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ABSTRACT
An approach is described for checking the methods of a class
against a full specification. It shares with traditional model
checking the idea of exhausting the entire space of executions
within some finite bounds, and with traditional verification
the idea of modular analysis, in which a method is analyzed,
in isolation, for all possible calling contexts.

The analysis involves an automatic two-phase reduction:
first, to an intermediate form in relational logic (using a new
encoding described here), and second, to a boolean formula
(using existing techniques), which is then handed to an off-
the-shelf SAT solver.

A variety of implementations of the Java Collections Frame-
work’s List interface were checked against existing JML spec-
ifications. The analysis revealed bugs in the implementa-
tions, as well as errors in the specifications themselves.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—model checking, validation; F.4.3 [Mathematical
Logic]: Formal Languages—Alloy

General Terms
Verification, Reliability, Languages, Algorithms

Keywords
software model checking, SAT, formal methods, first-order
logic, formal verification, Alloy
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1. INTRODUCTION
Robust components are essential to the construction of

dependable software systems. Although the early vision of a
software component industry [25] has not been realized [22],
there is at least widespread use of data structure libraries,
such as the Java Collections Framework [27]. At the same
time, much progress has been made in the field of program
verification, especially in the use of theorem proving [14],
static analysis [23, 35], and model checking [7, 8, 13, 15, 34,
12, 26, 16].

A major obstacle to verifying components against their
specifications still remains, however. It seems that neither
theorem proving nor static analysis can automatically check
the kinds of rich properties that appear in the specifications
of data structure libraries, so their use tends to be restricted
to simpler (but nonetheless important) properties, for exam-
ple that there are no null pointer dereferences or illegal array
accesses.

Explicit state model checkers, such as Java PathFinder
[34], can actually check rich properties since they perform
an explicit search in which arbitrary runtime assertions can
be executed, but their analysis is not modular. They can
be used to check components in the context of a particular
program, but they cannot be used to check a component in
isolation against its specification, accounting for all possible
contexts of use.

The research reported in this paper is part of a larger
project whose aim is to develop a practical technique for
modular code verification. Like traditional verification –
and in contrast to most work on model checking – it an-
alyzes a method in isolation, for all calling contexts. But
like model checking, and unlike techniques based on theo-
rem proving and static analysis, the analysis is exhaustive,
but only with respect to some finite bounds. A successful
“verification” may therefore fail to find a bug in a compo-
nent, but because of the size of the search space, this should
rarely occur. It seems reasonable to retain the term “verifi-
cation” to distinguish this kind of analysis from testing and
from analyses that do not handle full specifications.

The controversial thesis underlying the project is that
code can be verified by a precise reduction to SAT (boolean
satisfiability), with careful encodings, but without any ab-
straction. For checking partial properties, abstraction seems
very desirable, but for properties that cover all details of be-
havior, abstraction is likely to lose crucial information.

The analysis involves an automatic two-phase reduction.
First, the code is translated to an intermediate form in Alloy,
a relational logic suitable for describing heap-manipulating



code [30, 18]. The translation scheme builds upon prior work
on the Jalloy tool [19, 33, 32]. Like Jalloy, the tool bounds
the analysis by the size of the heap and the number of loop
unrollings explored.

In the second phase of the reduction, existing techniques
[17] are used to translate the Alloy logic to a boolean for-
mula, which is then handed to an off-the-shelf SAT solver.
Unlike Jalloy, the reduction of the generated relational for-
mula to SAT is not performed by the Alloy Analyzer [5],
which was designed as a desktop CAD tool and not as a
backend to other analysis tools, but by a new relational en-
gine designed expressly for this kind of application [29]. The
features of this engine are exploited by the new first phase
translation.

These ideas were applied to a realistic and non-trivial
problem: the verification of a variety of implementations
of a list datatype. The list was chosen because of its ubiq-
uity in object-oriented programs; because it is one of the
simplest datatypes found in libraries (and thus a good start-
ing point for research), and yet a building block for many
other datatypes; and because, to our knowledge, despite all
this, no other research project has (to our knowledge) suc-
ceeded in automatically verifying a practical list implemen-
tation.

Our analysis requires the user to write, or otherwise ob-
tain, a specification against which the method will be checked.
For this case study, we used a pre-existing specification of
the Java List interface written in the Java Modeling Lan-
guage (JML) [4]. Ten implementations of the JML spec-
ification were considered; five of these were variants into
which defects had been seeded for an exercise on test cover-
age in an undergraduate software engineering class [1]. The
remaining five were the standard implementation from the
Java Collections Framework, two implementations from the
GNU Trove library [2], and two implementations from the
Apache Jakarta Commons-Collections library [3].

Once a specification is written, a new implementation can
be checked against it automatically without additional work
from the user, unless the data representation has changed.
For each distinct data representation, we wrote a represen-
tation invariant and an abstraction function to relate that
representation to the abstract values of the specification.

In summary, this paper describes an approach to
checking object-oriented code against detailed specifications
that is fully automatic, demanding from the user only a
specification of the method to be checked, an indication of
the size of the space to be searched, and for each distinct
representation, an abstraction function and representation
invariant.

The focus of the paper is the scheme by which the code is
translated into relational logic for subsequent solving. The
case study demonstrates the feasibility of the approach, and
contributes some evidence to the small scope hypothesis [6]
that most defects have small counterexamples.

2. RELATIONAL LOGIC
The logic used for both specification and representation

of the code is a core subset of the Alloy modeling language
[30]. The analysis solves problems written in the logic with
the Kodkod relational engine [29].

