
Automating First-Order Relational Logic

Daniel Jackson
Laboratory for Computer Science

Massachusetts Institute of Technology
200 Technology Square

Cambridge, Mass 02139, USA
dnj@lcs.mit.edu

Abstract
An automatic analysis method for first-order logic with sets and
relations is described. A first-order formula is translated to a
quantifier-free boolean formula, which has a model when the
original formula has a model within a given scope (that is,
involving no more than some finite number of atoms). Because
the satisfiable formulas that occur in practice tend to have small
models, a small scope usually suffices and the analysis is efficient.

The paper presents a simple logic and gives a compositional
translation scheme. It also reports briefly on experience using the
Alloy Analyzer, a tool that implements the scheme.

Keywords
First-order logic; relational logic; Z specification; object models;
automatic analysis; model finding; constraint solvers; SAT
solvers.

1 Introduction
Relational logic adds to first-order logic the ability to combine
predicates with special operators. For example, we can write the
formula ∀x,y. S(x)∧R(x,y) ⇒ T(y) as S.R in T, where S.R denotes the
image of the set S under the relation R. The logic is more than a
definitional extension of first-order logic, because it includes
transitive closure.

In this paper, we present a fully automatic analysis for such a
logic. Given a formula and a scope—a bound on the number of
atoms in the universe—our analysis determines whether there
exists a model of the formula (that is, an assignment of values to
the sets and relations that makes the formula true) that uses no
more atoms than the scope permits, and if so, returns it.

First-order logic is undecidable, so our analysis cannot be a
decision procedure: if no model is found, the formula may still
have a model in a larger scope. Nevertheless, the analysis is
useful, since many formulas that have models have small ones.

The analysis problem, while made decidable by restriction to a
finite universe, is still intractable asymptotically. In a scope of k,
each relation increases the space of potential models by a factor
of 2 to the k2. Nevertheless, our analysis can handle a large space;
in Section 4, we report on some case studies in which spaces of
2100 configurations were analyzed in seconds. And when a model
exists, it is usually found rapidly, often within seconds, so that
when the analysis takes a long time, one can reasonably bet that
no model will be found.

The analysis was designed for object models, which lie at the
heart of most object-oriented development methods, but until
recently have had no support from tools. It has been
implemented in the Alloy Analyzer [21], a tool that has been
publicly available since September 1999. The logic described here
is used as an intermediate language into which the source
language, Alloy [16] is translated.

The analysis is used in two ways: to check consistency of a
formula (by finding a model), and to check the validity of a
theorem (by looking for a counterexample, namely a model of
the theorem’s negation). In the context of object modelling,
consistency checking amounts to simulation—generating states
and executions. Validity checking has a variety of forms:
checking that one constraint follows from another, that one
operation refines another, that an operation preserves an
invariant, and so on.

Because of the logic’s generality, however, it has a variety of
other applications, such as: finding bugs in code; checking
verification conditions in a specification tool; establishing
consistency of requirements goals; analyzing architectural style
descriptions; and generating snapshots from class diagrams.

To our knowledge, this paper presents the first practical
algorithm for analyzing automatically the logic that underlies Z
[34], OCL [39] and many other specification languages. Unlike
our previous algorithm [15], which was limited to quantifier-free
relational calculus, this algorithm handles a full logic with
quantifiers, into which other languages can be easily translated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
Foundations of Software Engineering San Diego, CA
© 2000 ACM 1-58113-205-0...$5.00

Our paper is structured as follows. First, we present the logic,
with its syntax, type system and formal semantics. The analysis
itself is then explained. We report on some case study
applications of the analysis, and give some performance results.
The paper closes with a comparison to related work, and a brief
discussion of other applications and future prospects.

2 The Logic
The logic is defined in Figure 1, with an abstract syntax (on the
left), a type system (in the middle) and a semantics (on the right).
Most of its features are standard, so we focus here on its
novelties: the treatment of scalars as singleton sets, the encoding
of sets as degenerate relations, and the dot operator used to form
‘navigation expressions’. The motivation for the design of the
logic is explained in detail in [15].

2.1 Syntax

The syntax is mostly identical to standard mathematical syntax,
but we have chosen to use ASCII rather than typographic
symbols for operators. This makes a stronger connection to our
object modelling language, Alloy, which is pure ASCII for ease of
use, and also helps us distinguish the operators of our syntax

(such as &&) from the mathematical functions (such as ∧) used
to define them.

The logic is strongly typed, and a formula is accompanied by
declarations of the set and relation variables; we call the
combination of a formula and its declarations a problem. Each
declaration associates a type with a variable. There are three
kinds of type:

· the set type T, denoting sets of atoms drawn from T;
· the relation type S -> T, denoting relations from S to T;
· the function type T => t, denoting functions from atoms of T

to values of type t.
Types are constructed from basic types that denote disjoint sets
of atoms. We use upper case names for basic types and lower case
names for arbitrary types. So in the type T => t, the index type T
must be a basic type but t may be a set type, relation type or
another function type.

Functions correspond to predicates of arity greater than two.
The predicate Rides (r,j,h) that holds when jockey j rides horse h in
race r, for example, might be declared as a function

Rides : Race => Jockey -> Horse

and, for a given race r, the expression Rides[r] would then denote
a relation mapping jockeys to their horses in that race. Functions
retain the binary flavour of the logic: they fit naturally into

problem ::= decl* formula
decl ::= var : typexpr
typexpr ::=
 type set
 | type -> type relation
 | type => typexpr function

formula ::=
 expr in expr subset
 | ! formula negation
 | formula && formula conjunction
 | formula || formula disjunction
 | all v : type | formula universal
 | some v : type | formula existential

expr ::=
 | expr + expr union
 | expr & expr intersection
 | expr - expr difference
 | expr . expr navigation
 | ~ expr transpose
 | + expr closure
 | {v : t | formula} comprehension
 | Var

Var ::=
 | var variable
 | Var [var] application

M : formula → env → boolean
X : expr → env → value
env = (var + type) → value
value = P (atom × atom) + (atom → value)

M [a in b] e = X[a] e ⊆ X[b] e
M [! F] e = ¬ M [F] e
M [F && G] e = M [F] e ∧ M [G] e
M [F || G] e = M [F] e ∨ M [G] e
M [all v: t | F] e = � {M[F](e� v � x) | (x,unit) ∈ e(t)}
M [some v: t | F] e = � {M[F](e� v � x) | (x, unit) ∈ e(t)}

