilyInv2 is what most novices would produce,
and corresponds to the style of Alloy and UML.



7

[PERSON, NAME]

È FamilyDecls__________________________
®Person, Man, Woman, Married : F PERSON
®Name : F NAME
®parents, siblings : PERSON j PERSON
®wife, husband : PERSON © PERSON
®name : PERSON f NAME
Ç__________________________________
®<Man, Woman> partition Person
®Married z Person
®parents e Person j Person
®siblings e Person j Person
®wife e (Man I Married j Woman I Married)
®husband = wife~
®name e Person j Name
Ð__________________________________

ÈFamilyInv1_____________________________
®FamilyDecls
Ç__________________________________
®siblings = {a, b: PERSON | parents á{a}â = parents á{b}â ¥ a  b }
®disjoint <wife, siblings>
®parents t Man e PERSON § PERSON
®parents t Woman  e PERSON § PERSON
®disjoint <parents+, id PERSON>
®disjoint <name ; name~ , parents ; parents~>
Ð__________________________________

ÈFamilyInv2_____________________________
®FamilyDecls
Ç__________________________________
®A a, b : Person ¥ a  b e siblings Û parents á{a}â = parents á{b}â
®O p: Person ¥ p e dom wife ¦ wife(p) e siblings á{p}â
®A p: Person ¥ #(parents á{p}â I Man) [ 1
®A p: Person ¥ #(parents á{p}â I Woman) [ 1
®O p: Person ¥ p e parents+ á{p}â
®A p, q: Person ¥ name(p) = name(q) Þ parents á{p}â I parents á{q}â = 0
Ð__________________________________



8

ÈHusbandsWife___________________________
®FamilyDecls
Ç__________________________________
®A p : Married I Woman ¥
®     p e dom wife ¦ wife(p) e dom husband ¦ husband (wife(p)) = p
Ð__________________________________

ÈOp________________________________
®D FamilyInv
Ç__________________________________
®A p: Person I Person’ ¥
®   p e Man Û p e Man’
®   ¦ p e Woman Û p e Woman’
®   ¦ parents á{p}â = parents’ á{p}â
Ð__________________________________

ÈMarry_______________________________
®Op
®m?, f?:  PERSON
Ç__________________________________
®m? e Man \ Married ¦ f ? e Woman \ Married
®Person = Person’   ¦ parents = parents’ ¦ name = name’
®wife’ = wife ± {m?  f? }
Ð__________________________________

Figure 2: Z specification corresponding to Alloy model of Figure C1

Types and Sets

FamilyDecls shows how cumbersome it is to encode an object model in Z. Given types must
be introduced for each of the domains, and explicitly. This is only a minor inconvenience;
more serious is that only the given types may be appear on the right-hand side of type
declarations, and so the constraints implicit in the Alloy declarations must be given
explicitly in the body of the schema. In short, the translation of a UML diagram into Z is
untidy, albeit mechanical.

In most Z specifications, this is not a problem. Z specifications, unlike object models, do
not generally introduce separate state components for the sets of elements mapped, and
mapped to, by relational components. On the contrary, it is common to make frequent use
of expressions such as dom r to refer to the elements mapped by the relation r.

Temporal Constraints

Z not only has “no necessary connection with computer programming”; it does not even
embody the notion of a state machine. States and state transitions are fundamentally no
different, and there is no notion of constancy. It is not possible in Z to declare a state
component and constrain it to be fixed. A Z specification of a file hierarchy with a fixed
root, for example, would either include a template operation that does not change the root



9

(and which would be imported by all operations by convention), or would define root as a
global constant, violating the modularity of the specification.

Surprisingly, the notion of constancy–that the value of a state component does not
change–-is not of much use in object modelling. Individual objects are continually created
and destroyed; what tends to be constant is the relationship between an existing object and
other objects. Of course, we could avoid this problem by modelling relations as fields of
objects, as in [Hall90]. But this approach is not in the spirit of object modelling, whose
essence is precisely the global representation of state. In this respect, object modelling is
certainly not “object-oriented”. Alloy’s contribution here, with the notion of static sets and
relations, is to show how the notion of constancy with respect to individual objects can be
expressed while retaining global state, and without assigning state to objects.

