
Kodkod for Alloy Users

Emina Torlak and Greg Dennis
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139

{emina, gdennis}@mit.edu

ABSTRACT
The generality of Alloy’s relational logic and the full au-
tomation of its analysis have prompted several attempts to
use Alloy as a backend engine for other tools. However,
these efforts have been hampered by the Alloy Analyzer’s
lack of 1) a clean API, 2) support for partial instances, and
3) a mechanism for sharing subformulas and subexpressions.
Designed expressly as a plugin component, the Kodkod re-
lational engine overcomes these limitations. Unlike the An-
alyzer, Kodkod provides a simple interface for constructing
and analyzing Alloy formulas; it accepts user-provided par-
tial instances of these formulas; and it employs a robust
scheme for exploiting shared formulas and expressions.

This paper is an introduction to Kodkod for current Al-
loy practitioners. It describes the key differences between
Kodkod and the Alloy Analyzer, including the meaning and
utility of partial instances. A complete example that pro-
grammatically builds and analyzes an Alloy formula with
Kodkod is presented, and results that compare Kodkod to
the Alloy Analyzer on a series of benchmarks are discussed.

Keywords
First order logic, relational logic, Alloy, model finding, con-
straint solving, SAT solvers.

1. INTRODUCTION
The Alloy Analyzer enables automatic analysis of formu-

las written in the relational logic of Alloy [4]. This auto-
mated analysis, coupled with the versatility of the logic as
a general problem description language, has prompted sev-
eral attempts to use Alloy as a basis for other automated
tools. However, these efforts have been hampered by three
key limitations of the Alloy Analyzer:

A clean API through which clients can build, manipulate,
and analyze Alloy formulas. A clean programming interface
was not among the original design considerations for the
Alloy Analyzer. Designed as a desktop CAD application,
the Analyzer’s intended use was limited to the parsing of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
First Alloy Workshop November 2006, Portland, Oregon USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Alloy source files and their translation to boolean satisfia-
bility (SAT) problems. To use the Analyzer as a backend
engine, tools such as Jalloy [9] have resorted to generating
Alloy source and feeding it to the Analyzer’s parser. This
process of generating textual models is typically slow, awk-
ward, and error-prone. Even when accurate, the generation
can yield models that the Analyzer cannot parse efficiently,
e.g. a model with a single monolithic formula not decom-
posed into predicates, functions, or lets.

Support for partial instances of formulas. To grasp the
meaning of a partial instance, consider the task of solving
a Sudoku puzzle. The goal of Sudoku is to fill a 9 × 9 grid
so that each digit (1 through 9) appears exactly once in
each row, each column, and each of the nine 3 × 3 regions
of the board. Every Sudoku puzzle contains some “given”
cells that are assigned fixed digits at the outset such that the
puzzle has exactly one solution. The “givens” can be viewed
as a partial instance of this Sudoku problem. That is, they
represent the part of the problem’s solution that is known a
priori. With the Alloy Analyzer, such partial solutions must
be encoded as constraints on the model, and the analysis
then must essentially rediscover that partial solution from
the constraints. Performance of the analysis would thus be
improved if the partial instance could instead be provided
directly.

A mechanism for sharing common subformulas and subex-
pressions. The data structures used to represent formulas
and expressions in the Alloy Analyzer are trees. Conse-
quently, common subgraphs cannot be shared; they must be
duplicated. This strict tree structure simplifies a number
of the Analyzer’s algorithms, but at a cost. Not only do
the duplicate subgraphs consume additional memory, but
they can also lead to duplicate SAT variables in the result-
ing boolean formula, causing performance to needlessly suf-
fer as well. To compensate, the Analyzer employs a clever
template detection scheme [8] that avoids doubly allocating
boolean variables for some common subgraphs, but it still
misses other sharing opportunities.

Kodkod is a new relational engine designed expressly as
a plugin component that can easily be incorporated as a
backend of another tool. Unlike the Alloy Analyzer, Kodkod
provides a clean Java interface for constructing, manipulat-
ing, and analyzing an Alloy formula; it allows the user to
specify a partial instance of the formula; it allows common
subformulas and subexpressions to be directly shared; and
it employs an improved scheme for detecting further sharing
opportunities.

