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Abstract. Recent advances in SAT solvers have made it attractive to
translate a variety of problems to SAT. In many cases, the source lan-
guage is a logic that includes quantifiers. Grounding out these quantifiers
can be a bottleneck. One way to mitigate the problem is to join isomor-
phic subtrees of the ground formula, so that the syntax tree becomes
a DAG. Because the ground tree is large, detecting isomorphism after
grounding out is impractical. However, detecting isomorphism prior to
grounding out will miss many isomorphisms in the ground form.

A method is presented that detects potential isomorphism in advance of
grounding out, but which identifies the isomorphisms of the ground form.
It partitions nodes of the quantified formula into classes whose expansion
may yield identical ground subformulas. This allows isomorphisms to be
discovered during grounding out that are not evident in the original
formula.

Experience using this technique in the context of a model checker for re-
lational specifications is presented. It gives significant reductions of both
analysis time and memory usage, and has enabled analyses that were
previously intractable. We speculate that the intermediate information
generated by the technique can also aid QBF solvers.

1 Introduction

Quantified formulas — statements such as Yz P(x) — are frequently used in formal
specifications. They allow concise and natural formalization of system properties
and, for this reason, are present in many constraint languages. Languages that
permit some form of quantifiers include first-order logic, Alloy [7], and Murphi
[2]. The recently developed Bounded Model Checking techniques express Linear
Temporal Logic formulas as quantified formulas [1].

Constraints with quantifiers can be analyzed in one of two ways: They can be
converted to a Quantified Boolean Formula and solved using a QBF solver [5],
or the quantifiers can be ground out and the resulting ground form converted



to CNF and solved with a SAT solver [6,9]. Since the ground form can be
much larger than the original quantified constraints, grounding out may not be
practical in some cases. For the cases for which it is practical, grounding out
and applying a SAT solver usually takes less time than converting to QBF and
using a QBF solver [4].

In this paper we present a technique that extends the range of problems for
which the “ground out and convert to CNF” approach is practical. The technique
speeds up grounding out, and results in smaller CNF's that are solved faster. The
resulting CNFs encode subformula sharing information not otherwise available to
the SAT solver. The intermediate information we compute about the unground
constraints may be of use to QBF solvers, and the speedup seen in CNF solvers
suggests there might be similar benefits to QBF solvers.

The technique takes advantage of the large numbers of identical subformulas
often present in ground constraints. Representing the ground form as a DAG
allows identical subformulas to be shared. However, since the ground constraints
are not explicitly represented in the original (quantified) constraints, identify-
ing opportunities for sharing is nontrivial. Once a ground form is obtained, we
could identify identical subtrees, but doing so would require first obtaining the
(unshared) ground form, which can be infeasible. On the other hand, identi-
fying isomorphisms in the unground form (and then grounding out) will miss
many opportunities for sharing in the ground form. In this paper, we describe
a technique for directly producing a DAG in which sharing is already present.
We identify the structural isomorphisms of the ground form, but perform our
analysis on the unground form.

The remainder of the paper is organized as follows. Section 2 presents an
abstract constraint syntax (Subsection 2.1), describes how grounding out is per-
formed and how sharing information can be used (Subsection 2.2), introduces
the notion of a template and describes how templates can be used to detect
sharing (Subsection 2.3), and elaborates on how templates are detected (Sub-
section 2.4). Section 3 gives empirical measurements of improvements obtained
by detecting sharing, including an example of a previously intractable problem
which our technique makes analyzable. Section 4 concludes the paper and indi-
cates directions of future work.

2 Detecting and Using Sharing

2.1 Abstract Constraint Syntax

Rather than using a specific constraint language, we define an abstract syntax
that serves as a schema for constraint languages with quantifiers. The only re-
striction we place on the constraint languages is that quantifiers range over finite
domains (so that grounding-out is possible). This abstract syntax separates our
techniques from the semantics and properties of any particular language.

