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Abstract 
An automatic analysis method for first-order logic with sets and 
relations is described. A first-order formula is translated to a 
quantifier-free boolean formula, which has a model when the 
original formula has a model within a given scope (that is, 
involving no more than some finite number of atoms). Because 
the satisfiable formulas that occur in practice tend to have small 
models, a small scope usually suffices and the analysis is efficient. 

The paper presents a simple logic and gives a compositional 
translation scheme. It also reports briefly on experience using the 
Alloy Analyzer, a tool that implements the scheme. 

Keywords 
First-order logic; relational logic; Z specification; object models; 
automatic analysis; model finding; constraint solvers; SAT 
solvers. 

1 Introduction 
Relational logic adds to first-order logic the ability to combine 
predicates with special operators. For example, we can write the 
formula ∀x,y. S(x)∧R(x,y) ⇒ T(y) as S.R in T, where S.R denotes the 
image of the set S under the relation R. The logic is more than a 
definitional extension of first-order logic, because it includes 
transitive closure. 

In this paper, we present a fully automatic analysis for such a 
logic. Given a formula and a scope—a bound on the number of 
atoms in the universe—our analysis determines whether there 
exists a model of the formula (that is, an assignment of values to 
the sets and relations that makes the formula true) that uses no 
more atoms than the scope permits, and if so, returns it. 

First-order logic is undecidable, so our analysis cannot be a 
decision procedure: if no model is found, the formula may still 
have a model in a larger scope. Nevertheless, the analysis is 
useful, since many formulas that have models have small ones. 

The analysis problem, while made decidable by restriction to a 
finite universe, is still intractable asymptotically. In a scope of k, 
each relation increases the space of potential models by a factor 
of 2 to the k2. Nevertheless, our analysis can handle a large space; 
in Section 4, we report on some case studies in which spaces of 
2100 configurations were analyzed in seconds. And when a model 
exists, it is usually found rapidly, often within seconds, so that 
when the analysis takes a long time, one can reasonably bet that 
no model will be found. 

The analysis was designed for object models, which lie at the 
heart of most object-oriented development methods, but until 
recently have had no support from tools. It has been 
implemented in the Alloy Analyzer [21], a tool that has been 
publicly available since September 1999. The logic described here 
is used as an intermediate language into which the source 
language, Alloy [16] is translated. 

The analysis is used in two ways: to check consistency of a 
formula (by finding a model), and to check the validity of a 
theorem (by looking for a counterexample, namely a model of 
the theorem’s negation). In the context of object modelling, 
consistency checking amounts to simulation—generating states 
and executions. Validity checking has a variety of forms: 
checking that one constraint follows from another, that one 
operation refines another, that an operation preserves an 
invariant, and so on. 

Because of the logic’s generality, however, it has a variety of 
other applications, such as: finding bugs in code; checking 
verification conditions in a specification tool; establishing 
consistency of requirements goals; analyzing architectural style 
descriptions; and generating snapshots from class diagrams. 

To our knowledge, this paper presents the first practical 
algorithm for analyzing automatically the logic that underlies Z 
[34], OCL [39] and many other specification languages. Unlike 
our previous algorithm [15], which was limited to quantifier-free 
relational calculus, this algorithm handles a full logic with 
quantifiers, into which other languages can be easily translated.  
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Our paper is structured as follows. First, we present the logic, 
with its syntax, type system and formal semantics. The analysis 
itself is then explained. We report on some case study 
applications of the analysis, and give some performance results. 
The paper closes with a comparison to related work, and a brief 
discussion of other applications and future prospects. 

2 The Logic 
The logic is defined in Figure 1, with an abstract syntax (on the 
left), a type system (in the middle) and a semantics (on the right). 
Most of its features are standard, so we focus here on its 
novelties: the treatment of scalars as singleton sets, the encoding 
of sets as degenerate relations, and the dot operator used to form 
‘navigation expressions’. The motivation for the design of the 
logic is explained in detail in [15]. 

2.1 Syntax 

The syntax is mostly identical to standard mathematical syntax, 
but we have chosen to use ASCII rather than typographic 
symbols for operators. This makes a stronger connection to our 
object modelling language, Alloy, which is pure ASCII for ease of 
use, and also helps us distinguish the operators of our syntax 

(such as &&) from the mathematical functions (such as ∧) used 
to define them. 

The logic is strongly typed, and a formula is accompanied by 
declarations of the set and relation variables; we call the 
combination of a formula and its declarations a problem. Each 
declaration associates a type with a variable. There are three 
kinds of type: 

· the set type T, denoting sets of atoms drawn from T; 
· the relation type S -> T, denoting relations from S to T; 
· the function type T => t, denoting functions from atoms of T 

to values of type t. 
Types are constructed from basic types that denote disjoint sets 
of atoms. We use upper case names for basic types and lower case 
names for arbitrary types. So in the type T => t, the index type T 
must be a basic type but t may be a set type, relation type or 
another function type. 