Current applications of Kodkod include:

· Design analysis. Design specifications written for the
Alloy Analyzer, including a model of the Mondex elec-
tronic purse [6], have been analyzed with Kodkod.

· Code analysis. A procedure can be checked against
a declarative specification by translating its code to
a relational constraint. Dennis and Chang [1] have
applied this technique to check the correctness of Java
data structures.

· Course scheduling. Given the prerequisite dependen-
cies, overall requirements of a degree program, infor-
mation about which terms particular courses are of-
fered in, and a set of courses already taken, Kodkod
can plan a student’s course schedule. Yeung has built
such a course scheduling application [11].

· Sudoku. The rules of this puzzle game can be encoded
as relational constraints, and the “given” cells can be
can be provided as a partial instance.

· Alloy Analyzer 4.0. An ongoing project seeks to re-
place the core of the Alloy Analyzer with Kodkod.

Kodkod and the Alloy Analyzer share the same underlying
technology: a translation from relational to boolean logic,
and the application of an off-the-shelf SAT solver on the re-
sulting boolean formula. Nevertheless, Kodkod outperforms
Alloy dramatically, particularly on problems involving par-
tial solutions. A number of important technical challenges
were overcome to make this possible, but those are not the
subject of this paper. Instead, this is intended as a guide
for potential Kodkod practitioners, in particular those who
are already familiar with Alloy.

2. KODKOD LOGIC & ANALYSIS
The logic accepted by Kodkod is a core subset of the Alloy

modeling language. Kodkod formulas, like Alloy formulas,
are constraints on relational variables of any arity. In Alloy,
these relational variables are divided into “signatures” (for
unary relations) and “fields” (for non-unary relations), and
the signatures establish a type hierarchy. Kodkod, in con-
trast, makes no special distinction between unary and non-
unary relational variables, and all relations are untyped. In
addition, the purely syntactic conventions of the Alloy mod-
eling language — predicates, functions, facts, etc — are not
part of the Kodkod logic. Think of the Kodkod logic as
Alloy, stripped of its syntactic sugar.

Kodkod requires the relational variables to be bound prior
to analysis, as does the Alloy Analyzer. But unlike Alloy,
Kodkod relations are not bound by integer limits on the
number of atoms in each set. Instead, every relational vari-
able in Kodkod (including non-unary ones) must be bound
from above by a relational constant, a fixed set of tuples
drawn from a universe of atoms. This upper bound con-
sists of the tuples the variable may contain. Each relation
in Kodkod must also be bound from below by a relational
constant — a lower bound consisting of the tuples it must
contain, i.e. a partial instance. An instance of a formula
is a binding of the declared relational variables to relational
constants, that makes the formula true. Kodkod’s analysis
will search for such an instance within the provided upper
and lower bounds.

problem := univDecl relDecl∗ formula

univDecl := { atom[, atom]∗ }
relDecl := relVar :arity [constant, constant]
varDecl := quantVar : expr

constant := {tuple∗}
tuple := 〈atom[, atom]∗〉

arity := 1 | 2 | 3 | 4 | . . .
atom := identifier
relVar := identifier
quantVar := identifier

formula :=
expr in expr subset
| some expr non-empty
| one expr singleton
| no expr empty
| lone expr empty or singleton
| not formula negation
| formula and formula conjunction
| formula or formula disjunction
| all varDecl | formula universal
| some varDecl | formula existential

expr :=
expr + expr union
| expr & expr intersection
| expr – expr difference
| expr . expr join
| expr –> expr product
|˜expr transpose
|ˆexpr closure
| {varDecl | formula} comprehension
| relVar relation
| quantVar quantified variable

Figure 1: Abstract syntax of Kodkod logic

Figure 1 defines the abstract syntax of the Kodkod rela-
tional logic. Although this is presented as a syntax for ped-
agogical purposes, the formulas are constructed via Kodkod
API calls, not via source text that is parsed. Also, the actual
Kodkod data structures allow subformulas and subexpres-
sions to be shared, so the syntax should be seen as describing
a directed acyclic graph rather than a tree.