We define an abstract constraint syntax for expressing predicates on a col-
lection of variables. A predicate is expressed as an abstract syntax tree (AST),



U: all values V: variables Q: quantified variables

N: nodes F: node functions M: templates

is_var(n: N): Bool // is n a leaf AST node representing a variable?
node_var(n: N): V // if isvar(n), return the variable at n

node_func(n: N):F // what function of its children does n compute?
node_chldrn(n:N): N* // return the children of n

node_templ (n:N): M // the template matched by node n

node_args(n:N): N* // the argument list with which n matches node_templ (n)
is_quant(n:N): Bool // is n a quantifier node?

quant_var(n:N): Q // the quantified variable declared at n
quant_body(n:N): N // the sole child node of a quantifier node

quant_range(n:N): U# // the range of the quantified variable of n

Fig. 1. Definition of notation.

where each inner node computes a predefined function of its children (the root
computing a Boolean which becomes the value of the predicate). Leaf nodes of
the tree include the variables the predicate is constraining, quantified variables,
and constants. Inner nodes include quantifier nodes. A quantifier node has one
child, and defines a range of values for a free quantified variable in its subtree.
The quantifier node’s value is computed by applying its node function to the
result of evaluating the quantifier body, as the quantified variable runs over the
range. This abstraction can express the standard quantifiers, V and 3, but is
general enough to express quantified constructs such as set comprehension and
integer summation.

This abstract constraint syntax can be instantiated as a number of different
languages. For example, to represent first-order logic, the node functions would
include AND, OR, and NOT. Set theory can be represented by including as node
functions the standard set operators (UNION, INTERSECT, etc). Our work was
motivated by the Alloy language [7], but applies to other constraint languages
with finite-domain quantifiers.

Figure 1 gives the formal notation used in this paper. Figure 2 shows an
unground AST expressing a constraint on a single variable v1, and the ground
form of the constraint.

2.2 Grounding Out

An AST can be converted into a quantifier-free (ground) form by grounding out
the quantifier nodes.

groundout(n: N, gvarvals: Q->U): N {
return new_node(node_func(n), !is_quant(n) ?
map(lambda ¢ . groundout(c,qvarvals), node_chldrn(n)) :
map(lambda u . groundout(quant_body(n),
gvarvals[quant_var(n)->ul]), quant_range(n))) }



gvarvals gives the values of free quantified variables used in n’s subtree.
gvarvals[quant_var(n)->u] is qvarvals with the quantified variable defined
at node n set to value u. new_node constructs a new ground node with the
specified node function and children.

We would like an “oracle” that keeps track of the ground forms already
produced, and tells whether a particular invocation of groundout will generate
an already-produced ground form. The difficulty lies in determining whether
the ground form about to be generated matches an existing ground form. In
the following sections, we describe how to construct such an oracle by adding
template annotations to the unground tree.

2.3 Using Templates to Detect Sharing

Here we describe the format of the template information, and how it is used
during grounding-out. Later, in Section 2.4, we describe how templates are de-
tected.

Before grounding out, we compute a template annotation for each node of the
AST. In effect, we represent every node as an instantiation of a parameterized
template. During grounding out, for each template we keep track of ground
forms of all nodes that match the template. When we visit a node, we look in its
template’s cache of ground forms to see whether the ground form we’re about
to generate is already available.

More specifically, the template annotation of a node n comprises a template
name node_templ(n) and a list of template arguments node_args(n). Each
template argument is a constant-valued node in the subtree rooted at n. (A
node is constant-valued if its subtree contains no non-quantified variables. The
ground form of a constant-valued node simplifies to a single value.)