Functions correspond to predicates of arity greater than two. 
The predicate Rides (r,j,h) that holds when jockey j rides horse h in 
race r, for example, might be declared as a function 

Rides : Race => Jockey -> Horse 

and, for a given race r, the expression Rides[r] would then denote 
a relation mapping jockeys to their horses in that race. Functions 
retain the binary flavour of the logic: they fit naturally into 

problem ::= decl* formula 
decl ::= var : typexpr 
typexpr ::= 
   type   set 
  | type -> type  relation 
  | type => typexpr  function 
 
formula ::= 
   expr in expr  subset 
   | ! formula  negation 
   |  formula && formula conjunction 
   |  formula || formula disjunction 
   |  all v : type | formula universal 
   |  some v : type | formula existential 
 
expr ::=  
   | expr + expr  union 
   | expr & expr  intersection 
   | expr - expr  difference 
   | expr . expr  navigation 
   | ~ expr   transpose  
   | + expr   closure 
   | {v : t | formula}  comprehension 
   | Var    
 
Var ::= 
    | var   variable 
    | Var [var]  application 

M : formula → env → boolean 
X : expr → env → value 
env = (var + type) → value 
value = P (atom × atom) + (atom → value) 
 
M [a in b] e = X[a] e ⊆ X[b] e 
M [! F] e = ¬ M [F] e 
M [F && G] e = M [F] e ∧ M [G] e 
M [F || G] e = M [F] e ∨ M [G] e 
M [all v: t | F] e = � {M[F](e� v � x) | (x,unit) ∈ e(t)} 
M [some v: t | F] e = � {M[F](e� v � x) | (x, unit) ∈ e(t)} 
 
X [a + b] e = X[a]e ∪ X[b]e 
X [a & b] e = X[a]e ∩ X[b]e 
X [a - b] e = X[a]e \ X[b]e 
X [a . b] e = {(x,z) | ∃y. (y,z) ∈ X[a]e ∧  (y,x) ∈ X[b]e} 
X [~a] e = {(x,y) | (y,x) ∈ X[a]e} 
X [+a] e = the smallest r such that r ; r ⊆ r ∧  X[a]e ⊆ r 
X [{v: t | F}] e = {(x,unit) ∈ e(t) | M[F](e� v � x)} 
X [v] e = e(v) 
X [a[v]] e= (e(a))(e(v)) 

E � a: S , E � b: S 
E � a in b 

 
E, v: T � F 

E � all v: T | F 
 

a: S → T, b: S → T 
a + b: S → T 

 
E � a: S → T, E � b: S → U 

E � a . b: U → T  
 

E � a: S → T 

E � ~a : T → S 
 

E � a: T → T 
E � +a: T → T 

 
E, v: T � F 

E � {v: T | F} : T  
 

E � a: T ⇒ t, E � v: T 
E � a[v]: t 

Figure 1: Syntax, type rules and semantics of the logic 



 

diagrams, lead to simpler expression syntax, and can 
accommodate multiplicity markings. In Alloy, the question 
marks in 

Rides : Race => Jockey? -> Horse? 

indicate that, in each race, a jockey rides at most one horse and 
vice versa. Also, by including functions in the logic, we are able to 
skolemize formulas (Section 3.1). 

There are no scalar types. To declare a scalar variable, we 
declare it to be a set 

v : T 

and add a constraint that makes the set a singleton: 

some x: T | x = v 

This allows navigation expressions to be written uniformly, 
without the need to convert back and forth between scalars and 
sets, sidesteps the partial function problem, and simplifies the 
semantics (and its implementation) [16]. 

Formulas have a conventional syntax. There is only one 
elementary formula, stating that one expression is a subset of 
another; an equality of two expressions is short for a pair of 
inequalities, one in each direction. In quantified formulas, the 
variable is declared to have basic type, and is interpreted as being 
bound to singleton subsets of the type.  

Expressions are formed using the standard set operators 
(union, intersection and difference), the unary relational 
operators (transpose and transitive closure), and the dot 
operator, used to form navigation expressions. The unary 
operators are prefixes, to make parsing easy. 

Set comprehension has the standard form. Set and relation 
variables are expressions, but function variables, and functions in 
general, are not. Ensuring that functions can only be applied to 
variables guarantees that an expression involving a function is 
always well defined, since the function’s argument will denote a 
singleton set. 

2.2 Type System 

We treat sets semantically as degenerate relations, viewing the set 
{e1, e2, …} as the relation {(e1,unit), (e2,unit), …} where unit is a 
special atom that is the sole member of a special type Unit. Unlike 
our treatment of scalars as singleton sets, this is purely a trick that 
makes the semantics more uniform, and it can be ignored by a 
user of the logic. The type of a variable declared as v: T is thus 
represented as T→ Unit, although we shall write this as T for 
short. 

The typing rules determine which problems are well-formed. 
The judgment E � a : t says that in the type environment E, 
expression a has type t; the judgment E � F says that in 
environment E, the formula F is well-typed. We have omitted 
obvious rules (eg, for conjunction), and those that are identical 
to rules given (eg, for intersection). 

A problem is type checked in an initial environment that 
binds each variable to the type as declared (with set types 
appropriately represented as relations to Unit). The environment 

is extended in the checking of quantified formulas and set 
comprehensions. For example, the rule for universal 
quantification says that the quantified formula is well-typed 
when its body is well-typed in the environment extended with the 
binding of the bound variable to its declared type. 

The set operators can be applied to sets or relations; when + is 
applied to sets, for example, the type T will be Unit. Likewise, the 
dot operator can be applied to sets or relations, in any 
combination that the typing allows. Note that the typing rules 
make clear where sets alone are legal: for bound variables, and 
the arguments of function applications. 