X [a + b] e = X[a]e ∪ X[b]e
X [a & b] e = X[a]e ∩ X[b]e
X [a - b] e = X[a]e \ X[b]e
X [a . b] e = {(x,z) | ∃y. (y,z) ∈ X[a]e ∧ (y,x) ∈ X[b]e}
X [~a] e = {(x,y) | (y,x) ∈ X[a]e}
X [+a] e = the smallest r such that r ; r ⊆ r ∧ X[a]e ⊆ r
X [{v: t | F}] e = {(x,unit) ∈ e(t) | M[F](e� v � x)}
X [v] e = e(v)
X [a[v]] e= (e(a))(e(v))

E � a: S , E � b: S
E � a in b

E, v: T � F

E � all v: T | F

a: S → T, b: S → T
a + b: S → T

E � a: S → T, E � b: S → U

E � a . b: U → T

E � a: S → T

E � ~a : T → S

E � a: T → T
E � +a: T → T

E, v: T � F

E � {v: T | F} : T

E � a: T ⇒ t, E � v: T
E � a[v]: t

Figure 1: Syntax, type rules and semantics of the logic

diagrams, lead to simpler expression syntax, and can
accommodate multiplicity markings. In Alloy, the question
marks in

Rides : Race => Jockey? -> Horse?

indicate that, in each race, a jockey rides at most one horse and
vice versa. Also, by including functions in the logic, we are able to
skolemize formulas (Section 3.1).

There are no scalar types. To declare a scalar variable, we
declare it to be a set

v : T

and add a constraint that makes the set a singleton:

some x: T | x = v

This allows navigation expressions to be written uniformly,
without the need to convert back and forth between scalars and
sets, sidesteps the partial function problem, and simplifies the
semantics (and its implementation) [16].

Formulas have a conventional syntax. There is only one
elementary formula, stating that one expression is a subset of
another; an equality of two expressions is short for a pair of
inequalities, one in each direction. In quantified formulas, the
variable is declared to have basic type, and is interpreted as being
bound to singleton subsets of the type.

Expressions are formed using the standard set operators
(union, intersection and difference), the unary relational
operators (transpose and transitive closure), and the dot
operator, used to form navigation expressions. The unary
operators are prefixes, to make parsing easy.

Set comprehension has the standard form. Set and relation
variables are expressions, but function variables, and functions in
general, are not. Ensuring that functions can only be applied to
variables guarantees that an expression involving a function is
always well defined, since the function’s argument will denote a
singleton set.

2.2 Type System

We treat sets semantically as degenerate relations, viewing the set
{e1, e2, …} as the relation {(e1,unit), (e2,unit), …} where unit is a
special atom that is the sole member of a special type Unit. Unlike
our treatment of scalars as singleton sets, this is purely a trick that
makes the semantics more uniform, and it can be ignored by a
user of the logic. The type of a variable declared as v: T is thus
represented as T→ Unit, although we shall write this as T for
short.

The typing rules determine which problems are well-formed.
The judgment E � a : t says that in the type environment E,
expression a has type t; the judgment E � F says that in
environment E, the formula F is well-typed. We have omitted
obvious rules (eg, for conjunction), and those that are identical
to rules given (eg, for intersection).

A problem is type checked in an initial environment that
binds each variable to the type as declared (with set types
appropriately represented as relations to Unit). The environment

is extended in the checking of quantified formulas and set
comprehensions. For example, the rule for universal
quantification says that the quantified formula is well-typed
when its body is well-typed in the environment extended with the
binding of the bound variable to its declared type.

The set operators can be applied to sets or relations; when + is
applied to sets, for example, the type T will be Unit. Likewise, the
dot operator can be applied to sets or relations, in any
combination that the typing allows. Note that the typing rules
make clear where sets alone are legal: for bound variables, and
the arguments of function applications.

2.3 Semantics

The meaning of the logic is defined by a standard denotational
semantics. There are two meaning functions: M, which interprets
a formula as true or false, and X, which interprets an expression
as a value. Values are either binary relations over atoms, or
functions from atoms to values. Interpretation is always in the
context of an environment that binds variables and basic types to
values, so each meaning function takes both a syntactic object
and an environment as arguments.

Each rule defines the meaning of an expression or formula in
terms of its constituents. For example, the elementary formula a
in b is true in the environment e when X[a]e, the relation denoted
by a in e, is a subset of X[b]e, the relation denoted by b in e. The
quantified formula all v: t | F is true in e when F is true in every
environment e � v � x obtained by adding to e a binding of v to x,
where x is a member of the set denoted by the type t in e. The
membership condition is written

 (x,unit) ∈ e(t)

since the set e(t) is, like all other sets, encoded as a relation. We
assume that bound variables have been systematically renamed if
necessary to avoid shadowing.

All operators have their standard interpretation, except the
dot operator. When s is a set and r is a relation, s.r denotes the
image of s under r. Combining this with the treatment of scalars
as singleton sets results in a uniform syntax for navigation
expressions. For example, if p is a person, p.mother will denote p’s
mother; p.parents will denote the set of p’s parents;
p.parents.brothers will denote p’s uncles; etc.

By treating sets as degenerate relations, and by typing the dot
operator loosely, we get as an added bonus that q.~p is the
composition of two relations p and q, and ~t.~s is the cross
product of sets s and t. Alloy does not currently exploit this, and
always uses the dot operator as relational image, but it costs
nothing to make the logic more general. We can retrieve the
simpler definition by noting that, in the semantic equation for
X[a.b], the variable z will be unit when a is a set, so the result will
be a set also.

The meaning of a problem is the collection of well-formed
environments in which its formula evaluates to true. An
environment is well-formed if: (1) it assigns values to the
variables and basic types appearing in the problem’s

declarations, and (2) it is well-typed—namely that it assigns to
each variable an appropriate value given the variable’s type. For
example, if a variable v has type S → T in an environment e, then
e(v), the value assigned to v in e, must be a relation from the set
denoted by S to the set denoted by T.