The template information lets us quickly determine whether two given in-
vocations of groundout will produce the same ground form. Formally, template
information satisfies the following template invariant:

node_templ(nl) = node_templ(n2)
&& argsMatch(node_args(nl) ,node_args(n2),A1,A2)
=> groundout (n1,Al1)=groundout (n2,A2)

argsMatch(argsl, args2: N*, Al, A2: Q->U): Bool
forall(lambda al a2 . eval(al,Al)=eval(a2,A2), argsl, args2)

eval(n: N, a: Q -> U): U { let f=node_func(n) in if(!is_quant(n))
then { f(map(lambda c . eval(c,a), node_chldrn(n))) }
else { f(map(lambda u . eval(c,alquant_var(n)->ul), quant_range(n))) }

During grounding out, for each template we keep a cache of ground forms
keyed on the value of the template argument list. When groundout is called
to produce the ground form of node n under the quantified variable settings
qvarvals, we evaluate the template arguments of n under gqvarvals, and use
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Fig. 2. Using templates to effect sharing during grounding-out. The DAG on the right
is the grounding-out of the AST on the left. Rounded rectangles indicate quantifier
nodes. Nodes A and B match the same template T3. During grounding-out, node A
for ¢1 = w1 has the same ground form (dotted rectangle) as node B for ¢2 = wua, if
fs(u2,u7) = ur.

the resulting list of values as a key into the cache of ground forms kept for n’s
template.

The use of templates to produce sharing of common subformulas is illustrated
in Figure 2. Nodes A and B match the same template T5. During grounding-out we
maintain a cache for T3, mapping argument list values to ground forms. Initially
the map is empty. When groundout visits node A with q1=ul, it computes the
key into T3’s cache to be [ul] (evaluating node A’s template argument list [q1]).
This gives a cache miss; groundout computes a ground form (dotted rectangle
in Figure 2) and stores it in T3’s cache with the key of [u1]. When groundout
subsequently visits node B with q2=u2, it computes the key into T3’s cache as
[£5(u2,u7)]. Suppose £5(u2,u7)=ul. Then groundout will get a cache hit,
retrieve the previously computed ground form from 73’s cache and return it
immediately. The cached ground form will therefore be shared among two nodes,
as shown in the rightmost DAG in Figure 2.

2.4 Detecting Templates

We describe the template detection algorithm and illustrate it on the running
example in Figure 2. Full details are available in a technical report [10].

Template detection is done by a single depth-first traversal of the unground
AST. For each node, we determine the template name and template arguments
satisfying the template invariant defined in section 2.3. When we visit a node,
we first recursively determine the template information for the node’s children,
then use that information to determine the correct template annotation for the
node itself.

First, consider two base cases. All leaf nodes referencing a given non-quantified
variable match the same template, with no arguments. Any two such nodes have



the same ground form, so the template invariant is trivially satisfied. In the
running example, the two v; nodes both match the template T,;, with empty
argument list [ ].

Another base case involves constant-valued nodes. A node is constant-valued
if its subtree references no non-quantified variables; all leaves are either constants
or quantified variables. All such nodes match a single template, T,p s, With the
node itself as the sole argument. Since the ground form of a constant-valued node
simplifies to a single value from U, the template invariant is trivially satisfied®. In
the running example, the constant-valued nodes g1 and f5(g2, ur) match Teonst
with argument lists [¢1] and [f5(q2, u7)] respectively. For any quantified variable
setting A; that sets ¢; and A, that sets ¢o, the template invariant asserts that
whenever ¢; under A; evaluates to the same ground form (i.e. to the same
element of U) as f5(g2,u7) under Ay, the two constant-valued nodes have the
same ground form.

Now we consider template detection for a non-leaf, non-constant node that
does not define a quantified variable. There are three such nodes in the running
example: node A, node B and the root; here we will focus on the first two. We
need to determine if the node we’re visiting matches a previously seen template,
or a new template. (Recall that we’re traversing the AST in depth-first order; for
the running example, assume that we always visit the left subtree before visiting
the right.)

Scanning all existing templates would make the algorithm quadratic in AST
size. A simple optimization leads to linear running time in practice. We first
compute a (much smaller) subset of candidate templates, containing all previ-
ously seen templates that the node could match. For this purpose we keep a set
of parent templates for each template. m’ is a parent of m if there exist nodes n
and n’ such that n matches m, n’ matches m’> and n’ is the parent of n. When
we have determined the template matched by a node, we add that template as
a parent template to each child’s template.