2.3 Semantics 

The meaning of the logic is defined by a standard denotational 
semantics. There are two meaning functions: M, which interprets 
a formula as true or false, and X, which interprets an expression 
as a value. Values are either binary relations over atoms, or 
functions from atoms to values. Interpretation is always in the 
context of an environment that binds variables and basic types to 
values, so each meaning function takes both a syntactic object 
and an environment as arguments. 

Each rule defines the meaning of an expression or formula in 
terms of its constituents. For example, the elementary formula a 
in b is true in the environment e when X[a]e, the relation denoted 
by a in e, is a subset of X[b]e, the relation denoted by b in e. The 
quantified formula all v: t | F is true in e when F is true in every 
environment e � v � x obtained by adding to e a binding of v to x, 
where x is a member of the set denoted by the type t in e. The 
membership condition is written 

 (x,unit) ∈ e(t) 

since the set e(t) is, like all other sets, encoded as a relation. We 
assume that bound variables have been systematically renamed if 
necessary to avoid shadowing. 

All operators have their standard interpretation, except the 
dot operator. When s is a set and r is a relation, s.r denotes the 
image of s under r. Combining this with the treatment of scalars 
as singleton sets results in a uniform syntax for navigation 
expressions. For example, if p is a person, p.mother will denote p’s 
mother; p.parents will denote the set of p’s parents; 
p.parents.brothers will denote p’s uncles; etc. 

By treating sets as degenerate relations, and by typing the dot 
operator loosely, we get as an added bonus that q.~p is the 
composition of two relations p and q, and ~t.~s is the cross 
product of sets s and t. Alloy does not currently exploit this, and 
always uses the dot operator as relational image, but it costs 
nothing to make the logic more general. We can retrieve the 
simpler definition by noting that, in the semantic equation for 
X[a.b], the variable z will be unit when a is a set, so the result will 
be a set also. 

The meaning of a problem is the collection of well-formed 
environments in which its formula evaluates to true. An 
environment is well-formed if: (1) it assigns values to the 
variables and basic types appearing in the problem’s 



 

declarations, and (2) it is well-typed—namely that it assigns to 
each variable an appropriate value given the variable’s type. For 
example, if a variable v has type S → T in an environment e, then 
e(v), the value assigned to v in e, must be a relation from the set 
denoted by S to the set denoted by T. 

The environments for which the formula is true are the models 
of the formula. To avoid that term’s many overloadings, we often 
call them instances or solutions instead. If a formula has at least 
one model, it is said to be consistent; when every well-formed 
environment is a model, the formula is valid. The negation of a 
valid formula is inconsistent, so to check an assertion, we look 
for a model to its negation; if one is found, it is a counterexample. 

Since the logic is undecidable, it is impossible to determine 
automatically whether a formula is valid or consistent. We 
therefore limit our analysis to a finite scope that bounds the sizes 
of the carrier sets of the basic types. We say that a model is within 
a scope of k if it assigns to each type a set consisting of no more 
than k elements. Clearly, if we succeed in finding a model to a 
formula, we have demonstrated that it is consistent. Failure to 
find a model within a given scope, however, does not prove that 
the formula is inconsistent (although in practice, for a large 
enough scope, it often strongly suggests it). 

2.4 Example 

As a trivial example, consider checking the theorem that for all 
relations r 

all x: X | some y: Y | x.r = y 

To check this, we would formulate its negation as a problem 

r : X -> Y 
! all x: X | some y: Y | x.r = y  

whose models are those assignments in which r is not a total 
function. The analysis, as explained below, will actually generate 
a result such as 

r = {X0, Y0), (X0, Y1)} 
x = {X1} 

that includes a value for the quantified variable x: this is a Skolem 
constant that acts as a witness to the invalidity of the theorem. 
Our analysis does not guarantee to give the smallest model; 
which model is generated depends on the SAT solver used. In 
most cases, however, the model is a small one, and in this case, 
our tool would make r empty. 

3 Analysis 
The analysis involves five steps: 
 1 Two simple manipulations—conversion to negation 

normal form and skolemization—are performed on the 
formula. 

2 The formula is translated, for the chosen scope, into a 
boolean formula, along with a mapping between relational 
variables and the boolean variables used to encode them. 
This boolean formula is constructed so that it has a model 

exactly when the relational formula has a model in the 
given scope. 

3 The boolean formula is converted to conjunctive normal 
form, the preferred input format of most SAT solvers. 

4 The boolean formula is presented to the SAT solver. 
5 If the solver finds a model, a model of the relational 

formula is then reconstructed from it using the mapping 
produced in Step 2. 

We focus here on translation, Step 2. Steps 1 and 3 involve well-
known manipulations and Step 5 is trivial. Step 4 is delegated to 
an off-the-shelf tool; because Step 2 generates a completely 
standard boolean formula, we can exploit advances in SAT 
technology without any change to our tool. Only Step 4 is 
computationally intensive, but its cost depends crucially on how 
the earlier steps are performed. 

Much of the complexity of the translation arises from the 
elimination of quantifiers. Translating to QBF—quantified 
boolean formulas—would be much simpler, but would rule out 
the most powerful and highly tuned SAT solvers that are 
currently available. 