As shown in Figure 1, a problem in the logic is a universe
declaration, a set of relation declarations, and a formula in
which the declared relations appear as free variables. Each
relation declaration specifies the arity of a relation variable
and the constants that are its lower and upper bounds. The
tuples of all constants are drawn from the problem’s uni-
verse. The remaining syntactic productions describe a sub-
set of the Alloy logic.

To illustrate, consider the following formulation of the pi-
geonhole principle. The principle says that n pigeons cannot
be placed into n− 1 holes so that each pigeons has a hole to
itself. Taking n to be three, we can state the principle as a
Kodkod problem using the following formulation:

{P1, P2, P3, H1, H2}
Pigeon :1 [{〈P1〉〈P2〉〈P3〉}, {〈P1〉〈P2〉〈P3〉}]
Hole :1 [{〈H1〉〈H2〉}, {〈H1〉〈H2〉}]
nest :2 [{}, {〈P1, H1〉〈P1, H2〉〈P2, H1〉〈P2, H2〉〈P3, H1〉〈P3, H2〉}]

(all p : Pigeon | one p.nest) and
(all h : Hole | lone nest.h)

The first line declares a universe of five atoms. We ar-
bitrarily chose the first three of them to represent pigeons
and the last two to represent holes. Because formulas can-
not contain constants, a relational variable with the same
upper and lower bound is declared for each constant in the
formula. The variables Pigeon and Hole, for example, serve
as handles to the constants {〈P1〉〈P2〉〈P3〉} and {〈H1〉〈H2〉}, the
sets of all pigeons and holes, respectively. The binary rela-
tion nest encodes the placement of pigeons into holes. Its
value is constrained to be an injection by the formula.

Kodkod and the Alloy Analyzer perform the same basic
analysis. They both translate relational logic to boolean
logic and invoke an off-the-shelf SAT solver on the result-
ing boolean formula. If a solution to the boolean formula
is found, it is converted into an instance of the relational
formula, i.e. a binding of the formula’s relational variables
to constants.

Kodkod improves upon this basic analysis by applying
new techniques and optimizations to the translation from
relational to boolean logic. For starters, it exploits the user-
provided partial instances to reduce the size of the resulting
SAT problem. In addition, Kodkod replaces the Alloy An-
alyzer’s symmetry-breaking scheme [7] with a more general
technique that works in the presence of the arbitrary upper
and lower bounds provided for each relation.

One of Kodkod’s more powerful optimizations is its de-
tection of common subformulas and subexpressions. Not
only does Kodkod allow explicit sharing of subgraphs by
aliasing the data structures themselves, but it also employs
a robust scheme for finding and eliminating duplicate sub-
graphs that could have been directly shared. This is accom-
plished efficiently with a single depth-first search down the
formula graph. For any shared subgraph – either aliased ex-
plicitly or found through the search – boolean variables will
be allocated only once, thus reducing the SAT problem and
improving the performance of the analysis.

3. KODKOD API
The Kodkod API is a Java library that embodies the logic

and analysis described in the previous section. At roughly
12,000 source lines of code (SLOC), it’s a relatively small
piece of software. To demonstrate the features of the API
and how it differs from the Alloy Analyzer, we apply both
tools to the Sudoku problem shown in Figure 2. Shaded
entries are the puzzle’s “givens” and the white entries show
its solution — the solution that Kodkod and the Analyzer
need to generate to satisfy the rules of the game.

3.1 Sudoku in Alloy
Figure 3 shows an Alloy formulation of the sample Sudoku

problem. Signature Number introduces the set of numbers
used in the game. It is partitioned into three regions, each
of which is further partitioned into three singletons. These
declarations ensure that an instance of the model contains
exactly nine Number atoms, singletons N1 through N9.

The field data establishes a two-dimensional grid that maps
each row and column pair to the digits in that cell on the
grid. The rules predicate constrains data to be a proper Su-
doku solution. The first rule states that data is a function
from pairs of Numbers to at most one Number. (That this
function is total is implied by the remaining rules.) The sec-
ond rule ensures that each row of the grid is “complete”, i.e.

that all the numbers are found in that row. The remaining
rules ensure that each column and each 3 × 3 region of the
grid is complete as well.