2.1 Syntax and Engine
Figure 1 gives the grammar for the relational logic. A

problem is a set of relation declarations, each which specifies
the arity of a relation variable, and a formula in which the
declared relations appear as free variables. The formula and
expr syntactic productions define a standard relational logic
with transitive closure, first order quantifiers, and logical
connectives. A relation can have any finite arity. Sets are
treated as unary relations (relations of arity 1), and scalars
are singleton sets.

A model of a formula is a binding of the formula’s rela-
tional variables to sets of tuples drawn from a universe of
atoms. An engine (such as Kodkod) that searches for models
of a formula in a finite universe is called a model finder.

The problem of assigning teachers to courses, for example,
where each course must have exactly one teacher, and each
teacher can teach at most one course, can be formulated as
follows:

Teacher : 1, Course : 1, teach : 2
(all t : Teacher | one t.teach or no t.teach) and
(all c : Course | one teach.c)

This problem declares three relational variables: the sets
Teacher and Course, representing the teachers and courses,
respectively, and the binary relation teach, mapping teachers
to courses. The formula constrains teach to be a bijective
partial function.

In addition to the problem to be solved, Kodkod requires
a universe of atoms to be specified, and an upper bound on
each relation, consisting of the set of tuples that the rela-
tion may contain. A lower bound for each relation — a set
of tuples it must contain — may also be given. The upper
bounds determine the scope of the space being analyzed;
the lower bounds comprise a partial solution or partial in-
stance. The end user does not provide these directly; both
are byproducts of the analysis, although the upper bounds
are derived in part from the bounds indicated by the user.

Kodkod translates the logic problem, upper bounds, and
partial instances into a boolean formula and invokes a SAT
solver to find its satisfying solutions. Kodkod’s support for
partial instances is one of its key advantages over the Alloy
Analyzer, and one which our tool exploits in its analysis.
Because partial instances reflect fixed parts of the solution
that do not need to be discovered, they enable Kodkod to
reduce the sizes of the boolean formulas it generates.

2.2 Relational View of the Heap
The translation of object-oriented code into relational logic,

described in detail in Section 4.3, is based on a relational
view of the heap [20]. In this view, fields are binary, func-
tional relations that map elements of their class to elements
of their target type; and local variables and arguments are
singleton sets.

In this view, field dereference becomes relational join. To
illustrate, consider the field f represented by the functional
relation F, and the variable x represented by the singleton
set X. Because X is a singleton and F is a function, the join
expression X.F yields a singleton set representing the value
of the dereference x.f. An update to a field is encoded
as a relational override. After the statement x.f = y, for
example, the f field can be represented by the expression
(F ++ (X –> Y)), meaning the relation F with tuples whose
first element is X replaced by the tuple 〈 X, Y 〉.



Figure 1 Relational Logic Syntax

problem := relDecl∗ formula

relDecl := var : arity

varDecl := var : expr

arity := 1 | 2 | 3 | 4 | . . .

var := identifier

formula :=

expr in expr subset

| expr = expr equality

| expr != expr inequality

| some expr non-empty

| one expr singleton

| no expr empty

| not formula negation

| formula and formula conjunction

| formula or formula disjunction

| all varDecl | formula universal

| some varDecl | formula existential

expr :=

var variable

| expr + expr union

| expr & expr intersection

| expr – expr difference

| expr . expr join

| expr –> expr product

| expr ++ expr override

| ∼ expr transpose

|ˆexpr closure

| {varDecl | formula} comprehension

| if formula then expr else expr conditional

3. EXAMPLE
This section demonstrates the analysis from a user’s per-

spective on a small example: checking a set of integers rep-
resented as a linked list against a specification in relational
logic (Figure 2). The linked list is singly-linked, circular,
and has a dummy header entry.

The analysis requires the user to provide:

• a specification of the method to be checked;

• a representation invariant on the concrete fields of the
datatype; and

• a bound on the size of the heap, integer bit width, and
number of loop iterations;

and, if the data representation of the code differs from the
representation used in the specification,

• an abstraction function that relates the concrete fields
to the abstract values of the specification.

These elements are shown in Figure 2 in a format con-
cocted for the purposes of this example, based on the rela-
tional logic of Figure 1. 1

The specfield declaration introduces a “specification
field” elems, the abstract value of the datatype, which is
a binary relation mapping instances of LinkedIntSet to in-
tegers. The concrete fields header, next, and element are
likewise treated as binary relations, in accordance with the
relational view of the heap. Following conventional object-
oriented practice, references to this are omitted, and elems

and header are short for this.elems and this.header when
they appear in formulas.

The abstraction tag labels the abstraction function,
which relates the concrete header, next, and element fields,
represented as binary relations, to the specification field.
The expression (header.̂ next - header) denotes the set
of all the entries in the list except the header. The join of
this set with the element relation evaluates to the set of all
the integers in the list.

The representation invariant, marked by the invariant

tag, constrains the list to be circular by stating that the
header entry is reachable from itself; and it constrains the
list to not have duplicates by stating that every unequal pair
of non-dummy entries has unequal elements.

1In the case study, the specifications were presented to the
tool in JML, but the abstraction function and invariant were
actually written directly in the logic.

Figure 2 Integer Set Implementation & Specification

00 class LinkedIntSet {

01

02 /*

03 * @specfield

04 * elems : set int

05 *

06 * @abstraction

07 * elems = (header.^next - header).element

08 *

09 * @invariant

10 * (header in header.^next) and

11 * (all e1, e2: header.^next - header |

12 * e1 != e2 => e1.element != e2.element)

13 */

14

15 Entry header;

16

17 /*

18 * @ensures no elems’

19 * @modifies elems

20 */

21 void clear() {

22 this.header.next = this.header;

23 }

24

25 /*

26 * @check for 4 Entry, 4 int, 3 iteration

27 * @ensures (return = true) <=> (i in elems)

28 */

29 boolean contains(int i) {

30 Entry e = this.header.next;

31 while (e != this.header) {

32 if (e.element = i)

33 return true;

34 e = e.next;

35 }

36 return false;

37 }

38 }

39

40 class Entry {

41 Entry next;

42 int element;

43 }



In the specification of a method, the ensures clause labels
the post-condition and the modifies clauses lists the fields
that a method may modify. The formula (no elems′) in the
clear specification states that the set of integers in the list
in the post-state is empty, and the modifies clause allows no
other field besides elems to be modified. The specification
of contains states that the return value is true if and only
if the argument is a subset of the set of integers in the list,
and the lack of a modifies clause means no field is modified.