3.1 Normalization of the Relational Formula 

Before translating the relational formula, we convert it to 
negation normal form (NNF) and skolemize it. In NNF, only 
elementary formulas are negated. To convert to NNF, we simply 
push negations inwards using de Morgan’s laws. The problem of 
Section 2.4 

! all x: X | some y: Y | x.r = y  

for example, becomes 

some x: X | all y: Y | ! x.r = y 

Skolemization eliminates existentially quantified variables. If a 
variable is existentially quantified in a formula that is enclosed by 
no universal quantifiers, it can be replaced by a scalar. Our 
formula is thus transformed to 

all y: Y | ! x.r = y  

with the addition of a free variable x: X and a constraint 

some z: X | z = x 

saying that x represents a scalar, resulting in the problem 

r : X -> Y 
x : X 
all y: Y | ! x.r = y 
some z: X | z = x  

It might seem odd to replace one existential quantifier with 
another, but even in this trivial example it can be seen that the 
body of the added quantified formula is simpler than the body of 
the formula that was skolemized. 

If a variable is existentially quantified in a formula that is 
enclosed by a universal quantifier, it is instead replaced by a 
function. For example, 

all x: X | some y: Y | x.r = y 

is converted to 



 

all x: X | x.r = y[x] 

by replacing y with the function 

y: X => Y 

and adding a constraint that each y[x] is a singleton. This scheme 
generalizes to an arbitrary number of universal quantifiers; we 
simply create a function indexed by as many types as necessary. 
Not all existential quantifiers are eliminated, however, since 
skolemization is not applied inside set comprehensions. 

3.2 Overview of Translation 

Given a relational formula, we can construct a boolean formula 
that has a model exactly when the original formula has a model in 
some given scope. Here’s why. Once we have fixed the scope, a 
value of a relation from S to T can be represented as a bit matrix 
with a 1 in the ith row and jth column when the ith atom in S is 
related to the jth atom in T, and a 0 otherwise. The collection of 
possible values of a relation can thus be expressed by a matrix of 
boolean variables. Any constraint on a relation can be expressed 
as a formula in these boolean variables; and a relational formula 
as a whole can be similarly expressed by introducing boolean 
variables for each relational variable. 

This was the analysis we presented in our previous work [15]. 
In this paper, we extend the scheme to include quantifiers. The 
idea is intuitively simple, but a little intricate in its details. One 
way to translate a universal formula would be to expand the 
body, by making a copy for each possible value of the quantified 
variable, and then conjoining these (or disjoining them, 
depending on the quantifier). 

This approach is not compositional, though. Instead, for each 
formula, we generate a mapping from environments to boolean 
formulas; for each expression, we generate a mapping to matrices 
of boolean formulas. This mapping parameterizes the formula or 
matrix by the values of all the variables that will subsequently be 
bound. 

Suppose we have a universal formula whose variable is w, and 
whose body mentions additionally the quantified variables u and 
v. The result of translating the body will be a mapping from 
environments that bind u, v and w to boolean formulas. To 
translate the formula as a whole, we form a new mapping whose 
environments bind only u and v, and which, for a given pair of 
values u0 and v0, yields the conjunction of the formulas that the 
previous mapping yielded for environments of the form {u � u0, 
v � v0, w � wi} for all values wi of w. 

This approach follows the semantics of the logic: from each 
syntactic object, we create a function from environments to 
meanings. In the semantics, however, the environment binds not 
only quantified variables but also set and relation variables. In 
our translation, the values of set and relation variables are 
encoded as matrices of boolean variables, and the environment 
binds only the quantified variables. 

3.3 Tree Manipulations 

 
Rather than treating the mappings abstractly, we show how they 
are represented and manipulated concretely. Figure 2 defines the 
translation scheme in terms of the translation functions (on the 
left) and some utility functions (on the right). 

MT : formula → booleanFormula tree  
XT : expr → value tree  
� tree = (var × (index → � tree)) + � 
value = booleanFormulaMatrix + (index → value) 
 
MT [a in b] = merge (MT[a], MT[b],  λp,q. �

 ij
 {p

ij
 ⇒ q

ij
}) 

MT [! F] = map (MT[F], ¬) 
MT [F && G] = merge (MT[F], MT[F], ∧) 
MT [F || G] = merge (MT[F], MT[F], ∨) 
MT [all v: t | F] = fold (MT[F], �) 
MT [some v: t | F] = fold (MT[F], �) 
 
XT [a + b] = merge (XT[a], XT[b], λp,q.µr. r

ij
 = p

ij
 ∨ q

ij
) 

XT [a & b] = merge (XT[a], XT[b], λp,q.µr. r
ij
 = p

ij
 ∧ q

ij
) 

XT [a - b] = merge (XT[a], XT[b], λp,q.µr. r
ij
 = p

ij
 ∧ ¬q

ij
) 

XT [a . b] = merge (XT[a], XT[b], λp,q.µr. r
ij
 = ∃k. p

ik
 ∧ q

kj
) 

XT [~a] = map (XT[a], λp.(r | r
ij
 = p

ji
)) 

XT [+a] = map (XT[a], closure) 
XT [{v: t | F] = fold (MT[F], λF. µr. r

0i
 = F(i)) 

XT [a[v]] = merge (XT[a], XT[v], λs,x. µs
i
. x

ii
) 