Navigation, Sets and Scalars

The constraints of FamilyInv2 illustrate in particular two inconveniences of Z. First is the
need to cast scalars to singleton sets prior to taking the relational image, and the differing
syntax for function application and relational image. From an object modelling point of
view, it seems odd that changing the multiplicity of a relation should also require a change
in the syntax of the expressions in which the relation appears. Alloy avoids this by treating
scalars as singleton sets.

Second, Alloy requires no guard (such as the test p in dom wife) to ensure that
expressions involving applications of partial functions are defined. Had name been declared
as partial rather than total, the final constraint would have been

A p, q: Person ¥ p e dom name ¦ q e dom name ¦ name(p) = name(q)

           Þ parents á{p}â I parents á{q}â = 0

The Alloy constraint would only need to be changed from

all p, q | p.name = q.name  no (p.parents & q.parents)

to

all p, q | p.name /= q.name  no (p.parents & q.parents)

in which the /= operator indicates that the subformula p.name /= q.name is to evaluate to
false when name does not map p or q.

Schema Roles

The role of a schema in a Z specification is determined by informal conventions. All
schemas that mention no primed variables are methodologically equivalent. No
distinctions are made between very different parts of the specification: declarations of state
components;  definitions of additional, redundant components; state invariants; state
conditions used in invariants and operations; and assertions about invariants, conditions or
operations.

This means that any such distinctions must be pointed out informally in accompanying
text. The assertion of the Alloy model would likely be written as the free-standing theorem

A FamilyInv . HusbandsWife



10

It also limits the possibilities of tool support. The form of an Alloy model suggests checks to
be performed: that assertions are valid; that definitions determine the value of the defined
state component; and that invariants are preserved by operations.

Relational Formulas

Relations are not first-class citizens in Alloy. The statement that the operation Marry adds a
new pair to the wife relation—trivial in Z—cannot be written directly in Alloy. One possible
remedy to this deficiency, currently being investigated, is to include an assignment
statement in the language. The statement

m.wife := f

would then be treated as a shorthand for two constraints:

m.wife’ = w

and the frame condition

all p: Person - m | p.wife’ = p.wife

Lexical and Typographic Issues

I hesitate to criticize Z for its elegant typography. But I wonder whether it may not, in fact,
be a serious impediment to its widespread use. Z’s mathematical symbols are not available
in standard fonts—not even in Adobe’s massive Mathematical Pi—and schema boxes are
hard to draw in standard word processors. Neither adopting an amateur font, nor taking on
Latex, are palatable options outside academia. For most software engineers, just including Z
within a document is hard. Perhaps Unicode will eventually solve this problem—Lucida
Sans, for example, has a wonderful arrow collection—but in the meantime, an ASCII
notation seems to have an advantage.

3  UML Version

The Unified Modeling Language (UML) [RJB99] is a combination of the notations of
Rumbaugh, Booch and Jacobson. For object modelling, it provides a graphical “static
structure” notation, and OCL (Object Constraint Language) [WK99], a textual notation
originally developed at IBM. UML has the backing of a large consortium that includes
Microsoft, Oracle, HP and IBM, and was made a standard by the Object Management
Group in 1997.

OCL was designed to be less intimidating to practitioners than languages such as Z: it
makes no use of Greek letters and many of its notions will be familiar to object-oriented
programmers. But conceptually it is far more complicated than Z. It employs the same basic
logical and set-theoretic notions of Z and Alloy, but applies these in the context of a
programming model that includes subclass and parametric polymorphism, operator
overloading, multiple inheritance, and introspection.

These complexities are a formidable obstacle to giving OCL a semantics, and in many
cases seem to make the notation harder to use.