The puzzle predicate encodes the given cells (shaded in
Figure 2) for the sample puzzle. Because the Alloy Ana-
lyzer lacks support for partial instances, these givens must
be encoded as constraints on the data field. For example, the
constraint N1–>N4–>N2 in data ensures that the solution
maps the cell (1, 4) to the number 2. The game predicate
conjoins the puzzle and the rules; running it amounts to
asking the Alloy Analyzer to solve the sample problem.

3.2 Sudoku in Kodkod
Figure 4 shows a formulation of the sample Sudoku prob-

lem with the Kodkod API. The formula and expression pro-
ductions from Figure 1 are represented by immutable Java
classes. Being immutable, the classes require that any sub-
formulas and subexpressions be provided on construction,
thus ensuring that the abstract syntax graph is acyclic.

A problem’s universe is given as a Universe object con-
structed from a user-provided Collection of Objects. Each
Universe provides a TupleFactory for creating constants, rep-
resented by TupleSet objects, from atoms drawn from that
Universe. The relation declarations are embodied by the
Bounds abstraction, which maps Relation objects to upper
and lower bound TupleSets. A configurable Solver object
provides access to the facilities for solving a Formula with
respect to the given Bounds. A Solver is configured through
its Options component, which enables the selection of various
SAT solvers and tuning of various translation parameters.

Lines 2-6 of Figure 4 declare a ternary relation data and
four sets, Number and regions[0..2]. Note that unlike their
Alloy equivalents, these relations are untyped. The limit on
the values each relation can contain are specified separately
through the Bounds. Java methods can be used to encapsu-
late and parameterize reusable formulas and expressions —
the same role predicates and functions play in Alloy. The
methods complete and rules, for example, correspond to the
predicates of the same name in the Alloy model.

Unlike its Alloy equivalent, the puzzle method encodes the
problem’s partial instance (lines 47-75) in the Bounds rather
than as constraints. Line 38 constructs a Universe out of a
set of 9 Integers, and from the Universe a TupleFactory is ob-
tained to build a Bounds for the problem. The boundExactly
method assigns a Relation the same lower and upper bounds,
thereby ensuring it is a constant. The Number relation, for
example, is assigned the set of all tuples of arity 1 (the set
of all 9 integers), while region[0] is the set containing exactly
1, 2 and 3. The only Relation in the sample problem with
different lower and upper bounds is data. Its lower bound
is the TupleSet givens which contains the tuples correspond-
ing to the shaded cells in Figure 2 (lines 47-74). Its upper
bound is the set of all tuples of arity 3 (line 75).

The main method plays the role of the Alloy run command.
It constructs and customizes a Kodkod Solver (lines 81-82),
applies it to the problem (line 84), and prints the result.

4. RESULTS
We have compared Kodkod’s performance (KK) to that

of the Alloy Analyzer (AA) on three sets of problems:1

1Available at http://web.mit.edu/emina/www/problems/

1 4 5 2 8 9 3 7 6

7 2 6 5 3 1 8 4 9

9 8 3 7 6 4 1 2 5

6 1 9 4 2 7 5 3 8

3 7 4 1 5 8 9 6 2

2 5 8 3 9 6 4 1 7

8 6 2 9 4 3 7 5 1

4 9 7 6 1 5 2 8 3

5 3 1 8 7 2 6 9 4

Figure 2: Sample Sudoku Puzzle

abstract sig Number { data: Number –> Number }

abstract sig Region1, Region2, Region3 extends Number {}

one sig N1, N2, N3 extends Region1 {}
one sig N4, N5, N6 extends Region2 {}
one sig N7, N8, N9 extends Region3 {}

pred complete(rows: set Number, cols: set Number) {

Number in cols.(rows.data) }

pred rules() {
all x, y: Number { lone y.(x.data) }
all row: Number { complete(row, Number) }
all col: Number { complete(Number, col) }
complete(Region1, Region1)
complete(Region1, Region2)
complete(Region1, Region3)
complete(Region2, Region1)
complete(Region2, Region2)
complete(Region2, Region3)
complete(Region3, Region1)
complete(Region3, Region2)
complete(Region3, Region3)