The check tag indicates that contains is the method to
be analyzed, and it specifies the scope of the analysis, lim-
iting the heap to at most 4 instances of the Entry class, the
integers to those available within a bit width of 4; and it
bounds the number of iterations of a loop to 3.

The tool completes this analysis of the contains method
in a few seconds and reports that no specification violations
are found. This is not a proof that the method satisfies its
specification on all inputs, only that it does so on all inputs
within scope. The user’s confidence can be increased by
running the analysis again with a larger bounds.

The method in this case is correct, so increasing the bounds
will not reveal bugs. But let’s suppose that the developer ac-
cidentally swaps true and false in the contains method.
Now, the tool finds a trace of the code that violates the
specification. Though it currently lacks the ability to dis-
play a trace graphically, it can produce textual output like
the following:

pre-state:

this = S0
i = 1
header = <S0, E0>
next = <E0, E1>, <E1, E2>, <E2, E0>
element = <E0, 0>, <E1, 2>, <E2, 1>
elems = <S0, 1>, <S0, 2>

Line 30 Entry e = this.header.next:

e = E1
Line 31 while (e != this.header):

true
Line 32 if (e.element = 1):

false
Line 34 e = e.next:

e = E2
Line 31 while (e != this.header):

true
Line 32 if (e.element = 1):

true
Line 33 return false:

return = false
post-state:

e = E2
return = false

The beginning of the output displays the value of ev-
ery parameter and field in the pre-state. In this execution,
contains is called with an integer argument 1 and a receiver
argument S0, whose abstract value is the set containing in-
tegers 1 and 2. Next, the output shows the lines of code
executed, the values assigned to variables and fields at those
lines, and the boolean result of evaluating the conditions on
branches. Lastly, it shows the post-state values of the vari-
ables and fields that are modified during the execution. In
the trace above, the method returns false, contrary to its
specification.

4. APPROACH

4.1 Basics
The basic idea underlying the approach is as follows. From

the code of a procedure, the tool automatically obtains a
formula P(s, s’) in relational logic that constrains the rela-
tionship between a pre-state s and a post-state s’, and holds
whenever an execution exists from s that terminates in s’. A
second formula S(s, s’) is obtained from a user-provided spec-
ification, and its negation is conjoined to the first, obtaining
the formula

P(s, s’) and not S(s, s’)

which is true exactly for those executions that are possible
but which violate the specification. These counterexamples
are models of the formula, obtained by translating the re-
lational formula to a boolean formula, and applying a SAT
solver to it.

The formula P is obtained by a translation that assumes
that each loop is executed at most some small number of
times. An additional approximation is introduced by a bound
on the size of heap, which the user specifies as a limit on the
number of instances of each type that may exist. Both of
these approximations are underapproximations — they elim-
inate possible behaviors. Thus, any counterexample gener-
ated will be valid, either demonstrating a defect in the code
or a flaw in the specification, but defects may be missed.

When checking the code of an abstract type such as
LinkedIntSet, the (abstract) representation used in the
specification will not be the same as the (concrete) represen-
tation used in the code. The standard technique for bridging
the gap involves the user providing an abstraction function
[11] that interprets each concrete value as an abstract one.
In this logical setting, the abstraction is provided as a for-
mula A(c, a) that relates a concrete and an abstract state.

Procedure specifications have an implied pre-condition
that their datatype arguments are well-formed. This well-
formedness property is captured by a representation invari-
ant R(c). Thus, to check the procedure for conformance to
the specification, the analysis searches for solutions to the
following formula:

R(c) and P(c, c’) and A(c, a) and A(c’, a’) and not S(a, a’) (1)

A solution, if one exists, witnesses a pair of concrete states
whose corresponding abstract states do not satisfy the spec-
ification – a counterexample to the claim that the procedure
satisfies the specification.

When checking multiple implementations against the same
specification, the specification need only be written once,
while a new abstraction function and representation invari-
ant is needed for each unique representation. The bounds
on the analysis is trivial to enter and change.

4.2 Preprocessing
Before translating a procedure into relational logic, our

tool automatically preprocesses the procedure’s code into a
form that is more amenable to analysis. First, each loop in
the procedure is unrolled into a nested if-statement, with
an assume statement containing the negation of the loop
condition appended to the end of the innermost if-statement.
Unrolling the loop in the contains method (Figure 2) for
two iterations yields the following:



if (e != this.header) {

if (e.element = i)

return true;

e = e.next;

if (e != this.header) {

if (e.element = i)

return true;

e = e.next;

assume e == this.header;

}

}

After loop unrolling, our tool resolves dynamic dispatch
by transforming each virtual call into a series of tests on
the type of the receiver argument. Each test is followed
by an invocation of the concrete method provided by that
type. Currently, a simple dataflow analysis is used to deter-
mine the potential target methods of an invocation, though
a more sophisticated analysis could be easily plugged in.

Next, the procedure is transformed into a control-flow
graph in which all expressions are side-effect free. The syn-
tax for the CFG, shown in Figure 3, should be thought of as
describing a directed acyclic graph in which statements can
be shared, rather than a tree. A procedure in this syntax
has any number of parameter variables, a single “return”
variable, and a body which is a statement. Note that there
are no traditional “return” statements in the syntax; assign-
ments to the return variable take their place.