XT [v] = (v, λi.(µr. r
0j
 = (i = j)))   when v is quantified  

XT [v] = create (v)    otherwise 
  

merge : � tree, � tree, (�,� →�) → � tree 
merge (x, y, o) = o(x, y) 
merge ((u,t1), (u,t2), o) = (u, λi. merge(t1(i),t2(i),o)) 
merge ((u,t1), (v,t2), o) = (u, λi. merge(t1(i),(v,t2),o))      when u < v 
merge ((u,t1), (v,t2), o) = (v, λi. merge((u,t1),t2(i),o))      when v < u 
merge ((u,t), y, o) = (u, λi. merge(t(i),y ,o)) 
merge (x, (v,t), o) = (v, λi. merge(x,t(i),o)) 

 
map : � tree, (�→�) → � tree 
map (x, o) = o(x) 
map ((u,t), o) = (u, λi.map (t(i),o)) 

 
fold : � tree, ((index→�)→ �) → � tree  
fold ((u,t), o) = o(t)    when t(i) elementary 
fold ((u,t), o) = (u, λi. fold(t (i),o))   otherwise 
 
create: var → value 
create (v) =  (r | r

0i
 = a fresh boolean variable F(v,i)) for v: S  

create (v) =  (r | r
ij
 = a fresh boolean variable F(v,i,j)) for v: S →T 

create (v) =  (r | r
i
= create (v

i
))    for v: S �t 

 

Figure 2: Translation rules and tree operations 



 

There are two kinds of mapping, one for parameterizing 
formulas and one for parameterizing values (represented as 
indexed matrices of boolean formulas). These mappings are 
represented as trees, whose leaf nodes are the formulas or values; 
the tree manipulations are independent of the leaf type, and are 
thus described on a polymorphic tree. The internal nodes are 
labelled with variable names, and their outgoing edges are 
labelled with indices that correspond to the values of the 
variables. 

For example, in a scope of 2, a relational formula with two free 
variables u and v would be represented as the tree shown in the 
top left-hand side of Figure 3. To find the formula for the case in 
which u takes on its first value, and v its second value, for 
example, we follow the first outgoing edge of u and the second 
outgoing edge of v, and reach the leaf formula x1. 

The translation rules involve applications of various tree 
operations defined in an ML-like notation on the right. These 
are: merge, which merges two trees by combining their leaves 
pairwise; map, which applies an operator to all the leaves; and 
fold, which collapses the lowest level of a tree by applying a 
function to all the leaves of each smallest subtree. 

To translate a compound formula, we first translate its 
constituent subformulas, and then merge the resulting trees, 
combining the formulas at their leaves. If the two trees have the 
same variables and they appear from root to leaf in the same 
order, merging is easy: leaves aside, the trees are isomorphic, and 
we simply create a new tree with the same structure whose leaves 
are the pairwise combinations of the leaves in the original trees. 

Unfortunately, the trees are not generally isomorphic, since 
different subformulas mention different variables. We impose an 
ordering on the variables (by numbering them according to their 
quantification depth), and an invariant on the trees that the 
variables appear in this order. Now to merge two trees, we must 
essentially interpose an extra level in one tree whenever it omits a 

variable appearing in the other (see the lower part of Figure 3). 
The algorithm is given, on the right of Figure 2. The cases are to 
be interpreted sequentially, with the first one that matches being 
applied; x and y stand for values, u and v for variables, and t, t1, 
and t2 for trees. 

The merge function takes a different operator for translating 
different kinds of formula or expression. For example, when 
translating an elementary formula a in b, the operator is 

λp,q. �
 ij
 {p

ij
 ⇒ q

ij
} 

which takes two matrices of boolean formulas, and returns the 
formula that says that, for every i and j, the formula in the ith row 
and jth column of p implies the formula in the same position in q. 
This embodies the intuition that if the values of p and q are 
represented as bit matrices, then for the relation q to represent a 
superset of the relation p, it must have a 1 wherever p does. When 
there are no quantifiers, the trees are all degenerate, and merge 
reduces to the direct application of the operator—exactly as in 
our previous scheme [15]. 

The operator for union expressions 

λp,q.( µr. r
ij
 = p

ij
 ∨ q

ij
) 

uses the definition operator µ; the expression µx.F denotes the 
value which when assigned to x makes the formula F true. So this 
operator says that the union of p and q is a matrix r such that the 
formula in the ith row and jth column of the result r is the 
disjunction of the corresponding formulas in the matrices of p 
and q. In other words, a pair belongs to the union of two 
relations if it belongs to either relation. 

The other tree functions used in the translation are simpler 
than merge. Unary operators are translated with a map function 
that creates a new tree in which a corresponding unary 
translation operator has been applied to each leaf. The negation 
of a formula, for example, is obtained by negating the boolean 
formula at each leaf. The transpose of an expression is obtained 
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Figure 3: Tree operations: fold (above), merge (below) 



 

by taking the mirror image of the matrix at each leaf. The 
transitive closure is obtained by applying an operator that 
computes closure using iterative doubling, as explained in [15]. 

Quantified formulas are translated using fold. Its second 
argument is an operator that takes a tree of depth 1. Since the 
variables in the tree are ordered by quantification depth, the 
translation of the body of a quantified formula is sure to be a tree 
in which the quantified variable appears last, just above the 
leaves. To obtain the meaning of the formula as a whole, we 
therefore collapse the subtrees at the leaves, by disjunction or 
conjunction depending on the quantifier.  