The environments for which the formula is true are the models
of the formula. To avoid that term’s many overloadings, we often
call them instances or solutions instead. If a formula has at least
one model, it is said to be consistent; when every well-formed
environment is a model, the formula is valid. The negation of a
valid formula is inconsistent, so to check an assertion, we look
for a model to its negation; if one is found, it is a counterexample.

Since the logic is undecidable, it is impossible to determine
automatically whether a formula is valid or consistent. We
therefore limit our analysis to a finite scope that bounds the sizes
of the carrier sets of the basic types. We say that a model is within
a scope of k if it assigns to each type a set consisting of no more
than k elements. Clearly, if we succeed in finding a model to a
formula, we have demonstrated that it is consistent. Failure to
find a model within a given scope, however, does not prove that
the formula is inconsistent (although in practice, for a large
enough scope, it often strongly suggests it).

2.4 Example

As a trivial example, consider checking the theorem that for all
relations r

all x: X | some y: Y | x.r = y

To check this, we would formulate its negation as a problem

r : X -> Y
! all x: X | some y: Y | x.r = y

whose models are those assignments in which r is not a total
function. The analysis, as explained below, will actually generate
a result such as

r = {X0, Y0), (X0, Y1)}
x = {X1}

that includes a value for the quantified variable x: this is a Skolem
constant that acts as a witness to the invalidity of the theorem.
Our analysis does not guarantee to give the smallest model;
which model is generated depends on the SAT solver used. In
most cases, however, the model is a small one, and in this case,
our tool would make r empty.

3 Analysis
The analysis involves five steps:
 1 Two simple manipulations—conversion to negation

normal form and skolemization—are performed on the
formula.

2 The formula is translated, for the chosen scope, into a
boolean formula, along with a mapping between relational
variables and the boolean variables used to encode them.
This boolean formula is constructed so that it has a model

exactly when the relational formula has a model in the
given scope.

3 The boolean formula is converted to conjunctive normal
form, the preferred input format of most SAT solvers.

4 The boolean formula is presented to the SAT solver.
5 If the solver finds a model, a model of the relational

formula is then reconstructed from it using the mapping
produced in Step 2.

We focus here on translation, Step 2. Steps 1 and 3 involve well-
known manipulations and Step 5 is trivial. Step 4 is delegated to
an off-the-shelf tool; because Step 2 generates a completely
standard boolean formula, we can exploit advances in SAT
technology without any change to our tool. Only Step 4 is
computationally intensive, but its cost depends crucially on how
the earlier steps are performed.

Much of the complexity of the translation arises from the
elimination of quantifiers. Translating to QBF—quantified
boolean formulas—would be much simpler, but would rule out
the most powerful and highly tuned SAT solvers that are
currently available.

3.1 Normalization of the Relational Formula

Before translating the relational formula, we convert it to
negation normal form (NNF) and skolemize it. In NNF, only
elementary formulas are negated. To convert to NNF, we simply
push negations inwards using de Morgan’s laws. The problem of
Section 2.4

! all x: X | some y: Y | x.r = y

for example, becomes

some x: X | all y: Y | ! x.r = y

Skolemization eliminates existentially quantified variables. If a
variable is existentially quantified in a formula that is enclosed by
no universal quantifiers, it can be replaced by a scalar. Our
formula is thus transformed to

all y: Y | ! x.r = y

with the addition of a free variable x: X and a constraint

some z: X | z = x

saying that x represents a scalar, resulting in the problem

r : X -> Y
x : X
all y: Y | ! x.r = y
some z: X | z = x

It might seem odd to replace one existential quantifier with
another, but even in this trivial example it can be seen that the
body of the added quantified formula is simpler than the body of
the formula that was skolemized.

If a variable is existentially quantified in a formula that is
enclosed by a universal quantifier, it is instead replaced by a
function. For example,

all x: X | some y: Y | x.r = y

is converted to

all x: X | x.r = y[x]

by replacing y with the function

y: X => Y

and adding a constraint that each y[x] is a singleton. This scheme
generalizes to an arbitrary number of universal quantifiers; we
simply create a function indexed by as many types as necessary.
Not all existential quantifiers are eliminated, however, since
skolemization is not applied inside set comprehensions.

3.2 Overview of Translation

Given a relational formula, we can construct a boolean formula
that has a model exactly when the original formula has a model in
some given scope. Here’s why. Once we have fixed the scope, a
value of a relation from S to T can be represented as a bit matrix
with a 1 in the ith row and jth column when the ith atom in S is
related to the jth atom in T, and a 0 otherwise. The collection of
possible values of a relation can thus be expressed by a matrix of
boolean variables. Any constraint on a relation can be expressed
as a formula in these boolean variables; and a relational formula
as a whole can be similarly expressed by introducing boolean
variables for each relational variable.

This was the analysis we presented in our previous work [15].
In this paper, we extend the scheme to include quantifiers. The
idea is intuitively simple, but a little intricate in its details. One
way to translate a universal formula would be to expand the
body, by making a copy for each possible value of the quantified
variable, and then conjoining these (or disjoining them,
depending on the quantifier).

This approach is not compositional, though. Instead, for each
formula, we generate a mapping from environments to boolean
formulas; for each expression, we generate a mapping to matrices
of boolean formulas. This mapping parameterizes the formula or
matrix by the values of all the variables that will subsequently be
bound.

Suppose we have a universal formula whose variable is w, and
whose body mentions additionally the quantified variables u and
v. The result of translating the body will be a mapping from
environments that bind u, v and w to boolean formulas. To
translate the formula as a whole, we form a new mapping whose
environments bind only u and v, and which, for a given pair of
values u0 and v0, yields the conjunction of the formulas that the
previous mapping yielded for environments of the form {u � u0,
v � v0, w � wi} for all values wi of w.

This approach follows the semantics of the logic: from each
syntactic object, we create a function from environments to
meanings. In the semantics, however, the environment binds not
only quantified variables but also set and relation variables. In
our translation, the values of set and relation variables are
encoded as matrices of boolean variables, and the environment
binds only the quantified variables.

3.3 Tree Manipulations

Rather than treating the mappings abstractly, we show how they
are represented and manipulated concretely. Figure 2 defines the
translation scheme in terms of the translation functions (on the
left) and some utility functions (on the right).