Finally, all procedure calls are inlined. Recursion is un-
rolled in a manner analogous to loop unrolling.

4.3 From Code to Logic
After these preprocessing steps, the transformed proce-

dure is encoded as a relational logic problem. A binary
relation is declared for each field and a unary relation for
each class and procedure parameter, along with the prede-
fined unary relations nullRel, trueRel, and falseRel to represent
the program constants null, true, and false.

In an analysis of the contains method in Figure 2, for
example, the encoding would create the following relation
declarations:

LinkedIntSet : 1, Entry : 1, int : 1,

header : 2, next : 2, element : 2,

this : 1, i : 1, nullRel : 1, trueRel : 1, falseRel : 1

The relation introduced for each class represents the ex-
tent of that class, the set of all instances of the class that
can exist over the lifetime of the procedure. The declared
relations for variables and fields, later referred to as “pre-
relations”, will represent values in the pre-state (when the
procedure is called). The encoding will construct a “post-
expression” for each variable and field, representing the value
of that variable or field in the post-state (when the proce-
dure terminates).

The encoding also builds a termination condition, a for-
mula over the pre-relations and post-expressions that must
be true for the procedure to terminate. Finally, the tool con-
structs Formula 1 (Section 4.1), where the pre-relations form
the concrete pre-state c, the post-expressions form the con-
crete post-state c’, and the termination condition becomes
P. Together with the relation declarations, this formula com-
prises the logic problem that is delegated to Kodkod.

To construct the post-expressions and the termination
condition, the encoding performs a symbolic execution [21]
of the code. For each program point, the execution main-
tains 1) an environment mapping variables and fields to re-
lational expressions for their values, and 2) a constraint on
those expressions that must be true for the program to reach
that point. Initially, the environment maps each field and
variable to its pre-relation, and the constraint states that
each field pre-relation is a function and that each parameter
pre-relation is a singleton. For the contains method, the
initial constraint would be:

(all x : LinkedIntSet | one x.header) and

(all x : Entry | one x.next) and

(all x : Entry | one x.element) and

(one this) and (one i)

The symbolic execution rules (Figure 4) describe how the
final environment and constraint are obtained in terms of
3 functions: U (for “update”), C (for “constraint”), and
X (for “expression”). When provided a statement and an
initial environment, U yields a new environment, and C
yields a formula to conjoin to the current constraint. When
provided a (side-effect free) JExpr and an environment, X
yields an relational expression for the value of that JExpr in
that environment. The function extent maps classes to their
extent relations.

Not all statement kinds are shown; calls are assumed to
have been inlined (Section 4.2), and constructors are dis-
cussed informally below (Section 4.3.2). For any other state-
ment S for which a rule for U or C is not given explicitly,
U JS ,EK = E and C JS ,EK = trueRel . The treatment of in-
tegers is also discussed informally below (Section 4.3.1).

The definition of X follows straightforwardly from the re-
lational view of the heap. Note that in all these rules, the
relational operators are syntactic. For example, in the rule
for a dereference expression

X Je1 .e2 ,EK = (X Je1 ,EK).(X Je2 ,EK)

the dot on the right-hand side constructs a new join expres-
sion from the results of the calls to X .

To illustrate U , consider the rule for a field update:

U Je1 .y = e2 ,EK =
E [y 7→ (E(y) ++ (X Je1 ,EK −> X Je2 ,EK))]

This rule states that the expression for the field y after the
update is a new override expression whose left operand is
the current expression for y and whose right operand is a
new cross product expression of the current expressions for
e1 and e2 . In other words, y is overridden with a mapping
from e1 to e2 .

The clear method in Figure 2 would trigger this field up-
date rule. Assuming the initial environment binds each field
and parameter to relations of the same name, the environ-
ment immediately after the statement would bind the next

field to the relational expression

next ++ (this.header –> this.header)

The encoding of branches makes use of the conditional
expressions in the logic. Consider the simple if-statement

if (c) then x = a; else x = b;

If the environment prior to this if-statement maps a, b, and c

to expressions of the same name, then the environment after
the if-statement would map x to the conditional expression
(if c then a else b).



Figure 3 Procedure Syntax with Side-Effect Free Expressions

Procedure ::= procid (Var∗) returns Var { Stmt }

Stmt ::= ElemStmt | BranchStmt | ElemStmt;Stmt
ElemStmt ::= AssignStmt | UpdateStmt | CallStmt |

NewStmt | AssumeStmt
BranchStmt ::= if JExpr then Stmt else Stmt
AssignStmt ::= Var = JExpr
UpdateStmt ::= JExpr.Field = JExpr
CallStmt ::= [Var =] procid(JExpr∗)
NewStmt ::= Var = new Class
AssumeStmt ::= assume JExpr

JExpr ::= Var | ConstantExpr | JExpr.Field |
BinaryExpr | UnaryExpr | InstanceOfExpr

ConstantExpr ::= null | true | false | 0 | 1 | -1 | 2 | -2 | . . .
BinaryExpr ::= JExpr BinaryOp JExpr
UnaryExpr ::= UnaryOp JExpr
InstanceOfExpr ::= JExpr instanceof Class
Var,Field,Class ::= identifier

BinaryOp ::= && | || | = | < | > | + | − | * | \
UnaryOp ::= - | !