Set comprehensions are handled with fold too. Here, the 
operator creates a vector of boolean formulas, one for each leaf, 
in order, thus forming a set whose ith element is present when 
the ith value of the quantified variable makes the body formula 
true. 

Finally, quantified variables are translated to trees of unit 
depth in which the ith subtree is the vector whose jth element is 
true when i = j and false otherwise. Declared variables are 
translated into values: vectors and matrices of boolean variables 
for sets and relations respectively, and higher-dimensional 
structures for functions. In the definition of the function create, 
the indices range in the obvious way over the scope. 

3.4 Example Translation 

Our example formula 

all y: Y | ! x.r = y 

would be translated, in a scope of 2, as follows. For x, we generate 
the vector [x0 x1] and for the relation r, the matrix [r00 r01 , r10 r11], 
using 6 boolean variables in total. The variable y is represented as 
a tree whose root is labelled y, with branches to the two vectors [1 
0] and [0 1] that correspond to y taking the first and second value 
of the type Y respectively. 

Using the fourth M rule, the expression x.r is translated to 

[ (x
0
∧r

00
)  ∨  (x

1
∧r

10
) (x

0
∧r

01
)  ∨  (x

1
∧r

11
) ] 

The formula x.r = y gives a tree with y at the root, pointing to two 
formulas 

((x
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00
)  ∨  (x

1
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)) ∧ ¬ ((x

0
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that are true when x.r and y are equal for the first and second 
values of y respectively. We then map negation over the tree, 
which negates these two formulas, and then obtain the 
translation of the quantified formula by folding conjunction over 
the tree, obtaining 

¬ (((x
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1
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))) 

which is then presented to the SAT solver. Our implementation 
encapsulates boolean formulas in an abstract data type which 
allows it to simplify formulas during translation; the resulting 
formula would therefore be simpler than this. 

3.5 Conversion to CNF , Solving and Mapping Back 

The result of the translation step is a single boolean formula: that 
is, a formula over propositional variables with and ¬, ∧ and ∨. 
No tree structure can remain because the only free variables in 
the relational formula are declared sets and relations, which, as 
explained above, are translated into boolean variables and do not 
appear as intermediate nodes in the tree. 

This formula is converted to conjunctive normal form (CNF) 
before being handed to the solver. To avoid exponential blowup 
due to disjunctions, we introduce a temporary boolean variable 
for every subformula [29]. 

The solver, if it finds a solution, returns a model that assigns 
true or false to each boolean variable. From this assignment, we 
reconstruct a model of the relational formula as follows. If the 
scope is k, we create names T0, T1, … for each of the k atoms in 
each type T. For a relation r : S -> T, we look up in the 
assignment for each 0 ≤ i, j < k the value of each boolean variable 
vij that was used to encode the relation r, and insert into r the pair 
(Si, Tj) if this value is true. 

A solution to the boolean formula of Section 3.4, for example, 
has r00, r01 and x1 true, and all others false, which gives the result 
shown in Section 2.4. 

4 Results 
The analysis described here has been implemented in the Alloy 
Analyzer (AA)[21]. Alloy [16] is an attempt to combine the best 
features of Z [34] and the Object Constraint Language of UML 
[39] in a lightweight notation. It takes UML’s emphasis on binary 
relations, and the expression of constraints with sets of objects 
formed by ‘navigations’, but with Z’s much simpler semantics. 

4.1 Implementing the Analysis 

The tool implements the logic presented here as an intermediate 
language for Alloy, although it does not offer functions in their 
full generality. In its current version, Alloy only allows functions 
from basic types to relations (which we call ‘indexed relations’), 
and only outermost existentials are skolemized. Otherwise, the 
analysis is implemented as described here. 

The tool is roughly 50,000 lines of code, of which 15,000 
implement the front end (parsing, type inference, static semantic 
checks, schema calculus, translation to the intermediate 
language); 5,000 implement the translation that is the subject of 
this paper; 10,000 implement manipulations of the boolean 
formula (conversion to normal form, simplifications, conversion 
to various solver formats); 5,000 implement the user interface; 
and 15,000 implement a visualization mechanism. All the code is 
written in Java, except for the boolean formula manipulations, 
which are written in C. 

4.2 Choice of SAT Solvers 

The tool’s backend wraps a collection of off-the-shelf SAT solvers 
[4,31,32,41]. The deterministic solvers SATO [41] and RelSAT 
[4] seem to work best. Early on, we had some success with 



 

WalkSAT [31], a stochastic solver, but we assiduously avoided 
introducing too many temporary variables when converting to 
CNF [15]. This conversion step became a bottleneck, which was 
eliminated by more aggressive variable introduction. 
Unfortunately, the redundancy this adds to the formula foils 
stochastic solvers, so WalkSAT rarely works well. 

We learnt an interesting lesson in our experiments with 
solvers. In our eagerness for platform-independence, we planned 
initially to implement our own solvers in Java. Our prototype 
tool included a trie-based implementation [42], in Java, of the 
same Davis-Putnam (DP) algorithm [9] that underlies many 
deterministic solvers. Because WalkSAT outperformed it so 
dramatically [15], and because our own Java implementation of 
WalkSAT came within a factor of 3 of the performance of the C 
implementation, we foolishly attributed the failure of our DP 
implementation to the Davis-Putnam method itself. Later, we 
discovered that a highly tuned implementation of Davis Putnam, 
such as SATO, performed orders of magnitude better. This 
experience made us appreciate the importance of a flexible 
backend, to which we could attach new solvers as they became 
available. 