}

pred puzzle() {
N1–>N1–>N1 + N1–>N4–>N2 + N1–>N7–>N3 +
N2–>N2–>N2 + N2–>N5–>N3 + N2–>N8–>N4 +
N3–>N3–>N3 + N3–>N6–>N4 + N3–>N9–>N5 +
N4–>N1–>N6 + N4–>N4–>N4 + N4–>N7–>N5 +
N5–>N2–>N7 + N5–>N5–>N5 + N5–>N8–>N6 +
N6–>N3–>N8 + N6–>N6–>N6 + N6–>N9–>N7 +
N7–>N1–>N8 + N7–>N4–>N9 + N7–>N7–>N7 +
N8–>N2–>N9 + N8–>N5–>N1 + N8–>N8–>N8 +
N9–>N3–>N1 + N9–>N6–>N2 + N9–>N9–>N4 in data

}

pred game() { rules() && puzzle() }

run game

Figure 3: Sudoku in Alloy

1 public final class Sudoku {
2 private final Relation Number = Relation.unary(”Number”);
3 private final Relation data = Relation.ternary(”data”);
4 private final Relation[] regions = new Relation[] {
5 Relation.unary(”Region1”), Relation.unary(”Region2”),
6 Relation.unary(”Region3”) };
7

8 public Formula complete(Expression rows, Expression cols) {
9 return Number.in(cols.join(rows.join(data))); }

10

11 public Formula rules() {
12 final Variable x = Variable.unary(”x”);
13 final Variable y = Variable.unary(”y”);
14 final Formula f1 = y.join(x.join(data)).lone().
15 forAll(x.oneOf(Number).and(y.oneOf(Number)));
16

17 final Variable row = Variable.unary(”row”);
18 final Formula f2 = complete(row, Number).
19 forAll(row.oneOf(Number));
20

21 final Variable col = Variable.unary(”col”);
22 final Formula f3 = complete(Number, col).
23 forAll(col.oneOf(Number));
24

25 Formula rules = f1.and(f2).and(f3);
26 for(Relation rx: regions) {
27 for(Relation ry: regions) {
28 rules = rules.and(complete(rx,ry));
29 }
30 }
31 return rules;
32 }
33

34 public Bounds puzzle() {
35 final Set<Integer> atoms = new LinkedHashSet<Integer>(9);
36 for(int i = 1; i <= 9; i++) { atoms.add(i); }
37

38 final Universe u = new Universe(atoms);
39 final Bounds b = new Bounds(u);
40 final TupleFactory f = u.factory();
41

42 b.boundExactly(Number, f.allOf(1));
43 b.boundExactly(regions[0], f.setOf(1, 2, 3));
44 b.boundExactly(regions[1], f.setOf(4, 5, 6));
45 b.boundExactly(regions[2], f.setOf(7, 8, 9));
46

47 final TupleSet givens = f.noneOf(3);
48 givens.add(f.tuple(1, 1, 1));
49 givens.add(f.tuple(1, 4, 2));

. . .
74 givens.add(f.tuple(9, 9, 4));
75 b.bound(data, givens, f.allOf(3));
76

77 return b;
78 }
79

80 public static void main(String[] args) {
81 final Solver solver = new Solver();
82 solver.options().setSolver(SATFactory.MiniSat);
83 final Sudoku sudoku = new Sudoku();
84 final Solution sol = solver.solve(sudoku.rules(), sudoku.puzzle());
85 System.out.println(sol);
86 }
87 }

Figure 4: Sudoku in Kodkod

Sudoku (9 × 9) Tough Nut (8 × 8)

solver time vars clauses time vars clauses

AA 3 11,618 44,152 60 0 0

KK 0 1,833 2,398 0 0 0

Ceilings and Floors

scope 6 men, 6 platforms 10 men, 10 platforms

solver time vars clauses time vars clauses

AA 1 2,723 11,704 10 9,987 46,740

KK 0 1,749 3,289 4 6,477 12,449

Pigeonhole Problem

scope 10 pigeons, 9 holes 30 pigeons, 29 holes

solver time vars clauses time vars clauses

AA 1 2,899 12,182 11 42,543 207,046

KK 0 1,133 1,983 1 20,473 38,013

Mutex Ordering

scope 30 atoms 45 atoms

solver time vars clauses time vars clauses

AA 65 74,818 722,236 > 300 - -

KK 2 20,080 120,097 15 67,695 543,597

Ring Leader Election

scope 15 atoms 24 atoms

solver time vars clauses time vars clauses

AA 4 14,272 78,031 121 91,594 662,188

KK 1 8,665 29,590 43 45,136 183,484

Table 1: Results (time in seconds)

· Constrained problems include a Sudoku puzzle and
the Tough Nut puzzle [5]. The Sudoku puzzle has ex-
actly one solution. The Tough Nut puzzle is unsatis-
fiable. It proves that an 8 × 8 checkerboard with two
opposite corners deleted cannot be tiled with dominos.