In order for n to match the template t’ already matched by some (previously
visited) node n’, the corresponding children of n and n’ must have matching
templates. Thus, if a template t is not a parent template of the template of each
child of n, then n cannot match t. We therefore let the candidate template set
be the intersection of the template parent sets of the templates matched by the
children of n.

In our example, consider our visit to node A. At that point neither T3
(matched by A’s first child) nor T,; (matched by A’s second child) have any
parent templates. Consequently the set of candidate templates for A is empty,
and A matches a previously unseen template; we name the new template T5. We
record T3 as a parent template of both T} and T,;. Later we visit node B, its left
child matches T} and its right child matches T,;. At that point the candidate
template set is computed as the intersection of {T3} and {75}, yielding the sole

3 In our actual implementation the AST nodes have types, and there is one template
for constant-valued nodes of each type. This prevents AST nodes that will never
ground out to the same ground form from matching a common template.



template T3; if node B matches a previously seen template, that template must
be T3.

Now that we have narrowed down the templates we need to consider, we
examine each in turn to see if it is matched by the node n we’re visiting. From
each candidate template, we take a representative node n’ which we visited
earlier and which matches the candidate template. We perform three tests to see
whether n and n’ match the same template: whether they have the same node
functions, same numbers of children, and whether their corresponding children
match the same templates. If the three tests pass, we declare that n matchesn’’s
template. Regardless of whether n matches a previously seen template or a new
template, the template argument list is obtained by concatenating the template
argument lists of n’s children.

For example, when we visit node A, it matches a previously unseen template;
we compute the template argument list by concatenating [¢:] with [ ] to obtain
[¢1]- When we subsequently visit node B, we need to test whether it matches
the previously seen template T5. We take a previously seen node that matches
T3, node A. We observe that nodes A and B compute the same node function
(f1), have the same number of children (2), the left children of both match T,
and the right children match 7,;. We therefore determine that node B matches
template T3, with argument list [f5(gz, u7)].

We will now show that the template annotations computed as described
above satisfy the template invariant. Suppose nodes n1 and n2 both match tem-
plate t and satisfy the three tests; and quantified variable assignments A1,A2: Q->U
meet the condition

argsMatch(node_args(nl) ,node_args(n2),A1,A2)

Since the template arguments of n1 and n2 were obtained by concatenating the
template arguments of their children, we have

forall(lambda cl c2 . argsMatch(node_args(cl) ,node_args(c2),A1,A2),
node_chldrn(nl), node_chldrn(n2))

Assuming child template information is correct, the corresponding children of
nl and n2 ground out to the same ground forms (under A1 and A2 respectively).
Since nl1 and n2 combine their children using the same functions, the ground
forms of n1 and n2 are the same.

Computing template arguments for a quantifier node has an added compli-
cation; template arguments for the child may include the quantified variable
introduced at the node, however, the template arguments for this node itself
cannot include that variable. This impacts how we compute the template ar-
guments for the node; we cannot simply take the template arguments of the
child (as we would do for a one-child non-quantifier node). The full algorithm
for template detection, including the handling of quantifier nodes, is described
in [10].



3 Results

We present preliminary performance results for a benchmark suite of six Alloy
[7] models.

dijkstra: a model of Dijkstra’s algorithm for mutex ordering to prevent dead-
locks. We check that the algorithm works correctly for 10 processes and 10
mutexes, for traces up to length 10.

stable_mutex_ring: a model of Dijkstra’s self-stabilizing K-state mutual exclu-
sion algorithm for rings [3]. We run a function which finds a non-repeating
trace of the system with 3 nodes and 17 steps.

ins: a model of an intentional naming system [8]. We check a structural correct-
ness condition for 4 nodes and 2 name records.

chord: a partial model of the Chord distributed hashtable lookup algorithm
for rings [11]. We check a structural correctness condition for 3 nodes and 5
Chord identifiers.

shakehands: a model of a logic puzzle by Paul Halmos involving handshakes
between pairs of people. We run a function which solves the puzzle for 10
people.

life: a model of Conway’s Game of Life. We run a function which finds an
execution of 3 time steps on a 12 point grid.