MT : formula → booleanFormula tree
XT : expr → value tree
� tree = (var × (index → � tree)) + �
value = booleanFormulaMatrix + (index → value)

MT [a in b] = merge (MT[a], MT[b], λp,q. �

 ij
 {p

ij
 ⇒ q

ij
})

MT [! F] = map (MT[F], ¬)
MT [F && G] = merge (MT[F], MT[F], ∧)
MT [F || G] = merge (MT[F], MT[F], ∨)
MT [all v: t | F] = fold (MT[F], �)
MT [some v: t | F] = fold (MT[F], �)

XT [a + b] = merge (XT[a], XT[b], λp,q.µr. r

ij
 = p

ij
 ∨ q

ij
)

XT [a & b] = merge (XT[a], XT[b], λp,q.µr. r
ij
 = p

ij
 ∧ q

ij
)

XT [a - b] = merge (XT[a], XT[b], λp,q.µr. r
ij
 = p

ij
 ∧ ¬q

ij
)

XT [a . b] = merge (XT[a], XT[b], λp,q.µr. r
ij
 = ∃k. p

ik
 ∧ q

kj
)

XT [~a] = map (XT[a], λp.(r | r
ij
 = p

ji
))

XT [+a] = map (XT[a], closure)
XT [{v: t | F] = fold (MT[F], λF. µr. r

0i
 = F(i))

XT [a[v]] = merge (XT[a], XT[v], λs,x. µs
i
. x

ii
)

XT [v] = (v, λi.(µr. r
0j
 = (i = j))) when v is quantified

XT [v] = create (v) otherwise

merge : � tree, � tree, (�,� →�) → � tree
merge (x, y, o) = o(x, y)
merge ((u,t1), (u,t2), o) = (u, λi. merge(t1(i),t2(i),o))
merge ((u,t1), (v,t2), o) = (u, λi. merge(t1(i),(v,t2),o)) when u < v
merge ((u,t1), (v,t2), o) = (v, λi. merge((u,t1),t2(i),o)) when v < u
merge ((u,t), y, o) = (u, λi. merge(t(i),y ,o))
merge (x, (v,t), o) = (v, λi. merge(x,t(i),o))

map : � tree, (�→�) → � tree
map (x, o) = o(x)
map ((u,t), o) = (u, λi.map (t(i),o))

fold : � tree, ((index→�)→ �) → � tree
fold ((u,t), o) = o(t) when t(i) elementary
fold ((u,t), o) = (u, λi. fold(t (i),o)) otherwise

create: var → value
create (v) = (r | r

0i
 = a fresh boolean variable F(v,i)) for v: S

create (v) = (r | r
ij
 = a fresh boolean variable F(v,i,j)) for v: S →T

create (v) = (r | r
i
= create (v

i
)) for v: S �t

Figure 2: Translation rules and tree operations

There are two kinds of mapping, one for parameterizing
formulas and one for parameterizing values (represented as
indexed matrices of boolean formulas). These mappings are
represented as trees, whose leaf nodes are the formulas or values;
the tree manipulations are independent of the leaf type, and are
thus described on a polymorphic tree. The internal nodes are
labelled with variable names, and their outgoing edges are
labelled with indices that correspond to the values of the
variables.

For example, in a scope of 2, a relational formula with two free
variables u and v would be represented as the tree shown in the
top left-hand side of Figure 3. To find the formula for the case in
which u takes on its first value, and v its second value, for
example, we follow the first outgoing edge of u and the second
outgoing edge of v, and reach the leaf formula x1.

The translation rules involve applications of various tree
operations defined in an ML-like notation on the right. These
are: merge, which merges two trees by combining their leaves
pairwise; map, which applies an operator to all the leaves; and
fold, which collapses the lowest level of a tree by applying a
function to all the leaves of each smallest subtree.

To translate a compound formula, we first translate its
constituent subformulas, and then merge the resulting trees,
combining the formulas at their leaves. If the two trees have the
same variables and they appear from root to leaf in the same
order, merging is easy: leaves aside, the trees are isomorphic, and
we simply create a new tree with the same structure whose leaves
are the pairwise combinations of the leaves in the original trees.

Unfortunately, the trees are not generally isomorphic, since
different subformulas mention different variables. We impose an
ordering on the variables (by numbering them according to their
quantification depth), and an invariant on the trees that the
variables appear in this order. Now to merge two trees, we must
essentially interpose an extra level in one tree whenever it omits a

variable appearing in the other (see the lower part of Figure 3).
The algorithm is given, on the right of Figure 2. The cases are to
be interpreted sequentially, with the first one that matches being
applied; x and y stand for values, u and v for variables, and t, t1,
and t2 for trees.

The merge function takes a different operator for translating
different kinds of formula or expression. For example, when
translating an elementary formula a in b, the operator is

λp,q. �
 ij
 {p

ij
 ⇒ q

ij
}

which takes two matrices of boolean formulas, and returns the
formula that says that, for every i and j, the formula in the ith row
and jth column of p implies the formula in the same position in q.
This embodies the intuition that if the values of p and q are
represented as bit matrices, then for the relation q to represent a
superset of the relation p, it must have a 1 wherever p does. When
there are no quantifiers, the trees are all degenerate, and merge
reduces to the direct application of the operator—exactly as in
our previous scheme [15].

The operator for union expressions

λp,q.(µr. r
ij
 = p

ij
 ∨ q

ij
)

uses the definition operator µ; the expression µx.F denotes the
value which when assigned to x makes the formula F true. So this
operator says that the union of p and q is a matrix r such that the
formula in the ith row and jth column of the result r is the
disjunction of the corresponding formulas in the matrices of p
and q. In other words, a pair belongs to the union of two
relations if it belongs to either relation.

The other tree functions used in the translation are simpler
than merge. Unary operators are translated with a map function
that creates a new tree in which a corresponding unary
translation operator has been applied to each leaf. The negation
of a formula, for example, is obtained by negating the boolean
formula at each leaf. The transpose of an expression is obtained

x0 x1 x2 x3

v v

u

o(x0,x1)

u

o(x2,x3)

x0 x1 y0 y1

u v

v v

u

o(x0,y0) o(x0,y1) o(x1,y0) o(x1,y1)

Figure 3: Tree operations: fold (above), merge (below)

by taking the mirror image of the matrix at each leaf. The
transitive closure is obtained by applying an operator that
computes closure using iterative doubling, as explained in [15].