4.3 New Expressiveness 

The most important consequence of this work has been the 
ability to add quantifiers to our language. Our previous analysis 
was limited to pure relational formulas with no quantifiers. In 
principle, the first-order properties that arise in software 
specifications can always be written without quantifiers [36]. To 
say “everybody likes a winner” we could write 

Winner.~(Un \ likes)= {} 

In this formula, the relational expression following the dot (the 
transpose of the complement of the likes relation) maps persons 
to persons who don’t like them; the expression denotes persons 
who don’t like some winner; and the formula as a whole says that 
the set of such persons is empty. Needless to say, this style of 
specification did not win many admirers, despite its terseness. 
We experimented with an algorithm of Tarski’s [36] for 
performing the elimination automatically, but were not able to 
generate relational expressions of a reasonable size. 

Now, with quantifiers, we can write instead 

all p: Person | all w: Winner | w in p.likes 

Our experience so far, in six months of using the language and its 
tool, suggests that quantifiers and navigation expressions make a 
big difference. While NP [14,17], the language of our Nitpick 
checker, was usable only by dedicated experts, we have found 
that students with only a modest background in discrete 
mathematics can pick up Alloy in a couple of days. (Gaining 
proficiency takes much longer, of course, but that has more to do 
with learning how to construct focused, abstract models than 
with details of any language.) 

We have constructed and analyzed a variety of models in 
Alloy that would have been at the very least difficult to express in 
NP. Moreover, since the Alloy Analyzer (AA) is a far more 

powerful solver than Nitpick, we have been able to construct 
larger models. Whereas before we had to craft models carefully to 
make them analyzable, we no longer find it necessary to adjust 
our models, except to fix the (many) errors that the tool exposes. 
For a scope of 3, which is usually enough to catch most errors, 
Nitpick was limited to a state of about 5 relations; the new tool 
can handle 10 relations, and sometimes 20 or more, with ease. 
Examples include: 

· COM [22]. We took the Z specification of Sullivan et al [35] 
and translated it into Alloy. The resulting model is about 150 
lines long, and has 8 relations, 1 indexed relation, and 8 sets. 
Using AA, we were able to generate automatically the 
counterexamples that Sullivan and his colleagues had found 
by hand analysis. 

· Intentional Naming [26]. Sarfraz Khurshid constructed a 
model of the design of a name server that allows services to be 
looked up by their properties [1]. The model is 130 lines long, 
and has 11 relations, 1 indexed relation (ie, function from a 
basic type to a relation), and 8 sets. A variety of problems were 
discovered with the design. AA takes no longer than 5 seconds 
to find any of the counterexamples. 

· UML Metamodel [38]. We translated the entire core 
metamodel of UML from OCL [39], the constraint language 
of UML, into Alloy. The resulting model, which is about 400 
lines long, is about half the size of the OCL version. It has 41 
relations and 37 sets. We used AA to show that the metamodel 
is consistent, by generating a sample UML model that satisfies 
all the constraints (with additional constraints that rule out 
the trivial empty model). Finding this model takes 6 seconds. 
The reader should bear in mind when considering the size of 

these models that a language like Alloy, NP or Z tends to be 
much more succinct than the languages used by model checkers. 
The input to a model checker such as SMV [6] or SPIN [13] is a 
rather low-level program. A model of Mobile IP that we built in 
SMV was 10 times longer than our NP version. 

4.4 Performance 

As an experiment, we analyzed two groups of models. The first 
group consists of the three models mentioned above, which 
demonstrate the capability of the new language and analysis. The 
second group consists of three models originally written in NP 
and analyzed with our previous SAT-based analysis [15]: 

· Finder, a toy model of the Macintosh file system that uses 
transitive closure (which cannot be handled by tools that are 
restricted to first-order predicate logic); 

· Style, a model of an aspect of the paragraph style mechanism 
of Microsoft Word that was developed as a class exercise [16]; 

· Mobile IP, a model that exposed a flaw in an internet protocol 
for forwarding messages to mobile hosts [19]. 

We translated these into Alloy using quantifiers, and analyzed 
them in AA to test whether quantifiers incur a significant cost. 

The results are shown in Tables 1 and 2. For each example, 
and for a variety of scopes, we show the size of the space and 
some timings. The space is given as the number of bits used to 



 

encode an assignment of values to sets and relations, so 100 bits 
corresponds to roughly 1030 configurations. These results are 
averaged over a few problems for each case study, some 
satisfiable and some unsatisfiable. The analyses in Table 1 involve 
only invariants, so the number of configurations is the number of 
states; the analyses in Table 2 involve executions, so a 
configuration is a pair (or for Style, a triple) of states. The 
number of boolean variables in the generated formula is often 
much larger because of variable introduction. 

All timings are given in seconds, measured on a Pentium II 
with a 233MHz processor and 192MB of memory. Performance 
can often be significantly improved by selecting a different 
solver, or by tweaking solver parameters. All the measurements 
in the table, however, were taken using RelSAT with its default 
settings. Translation (which is included in the timings) takes less 
than 10 seconds in every case; the SAT solver is the bottleneck. 