· Symmetric problems consist of two instances of the
pigeonhole problem and two instances of the ‘Ceilings
and Floors’ problem bundled with the Alloy Analyzer
distribution. Like the pigeonhole problem, it is unsat-
isfiable and exhibits a high degree of symmetry.

· Design problems include the formulations of Dijk-
stra’s algorithm for mutex ordering [2] and the ring
leader election algorithm described in [4]. We check
that Dijkstra’s algorithm prevents deadlocks, and that
the leader election algorithm elects at most one leader.

The results are shown in Table 1. For each example, it
shows the size of the problem’s CNF encoding and the total
analysis time rounded to the nearest second. The Sudoku
and Tough Nut problems have fixed universes of size nine
and eight, respectively. Other problems have been analyzed
in universes of varying sizes. All analyses were performed
on a 2 × 3GHz Dual Core Intel Xeon with 2 GB RAM.
The Analyzer and Kodkod were both configured to use the

MiniSat [3] SAT solver. Analyses that did not complete
within five minutes (> 300 seconds) were interrupted.

According to the data in Table 1, Kodkod significantly
outperforms the Analyzer on both the problems with par-
tial solutions (Sudoku and Pigeonhole) and classic relational
specifications for which Alloy was designed (Mutex Order-
ing and Ring Leader Election). On Tough Nut, Kodkod’s
variable and clause entries in the table are 0, indicating that
its internal simplifications were alone sufficient to determine
that the problem is unsatisfiable.

On these and many other problems, Kodkod was used as
a standalone model finder. However, our primary goal is
to design a relational engine that is not only scalable and
lightweight, but easily integrated into domain-specific appli-
cations. At least two applications have used Kodkod in this
capacity with success. Dennis and Chang designed a static
analysis in which Java code is automatically translated into
relational logic, and Kodkod is invoked to find executions
of the code that violate a user-provided specification. Their
tool automatically checked several implementations of the
java.util.List interface against a full specification of its be-
havior. Yeung built a course scheduler [11], now available as
a web application [10], that accepts as input a set of courses
a student has taken, degree requirements, and a listing of of-
fered subjects. These constraints are translated to our logic,
and Kodkod finds a potential schedule for the student.

5. REFERENCES
[1] G. Dennis, F. Chang, and D. Jackson. Modular

verification of code. In ISSTA, Portland, Maine, July
2006.

[2] E. W. Dijkstra. Cooperating sequential processes. In
F. Genuys, editor, Programming Languages, pages
43–112. Academic Press, New York, 1968.

[3] N. Eén and N. Sörensson. An extensible SAT-solver.
In SAT’03, volume LNCS 2919, pages 502–518, 2004.

[4] D. Jackson. Software Abstractions: logic, language,
and analysis. MIT Press, Cambridge, MA, 2006.

[5] J. McCarthy. A tough nut for proof procedures.
Technical report, Stanford, 1964.

[6] T. Ramananandro. Mondex with the Alloy
model-finding method, 2006.

[7] I. Shlyakhter. Generating effective symmetry breaking
predicates for search problems. Electronic Notes in
Discrete Mathematics, 9, June 2001.

[8] I. Shlyakhter, M. Sridharan, R. Seater, and
D. Jackson. Exploiting subformula sharing in
automatic analysis of quantified formulas. In SAT,
Portofino, Italy, May 2003.

[9] M. Vaziri and D. Jackson. Checking properties of
heap-manipulating procedures with a constraint
solver. In TACAS, pages 505–520, 2003.

[10] V. Yeung. Course scheduler
(http://optima.csail.mit.edu:8080/scheduler/), 2006.

[11] V. Yeung. Declarative configuration applied to course
scheduling. Master’s thesis, Massachusetts Institute of
Technology, Cambridge, MA, June 2006.