11

Figure 3a: Graphical part of UML model of family tree

{disjoint}

husband wife

0..10..1

1

name

parents

/siblings

{frozen}

0..*

0..*0..*

0..*

Married Person Name

WomanMan



12

Person

self.siblings = Person.allInstances->select(parents = self.parents)

self.parents->select (oclIsKindOf (Man))->size <= 1

self.parents->select (oclIsKindOf (Woman))->size <= 1

not self.parent->includes (self)

Person.allInstances->forall (p, q | p.name = q.name implies

    p.parents->intersection (q.parents)->isEmpty)

 Man

self.wife.notEmpty implies self.oclIsKindOf (Married)

self.oclIsKindOf (Married) implies self.wife.notEmpty

self.wife->intersection (self.siblings)->isEmpty

Woman

self. oclIsKindOf (Married)-> self.husband.wife = self

Man :: Marry (w: Woman)

pre: not self.oclIsKindOf (Married)

         not w.oclIsKindOf (Married)

post: self.wife = w

        Man.allInstances->forall (m | m != self implies m.wife@pre = m.wife)

       Man.allInstances->forall (m | m.name@pre = m.name)

       Man.allInstances->forall (m | m.parents@pre = m.parents)

Figure 3b: Textual part of UML model of family tree



13

Gross Structure

The graphical notation of UML has no textual counterpart, so every model must include a
diagram. In this case, both the diagram of Figure 3a and the textual constraints of Figure 3b
are required. Moreover, those diagrammatic constraints that are expressible in the textual
notation do not map to it straightforwardly. The fact that Person is partitioned into Man and
Woman, represented in the diagram by marking Person as abstract and Man and Woman as
disjoint, would be written

Person

self.oclIsKindOf (Man) implies not self.oclIsKindOf (Woman)

self.oclIsKindOf (Woman) implies not self.oclIsKindOf (Man)

self.allInstances select (oclIsType = Person) isEmpty

Some graphical elements are described so informally in the UML documentation that
their significance is unclear. Whether an association’s property of being an aggregation is
expressible in OCL, for example, is hard to tell. UML does not seem to make the distinction
between static and non-static sets, although this distinction is present in Catalysis [DW98].

The graphical notation conveniently distinguishes defined components (with a
backslash before the name), but OCL does not seem to have a corresponding notion. Nor
does UML separate constraints of the model proper from assertions–-redundant
constraints that are intended to follow.

Contexts, Classes & Types

Each constraint appears in the context of a particular class of objects, and is implicitly
universally quantified. The Alloy assertion

all p : Married & Woman | p.husband.wife = p

for example, appears under Woman. Contexts make constraints more terse, but can induce
an arbitrary structure on the model as a whole. This constraint, for example, might equally
well have appeared under Married. It also seems odd that an operation such as Marry, which
is no more about one object than another, should need to be assigned to a class.

In place of the traditional syntax of first-order logic, UML uses a linear form in which
formulas are treated as navigation expressions of boolean type. A constraint about all
elements of a set is written as an expression denoting the set, suffixed with a parameterized
formula that is evaluated over all its members. This form is intuitively appealing, but can be
cumbersome for elaborate constraints, or for quantifications over more than one variable.
The last constraint of Person, for example, corresponds to the Alloy constraint

all p, q | p.name = q.name  no (p.parents & q.parents)

The interpretation of UML expressions is complicated by rules that determine when
implicit flattening operators are applied. An expression containing one relation denotes a
set; but an expression with two denotes a bag. As a result, the expressions e.r and e.p.q are
not equivalent when r is the relation join of p and q, and one cannot define two relations,
parents and grandparents, so that p.parents.parents and p.grandparents have the same
meaning.