Figure 4 Semantics of the Symbolic Execution

Env = (Var + Field) → expr

U : Stmt → Env → Env
C : Stmt → Env → formula
X : JExpr → Env → expr

extent : Class → Relation
nullRel , trueRel , falseRel : Relation

U Jv = e,EK = E [v 7→ X Je,EK]

U Je1 .y = e2 ,EK =
E [y 7→ (E(y) ++ (X Je1 ,EK −> X Je2 ,EK))]

U Jif e then S1 else S2 ,EK = E ′ s.t
let E1 = U JS1 ,EK, E2 = U JS2 ,EK, f = e2f (X Je,EK)
∀ v : Var ∪ Field | E ′(v) = if f then E1 (x ) else E2 (x )

U JS1 ;S2 ,EK = U JS2 ,U JS1 ,EKK

C Jassume e,EK = e2f (X Je,EK)

C Jif e then S1 else S2 ,EK = F ′ s.t .
let F1 = C JS1 ,EK, F2 = C JS2 ,EK, f = e2f (X Je,EK)

F ′ = (f implies F1 ) and ((not f ) implies F2 )

C JS1 ;S2 ,EK =
C JS1 ,EK and C JS2 ,U JS1 ,EKK

X Jv ,EK = E(v)
X Je1 .e2 ,EK = (X Je1 ,EK).(X Je2 ,EK)
X Je1 = e2 ,EK = f2e(X Je1 ,EK in X Je2 ,EK)
X Je1 && e2 ,EK = f2e(e2f (X Je1 ,EK) and e2f (X Je2 ,EK))
X Je1 || e2 ,EK = f2e(e2f (X Je1 ,EK) or e2f (X Je2 ,EK))
X J!e,EK = f2e(¬e2f (X Je,EK))
X Je instanceof c,EK = f2e(X Je,EK in extent(c))
X Jnull ,EK = nullRel
X Jtrue,EK = trueRel
X Jfalse,EK = falseRel

e2f (e) = e in trueRel
f2e(f ) = if f then trueRel else falseRel

To illustrate the purpose of C consider applying the rule

C Jassume eK = e2f (X Je,EK),
where e2f (e) = e in trueRel

to the assume statement

assume x.f;

where the field f is of type boolean. The result is the con-
straint (x.f in trueRel). The helper functions e2f and f2e con-
vert back and forth between boolean expressions and for-
mulas. They are required because the procedure syntax,
like the grammar for most programming languages, treats
boolean formulas as expressions, while the logic does not.

4.3.1 Integers
To accommodate integer arithmetic, for which the rela-

tional logic provides no built-in support, several predefined
relations are declared at the outset:

• a relation representing the set of all integers, the extent
of the integer type;

• inc, a binary relation that totally orders the integers
from the smallest to the greatest: for all integers i

except the greatest integer, i.inc equals i + 1;

• add, a ternary relation mapping the two integer operands
to the two’s complement representation of their sum,
so that the addition of i and j can be written j.(i.add);

• and a ternary relation for all other binary arithmetic
operators (subtract, multiply, divide, bit shift, etc.)

Inequalities are expressed with inc: i > j is encoded as
(i in j.̂ inc), where j.̂ inc is the transitive closure of the inc

relation, and j.̂ inc, therefore, is the set of all integers greater
than j.

This approach to handling arithmetic in SAT, in contrast
to a more conventional approach in which arithmetic oper-
ators are represented with boolean circuits over bit-strings,
exploits Kodkod’s partial instance facility. The tool com-
pletely pre-computes each of the integer relations for all the
integers within the user-provided bit width. It then pro-
vides each set of tuples to Kodkod as both the upper and
lower bounds for its respective relation. (Recall from Sec-
tion 2.1 that an upper bound is a set of tuples that a rela-
tion may contain, and a lowerbound is a set of tuples that it
must contain). In effect, the integer relations are treated as
constants, whose possible values Kodkod does not need to
explore. This approach is far easier to implement than the
conventional approach, although its efficiency remains to be
determined.



4.3.2 Constructors
To encode the creation of new objects, our tool declares at

the outset a new binary relation for each class that totally
orders all the instances in the extent of that class. The total
order represents the sequence in which objects of the class
will be constructed over the course of the procedure.

The symbolic execution environment, which maps each
field and variable to an expression for its value, is augmented
by an additional mapping from each class to an expression
for the last instance created of that class. When a New state-
ment is reached, an expression is constructed representing
the new object, from the ordering and the environment.

This trick allows object creation to be represented deter-
ministically as an expression; the inherent non-determinism
in the semantics of constructors is reflected in the fact that
the ordering is unconstrained. Because object references are
uninterpreted, symmetry can be broken, and, using the same
partial instance technique employed for integers, the order-
ing can actually be given a pre-computed constant value.

5. EXPERIMENTS
The analysis was applied to a variety of linked list im-

plementations of the java.util.List interface, drawn from
the Sun Collections Framework, the GNU Trove library,
the Apache Jakarta Commons-Collections library, and some
variants of the Sun implementation that had been seeded
with bugs for an MIT software engineering class.

JML specifications for the following twelve List meth-
ods were mechanically translated into the relational logic:
add(int, Object), add(Object), clear, contains, get,
indexOf, isEmpty, lastIndexOf, remove(int), remove(

Object), set, and size. For each unique representation,
of which there were three, we wrote a representation invari-
ant and an abstraction function to relate the concrete fields
of the representation to the abstract values of the JML List
specification.

We used our tool to check the implementations for con-
formance to the JML specifications. The analyses revealed
bugs in the implementations, as well as errors in the speci-
fications themselves.

5.1 JML Specifications
Figure 5 gives the JML specification of the get method

in the Java List interface. The specification contains a sin-
gle model field of type JMLEqualsSequence named theList.
JML model fields represent the abstract values of their types;
they are the terms in which JML method specifications are
written. The JMLEqualsSequence is one of several “model
collections” that come built-in with JML and that serve as
the primitive building blocks upon which more complex JML
specifications are written.