Quantified formulas are translated using fold. Its second
argument is an operator that takes a tree of depth 1. Since the
variables in the tree are ordered by quantification depth, the
translation of the body of a quantified formula is sure to be a tree
in which the quantified variable appears last, just above the
leaves. To obtain the meaning of the formula as a whole, we
therefore collapse the subtrees at the leaves, by disjunction or
conjunction depending on the quantifier.

Set comprehensions are handled with fold too. Here, the
operator creates a vector of boolean formulas, one for each leaf,
in order, thus forming a set whose ith element is present when
the ith value of the quantified variable makes the body formula
true.

Finally, quantified variables are translated to trees of unit
depth in which the ith subtree is the vector whose jth element is
true when i = j and false otherwise. Declared variables are
translated into values: vectors and matrices of boolean variables
for sets and relations respectively, and higher-dimensional
structures for functions. In the definition of the function create,
the indices range in the obvious way over the scope.

3.4 Example Translation

Our example formula

all y: Y | ! x.r = y

would be translated, in a scope of 2, as follows. For x, we generate
the vector [x0 x1] and for the relation r, the matrix [r00 r01 , r10 r11],
using 6 boolean variables in total. The variable y is represented as
a tree whose root is labelled y, with branches to the two vectors [1
0] and [0 1] that correspond to y taking the first and second value
of the type Y respectively.

Using the fourth M rule, the expression x.r is translated to

[(x
0
∧r

00
) ∨ (x

1
∧r

10
) (x

0
∧r

01
) ∨ (x

1
∧r

11
)]

The formula x.r = y gives a tree with y at the root, pointing to two
formulas

((x
0
∧r

00
) ∨ (x

1
∧r

10
)) ∧ ¬ ((x

0
∧r

01
) ∨ (x

1
∧r

11
))

¬ ((x
0
∧r

00
) ∨ (x

1
∧r

10
)) ∧ ((x

0
∧r

01
) ∨ (x

1
∧r

11
))

that are true when x.r and y are equal for the first and second
values of y respectively. We then map negation over the tree,
which negates these two formulas, and then obtain the
translation of the quantified formula by folding conjunction over
the tree, obtaining

¬ (((x
0
∧r

00
) ∨ (x

1
∧r

10
)) ∧ ¬ ((x

0
∧r

01
) ∨ (x

1
∧r

11
))) ∧

¬ (¬ ((x
0
∧r

00
) ∨ (x

1
∧r

10
)) ∧ ((x

0
∧r

01
) ∨ (x

1
∧r

11
)))

which is then presented to the SAT solver. Our implementation
encapsulates boolean formulas in an abstract data type which
allows it to simplify formulas during translation; the resulting
formula would therefore be simpler than this.

3.5 Conversion to CNF , Solving and Mapping Back

The result of the translation step is a single boolean formula: that
is, a formula over propositional variables with and ¬, ∧ and ∨.
No tree structure can remain because the only free variables in
the relational formula are declared sets and relations, which, as
explained above, are translated into boolean variables and do not
appear as intermediate nodes in the tree.

This formula is converted to conjunctive normal form (CNF)
before being handed to the solver. To avoid exponential blowup
due to disjunctions, we introduce a temporary boolean variable
for every subformula [29].

The solver, if it finds a solution, returns a model that assigns
true or false to each boolean variable. From this assignment, we
reconstruct a model of the relational formula as follows. If the
scope is k, we create names T0, T1, … for each of the k atoms in
each type T. For a relation r : S -> T, we look up in the
assignment for each 0 ≤ i, j < k the value of each boolean variable
vij that was used to encode the relation r, and insert into r the pair
(Si, Tj) if this value is true.

A solution to the boolean formula of Section 3.4, for example,
has r00, r01 and x1 true, and all others false, which gives the result
shown in Section 2.4.

4 Results
The analysis described here has been implemented in the Alloy
Analyzer (AA)[21]. Alloy [16] is an attempt to combine the best
features of Z [34] and the Object Constraint Language of UML
[39] in a lightweight notation. It takes UML’s emphasis on binary
relations, and the expression of constraints with sets of objects
formed by ‘navigations’, but with Z’s much simpler semantics.

4.1 Implementing the Analysis

The tool implements the logic presented here as an intermediate
language for Alloy, although it does not offer functions in their
full generality. In its current version, Alloy only allows functions
from basic types to relations (which we call ‘indexed relations’),
and only outermost existentials are skolemized. Otherwise, the
analysis is implemented as described here.

The tool is roughly 50,000 lines of code, of which 15,000
implement the front end (parsing, type inference, static semantic
checks, schema calculus, translation to the intermediate
language); 5,000 implement the translation that is the subject of
this paper; 10,000 implement manipulations of the boolean
formula (conversion to normal form, simplifications, conversion
to various solver formats); 5,000 implement the user interface;
and 15,000 implement a visualization mechanism. All the code is
written in Java, except for the boolean formula manipulations,
which are written in C.

4.2 Choice of SAT Solvers

The tool’s backend wraps a collection of off-the-shelf SAT solvers
[4,31,32,41]. The deterministic solvers SATO [41] and RelSAT
[4] seem to work best. Early on, we had some success with

WalkSAT [31], a stochastic solver, but we assiduously avoided
introducing too many temporary variables when converting to
CNF [15]. This conversion step became a bottleneck, which was
eliminated by more aggressive variable introduction.
Unfortunately, the redundancy this adds to the formula foils
stochastic solvers, so WalkSAT rarely works well.

We learnt an interesting lesson in our experiments with
solvers. In our eagerness for platform-independence, we planned
initially to implement our own solvers in Java. Our prototype
tool included a trie-based implementation [42], in Java, of the
same Davis-Putnam (DP) algorithm [9] that underlies many
deterministic solvers. Because WalkSAT outperformed it so
dramatically [15], and because our own Java implementation of
WalkSAT came within a factor of 3 of the performance of the C
implementation, we foolishly attributed the failure of our DP
implementation to the Davis-Putnam method itself. Later, we
discovered that a highly tuned implementation of Davis Putnam,
such as SATO, performed orders of magnitude better. This
experience made us appreciate the importance of a flexible
backend, to which we could attach new solvers as they became
available.