14

Classes are not treated semantically as simple sets in UML. One cannot define the men
that are married as the intersection of two sets, as in Alloy or Z. Instead, a constraint about
such a set must employ built-in operators to type-case and downcast objects. This can
make life difficult. The following constraint from the UML semantics [Rat97, Section 9.3]

Collaboration

// if a ClassifierRole or an AssociationRole does not have a name then it should be the only one with a

particular base.

self.ownedElement forAll ( p |

(p.oclIsKindOf (ClassifierRole) implies

p.name = ’’ implies

self.ownedElement forAll ( q |

q.oclIsKindOf(ClassifierRole) implies

(p.oclAsType(ClassifierRole).base =

q.oclAsType(ClassifierRole).base implies p = q) ) )

and

(p.oclIsKindOf (AssociationRole) implies

p.name = ’’ implies

self.ownedElement forAll ( q |

q.oclIsKindOf(AssociationRole) implies

(p.oclAsType(AssociationRole).base =

q.oclAsType(AssociationRole).base implies p = q) )

)

for example, would be written in Alloy as

all c | all e, f : c.ownedElement | (no e.name) && (e.base = f.base)  e = f

The notion of type and subtype in UML has some subtle consequences that limit
expressiveness. Since constraints are implicitly inherited by subclasses, existential
quantifiers cannot appear outermost in a formula. For example, the Alloy constraint

some p: Person | some p.wife

(that there is a person with a wife) cannot be expressed in UML. Were it to be expressible, it
would have to be placed in the context of Person, and then automatically inherited by
Woman, resulting in the additional constraint that some woman has a wife. This presumably
explains the odd rule that multiple iterators are allowed only for universal and not
existential quantifiers [WK99, p.47].

Functions

UML, like Z and unlike Alloy, treats functions and relations differently. The result of a
navigation through a function is a scalar and not a set, and expressions may be undefined.
How undefined expressions are treated is not fully explained [WK99, p.56]. And, oddly, the
expression self.f.notEmpty is used to state that self is mapped by f, even though self.f has at
best a scalar value, and notEmpty is an operator only on collections [WK99, p.80].



15

Expressiveness

UML is generally more expressive than Alloy. Its datatypes include sequences, bags, strings
and numbers. In its relational subset, however, it is less expressive than Alloy. Because there
is no transitive closure operator, the Alloy constraint

no p | p in p.+parents

cannot be expressed in UML. As a workaround, the UML definition, which uses OCL for its
well-formedness rules, attempts to axiomatize closure. For example, in [Rat97, Section 9.3],
the following equation is given:

// The operation allPredecessors results in the set of all Messages that precede the current one.

allPredecessors : Set(Message);

allPredecessors = self.predecessor union (self.predecessor.allPredecessors)

This does not have the desired effect, however; the operation may return the set of all
messages and still satisfy its specification. Perhaps, however, it is intended to be treated as
pseudocode. In this case, the desired meaning may be obtained, but the model is no longer
declarative.

References

[DW98] Desmond F. D’Souza and Alan Cameron Wills.  Objects, Components and
Frameworks With Uml : The Catalysis Approach. Addison-Wesley, 1998.

[Hall90] Anthony Hall. Using Z as a Specification Calculus for Object-Oriented
Systems. In D. Bjorner, C.A.R. Hoare, and H. Langmaack, eds., VDM and Z:
Formal Methods in Software Development, Lecture Notes in Computer Science,
Volume 428, pp. 290–381, Springer-Verlag, New York, 1990.

[Hay93] Ian Hayes. Specification Case Studies. Prentice Hall, 1993.
[Jac99] Daniel Jackson. Alloy: A Lightweight Object Modelling Notation. Available from:

http://sdg.lcs.mit.edu/alcoa.
[Rat97] Rational Inc. The Unified Modeling Language. see http://www.rational.com.
[RJB99] James Rumbaugh, Ivar Jacobson and Grady Booch. The Unified Modeling

Language Reference Manual. Addison-Wesley, 1999.
[Spi92] J. Michael Spivey. The Z Notation: A Reference Manual. Second edition, Prentice

Hall, 1992.
[WK99] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise

Modeling with UML. Addison-Wesley, 1999.