The JML specification for get is divided into two cases:
the normal behavior (when the index argument is within
the bounds of the list) and the exceptional behavior (when
the index is out of bounds). In the normal case, the re-
sult is equal to the element at the specified index in the
model field, and in the exceptional case the method sig-
nals an IndexOutOfBoundsException. Both cases include
the “assignable \nothing” clause, meaning no model field
is modified; therefore, as the specification redundantly indi-
cates, the method is pure.

The specifications of the model collections themselves, in-
cluding JMLEqualsSequence, consist only of informal En-

Figure 5 JML List Specification

public interface List extends Collection {

/*+@ public model instance non_null

@ JMLEqualsSequence theList;

@*/

/*+@ public normal_behavior

@ requires 0 <= index && index < size();

@ assignable \nothing;

@ ensures \result == theList.get(index);

@ also

@ public exceptional_behavior

@ requires !(0 <= index && index < size());

@ assignable \nothing;

@ signals_only IndexOutOfBoundsException;

@*/

/*@ pure @*/ Object get(int index);

}

glish text, so an automatic translation of JML to relational
logic must include built-in encodings of them. The tool for-
mally represents a JMLEqualsSequence as a binary relation
that maps each nonnegative integer to an object (or null)
and contains no gaps between the integers that it maps.

We label this binary relation from integers to objects in
the pre-state as theList and in the post-state as theList’. Our
mechanical translation of JML to relational logic yields the
following specification of the get method:

((lte(0, index) and lt(index, length(theList))) =>
(result = index.theList and throw = null)) and

(!(lte(0, index) and lt(index, length(theList))) =>
(throw in IndexOutOfBoundsException)) and

(theList = theList’)

The index relation is the singleton set representing the
value of the integer argument to the procedure. The
result and throw relations are the sets representing the return
value and the “thrown” value, respectively. If a procedure
does not raise an exception, throw is null and result is a
singleton; if an exception is raised, throw is a singleton and
result is unconstrained. Finally, IndexOutOfBoundsException is
the extent of — a set containing all the instances of — the
IndexOutOfBoundsException class.

The lt and lte functions are built-in representations of the
less-than and less-than-or-equal comparisons that package
the inc relation discussed in Section 4.3.1, and the length

function accepts a list represented as a binary relation from
integers to objects and returns the length of that list. Since
index is a singleton set containing an integer, and theList

is a functional relation from integers to objects, the join
index.theList evaluates to the object to which the index is
mapped in theList.

5.2 Abstraction Functions and Rep Invariants
For each unique list representation, we wrote an abstrac-

tion function and a representation invariant. There were
three such unique representations, and all three were circu-
lar and doubly-linked, and they each required a (non-null)
dummy node at the front of the list. This typical represen-
tation is shown in the LinkedList class in Figure 6.



Figure 6 Typical Representation of Linked List

class LinkedList {

Entry header;

}

class Entry {

Entry next, prev;

Object element;

}

The representation invariant of LinkedList says that it
is circular, doubly-linked, and that the header points to a
non-null node:

all e: this.header.̂next + this.header | e.next.prev = e

A suitable abstraction function (with the relations repre-
senting concrete fields and abstract values shown in distinct
fonts) might be:

let indices = theList.(Object + null)
let entries = header.̂ next – header
let pred = prev – (header.next –> header)

all i: indices | some e: entries |
(#(e.̂ pred)) = i and i.theList = e.element

which says that for any index of the abstract list, there is
an entry in the concrete list with a matching element, and
whose number of predecessors is equal to the index. Since
the set cardinality operator # has not yet been implemented
in Kodkod, the actual abstraction functions were a bit more
involved, and took the form

let indices = theList.(Object + null)
let entries = header.̂ next
map: indices one -> one entries

all i: indices {
let currEntry = i.map
let nextIndex = i.inc
let nextEntry = currEntry.next
i.theList = currEntry.element
some (nextIndex & indices) =>

nextIndex −> nextEntry in next else
nextEntry = header

}

using a bijection map to draw a correspondence between ab-
stract and concrete elements. Both of these formulas make
use of features of Alloy that are supported by Kodkod but
omitted from the grammar of Figure 1, in particular the let

shorthand, and the multiplicity constraint on map making it
bijective.

5.3 Results
Our analyses of the implementations were conducted with-

in a scope of 4 list entries, 4 objects, integers ranging from
-8 to 7 (4 bits), and 3 loop unrollings. All experiments were
run on a 2.2GHz Intel Pentium 4 machine with 1GB RAM
and Ubuntu GNU/Linux 5.10. The complete timing results,
shown in Table 1, include all the preprocessing steps.

5.3.1 Sun Java Collection Framework
Our first experiment analyzed the java.util.LinkedList

implementation provided by Sun. We checked each of the
12 List methods against the JML specifications, finding no
specification violations. As shown in Table 1, no analysis
exceeded two minutes.

5.3.2 GNU Trove
GNU Trove is a library of collection implementations

designed to yield better performance than the Java Collec-
tions Framework in special situations. The library includes
a class called TLinkedList, a linked list implementation
that accepts elements implementing an interface that pro-
vides four methods: getNext, getPrevious, setNext, and
setPrevious. TLinkedList uses the elements added to it as
the actual nodes in the linked list. This is intended to avoid
the extra cost of constructing separate node instances. One
disadvantage of this design is that it disallows duplicate list
entries.

We checked two versions of the TLinkedList class for con-
formance to the JML specifications. The first version we
checked is distributed with Trove 1.1b5, the most recent ver-
sion of the library. The second version is from a version of
Trove released four years ago, version 0.1.2, which contained
a bug in an inner iterator class in TLinkedList, according
to the project’s CVS logs.