4.3 New Expressiveness

The most important consequence of this work has been the
ability to add quantifiers to our language. Our previous analysis
was limited to pure relational formulas with no quantifiers. In
principle, the first-order properties that arise in software
specifications can always be written without quantifiers [36]. To
say “everybody likes a winner” we could write

Winner.~(Un \ likes)= {}

In this formula, the relational expression following the dot (the
transpose of the complement of the likes relation) maps persons
to persons who don’t like them; the expression denotes persons
who don’t like some winner; and the formula as a whole says that
the set of such persons is empty. Needless to say, this style of
specification did not win many admirers, despite its terseness.
We experimented with an algorithm of Tarski’s [36] for
performing the elimination automatically, but were not able to
generate relational expressions of a reasonable size.

Now, with quantifiers, we can write instead

all p: Person | all w: Winner | w in p.likes

Our experience so far, in six months of using the language and its
tool, suggests that quantifiers and navigation expressions make a
big difference. While NP [14,17], the language of our Nitpick
checker, was usable only by dedicated experts, we have found
that students with only a modest background in discrete
mathematics can pick up Alloy in a couple of days. (Gaining
proficiency takes much longer, of course, but that has more to do
with learning how to construct focused, abstract models than
with details of any language.)

We have constructed and analyzed a variety of models in
Alloy that would have been at the very least difficult to express in
NP. Moreover, since the Alloy Analyzer (AA) is a far more

powerful solver than Nitpick, we have been able to construct
larger models. Whereas before we had to craft models carefully to
make them analyzable, we no longer find it necessary to adjust
our models, except to fix the (many) errors that the tool exposes.
For a scope of 3, which is usually enough to catch most errors,
Nitpick was limited to a state of about 5 relations; the new tool
can handle 10 relations, and sometimes 20 or more, with ease.
Examples include:

· COM [22]. We took the Z specification of Sullivan et al [35]
and translated it into Alloy. The resulting model is about 150
lines long, and has 8 relations, 1 indexed relation, and 8 sets.
Using AA, we were able to generate automatically the
counterexamples that Sullivan and his colleagues had found
by hand analysis.

· Intentional Naming [26]. Sarfraz Khurshid constructed a
model of the design of a name server that allows services to be
looked up by their properties [1]. The model is 130 lines long,
and has 11 relations, 1 indexed relation (ie, function from a
basic type to a relation), and 8 sets. A variety of problems were
discovered with the design. AA takes no longer than 5 seconds
to find any of the counterexamples.

· UML Metamodel [38]. We translated the entire core
metamodel of UML from OCL [39], the constraint language
of UML, into Alloy. The resulting model, which is about 400
lines long, is about half the size of the OCL version. It has 41
relations and 37 sets. We used AA to show that the metamodel
is consistent, by generating a sample UML model that satisfies
all the constraints (with additional constraints that rule out
the trivial empty model). Finding this model takes 6 seconds.
The reader should bear in mind when considering the size of

these models that a language like Alloy, NP or Z tends to be
much more succinct than the languages used by model checkers.
The input to a model checker such as SMV [6] or SPIN [13] is a
rather low-level program. A model of Mobile IP that we built in
SMV was 10 times longer than our NP version.

4.4 Performance

As an experiment, we analyzed two groups of models. The first
group consists of the three models mentioned above, which
demonstrate the capability of the new language and analysis. The
second group consists of three models originally written in NP
and analyzed with our previous SAT-based analysis [15]:

· Finder, a toy model of the Macintosh file system that uses
transitive closure (which cannot be handled by tools that are
restricted to first-order predicate logic);

· Style, a model of an aspect of the paragraph style mechanism
of Microsoft Word that was developed as a class exercise [16];

· Mobile IP, a model that exposed a flaw in an internet protocol
for forwarding messages to mobile hosts [19].

We translated these into Alloy using quantifiers, and analyzed
them in AA to test whether quantifiers incur a significant cost.

The results are shown in Tables 1 and 2. For each example,
and for a variety of scopes, we show the size of the space and
some timings. The space is given as the number of bits used to

encode an assignment of values to sets and relations, so 100 bits
corresponds to roughly 1030 configurations. These results are
averaged over a few problems for each case study, some
satisfiable and some unsatisfiable. The analyses in Table 1 involve
only invariants, so the number of configurations is the number of
states; the analyses in Table 2 involve executions, so a
configuration is a pair (or for Style, a triple) of states. The
number of boolean variables in the generated formula is often
much larger because of variable introduction.

All timings are given in seconds, measured on a Pentium II
with a 233MHz processor and 192MB of memory. Performance
can often be significantly improved by selecting a different
solver, or by tweaking solver parameters. All the measurements
in the table, however, were taken using RelSAT with its default
settings. Translation (which is included in the timings) takes less
than 10 seconds in every case; the SAT solver is the bottleneck.

For the first group, two kinds of analysis were performed
(Table 1). The column marked Instance gives the time taken to
find a solution when one exists: for the UML example, this
instance demonstrates consistency of the constraint, and for all
others it represents a counterexample to a theorem (or for
Intentional Naming, counterexamples to several theorems). The
column marked Exhaust gives the time taken to exhaust the
space when no solutions exist. The UML example includes
constraints that require at least one of each model element; this
rules out a solution in a scope of 2. For all other cases, the
analyses in this column involve checking a variety of valid
theorems. Because no theorems were checked for the UML
metamodel, there are no values for exhausting the state space for
scopes above 2.

As can be seen, the new method can handle spaces of 100 bits
(1030 configurations) with ease. When the solver has to exhaust
the space, the timings, and their variances, increase dramatically
with scope. In fact, almost all the problems for which an instance
exists have an instance in a small scope (2 for COM, 2 and 3 for
Intentional Naming, and 3 for UML). The timings for larger
scopes are thus a bit specious, but they do suggest that it is better
to start with a small scope and increase it gradually.

For the second group (Table 2), we considered only cases in
which a solution is found, since our previous analysis used a
stochastic solver that ran forever when no solution existed. The
column Old gives the timings from our old paper. These were run
on a machine that is about two thirds of the speed of the machine
on which our new experiments were performed, so these timings
could be reduced. The new method sometimes performs worse
than the old method, probably because the relational expressions
give a tighter encoding of the problem. But it scales better:
because of a translation bottleneck (overcome by our use of
standard methods [28]) the previous method could not handle
specs of the size of those in Table 1, even if they were written
without quantifiers.