For the first group, two kinds of analysis were performed 
(Table 1). The column marked Instance gives the time taken to 
find a solution when one exists: for the UML example, this 
instance demonstrates consistency of the constraint, and for all 
others it represents a counterexample to a theorem (or for 
Intentional Naming, counterexamples to several theorems). The 
column marked Exhaust gives the time taken to exhaust the 
space when no solutions exist. The UML example includes 
constraints that require at least one of each model element; this 
rules out a solution in a scope of 2. For all other cases, the 
analyses in this column involve checking a variety of valid 
theorems. Because no theorems were checked for the UML 
metamodel, there are no values for exhausting the state space for 
scopes above 2. 

As can be seen, the new method can handle spaces of 100 bits 
(1030 configurations) with ease. When the solver has to exhaust 
the space, the timings, and their variances, increase dramatically 
with scope. In fact, almost all the problems for which an instance 
exists have an instance in a small scope (2 for COM, 2 and 3 for 
Intentional Naming, and 3 for UML). The timings for larger 
scopes are thus a bit specious, but they do suggest that it is better 
to start with a small scope and increase it gradually. 

For the second group (Table 2), we considered only cases in 
which a solution is found, since our previous analysis used a 
stochastic solver that ran forever when no solution existed. The 
column Old gives the timings from our old paper. These were run 
on a machine that is about two thirds of the speed of the machine 
on which our new experiments were performed, so these timings 
could be reduced. The new method sometimes performs worse 
than the old method, probably because the relational expressions 
give a tighter encoding of the problem. But it scales better: 
because of a translation bottleneck (overcome by our use of 
standard methods [28]) the previous method could not handle 
specs of the size of those in Table 1, even if they were written 
without quantifiers. 

5 Related Work 
Unlike our previous analysis [15], the analysis described here can 
handle quantifiers, and can handle larger specifications. Both 
analyses dramatically outperform an earlier analysis, based on 
explicit enumeration of set and relation values [18], on which our 
Nitpick checker was based. Recently, Craig Damon has improved 
this earlier analysis with more powerful pruning schemes, but 
since he has not yet incorporated quantifiers, it is not possible to 
compare to our new analysis. 

As far as we know, there are no other analyses for a first-order 
logic that handle quantifiers and transitive closure. A variety of 
model finders have been developed for group-theoretic 
investigations [eg, 33]; these work on a logic of uninterpreted 
functions, and do not handle relations or closure. Several 
animators for Z have been developed using Prolog as an 
underlying engine [11,12, 24,43], but these cannot handle large 
spaces. 

Most other tools for relational notations are less automatic. 
Theorem provers (such as Z/Eves [7] and PVS [28]) can—unlike 
the Alloy Analyzer—prove theorems, but do not generate 
counterexamples, and need help with lemmas and proof strategy. 
Execution engines (such as the IFAD tool [2] for VDM) limit the 
notation to an executable subset and make the user provide test 
cases. 

Example Scope Space  Old [16] New 

Finder 5 160 bits 3s 9s 

 6 216 162s 13s 

Style 3 90 1s 3s 

4 156 2s 3s  

5 250 11s 6s 

Mobile IP 3 175 0s 1s 

4 280 3s 6s  

5 600 8s 29s 

Table 2: Results for old models 

Example Scope Space  Instance Exhaust 

COM 2 60 bits 3s 1–4s 

3 132 11s 37–218s  

4 240 71s 240–?s 

2 64 1s 1s Intentional 
Naming 3 141 3–31s 19–59s 

 4 256 18–346s ?? 

2 228 n/a 6s 

3 465 11s n/a 

UML 
Metamodel 
 4 784 17s n/a 

Table 1: Results for new models 
 



 

Model checkers are designed to handle the complexity of 
interleaving, and not complexity in the state structure itself. 
Their input languages do not offer relations as types, and require 
relational operators to be specified algorithmically at a low level. 
Explicit model checkers (such as SPIN [13]) do not permit 
declarative specification, in which invariants and operations are 
given by conjunction of constraints. 

This and our previous analysis [15] might be described as 
‘symbolic’, because, as in symbolic model checking [6], there is 
no explicit representation of individual states. Our notion of 
scope is implicit in most applications of model checking, since 
the model itself usually assumes some fixed number of 
processors, cache lines, etc. 

Boolean satisfaction has been used before in planning [10,25] 
(which is essentially reachability analysis) and more recently in 
linear temporal logic model checking [6], but the encodings are 
rather different from that described here. 

6 Future Prospects 
Relational logic has many applications. Our analysis might be 
useful in a variety of tools, beyond the Alloy Analyzer: 

· A CASE tool (such as Rose [30]) might use our analysis to 
generate object diagrams from class diagrams; 

· An architectural style tool might use our analysis to check the 
consistency of style constraints (expressed, for example in 
AML [40] or Darwin [27]) and generate sample architectures;  

· A tool for developing requirements (such as KAOS [37]) 
might use our analysis to check the consistency of goals; 

· A refinement tool (such as the B tool [3]) might use our 
analysis as a verification condition tester, to find 
counterexamples to proof obligations before attempting a 
proof. 
We have recently developed a strategy for translating code 

into this logic. Using our analysis, we are able to check a variety 
of code properties, such as absence of executions that 
dereference null pointers or create undesirable sharings, and 
conformance to user-defined specifications [23]. 
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