Upon checking the most recent version of TLinkedList,
we found two of its methods to violate the JML specifica-
tions, remove(Object) and add(int,Object). When the ar-
gument to remove(Object) is not already contained in the
list, the method can behave incorrectly. Upon inspection
of the Trove API, we found this behavior to be deliberate;
its specification for remove(Object) includes a precondition
that the element must be contained in the list. We tem-
porarily amended our JML specification to include this pre-
condition and found no further violation of this specification.

The specification violation in add(int,Object), however,
was not deliberate and constitutes a genuine bug in the im-
plementation that was apparently unknown to the develop-
ers. The method contains a subtle off-by-one error when
inserting into the middle of the list.

Checking the older version of TLinkedList, we found half
of its methods to violate their specifications. The CVS logs
for the project only mentioned a bug in the inner iterator’s
remove method.

5.3.3 Jakarta Commons-Collections
Commons-Collections is a library offered by the Apache

Jakarta project that contains a number of collection imple-
mentations not found in the standard Sun library. It in-
cludes two linked list implementations, both of which we
checked. The first, AbstractLinkedList, is a standard linked
list that provides the same functionality as the Sun imple-
mentation, except that it is written with finer-grained proce-
dural abstraction, giving potential subclasses more flexible
implementation support. Although it is an abstract class, it
contains no abstract methods, so we were able to check it
directly for its conformance to the JML specifications.

The second class analyzed was NodeCachingLinkedList.
Like the TLinkedList class in GNU Trove, this Apache im-
plementation attempts to mitigate the cost of constructing
new nodes on each addition to the list. To do so, it main-
tains a separate linked list of nodes that have already been



Table 1 Duration of Method Analyses (seconds)

add(i,o) add(o) clear contains get indexOf isEmpty lastIndexOf remove(i) remove(o) set size

Sun 23.5 16.0 12.6 84.8 16.6 17.2 15.1 62.6 19.8 77.5 18.0 18.7

Trove1.1b5 18.3 15.0 12.6 14.6 16.9 20.0 15.6 18.3 22.2 11.1* 24.0 13.0

Trove0.1.2 14.2 13.8 12.8 15.3 13.0 19.4 15.6 15.0 13.3 20.4 13.9 12.9

JakartaAbstract 20.8 20.2 13.0 64.5 16.4 25.2 20.9 94.9 37.4 34.2 20.9 29.4

JakartaCaching 25.3 24.1 14.9 119.3 23.8 22.9 22.5 84.8 28.5 100.2 24.8 19.1

MITSeeded 10.1 10.7, 10.1 10.4 11.0

Displayed above are the times (in seconds) to check each method against its specification. Each analysis was bounded by 4 list entries, 4 objects,
integers ranging from -8 to 7 (4 bits), and 3 loop unrollings. Specification violations are displayed in this font, and the * indicates the violation
was intentional and documented by the developer. In the seeded implementations only the seeded methods were checked, and those times are
shown collectively in the last row. Two seeded implementations had bugs in indexOf.

constructed and reuses nodes from this cache whenever pos-
sible. Nodes are added to the cache upon element removal,
but the cache is constrained to not exceed a preset max-
imum size. We found no specification violations in either
implementation.

5.3.4 MIT Seeded Implementations
As an exercise on test coverage, students in an MIT un-

dergraduate course in software engineering were asked to
write comprehensive test suites of the Java List interface.
To measure the coverage of each student’s suite, the suites
were executed on a series of mutant versions of the standard
Java list. Each of these mutant versions contained a single
LinkedList field to which all but one of their methods di-
rectly delegated; the remaining method was seeded with a
bug surrounding the delegation.

Five of these mutants contained bugs in one of the 12
methods considered in this experiment. We used our tool
to check the mutant methods and successfully detected the
bug in each one. We did not check the remaining methods,
because they directly delegated to the Sun implementation,
which we had already determined did not violate the speci-
fications.

5.4 Scope Effects
We ran further analyses to determine the smallest scope

needed to detect each of the specification violations. No
violation required more than a single loop unrolling to be
revealed, and all but one violation was detected when linked
lists were limited to a length of 2 and integers to a bit width
of 3. The remaining violation – the apparently unknown
bug in the latest version of the Trove library – required 3
list entries and 4-bit integers for its detection. These results
contribute evidence to the small scope hypothesis [6].

To evaluate the scalability of the analysis, we re-analyzed
the add(int, Object) method in the Sun implementation
for progressively larger scopes. When bounded by 5 list en-
tries, 5 objects, 4 loop unrollings, and 4 bits to an integer,
the analysis completes in about 2 minutes. When increased
to 6 list entries, 6 objects, and 5 loop unrollings, it takes
about 20 minutes. If the bounds are increased to 7 entries
and 7 objects and integers are increased to 5 bits, the analy-
sis continues for one hour before timing out. Note, however,
that at the time of this experiment, Kodkod supported only
a Java-based SAT solver that was not the first in its class.
Since then, both Kodkod and the Java SAT solver have un-
dergone significant performance improvements, and Kodkod
now supports even faster solvers written in C and C++.

5.5 Specification Errors
In the process of checking these implementations against

the published JML specifications, our tool revealed two er-
rors in the specifications themselves. These errors were cor-
rected during the course of the analysis, and the data shown
in Table 1 is for the corrected specifications.

The first error, found in the specification of the add(int,

Object) method, was discovered when our tool reported a
specification violation in the Sun implementation. The JML
specification states that the method adds the specified ele-
ment at the specified index in the list when the following
condition is true:

requires 0 <= index && index < this.size();

— and that it throws an exception otherwise. However, the
Sun specification states that the element should be added
even when the index is equal to the size, in which case it
should be added to the very end of the list.