This suite reflects a variety of modelling idioms, including the BMC-style [1]
models which motivated this work. It also balances checking conditions that
are satisfiable (stable_mutex_ring, shakehands, and life) with those that are not
(dijkstra, ins, chord). The benchmarks were run on a Pentium III 1GHz laptop
with 256 MB of RAM running Windows 2000.

num vars| num vars||num clauses|num clauses

model|| sharing|no sharing sharing| no sharing

dijkstra 40631 55463 95948 123758
stable_mutex_ring 16309 19897 38440 50237
ins 22742| timeout 110564 timeout

chord 22856 43102 58106 104117

shakehands 7706 16575 20539 54673

life 37322 92464 161289 383541

Table 1. Formula sizes for benchmarks with and without sharing detection.

Table 1 shows the effects of our sharing detection algorithm on the size of
the generated CNF formula. We measure both the number of variables and
the number of clauses. Sharing detection consistently reduces the size of the
generated CNF by a large amount, more than a factor of 2 in some cases. For
the ins model, no CNF was generated without sharing because the grounding



ground-out |[ground-out|| mchaff mchaff bermkin| berkmin

model sharing| no sharing||sharing|no sharing sharing|no sharing

dijkstra 6.02 7.82 2.74 9.70 19.87 67.98
stable_mutex ring 0.91 1.25|| 18.77 32.65 6.40 24.20
ins 4.01 timeout 2.17| timeout 2.58| timeout

chord 1.01 3.74|| 55.03 93.04 21.87 48.07
shakehands 0.54 0.89(| 295.58| timeout 2.14 57.20

life 4.87 13.17 2.04 44.11 3.28 20.67

Table 2. Runtimes for benchmarks with and without sharing detection. All times are
in seconds.

out phase ran out of memory, illustrating how sharing detection has made some
previously intractable models analyzable.

Runtime comparisons for our benchmarks are given in Table 2 (all times are
in seconds). We present times for grounding out and solving with two different
modern SAT solvers, mchaff [9] and BerkMin [6]. The “no sharing” columns give
runtimes with sharing detection disabled. We see consistent and often dramatic
improvements with sharing detection enabled for both grounding out and solv-
ing. The improvements are seen for both SAT solvers, indicating that the better
performance with sharing is independent of differing solver techniques. The ins
model is particularly interesting, as it is easily analyzable with sharing detection
and intractable without. For the shakehands model with sharing detection dis-
abled, mchaff was unable to find a solution after 15 minutes of runtime. We plan
to implement more optimizations for the sharing detection in the near future, in-
cluding handling of commutative operators, and we expect to have more results
like the ins model, where sharing detection makes the difference in tractability.

Two possible factors contribute to the performance improvements. First, the
CNF encodings of formulas with shared subtrees is more compact; only one batch
of Boolean variables and clauses is needed to encode the shared subtree. As a
result, SAT solver operations such as unit propagation execute faster. Second,
the subformula sharing information implicitly encoded in the smaller CNF may
prevent the solver from performing redundant computations. Understanding the
relative importance of these factors will be one direction of future work.

4 Conclusion

We have described a new algorithm for exploiting structural redundancy in quan-
tified formulas during grounding out. The algorithm reduces running time and
memory usage of the groundout procedure, and produces easier-to-solve CNFs.
The technique does not depend on the details of the constraint language, and
applies to languages that include non-standard quantification constructs.

Results on a variety of software models suggest that the approach is practical.
It never worsens performance; often it produces a significant improvement, and
in one documented case it made a previously intractable model tractable.



The template annotations produced for nodes of the source tree have sim-
ple semantics; they implicitly encode information about the ground form. QBF
solvers similarly attempt to derive information about the ground form, without
explicitly grounding out. It would be interesting to see whether QBF solvers can
use the sharing information to achieve the speedups seen with CNF solvers.
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