5 Related Work
Unlike our previous analysis [15], the analysis described here can
handle quantifiers, and can handle larger specifications. Both
analyses dramatically outperform an earlier analysis, based on
explicit enumeration of set and relation values [18], on which our
Nitpick checker was based. Recently, Craig Damon has improved
this earlier analysis with more powerful pruning schemes, but
since he has not yet incorporated quantifiers, it is not possible to
compare to our new analysis.

As far as we know, there are no other analyses for a first-order
logic that handle quantifiers and transitive closure. A variety of
model finders have been developed for group-theoretic
investigations [eg, 33]; these work on a logic of uninterpreted
functions, and do not handle relations or closure. Several
animators for Z have been developed using Prolog as an
underlying engine [11,12, 24,43], but these cannot handle large
spaces.

Most other tools for relational notations are less automatic.
Theorem provers (such as Z/Eves [7] and PVS [28]) can—unlike
the Alloy Analyzer—prove theorems, but do not generate
counterexamples, and need help with lemmas and proof strategy.
Execution engines (such as the IFAD tool [2] for VDM) limit the
notation to an executable subset and make the user provide test
cases.

Example Scope Space Old [16] New

Finder 5 160 bits 3s 9s

 6 216 162s 13s

Style 3 90 1s 3s

4 156 2s 3s

5 250 11s 6s

Mobile IP 3 175 0s 1s

4 280 3s 6s

5 600 8s 29s

Table 2: Results for old models

Example Scope Space Instance Exhaust

COM 2 60 bits 3s 1–4s

3 132 11s 37–218s

4 240 71s 240–?s

2 64 1s 1s Intentional
Naming 3 141 3–31s 19–59s

 4 256 18–346s ??

2 228 n/a 6s

3 465 11s n/a

UML
Metamodel
 4 784 17s n/a

Table 1: Results for new models

Model checkers are designed to handle the complexity of
interleaving, and not complexity in the state structure itself.
Their input languages do not offer relations as types, and require
relational operators to be specified algorithmically at a low level.
Explicit model checkers (such as SPIN [13]) do not permit
declarative specification, in which invariants and operations are
given by conjunction of constraints.

This and our previous analysis [15] might be described as
‘symbolic’, because, as in symbolic model checking [6], there is
no explicit representation of individual states. Our notion of
scope is implicit in most applications of model checking, since
the model itself usually assumes some fixed number of
processors, cache lines, etc.

Boolean satisfaction has been used before in planning [10,25]
(which is essentially reachability analysis) and more recently in
linear temporal logic model checking [6], but the encodings are
rather different from that described here.

6 Future Prospects
Relational logic has many applications. Our analysis might be
useful in a variety of tools, beyond the Alloy Analyzer:

· A CASE tool (such as Rose [30]) might use our analysis to
generate object diagrams from class diagrams;

· An architectural style tool might use our analysis to check the
consistency of style constraints (expressed, for example in
AML [40] or Darwin [27]) and generate sample architectures;

· A tool for developing requirements (such as KAOS [37])
might use our analysis to check the consistency of goals;

· A refinement tool (such as the B tool [3]) might use our
analysis as a verification condition tester, to find
counterexamples to proof obligations before attempting a
proof.
We have recently developed a strategy for translating code

into this logic. Using our analysis, we are able to check a variety
of code properties, such as absence of executions that
dereference null pointers or create undesirable sharings, and
conformance to user-defined specifications [23].

Acknowledgments
Ian Schechter and Ilya Shlyakhter contributed to the
implementation. This research was funded by the National
Science Foundation (under grant CCR-9523972), by the MIT
Center for Innovation in Product Development (under NSF
Cooperative Agreement Number EEC-9529140), and by an
endowment from Douglas T. Ross.

The Alloy Analyzer may be freely downloaded for a variety of
platforms from http://sdg.lcs.mit.edu/alloy.

References
[1] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan and

Jeremy Lilley. The design and implementation of an intentional
naming system. Proceedings of the 17th ACM Symposium on

Operating Systems Principles (SOSP ‘99), Kiawah Island, South
Carolina, December 1999.

[2] Sten Agerhold and Peter Gorm Larsen. The IFAD VDM Tools:
Lightweight Formal Methods. FM-Trends 1998: 326-329.

[3] The B-Tool. B-Core(UK) Ltd, Harwell, Oxfordshire, England.
http://www.b-core.com/btool.html.

[4] R.J. Bayardo Jr. and R. C. Schrag. Using CSP look-back
techniques to solve real world SAT instances. Proc. of the 14th
National Conf. on Artificial Intelligence, 203–208, 1997.

[5] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. Tools and Algorithms for the Analysis
and Construction of Systems (TACAS'99), LNCS 1579, Springer-
Verlag, 1999.

[6] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and L.J. Hwang.
Symbolic model checking: 1020 states and beyond. Information
and Computation, Vol. 98, No. 2, pp.142–170, June 1992.

[7] Dan Craigen, Irwin Meisels and Mark Saaltink. Analysing Z
Specifications with Z/EVES. Industrial-Strength Formal Methods
in Practice, eds. J.P. Bowen and M.G. Hinchey, September 1999.

[8] Craig A. Damon. Selective Enumeration. PhD Thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA,
August 2000.

[9] Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. Journal of the ACM, Vol. 7, pp. 202–215,
1960.

[10] Michael D. Ernst, Todd D. Millstein and Daniel S. Weld.
Automatic SAT-Compilation of Planning Problems. Proc. 15th
International Joint Conference on Artificial Intelligence (IJCAI-
97), Nagoya, Aichi, Japan, August 1997, pp. 1169–1176.

[11] Daniel Hazel, Paul Strooper and Owen Traynor. Possum: An
Animator for the SUM Specification Language. Proceedings Asia-
Pacific Software Engineering Conference and International
Computer Science Conference, pages 42-51, IEEE Computer
Society, December 1997.

[12] M.A. Hewitt, C.M. O’Halloran and C.T. Sennett. Experiences
with PiZA, an animator for Z. 10th International Conference of Z
Users (ZUM’97), Reading, England, April 1997.