A second error was found in the indexOf method when the
tool failed to find a bug in a seeded implementation. The
JML specification says, correctly, that if the method does
not return -1, then the specified element must be in the list.
However, it omits the necessary inverse: if the method does
return -1, the element must not appear in the list.

6. RELATED WORK

6.1 Modular vs. Whole-Program Analysis
An analysis is modular if it allows components to be con-

sidered one at a time, in isolation. The result of analyzing
a component is a summary that is then used as a surrogate
for the component itself in an analysis of the component’s
clients. Some modular analyses are capable of generating
summaries automatically; others require that the user pro-
vide them as specifications, which then overapproximate the
component’s behavior (giving some decoupling that makes
the client less sensitive to changes in the used component).

For verifying a component such as a library class, a mod-
ular analysis is required. Such an analysis, like the one de-
scribed in this paper, takes a method of the class and ac-
counts for all possible invocations of the method. A whole-
program analysis, in contrast, could only be applied if the
class were used in a complete program, and would then only
account for the usage of the class in that particular context.

Model checkers perform whole-program analyses, and are
therefore not ideally suited to the verification of components.
Because they admit non-deterministic constructs, however,



it is possible to write a driver that simulates a variety of
potential invocations of the library methods. But the task
of writing such a driver would pose a significant burden.

One might think, for example, that a driver to test an
implementation of a set datatype might simply use the add
method to generate all sets up to a certain size. However,
such an approach would not provide good coverage, for it
would cover only the abstract pre-states of a method. The
approach described in this paper, in contrast, will consider
all concrete representations, and to generate these the driver
may need not only to apply additions in different orders, but
also to apply the remove method.

Furthermore, if the bound on the analysis is large and/or
the datatype has a weak invariant (e.g. a graph), the num-
ber of well-formed pre-states could be huge, possibly on the
order of millions. An explicit model checker would likely be
incapable of generating a state space of this size, and even
a symbolic model checker may choke if it must handle long
sequences of constructor calls to generate the states.

Alternatively, one could write a driver which constructs
pre-states, not through API calls, but by manipulating the
representation of the datatype directly. The test-case gener-
ators TestEra [24] and Korat [9] follow this approach. Given
a representation invariant on a datatype, they search for an
exhaustive set of non-isomorphic test inputs — within a fi-
nite bound — that satisfy the invariant, while employing
aggressive pruning techniques to narrow the search space.
Pruning is critical to the tools’ feasibility. When exploring
linked lists up to size four, for instance, there are billions
of possible configurations, only a fraction of which are well-
formed, and only a handful of those — less than 50 — could
constitute an equivalent non-isomorphic subset.

For the case study presented in this paper, Korat and
TestEra would probably have sufficed, and achieved similar
coverage to our tool. For analyzing a method that takes two
lists rather than one, however, these approaches would likely
not achieve the coverage of our SAT-based approach, since
the number of possible pre-states would grow too large to
make explicit enumeration and execution feasible.

6.2 Related Approaches
A number of code analysis tools are capable of checking

programs against JML specifications [10]. Some of these
tools perform dynamic analyses, such as checking runtime
assertions or unit testing; but being dynamic, they cannot
attain an exhaustive level of coverage. The static analyses
that handle JML can be placed on a spectrum, from those
that are mostly automated but handle a small subset of
JML, such as ESC/Java [14], to those that require more ex-
tensive user guidance but support nearly all of JML, such as
LOOP [31]. None of the available tools seems to achieve the
combination of exhaustive coverage, support for the entirety
of JML, and full automation possible with our approach.

TVLA [23], a dataflow analysis tool, has been used to
successfully verify programs that operate on data structures
such as singly- and doubly-linked lists. Given an input pro-
gram, it can automatically generate a conservative abstract
program state for each program point. While the analysis
is complete, it is not modular, and it is not easily extended
to full structural specifications. Saturn [35], another static
analysis, uses a SAT-solver as its underlying engine like our
tool, but it is designed for a more limited specification lan-
guage.

Model checkers such as Java PathFinder [34], SLAM [7],
BLAST [15], Magic [12], SMV [26], SPIN [16], BMC [8],
and NuSMV [13] have been successful in verifying control
properties of systems and programs, but they tend not to
be suited for the kind of data structure properties express-
ible in JML. As explained in Section 6.1, they are also not
conducive to modular analysis.

7. CONCLUSIONS
The results of the experiments are encouraging. The ap-

proach appears to be viable, although much work remains
to be done. The major obstacle to extending the analysis to
all methods of the List interface is the handling of generic
collections in methods such as addAll. In future work, we
plan to extend the tool to use abstract specifications for
methods called on generic objects, rather than attempting
to infer behavior from the code of subclasses. We could
also combine the analysis with techniques for inferring spec-
ifications of called procedures, such as Taghdiri’s iterative
refinement [28], to avoid the complete inlining of procedure
calls.

The translation from JML to Alloy was straightforward;
the only problem being the formalization of the JML model
classes, which are defined only informally in JML itself. The
writing of the abstraction functions and representation in-
variants was challenging, but once a style had been devel-
oped, it took little time to create them for each new repre-
sentation.

All of the seeded defects were revealed. A previously un-
known bug was discovered in the latest version of the GNU
Trove library, as well as a deliberate specification violation,
and several bugs were detected in an earlier version of the
library. The analysis scaled adequately for the task at hand,
in all cases terminating within a few minutes.

While increasing the scope to include lists of length 6
caused the analysis to time out, large scopes may not be
required to detect most bugs in practice . In these exper-
iments, no violation required more than a single loop un-
rolling nor lists longer than length 3 for their detection, pro-
viding further evidence to the small scope hypothesis that
most defects have small counterexamples.

The experiments also revealed errors in the JML specifica-
tions themselves, suggesting that this is the first successful
attempt to check any list implementation against full JML
specifications.
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