[13] Gerard J. Holzmann. The Model Checker Spin. IEEE Transactions
on Software Engineering, Special issue on Formal Methods in
Software Practice, Volume 23, Number 5, May 1997, 279-295.

[14] Daniel Jackson. Nitpick: A Checkable Specification language.
Proc. First ACM SIGSOFT Workshop on Formal Methods in
Software Practice, San Diego, CA, January 1996, pp. 60–69.

[15] Daniel Jackson. An Intermediate Design Language and its
Analysis. Proc. ACM Conference on Foundations of Software
Engineering, Florida, November 1998.

[16] Daniel Jackson. Alloy: A Lightweight Object Modelling Notation.
Technical Report 797, MIT Laboratory for Computer Science,
Cambridge, MA, February 2000. Available at:
http://sdg.lcs.mit.edu/~dnj/publications.

[17] Daniel Jackson and Craig A. Damon. Nitpick Reference Manual.
CMU-CS-96-109. School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, January 1996.

[18] Daniel Jackson and Craig A. Damon. Elements of Style: Analyzing
a Software Design Feature with a Counterexample Detector. IEEE
Transactions on Software Engineering, Vol. 22, No. 7, July 1996,
pp. 484–495.

[19] Daniel Jackson, Somesh Jha and Craig A. Damon. Isomorph-free
Model Enumeration: A New Method for Checking Relational
Specifications. ACM Transactions on Programming Languages
and Systems, Vol. 20, No. 2, March 1998, pp. 302–343.

[20] Daniel Jackson, Yuchung Ng and Jeannette Wing. A Nitpick
Analysis of IPv6. To appear, Formal Aspects of Computing.

[21] Daniel Jackson, Ian Schechter and Ilya Shlyakhter. Alcoa: the
Alloy Constraint Analyzer. Proc. International Conference on
Software Engineering, Limerick, Ireland, June 2000.

[22] Daniel Jackson and Kevin Sullivan. COM Revisited: Tool-
Assisted Modelling and Analysis of Software Structures. Proc.
Foundations of Software Engineering (FSE 2000), San Diego, CA,
November 2000.

[23] Daniel Jackson & Mandana Vaziri. Finding Bugs with a
Constraint Solver. Proc. International Conference on Software
Testing and Analysis (ISSTA 2000), Portland, OR, August 2000.

[24] R. D. Knott and P. J. Krause. The Implementation of Z
Specifications using Program Transformation Systems: The
SuZan Project. The Unified Computation Laboratory, IMA
Conference Series No 35 (Editors: C Rattray, R G Clark),
Clarendon Press, Oxford, 1992, pgs 207-220.

[25] Henry Kautz and Bart Selman. Pushing the envelope: planning,
propositional logic, and stochastic search. Proc. 5th National
Conference on Artificial Intelligence, 1996, pp. 1194–1201.

[26] Sarfraz Khurshid and Daniel Jackson. Exploring the Design of an
Intentional Naming System with an Automatic Constraint
Analyzer. Proc. Automated Software Engineering, Grenoble,
France, September 2000.

[27] J. Magee, N. Dulay, S. Eisenbach and J. Kramer. Specifying
Distributed Software Architectures. Proceedings of 5th European
Software Engineering Conference (ESEC 95), Sitges, Spain,
September 1995

[28] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von
Henke. Formal verification for fault-tolerant architectures:
Prolegomena to the design of PVS. IEEE Transactions on Software
Engineering, 21(2):107-125, February 1995.

[29] D. Plaisted and S. Greenbaum. A structure-preserving clause
form translation. Journal of Symbolic Computation, 2, 293–304,
1986.

[30] Rose Visual Modeling Tool. Rational Software Corporation,
Cupertino, California. Inc.

[31] Bart Selman, Henry Kautz and Bram Cohen. Noise strategies for
improving local search. Proc. AAAI-94, pp. 337–343, 1994.

[32] J.P.M. Silva and K.A. Sakallah. Grasp – A New Search Algorithm
for Satisfiability. IEEE International Conference on Computer
Aided Design, San Jose, CA, November 1996, pp. 220–227.

[33] John Slaney. Finder: Finite domain enumerator, system
description. Proc. 12th International Conference on Automated
Deduction. Lecture Notes in Artifical Intelligence. Springer-
Verlag, Berlin, 798–801.

[34] J. Michael Spivey. The Z Notation: A Reference Manual. Second
ed, Prentice Hall, 1992.

[35] K.J. Sullivan, J. Socha and M. Marchukov. Using Formal Methods
to Reason about Architectural Standards. Proceedings of the
International Conference on Software Engineering (ICSE97),
Boston, Massachusetts, May 1997.

[36] Alfred Tarski and Steven Givant. A Formalization of Set Theory
Without Variables. American Mathematical Society, Colloquium
Publications, Volume 41, 1987.

[37] Axel van Lamsweerde, Robert Darimont and Emmanuel Letier.
Managing Conflicts in Goal-Driven Requirements Engineering.
IEEE Transactions on Software Engineering, Vol. 24, No. 11,
November 1998.

[38] Mandana Vaziri and Daniel Jackson. Some Shortcomings of OCL,
the Object Constraint Language of UML. A response to Object
Management Group RFI on UML. December 1999. Available at:
http://sdg.lcs.mit.edu/~dnj/publications.

[39] Jos Warmer and Anneke Kleppe. The Object Constraint
Language: Precise Modeling with UML. Addison-Wesley, 1999.

[40] David S. Wile. AML: An Architecture Meta-Language.
Automated Software Engineering, 14th IEEE International
Conference, Cocoa Beach ,Florida, USA, October 1999.

[41] Hantao Zhang. SATO: An Efficient Propositional Prover. Proc. of
International Conference on Automated Deduction (CADE-97).

[42] Hantao Zhang and Mark E. Stickel. Implementing the Davis-
Putnam Algorithm by Tries. Technical Report 94-12, Artificial
Intelligence Center, SRI International, Menlo Park, CA.
December 1994.

[43] Jia Xiaoping. An Approach to Animating Z Specifications.
Proceedings of the 19th Annual IEEE International Computer
Software and Application Conference (COMPSAC’95). August
1995, Dallas, TX. pp. 108–113.

